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We study the formation and the subsequent mass growth of axion stars inside axion miniclusters.
Numerically solving the Schrödinger-Poisson equations with realistic initial conditions we find that the
axion stars exhibit similar properties to solitonic cores in ultralight bosonic dark matter halos in terms of
their radial density profiles and large-amplitude oscillations. A merger of two axion stars confirms a
previously found empirical law for the mass of the merged axion star. Monitoring the axion star masses
over time, we observe a mass growth consistent with the mass increase of Bose stars in the kinetic regime
reported by Levkov et al., confirming that the mass evolution of axion stars can be understood in terms of
wave condensation. Based on this result, we predict a saturation of mass growth in relation to the
minicluster mass consistent with the core-halo mass relation previously found for ultralight bosonic dark
matter halos.
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I. INTRODUCTION

Axionlike particles are very light pseudo-Nambu-
Goldstone bosons of a spontaneously brokenU(1) symmetry
that generically couple very weakly to standard model
fields, making them very attractive dark matter candidates.
The original QCD axion, a by-product of the Peccei-Quinn
(PQ) solution to the strongCP problem, is a particularly well
motivated example [1–8]. Its theoretically preferredmass is a
few times 10−5 eV [9,10]. They are produced nonthermally
by misalignment of the initial field value with very high
occupation numbers and can be treated as a classical scalar
field in the context of gravitational structure formation.
In the case where the PQ symmetry is broken after inflation,
spatially uncorrelated horizon-sized regions give rise to large
isocurvature perturbations that can collapse into so-called
axion miniclusters [11–15]. The evolution of the axion field
during the QCD phase transition and beyond is marked by
the formation of strings and domain walls whose subsequent
decay produces the seed inhomogeneities for miniclusters,
as well as their gravitational collapse later during the
radiation dominated epoch. As all of these processes are
highly nonlinear, predicting the final abundance of cold
axions and their clumping statistics relies on numerical
simulations [16,17]. With the axion mass left as the only
relevant free parameter of the theory, these processes are
responsible for the bulk of the theoretical uncertainties for
forecasts and constraints from axion darkmatter experiments.
The particular aspect we are concerned with in this work

is the formation of axion stars inside axion miniclusters

[18–20]. Axion stars are potentially observable by resonant
decay, which can happen when axions are converted to
photons in the magnetospheres of neutron stars [21,22],
and have been suggested as a source for fast radio bursts
[12,21,23]. Besides, collisions with stellar objects have
several observables, for example gravitational waves,
neutrino emission and electromagnetic signals in a broad
frequency range [24,25]. In the nonrelativistic limit relevant
for cosmology, axion stars are bound states of the
Schrödinger-Poisson (SP) equations that can form by
classical Bose-Einstein condensation with purely gravita-
tional interaction. The properties of axion stars, in particu-
lar their stability, are discussed in [26]. Furthermore, their
formation has recently been investigated numerically by
Levkov et al. [27] in the kinetic regime where the axion
field coherence length ∼ðmvÞ−1 is much smaller than the
characteristic scale of density variations (e.g., the mini-
cluster radius R). We build upon their work using similar
numerical techniques but different initial conditions.
They were taken from lattice simulations of the axion field
evolution throughout the QCD phase transition and hence
consider the formation of strings and domain walls in the
cosmological evolution of the axion field [16]. With their
large numerical simulations it is possible to analyze the
small scale structure of the axion density field and its
collapse into axion miniclusters.
Our simulations robustly show the formation of axion

stars in the core of miniclusters, confirming their existence
under more realistic conditions with the caveat that an
unrealistically low axion mass was used for numerical
reasons. They form in a highly excited state with strong
nonradial oscillations, as previously observed in the case of
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solitonic cores in ultralight axion dark matter halos [28].
We also confirm the initial mass growth of axion stars
governed by the condensation time [27] and speculate
about its eventual saturation when the virial velocity of the
axion star exceeds that of the host minicluster.
In the remainder of this work, we will describe our

numerical methods and initial conditions in Sec. II, present
the simulation results in Sec. III, and discuss the conse-
quences in Sec. IV.

II. INITIAL CONDITIONS AND NUMERICAL
METHODS

The initial conditions for our simulations were taken
from recent lattice simulations of the early axion field
evolution [16]. The axion field was evolved as the phase of
a complex scalar field with initial conditions uncorrelated
over causally disconnected patches. A cosmic string net-
work, due to the Kibble mechanism, is automatically
included. As time evolves, the axion field increases its
correlation length by smoothing inhomogeneities, collapsing
loops and intersecting strings. The evolution continues until
the axion mass becomes relevant, H1 ¼ HðT1Þ ¼ mðT1Þ,
when domain walls build up between strings leading to a fast
destruction of the network. The rapid growth of the axion
mass with temperature makes the axion field nonrelativistic
very fast, thus freezing the axion energy (darkmatter) density
distribution. At increasingly smaller scales∼1=m, long-lived
oscillons (axitons) appear. Although their number seems to
increasewith time, their size and relative importance appears
to decrease. Axitons become unstable once the axion mass
saturates (at the QCD confining temperature T ∼ 160 MeV)
and the small-scale axion field can free-stream efficiently.
The current available grid resolutions forbid to resolve axiton
cores until this time, but [16] showed that the large scale
inhomogeneities (comoving wave number k1 ≲ 30a1H1)
decouple from the small scale dynamics. Therefore, they
switched off axion self-interactions before having resolution
issues, allowing the axion field to free-stream away from
axitons as it will do later on. This produced a smoothed axion
dark matter distribution that is essentially frozen, which we
use as initial conditions. The fast increase of the axion mass
effectively suppresses the free-streaming of the high-density
regions produced by the large tension of cosmic strings, the
domain walls, and the first axitons and so the axion
field exhibits large inhomogeneities even at the smallest
resolved scales. The characteristic comoving length-scale of
the simulations is the horizon size at t1, which can be
computed from the zero-temperature value of the axionmass
m ¼ mðT ¼ 0Þ [16],

L1 ¼
1

a1H1

¼ 0.0362

�
50 μeV

m

�
0.167

pc: ð1Þ

The exact value of m is not required as input as long as
the temperature dependence of the axion mass is m ∼ 1=Tn

with n ¼ 7 (the value used in the simulations). Therefore one
can use simulations for any value of m above ∼10−9 eV.
Ideally, m will be fixed by the total dark matter yield,
Ωah2 ¼ Ωah2ðmÞ ¼ 0.12, if axions account for all the
observed dark matter. However, the function Ωah2ðmÞ is
subject to a relatively large uncertainty due to the need of
extrapolating the simulations to realistic values of the string
tension, see [10] and references therein. A new method [29]
which produces effectively the correct tension predicts
m ¼ 26� 3 μeV [9] for the axion dark matter mass, while
the direct method [10] currently has much larger errors
m ∈ ð15 μeV;∼103 eVÞ. Even in this generous range the
value of L1 varies at most by a factor of two.
As initial conditions for this work we have chosen a

simulation with box size L ¼ 6L1 and 30963 grid from [16]
to simulate individual halos. The final density distribution
was saved as a 5123 grid. We identified 2063-cell subvo-
lumes with strong local overdensities in the original
5123 box. In order to enforce periodic boundary conditions
demanded by our numerical scheme, each boxwas placed in
the center of a new volume with a grid size of 2563 and we
assigned the mean density of the subvolume to the boundary
region with a width of 25 cells. A smooth transition from the
subvolume to the boundary values was achieved by a
smoothing procedure described below. Additionally, we
interpolated the fiducial grid by a refinement factor of
two onto a 5123 grid to improve the spatial resolution.
We centered a Gaussian kernel multiplied with the

corresponding density value on each fiducial cell. The
smoothed density at the position ri of a cell center on
the refined grid is given by the sum of the overlapping
density distributions at ri,

ρðriÞ ¼
X
r0
ρðr0ÞWGðri − r0ÞHðjri − r0jÞ; ð2Þ

where r0 is the position of the cell centers of the fiducial
grid, WGðri − r0Þ is the Gaussian window function

WGðri − r0Þ ¼ 1

ð2πÞ3=2σ3 exp
�
−
ðri − r0Þ2

2σ2

�
;

and Hðjri − r0jÞ is a cutoff function defined by

Hðjri − r0jÞ ¼
�
0; jri − r0j ≥ 5σ

1; jri − r0j < 5σ

with σ ¼ 1.9.
In the nonrelativistic approximation, a massive scalar

field ψ in comoving coordinates is described by the SP
equations

i
∂ψ
∂τ ¼ −

1

2
∇2ψ þ aVψ

∇2ψ ¼ jψ j2 − 1; ð3Þ
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where V is the Newtonian gravitational potential and a is
the cosmic scale factor. The comoving length is normalized
such that xcomov ¼ ð3

2
H2

0Ωm;0Þ1=4ðm=h̄Þ1=2x and the comov-
ing timestep is given by dτ ¼ ð3

2
H2

0Ωm;0Þ1=2a−2dt with
the present Hubble parameter H0, the present dark matter
density parameterΩm;0 and the axionmassm. The comoving
mass density is defined as ρ ¼ jψ j2 and normalized to the
comoving mean density ρ̄. The SP equations are solved
using the fourth-order pseudospectral method described
in [30].
The initial wave function ψ is calculated from the

smoothed and interpolated density field assuming a con-
stant initial phase, corresponding to negligibly small initial
velocities:

Re½ψ � ¼ ffiffiffi
ρ

p
; Im½ψ � ¼ 0:

In order to maintain adequate spatial resolution of the axion
coherence length h̄=mv and the axion star radius through-
out the simulation we chose an axion mass ofm ¼ 10−8 eV
and a box side length of L ¼ 0.356 pc=h.
Furthermore, when a minicluster begins to form the

density field is interpolated onto a 10243 grid using the
conservative second-order interpolation algorithm taken
from [31].
We note that our choice for m is lower by approximately

three orders of magnitude than the current best fit to the
dark matter abundance. Its role in our simulations is on the
one hand to set the physical scales for the box size [which
depends only weakly on m, cf. Eq. (1)] and the axion star
radius r� ∼m−2. On the other hand, the axion mass affects
both the condensation time τ ∼m3 and the mass increase
of the axion star [cf. Eqs. (7) and (8)]. Thus, the mass
growth is less noticeable for higher axion masses. As we
are primarily concerned with the formation and early
evolution of individual axion stars, leaving questions about
the statistical distribution of their masses and densities
for future work, we can justify our choice with the scaling
symmetry of Eq. (3) and the assumption that the structure
of initial density perturbations depends only weakly on
scale. Under these conditions, we argue that our main

results are qualitatively valid as well for axion masses
consistent with the dark matter abundance.
All of our simulations start at redshift z ¼ 7 × 105 using

Ωm;0 ¼ Ωa;0 ¼ 0.32, Ωr;0 ¼ 9.4 × 10−5, ΩΛ;0 ¼ 0.679906,
and H0 ¼ 100h km s−1Mpc−1 with h ¼ 0.67.

III. SIMULATION RESULTS

We present the simulations of three separate miniclusters
(see Table I). One of the clusters consisted of two local
density maxima that each produced an axion star which
subsequently merged (see the discussion at the end of this
section). Hence, we observed the evolution of five axion
stars in total.
The overall structure of all miniclusters and their central

axion stars is closely analogous to dark matter halos that
form in fuzzy dark matter (FDM) simulations from cos-
mological initial conditions [28,32]. Outside of the axion
stars, the miniclusters consist of incoherent granular density
fluctuations produced by wave interference. Additionally,
the axion stars are surrounded by pronounced density
waves. Figure 1 shows a representative snapshot.
The axion stars form roughly during a few free-fall times

after the collapse of the minicluster. Their exact formation
time is ambiguous owing to the violent oscillations of
proto-axion stars discussed below. We define an axion
star by the existence of a self-bound, cored central density
whose angle-averaged profile is well described by an
approximate Bose star solution (e.g., [33]):

ρ�ðrÞ ≃ ρ0

�
1þ 0.091

�
r
r�

�
2
�
−8
;

ρ0 ¼ 1.9 × 10−6a−1

×

�
10−8 eV

m

�
2
�
10−3 pc

r�

�
4 M⊙

pc3
; ð4Þ

where ρ0 is the comoving central core density and r� is
defined by the comoving radius at which the density drops
to half of its maximum value. By calculating the virial
parameter jEpotj=ð2 × EkinÞ, we verified that the axion stars
are in virial equilibrium. The radial density profiles of the

TABLE I. Axion star masses, together with comoving r�, and corresponding halo masses for the three miniclusters at different
redshifts. The two axion stars in the second minicluster MC2-AS1 and MC2-AS2 merged giving MC2-AS3. Shown also are the
saturation mass from Eq. (10), the condensation times obtained from the mass growth of the axion stars [cf. Fig. 5 and Eq. (7)] and the
dimensionless parameter from Eq. (8), where b and bvir are determined using the measured mean velocity and the virial velocity of
the host minicluster, respectively.

z M�½10−12 M⊙� r�½10−3 pc� Mh½10−11 M⊙� M�;sat½10−12 M⊙� τ½107 yr� bðbvirÞ
MC1-AS1 1277 5.04 1.36 5.98 5.96 9.64 0.11(0.61)
MC2-AS1 642 3.17 1.10 16.6 … … …
MC2-AS2 604 2.65 1.24 5.53 … … …
MC2-AS3 534 3.83 0.76 17.7 4.51 15.1 0.11(0.69)
MC3-AS1 899 3.91 1.74 5.29 4.74 4.54 0.10(0.96)
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five axion stars and their corresponding theoretical profiles
are shown in Fig. 2. It can also be seen that the outer density
profiles of the incoherent halo decline less steeply than the
asymptotic NFW power-law of r−3. Their slope is con-
sistent with r−9=4 predicted for isolated perturbations
accreting from a homogeneous background [34].
We define the axion star mass M� as the mass inside a

sphere with (physical) radius r� [33]:

M� ¼ 5.4 × 10−15
�
10−8 eV

m

�
2
�
10−3 pc

r�

�
M⊙: ð5Þ

In Fig. 3, M� is plotted for all five axion stars against
the masses of their host halos. The solid line shows the
prediction for the axion star mass at the point of saturated
mass growth from Eq. (10); see Sec. IV for a detailed
discussion. It obeys the scaling relation M� ∼M1=3

h also
found for solitonic cores in FDM halos [33].
Analyzing the evolving density field with high temporal

resolution reveals that the axion stars oscillate with ampli-
tudes of more than a factor of two and density-dependent
frequencies. Figure 4 shows the fluctuating axion star
density and its temporal Fourier transform for the axion
star MC1-AS1. The blue shaded region marks the data used
for the Fourier transformation. The frequency spectrum has
distinctive peaks at the first two quasinormal modes,

f1 ¼ 1.1 × 10−4
�

ρ�
108 M⊙pc−3

�
1=2

yr−1; ð6Þ

and f2 ≈ 2f1 [35,36]. Using the mean value of ρ� in the
blue colored region in the upper panel of Fig. 4 yields
f1 ¼ 1.13 × 10−4 yr−1.
Figure 5 displays the masses of three axion stars as a

function of time, normalized by the masses at a reference
time when the soliton profile began to be a good fit to the
radial density profile. The axion star masses increase by
about 15% over a period of ∼1.2 × 106 yr, with a time
dependence consistent with the mass growth of Bose stars
in the kinetic regime observed in [27]:

M�ðtÞ ≃M�;0

�
t
τ

�
1=2

: ð7Þ

The condensation time τ is given in terms of the radius R,
velocity v and density ρ of the halo as

τ ≃
ffiffiffi
2

p
b

12π3

�
h̄
m

�
−3 v6

G2ρ2 logΛ
; Λ ∼

R
h̄=mv

; ð8Þ

FIG. 1. The left panel displays the projected density of a typical
simulation in comoving units. The large box shows the full
simulation domain. A zoom-in of the region where the axion star
has formed is shown in the inlay. The granular structure within a
radius of 0.021 pc=h can be more clearly seen in the slice plot in
the upper right panel. A volume rendering of the axion star is
shown in the lower right panel.

FIG. 2. Density profiles of the five axion stars at different
redshift (cf. Table I). The solid lines represent the theoretical
profiles from Eq. (4) while the dots denote the data points. The
black solid line corresponds to r−3 as expected for the outer parts
of an NFW profile and the red solid line to r−9=4 for the outer
profile.

FIG. 3. Axion star masses as a function of their host halo masses,
determined at the time at which a stable axion star has formed.
The solid line shows the prediction from saturated mass growth
in Eq. (10) consistent with the core-halo mass relation for FDM
halos found in [33] withM0 ∼ 4.4 × 10−14ðm=10−8 eVÞ−3=2 M⊙.
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with a coefficient b that needs to be computed numerically.
The results of fitting Eq. (7) to the growth curves in
Fig. 5 can be found in Table I. For determining b, we used
v ¼ hj∇S=mji, where the average was taken over the virial
radius Rh of the minicluster, yielding b ≃ 0.1. As the
measured values of v are systematically higher than the

virial velocities vvir of the miniclusters by ∼30–50%, the
v6-dependence of τ results in significantly higher values for
bvir defined in terms of vvir (also shown in Table I).
Asmentioned at thebeginning of this section,we observed

a merger of two axion stars in one of our simulations.
We resolved two progenitor stars (MC2-AS1, MC2-AS2)
and the merged axion star (MC2-AS3) as can be seen in
Fig. 2. Taking the masses from Table I, we find that the mass
of the merged axion star is M�;3 ¼ βðM�;1 þM�;2Þ with
β ∼ 0.66, while ∼34% of the total initial mass was radiated
away by gravitational cooling. This is consistent with
simulations of binary mergers of boson stars giving
β ∼ 0.7 [37]. The additional mass loss in the present case
may be a consequence of the highly excited state of the
progenitor axion stars.

IV. DISCUSSION

Our simulations, in particular the confirmation of the
time-dependent mass growth of the axion stars obeying
Eqs. (7) and (8) observed by Levkov et al. [27], provide
further evidence that the mass evolution of axion stars in
miniclusters can be explained in terms of a kinetic process
of wave condensation [38] (we will comment about the
formation itself below). We can use this framework to
predict the mass at which the growth of the axion star
saturates by forming a local cloud of field fluctuations
whose temperature exceeds the virial temperature of the
host halo. This relation turns out to coincide exactly with
the core-halo mass relation found empirically for FDM
solitonic cores [33].
Immediately after an axion star has formed, the state of

its ambient axion field is governed by the virial temperature
of the minicluster, i.e., v ≃ vvir;mc in Eq. (8). After it has
grown to a critical mass, the axion star forms a hot axion
atmosphere with the star’s virial temperature, at which
point τ itself becomes dependent on M�. This causes the
mass growth to saturate and slow down substantially.
The transition takes place when vvir;mc ≃ vvir;� where the

virial velocity in the gravitational potential of the axion star
is approximately given by [39]

vvir;�ðM�Þ ≃
GM�m

h̄
: ð9Þ

Approximating the minicluster as a uniform sphere with
(physical) radius Rh and mass Mh¼ð4π=3ÞR3

hζðzÞρm;0=a3

(with ζðz ≫ 1Þ ≃ 18π2), its virial velocity is v2vir;mc¼
3GMh=10Rh. The saturation criterion is therefore met
when

M�;sat ¼
�
h̄
m

��
3

10aG

�
1=2

�
4πζðzÞρm;0

3

�
1=6

M1=3
h ð10Þ

(M� ≤ Mh).
Equation (10) coincides exactly with the relation found

in [33] for the final axion star mass. However, ongoing

FIG. 5. Evolution of the masses of three axion stars relative to
their initial mass, evaluated at the earliest time the soliton profile
Eq. (4) provided a good fit, compared to Eq. (7).

FIG. 4. Oscillation of the axion star MC1-AS1. In the upper
panel, one can see the (physical) axion star density fluctuations.
The blue colored region marks the data which was used for the
Fourier transformation which is shown in the lower panel. Before
t ¼ 105 yr the axion star is still forming, which is why this was
not considered in the Fourier transformation. The boundaries of
the green colored region are the expected quasinormal frequen-
cies [cf. Eq. (6)] for the maximum and the minimum of the axion
star density in the blue colored region, respectively. The green
line represents the frequency peak at the quasinormal frequency
f1 ¼ 1.26 × 10−4 yr−1 and the red line the second dominating
frequency peak at f2 ¼ 2.54 × 10−4 yr−1.
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condensation predicts that the axion star mass continues
to grow, albeit at a drastically reduced rate. Inserting
vvir;�ðM�Þ into Eq. (8) and assuming that the power law
growth continues to hold, the axion star mass will even-
tually follow

M�ðtÞ ≃M�;sat

�
t
τsat

�
1=8

; ð11Þ

where τsat follows from evaluating Eq. (8) with
v ¼ vvir;�ðM�;satÞ. For many purposes, the axion star mass
can therefore be estimated by Eq. (10) but secular growth
may be important in some cases. Simulations will have
to verify if the long-term mass growth asymptotically
approaches Eq. (11).
We finish with some remarks on the validity of the wave

condensation formalism. The kinetic regime, in which
the Wigner distribution fW for ψ has been shown to obey
a kinetic equation sourced by the Landau scattering term
∼fW=τ with τ from Eq. (8) in [27], is valid if h̄ðmvÞ−1 ≪ R
where R is the characteristic scale of the minicluster.
Although the power-law density profiles of our miniclus-
ters are scalefree, the observed mass growth controlled by
τ indicates that the kinetic description holds after virializa-
tion of the minicluster. However, the kinetic description is
not valid throughout our full simulation. Starting from the
nonkinetic case, the gravitational collapse of the initial
overdensities and the subsequent formation of virialized
halos lead to a period in which the kinetic regime is finally
entered. During the first few free-fall times, it comes to a
phase of violent relaxation where strong density fluctua-
tions occur on all scales and the background gravitational
potential is time-dependent. The formation of axion stars
prior to complete virialization hence cannot be explained
unambiguously by wave condensation (this also applies to
solitonic cores in FDM halos [28]). It is therefore not too
surprising that the axion stars in our simulation form
significantly earlier than predicted by their condensation
time. We conjecture that the violent relaxation phase further
enhances the probability to form axion stars particularly
near the center of axion miniclusters, making the existence
of at least one star per cluster much more likely than
suggested by the condensation time.

V. CONCLUSIONS

Using a pseudospectral method to solve the Schrödinger-
Poisson (SP) equations we studied the formation and
evolution of axion stars in the center of axion miniclusters
from realistic initial conditions. We confirm that the
density profiles of the axion stars are in accordance with
ground-state solutions of the SP equations and those of

solitonic cores in FDM halos [32] while the outer density
profiles of miniclusters are close to r−9=4 as predicted in
[34]. We do not address the statistical distribution of
masses and density profiles here, leaving these questions
to future work.
Monitoring the mass of the axion stars over a period of

∼1.2 × 106 yr, we found a mass growth by about 15%
consistent with the mass increase of Bose stars in the
kinetic regime observed in [27]. Thus, we confirm that the
mass evolution of axion stars in axion miniclusters can be
explained in terms of a kinetic process of wave condensa-
tion. We predict a decreasing mass growth as t1=8 once the
virial velocity of the axion star and the axion minicluster
coincide. The corresponding saturation mass is exactly the
one found in [33], providing a dynamical explanation for
their result.
We observed that axion stars form in highly excited

states with strong quasinormal oscillations with amplitudes
of more than a factor of two. Hence, we confirm [28] which
used a different numerical method that might have been
affected by noise from the boundaries. This is not the case
in our simulations showing that the oscillations have a
physical origin.
A merger of two axion stars supports the empirical law

for the mass of the merged axion star found in [37]. In
contrast to their simulations, the merging axion stars in our
scenario are in highly excited states explaining a higher
mass loss due to gravitational cooling compared to [37].
Overall, our work provides further evidence that the

existence of axion stars is a firm prediction of scenarios in
which dark matter consists of QCD axions and the Peccei-
Quinn symmetry is broken after inflation, with important
consequences for potential astrophysical observations.
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