
 

Accelerating universe with a stable extra dimension in cuscuton gravity
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We study Kaluza-Klein cosmology in cuscuton gravity and find an exact solution describing an
accelerating four-dimensional universe with a stable extra dimension. A cuscuton which is a nondynamical
scalar field is responsible for the accelerating expansion, and a vector field makes the extra dimensional
space stable. Remarkably, the accelerating universe in our model is not exactly de Sitter.
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I. INTRODUCTION

As is well known, superstring theory predicts our
spacetime has ten dimensions. However, the idea of higher
dimensional spacetime itself is not new, in fact, goes back
to Kaluza-Klein theory [1,2] which unifies electromag-
netic force and gravity in four-dimensional spacetime as
pure gravity in five-dimensional spacetime. Of course,
since our real world has four dimensions, the extra
dimensions must be invisible. This can be realized
if the extra dimensions are compacified into a small size.
A natural mechanism for compactification of the extra
dimensions has been proposed in the context of cosmo-
logy. In the original proposal [3], the four-dimensional
universe is expanding and the extra dimensions are
contracting. Since then, Kaluza-Klein cosmology has been
intensively investigated [4–7]. Now, the main issue is how
to stabilize the contracting extra dimensions. Actually,
more natural scenario is as follows. Initially, all of spatial
dimensions were compact and small. Subsequently, in the
course of cosmological evolution, only four-dimensional
universe has expanded up to the present scale. In this
paper, we call this particular scenario “Kaluza-Klein
scenario.” To our best knowledge, there seems no concrete
model to realize this Kaluza-Klein scenario. In particular,
it is difficult to construct four-dimensional inflationary
universe with stable extra dimensions. Indeed, when we
put cosmological constant in higher dimensions, the extra
dimensions can be easily decompactified. Recently, the
mechanism for compactification has been also discussed
in the context of string theory and then most discussions
rely on the four-dimensional effective action method. First,
the stability of extra dimensions is realized using a four-
dimensional nonperturbative mechanism. Next, matters are

considered in four dimensions to realize inflation.
However, the higher dimensional picture of this stabiliza-
tion procedure is not obvious. Thus, it is still worth
seeking the Kaluza-Klein scenario.
For resolving difficulties in cosmology such as the dark

energy problem, modified theories of gravity have been
extensively utilized. We can expect that modified gravity
also plays a role for realizing the Kaluza-Klein scenario.
Indeed, a compactification mechanism in Einstein-aether
gravity [8] has been proposed [9]. The aether field defines a
preferred spacelike direction and violates the rotational
invariance of the five-dimensional space. It is shown that an
attractive force of the aether field can stabilize the extra
dimension. Unfortunately, the above model suffers from
instabilities due to ghosts or tachyons [10–13]. Notice that,
in four dimensions, this fact was known as the difficulty of
constructing anisotropic inflation models (see review
papers [14,15]). Remarkably, in 2009, there appeared a
healthy model realizing anisotropic inflationary expansion
with a vector field which induces a preferred direction due
to a gauge kinetic function [16]. Hence, it is legitimate to
apply the anisotropic inflation model in modified gravity to
the Kaluza-Klein scenario. As to the modified gravity, in
this paper, we focus on cuscuton gravity containing a
nondynamical scalar field, the so-called cuscuton [17].
The cuscuton gravity is a minimally modified theory

of gravity in the sense that there are only two physical
degrees of freedom of a tensor field. It belongs to a subclass
of scalar-tensor theories where the Lorentz invariance is
broken [18–21] and can be extended into more general
class [22]. Aspects of symmetry in cuscuton gravity are
studied in [23]. In particular, it has been shown that
cuscuton gravity is useful in cosmology [24,25]; for
instance, a healthy bouncing solution without instabilities
was realized [26]. Moreover, any inflation models could be
reconciled with observations by virtue of cuscutons [27].
Hence, it is interesting to apply cuscuton gravity to the
Kaluza-Klein scenario.
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In our model of the Kaluza-Klein scenario, there is a
vector field coupled with a cuscuton. We find the first
exact solution describing an accelerating universe with a
static extra dimension [28,29]. The vector field is respon-
sible for the stability of the extra dimension, and the
cuscuton drives the accelerating expansion of our three-
dimensional space. Note that the universe is not a de Sitter
spacetime as a consequence of cuscuton gravity. This is in
contrast to the conventional compactification models.
Indeed, usually, we use four-dimensional effective poten-
tials for a radion, the radius of the extra dimension, to
describe the dynamics of the extra dimensions during
inflation or the late time acceleration. Then, the radion is
constant only when it is at the minimum of the potential.
Consequently, the four-dimensional spacetime has to be
the de Sitter if the extra dimension is static. Even if one
puts additional matters into the effective theory, they will
vanish eventually in light of the Wald’s no-hair theorem
[30]. It implies that we always obtain the four-dimensional
de Sitter spacetime if the extra dimension is static. To
avoid this consequence, one can tune the potential so that
the minimum point is Minkowski. In this case, we can add
the four-dimensional inflaton by hand to get a quasi-de
Sitter universe. However, this procedure has no clear
meaning from the higher dimensional point of view.
The reason why we obtain nonconventional results can
be attributed to the followings. First, the presence of
cuscutons can violate energy conditions assumed in the
no-hair theorem [30,31]. Remarkably, even if the energy
condition is violated, there are no instabilities in cuscuton
gravity because the cuscuton is nondynamical [25–27].
Second, the cuscuton has a nontrivial coupling with the
vector field, which also violates the assumption in the
proof of no-hair theorem [14,15].
The paper is organized as follows: in Sec. II, we explain

our setup, the action including a cuscuton and a vector
field in (4þ 1)-dimensional spacetime, and derive the
equations of motion. We then find exact power-law
solutions. In Sec. III, we give accelerating universe solu-
tions with a static extra space dimension. In Sec. IV,
we investigate the stability of the solutions we found in
Sec. III. It turns out that the solutions are attractors in phase
space. Section V is devoted to the conclusion. The
discussion is extended into general (nþ 1)-dimensional
spacetime in the Appendix.

II. ANISOTROPIC (4 + 1)-DIMENSIONAL
SPACETIME WITH CUSCUTON

For simplicity, we start from (4þ 1)-dimensional space-
time with the action including a cuscuton. The case of
general (nþ 1)-dimensional spacetime will be studied in
Appendix.
In order to violate rotational invariance and realize the

compactification, we also include a vector field coupled
with the cuscuton. Then, we have

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2κ
R� μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν∂μϕ∂νϕ

q

− VðϕÞ − 1

4
fðϕÞFμνFμν

�
; ð1Þ

where we have defined κ ¼ 1=Mpl
3
5
using five-dimensional

Planck scale Mpl5. μ is a parameter associated with the
kinetic term of the cuscuton, which has the mass dimension
½μ2� ¼ 5=2. The field strength of the Uð1Þ vector field Aμ is
defined by

Fμν ¼ ∂μAν − ∂νAμ: ð2Þ

The cuscuton is coupled with the kinetic term of the vector
field though a function fðϕÞ. Note that the mass dimen-
sions of the fields are ½ϕ� ¼ 3=2 and ½Aμ� ¼ 3=2. We
assume that homogeneous electric fields exist along with
the extra space dimension and the cuscuton is supposed to
depend only on time,

Aμ ¼ ð0; 0; 0; 0; vðtÞÞ; ϕ ¼ ϕðtÞ: ð3Þ

With these ansatzes, we take a homogeneous but aniso-
tropic metric ansatz discriminating the extra dimension

ds2 ¼ −dt2 þ e2αðtÞðe−6σðtÞdx24 þ e2σðtÞðdx2 þ dy2 þ dz2ÞÞ:
ð4Þ

We expect that the expansion of the extra dimension slows
down due to the vector field. Substituting (2)–(4) into (1),
we obtain the action,

S ¼
Z

d5xe4α
�
1

κ
ð−6_α2 þ 6_σ2Þ � μ2sgnð _ϕÞ _ϕ − VðϕÞ

þ 1

2
fðϕÞe−2αþ6σ _v2

�
; ð5Þ

and the equations of motion derived from this action are

α̈ ¼ −4_α2 ∓ κμ2

3
sgnð _ϕÞ _ϕþ 2κ

3
VðϕÞ þ κ

12
fðϕÞe−2αþ6σ _v2;

ð6Þ

_α2 ¼ _σ2 þ κ

6

�
VðϕÞ þ 1

2
fðϕÞe−2αþ6σ _v2

�
; ð7Þ

σ̈ ¼ −4_α _σþ κ

4
fe−2αþ6σ _v2; ð8Þ

�4μ2 _αsgnð _ϕÞ þ Vϕ −
1

2
fϕe−2αþ6σ _v2 ¼ 0; ð9Þ

ðe2αþ6σf _vÞ· ¼ 0: ð10Þ
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The second equation is the Friedmann equation in
Einstein’s gravity, which is not independent from the
others. We integrate (10) and have

_v ¼ f−1e−2α−6σC; ð11Þ

where C is a constant of integration with the mass
dimension ½C� ¼ 5=2. After substituting the solution into
(6)–(9), we obtain the four equations as follows:

α̈¼−4_α2∓ κμ2

3
sgnð _ϕÞ _ϕþ2κ

3
Vþ κ

12
f−1e−6α−6σC2; ð12Þ

_α2 ¼ _σ2 þ κ

6

�
V þ 1

2
f−1e−6α−6σC2

�
; ð13Þ

σ̈ ¼ −4_α _σþ κ

4
f−1e−6α−6σC2; ð14Þ

�4μ2 _αsgnð _ϕÞ þ Vϕ −
1

2
fϕf−2e−6α−6σC2 ¼ 0: ð15Þ

From now on, to seek for exact power-law solutions of
above equations, we choose the potential of the cuscuton
and the gauge kinetic function as [22,32–34]

V ¼ 1

2
m2ϕ2; f ¼ f0

�
ϕ

Mpl
3=2
5

�
2w
; ð16Þ

respectively, where m is the mass of the cuscuton, f0 is a
positive constant, and w is an integer. Then, we take the
ansatz,

α¼p1 logMpl5t; σ¼p2 logMpl5t; ϕ¼q
t
Mpl

1=2
5 ; ð17Þ

where p1, p2, q are parameters. Equations (12)–(15)
accommodate power-law solutions with the ansatz (17).
First of all, we need a relation,

w − 3p1 − 3p2 þ 1 ¼ 0: ð18Þ

We also find the following set of the algebraic equations
relating the parameters:

−p1 þ 4p2
1 ¼ −4ξjqj þ 4λjqj2 þ γ

jqj2w ; ð19Þ

p2
1 − p2

2 ¼ λjqj2 þ γ

jqj2w ; ð20Þ

−p2 þ 4p1p2 ¼ 3
γ

jqj2w ; ð21Þ

4jqjξp1 ¼ λjqj2 − w
γ

jqj2w ; ð22Þ

where we have defined new parameters as

γ ¼ ðC2=Mpl
5
5
Þ

12f0
; λ¼ ðm2=Mpl

2
5
Þ

12
; ξ¼�ðμ2=Mpl

5
2

5Þ
12

:

ð23Þ

We have seven parameters in the equations: fp1; p2; jqj;
γ; w; λ; ξg and four-independent equations (18), (19), (21),
and (22). Let us solve the algebraic equations about
fγ; w; λ; ξg and express them by fp1; p2; jqjg. One can
solve (18) for w, and (21) for γ,

w ¼ 3ðp1 þ p2Þ − 1; ð24Þ

γ ¼ 1

3
p2ð−1þ 4p1Þjqj2w; ð25Þ

respectively. Furthermore, from (19), (22), (24), and (25),
we obtain

λ ¼ 3ðp2
1 − p2

2Þ þ p2ð1 − 4p1Þ
3jqj2 ð26Þ

and

ξ ¼ ðp1 þ p2Þð1 − 4p2Þ
4jqj : ð27Þ

Apparently, there exists power-law solutions for an arbi-
trary set of parameters fp1; p2; jqjg. However, the para-
meter region is restricted because of the positivity of γ and
λ. In the next section, we focus on power-law solutions
corresponding to expanding four-dimensional spacetime
with a static extra dimension and reveal the allowed
parameter region.

III. KALUZA-KLEIN SCENARIO
IN CUSCUTON GRAVITY

In the previous section, we have obtained power-law
solutions for the system with a cuscuton and a vector field.
Depending on the parameters of the solution, fp1; p2; jqjg,
various situations can be realized. Hence, we are now in a
position to realize the Kaluza-Klein scenario.
To achieve our aim, we need to make the extra dimension

represented by a coordinate x4 frozen, while the other
spatial dimensions are expanding as in our universe. Such
situation occurs for p1 ¼ 3p2 in the power-law solutions.
In that case, the spacetime metric is described by

ds2 ¼ −dt2 þ dx24 þ ðMpl5tÞ8p2ðdx2 þ dy2 þ dz2Þ: ð28Þ

The Hubble parameter in the four-dimensional spacetime is
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H4 ¼
4p2

t
; ð29Þ

which should be positive to describe the expanding uni-
verse, i.e., p2 > 0. Under the assumption, p1 ¼ 3p2, the
relations between the parameters (24)–(27) are reduced to

w ¼ −1þ 12p2; γ ¼ p2½−1þ 12p2�
3

jqj2ð−1þ12p2Þ;

λ ¼ p2½1þ 12p2�
3jqj2 ; ξ ¼ p2ð1 − 4p2Þ

jqj : ð30Þ

Since the parameters γ and λ should be positive by
definition, p2 should satisfy1

p2 >
1

12
: ð31Þ

It implies w is always positive.
If we divide this regime depending on the sign of ξ, they

would be

1

12
< p2 <

1

4
ðfor ξ > 0Þ; 1

4
≤ p2 ðfor ξ ≤ 0Þ:

ð32Þ

Since the second time derivative of the scale factor is
proportional to p2

2ð4p2 − 1Þ, we find that the existence of a
cuscuton with ξ < 0 is essential to realize the accelerated
expansion of the four-dimensional spacetime. Note that
there is an interesting case ξ ¼ 0 (p2 ¼ 1=4), i.e., μ2 ¼ 0,
where the kinetic term of the cuscuton vanishes. In this
case, after integrating out ϕ in the action, the theory only
includes a vector field with nonlinear terms of FμνFμν.
The solution (30) exists in the two-dimensional param-

eter space fp2; jqjg satisfying the condition (31). Here we
mention that one can always characterize the solution by
using fw; λg which appear in the original action (1) in
contrast to fp2; jqjg. Actually, in terms of fw; λg, the
solution is written by2

p2ðwÞ ¼
1þ w
12

; ξ2 ¼ 3p2ðwÞð1 − 4p2ðwÞÞ2
ð1þ 12p2ðwÞÞ

λ;

jqj ¼ p2ðwÞð1 − 4p2ðwÞÞ
ξðw; λÞ : ð33Þ

It is useful to evaluate the slow roll parameters, which
characterize inflationary universe, and the ratio of the
energy density of the vector field to that of the cuscuton.
The slow roll parameters of the four-dimensional spacetime
are calculated from (29) as

ϵ4¼−
_H4

H2
4

¼ 1

4p2

¼ 3

1þw
; η4¼2ϵ4−

_ϵ4
2H4ϵ4

¼2ϵ4; ð34Þ

where we have used the fact that _ϵ4 ¼ 0 for power-law
solutions. In particular, inflationary universe is realized if
4p2 ≫ 1 is satisfied, which implies ξ ≪ 0 ⇔ w ≫ 2.
Finally, the ratio of the energy density of the vector field
to that of the cuscuton is found to be

ρA
ρc

¼ γ

λjqj2ð1þwÞ ¼
−1þ 12p2

1þ 12p2

¼ w
2þ w

: ð35Þ

It is almost the unity in the inflationary universe,
p2 ≫ 1 (w ≫ 1).
In the next section, we investigate the stability of the

solution (30). We will see that the solution is an attractor in
phase space as long as the inequality (31) is satisfied.

IV. STABILITY OF THE SOLUTION

In the previous section, we found exact power-law
solutions describing expanding universe with a static extra
dimension. Let us examine if the solutions are stable or not.
It is convenient to recast Eqs. (12)–(15) with following

new dimensionless variables:

X ¼ _σ

_α
; Y ¼ −sgnð _ϕÞ ϕ

_αMpl
1=2
5

;

Ỹ ¼ sgnð _ϕÞ
_ϕ

_α2Mpl
1=2
5

; Z ¼ C2

12Mpl
5
5

Mpl
2
5

_α2
f−1e−6α−6σ:

ð36Þ
Using these variables, Eqs. (12)–(15) can be rewritten as

dX
dα

¼ −4X þ 3Z − X½−4ξỸ þ 4λY2 þ Z − 4�; ð37Þ

1 ¼ X2 þ λY2 þ Z; ð38Þ
dZ
dα

¼ 2Z

�
1þ 4ξỸ − 4λY2 − Z þ w

Ỹ
Y
− 3X

�
; ð39Þ

0 ¼ −4ξþ λY −
wZ
Y

; ð40Þ

1

p2 < −
1

12

is also another possibility, but this case realizes the contraction of
three-dimensional space coordinate, and therefore, it is out of our
interest here.

2For the set of model parameters ðw; λÞ, we cannot freely
choose the value of ξ to realize the Kaluza-Klein scenario. Even if
the parameter ξ does not exactly satisfy ξ2 ¼ ξ2ðw; λÞ, where
ξ2ðw; λÞ is defined by (33), we can approximately realize the
Kaluza-Klein scenario as far as ξ2 ∼ ξ2ðw; λÞ. Then, the ratio of
the expansion rate of the extra space dimension to that of our
three-dimensional space, ðp1 − 3p2Þ=ðp1 þ p2Þ, is small
enough.
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where we have used the e-folding number α as the time
coordinate of the system. There are two constraint equa-
tions, one is the Friedmann equation (38) and the other is
the equation of motion of the cuscuton (40). Note that the
cuscuton is nondynamical scalar field and thus (40) is just a
constraint equation. From (40), we can express Y in terms
of Z as

Y ¼ 2ξþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wλZ þ 4ξ2

p
λ

; ð41Þ

where we have used the fact Y > 0. Moreover, differ-
entiating (41) with respect to t, one can reduce Ỹ as a
function of X and Z,

Ỹ ¼ Y½ð4λY3 þ YZ − 4YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wλZ þ 4ξ2

p
− 4λwY2Z − 3wXZ − wZ2 þ wZ�

ð4ξY2 − YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wλZ þ 4ξ2

p
− 4ξwYZ − w2Z

: ð42Þ

Finally, substituting (41) and (42), into (37)–(39), we get a
closed autonomous system with a constraint equation
relating X with Z.
On the other hand, the power-law solution (30) can be

expressed in terms of X and Z as

X ¼ 1

3
; Z ¼ w

27p2ðwÞ
: ð43Þ

It is easy to check that the power-law solution (43) is indeed
a fixed point in the phase space, which is defined by
dX
dα ¼ dZ

dα ¼ 0.
In order to examine the stability of the fixed point, we

first eliminate X from (39) by using (38), (41), and (42).
Expanding Z around the power-law solution (43) as
Z ¼ w=27p2 þ δZ, we have

dδZ
dα

¼ −
½−1þ 12p2�

3p2

δZ ¼ −
w
3p2

δZ; ð44Þ

at the linear order. Equation (44) shows that the power-law
solution is stable if the inequality p2 > 1=12 is satisfied.
The condition coincides with the existence condition of the
power-law solution (31), so that the stability is guaranteed
for the expanding power-law solutions (30) with (31). We
have also numerically confirmed that the solution (43) is
attractor in the phase space. It proved the stability at the
nonlinear level.
Though we have not shown the stability for general

Bianchi type I perturbations here, it is known that the
unsourced anisotropy rapidly decays during the rapid
cosmic expansion [35]. This fact can be understood as a
consequence of the cosmic no-hair theorem [14]. Hence,
the above analysis is sufficient for proving the stability of
our solutions.

V. CONCLUSION

We studied the Kaluza-Klein scenario in cuscuton
gravity. In our model of Kaluza-Klein scenario, a vector
field coupled with a cuscuton has a vacuum expectation
value along with the direction of the extra dimension and

violates the rotational invariance of higher dimensional
spaces. We found an exact power-law solution of the
Einstein and the field equations. It was shown that the
solution describes accelerating expansion of four-
dimensional spacetime with a completely static extra
dimension. To the best of our knowledge, this is the first
concrete model of accelerating universes other than the de
Sitter spacetime with a static extra dimension [28,29].
The stability of the solution was also investigated in

Sec. IV. We performed dynamical system analysis
(12)–(15) and revealed the condition for stability (44). It
coincides with the condition for existence of the solution
(31). Therefore, the solution is always stable if exists. All
the discussion in the text focused on (4þ 1)-dimensional
spacetime for simplicity; however, it is easy to extend it to
general (nþ 1)-dimensional spacetime (see Appendix).
Although we used a one-form field to compactify one

extra dimension in this paper, one can apply p one-form
fields [35] or a p-form field [36] to compactify p extra
dimensions simultaneously. It is interesting to explore
cosmological perturbations in the Kaluza-Klein scenario.
We leave these issues for future work.
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APPENDIX: (n+ 1)-DIMENSIONAL SPACETIME

Though we have started with (4þ 1)-dimensional space-
time in the text, the discussion can be extended to the an
arbitrary number of space dimensions. The argument is
almost the same, and thus we shortly summarize the results.
The action in (nþ 1)-dimensional spacetime reads

(n > 2)
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S ¼
Z

dnþ1x
ffiffiffiffiffiffi
−g

p �
1

2κn
R� μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν∂μϕ∂νϕ

q

− VðϕÞ − 1

4
fðϕÞFμνFμν

�
; ðA1Þ

where κn ¼ 1=Mpl
n−1
nþ1

, Mplnþ1
is (nþ 1)-dimensional

Planck scale, and the definition of field strength of the
vector field Aμ is just the higher dimensional counterpart.
We note that the mass dimensions of the field are
½ϕ� ¼ ðn − 1Þ=2, ½Aμ� ¼ ðn − 1Þ=2, and the parameter μ
has the mass dimension ½μ2� ¼ ðnþ 1Þ=2. The spacetime
metric is defined with one anisotropic direction,

ds2 ¼ −dt2 þ e2αðtÞðe−2ðn−1ÞσðtÞdx2n
þ e2σðtÞðdx21 þ � � � þ dx2n−1ÞÞ; ðA2Þ

As the case of (4þ 1)-dimensional spacetime, we take the
configuration of the vector field and the cuscuton as

Aμ ¼ ð0;…; 0; vðtÞÞ; ϕ ¼ ϕðtÞ; ðA3Þ

Then, the background action is written as

S ¼
Z

dnþ1xenα
�
nðn − 1Þ

2κn
ð− _α2 þ _σ2Þ � μ2sgnð _ϕÞ _ϕ

− VðϕÞ þ 1

2
fðϕÞe−2αþ2ðn−1Þσ _v2

�
; ðA4Þ

which leads to the equations of motion as follows:

α̈ ¼ −n _α2 ∓ κnμ
2

n − 1
sgnð _ϕÞ _ϕþ 2κn

n − 1
VðϕÞ

þ κn
nðn − 1Þ fðϕÞe

−2αþ2ðn−1Þσ _v2; ðA5Þ

_α2¼ _σ2þ 2κn
nðn−1Þ

�
VðϕÞþ1

2
fðϕÞe−2αþ2ðn−1Þσ _v2

�
; ðA6Þ

σ̈ ¼ −n _α _σþ κn
n
fe−2αþ2ðn−1Þσ _v2; ðA7Þ

�nμ2 _αsgnð _ϕÞ þ Vϕ −
1

2
fϕe−2αþ2ðn−1Þσ _v2 ¼ 0; ðA8Þ

ðeðn−2Þαþ2ðn−1Þσf _vÞ· ¼ 0: ðA9Þ

We integrate (A9) and have

_v ¼ f−1e−ðn−2Þα−2ðn−1ÞσC; ðA10Þ

where C is a constant of integration with the mass
dimension ½C� ¼ ðnþ 1Þ=2. After substituting this solution
into (A5)–(A8), we list the equations as follows:

α̈ ¼ −n _α2 ∓ κnμ
2

n − 1
sgnð _ϕÞ _ϕþ 2κn

n − 1
VðϕÞ

þ κn
nðn − 1Þ f

−1e−2ðn−1Þα−2ðn−1ÞσC2; ðA11Þ

_α2 ¼ _σ2 þ 2κn
nðn − 1Þ

�
VðϕÞ þ 1

2
f−1e−2ðn−1Þα−2ðn−1ÞσC2

�
;

ðA12Þ

σ̈ ¼ −n _α _σþ κn
n
f−1e−2ðn−1Þα−2ðn−1ÞσC2; ðA13Þ

�nμ2 _αsgnð _ϕÞ þ Vϕ −
1

2
fϕf−2e−2ðn−1Þα−2ðn−1ÞσC2 ¼ 0:

ðA14Þ

The potential of the cuscuton and the function in front of
the kinetic term of the vector field are defined by

V ¼ 1

2
m2ϕ2; f ¼ f0

�
ϕ

Mpl

n−1
2

nþ1

�
2w
: ðA15Þ

1. Power-law solutions

We search for power-law solutions with

α ¼ p1 logMplnþ1
t; ðA16Þ

σ ¼ p2 logMplnþ1
t; ðA17Þ

ϕ ¼ q
t
Mpl

n−3
2

nþ1; ðA18Þ

and the potential of the cuscuton V and the function f are
reduced to

V¼ 1

t2
m2q2Mpl

n−3
nþ1

2
; f¼f0q2wðMplnþ1

tÞ−2w: ðA19Þ

To have power-law solutions, we should require

w − ðn − 1Þp1 − ðn − 1Þp2 þ 1 ¼ 0; ðA20Þ

and then, we have

−p1 þ np2
1 ¼ −nξjqj þ nλq2 þ γ

q2w
; ðA21Þ

p2
1 − p2

2 ¼ λq2 þ γ

q2w
; ðA22Þ

−p2 þ np1p2 ¼ ðn − 1Þ γ

q2w
; ðA23Þ

nξjqjp1 ¼ λq2 − w
γ

q2w
; ðA24Þ
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where

γ ¼ ðC2=Mpl
nþ1
nþ1

Þ
nðn − 1Þf0

; λ ¼ ðm2=Mpl
2
nþ1

Þ
nðn − 1Þ ;

ξ ¼ �ðμ2=Mpl

nþ1
2

nþ1Þ
nðn − 1Þ : ðA25Þ

We have seven parameters: fp1; p2; q; γ; w; λ; ξg and four-
independent equations (A20), (A21), (A23), and (A24). We
solve (A20) for w and (A23) for γ,

w ¼ ðn − 1Þðp1 þ p2Þ − 1; ðA26Þ

γ ¼ 1

n − 1
p2ð−1þ np1Þq2w; ðA27Þ

respectively. Using (A26) and (A27) in (A21) and (A24),
we obtain

λ ¼ ðn − 1Þðp2
1 − p2

2Þ þ p2ð1 − np1Þ
ðn − 1Þjqj2 ; ðA28Þ

ξ ¼ ðp1 þ p2Þð1 − np2Þ
njqj : ðA29Þ

2. Kaluza-Klein solutions

We seek for the solution respecting p1 ¼ ðn − 1Þp2,
which implies the spacetime metric is written as

ds2 ¼ −dt2 þ dx2n þ ðMplnþ1
tÞ2np2ðdx21 þ dx22

þ � � � þ dx2n−1Þ: ðA30Þ
The effective Hubble parameter in the n-dimensional
spacetime is

Hn ¼ np2: ðA31Þ
Then, the relations between the parameters become

w ¼ −1þ nðn − 1Þp2;

γ ¼ p2½−1þ nðn − 1Þp2�
n − 1

jqj2ð−1þnðn−1Þp2Þ;

λ ¼ p2½1þ nðn − 1Þðn − 3Þp2�
ðn − 1Þjqj2 ;

ξ ¼ p2ð1 − np2Þ
jqj : ðA32Þ

From these relations, we can read off the condition
for the existence of the solution from the positivity of γ
and λ as

p2 >
1

nðn − 1Þ ; ðA33Þ

which implies w is always positive. If we divide this
condition depending on the sign of ξ, they would be

1

nðn− 1Þ < p2 <
1

n
ðfor ξ > 0Þ; 1

n
≤ p2 ðfor ξ ≤ 0Þ:

ðA34Þ

The slow roll parameter in n-dimensional spacetime is

ϵn ¼
1

np2

¼ n − 1

1þ w
; ðA35Þ

which means that the slow roll condition is np2 ≫ 1. From
(A32), we find that we need to satisfy ξ < 0 ⇔ w > n − 2
for the realization of the accelerated expansion in n-
dimensional spacetime.

3. Stability

Even in (nþ 1)-dimensional spacetime, the stability
of the power-law solution (A32) does not change at all,
since the perturbative equation is almost the same
as (44),

dδZ
dα

¼−
½−1þnðn−1Þp2�

ðn−1Þp2

δZ¼−
w

ðn−1Þp2

δZ; ðA36Þ

where δZ ¼ Z − Z̄, which is the perturbation of

Z ¼ C2

nðn − 1ÞMpl
nþ1
nþ1

Mpl
2

_α2
f−1e−2ðn−1Þα−2ðn−1Þσ; ðA37Þ

around Z̄ ¼ w=½ðn − 1Þ3p2ðwÞ�, where p2ðwÞ ¼ ð1þ wÞ=
½nðn − 1Þ�, defined by the power-law solution (A32).
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