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The strongest non-Gaussianity in single-scalar potential models of inflation is associated with
features in the power spectrum. We stress the importance of accurately modeling the expected signal
in order for the standard estimator to minimize contamination by random noise. We present explicit
formulas that improve on the approximation introduced by Adshead, Hu, Dvorkin, and Peiris. We also
compare with a simple, analytic model of the first feature, and quantify our results using the correlators
of Hung, Fergusson, and Shellard.
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I. INTRODUCTION

The prediction of primordial scalar perturbations [1] in
single-scalar inflation described by the Lagrangian,

L ¼ R
ffiffiffiffiffiffi−gp

16πG
−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
− VðφÞ ffiffiffiffiffiffi

−g
p

; ð1Þ

represents the first (and so far the only to our knowledge)
observed quantum gravitational phenomenon [2–4]. It is
frustrating that we do not know the scalar potential VðφÞ, or
even if single-scalar inflation is correct. It is also frustrating
that so little guidance for fundamental theory is provided by
observation. The approximately 107 pixels of data from the
primordial spectrum [5] seem to be well described by just
two numbers,

Δ2
RðkÞ ≃ As

�
k
k�

�
ns−1

; As ¼ ð2.105� 0.030Þ × 10−9;

ns ¼ 0.9665� 0.0038; ð2Þ

where the pivot is k� ¼ 0.05 Mpc−1.
If relation (2) is correct, then we can reconstruct the

inflationary geometry in terms of As, ns, and the still
unknown tensor-to-scalar ratio r� < 0.07 [6]. Expressing
the first slow roll parameter ϵðnÞ and the Hubble parameter
HðnÞ in terms of the number of e-foldings Δn≡ n − n�
since the pivot mode experienced horizon crossing, the
lowest order slow roll approximation gives

ϵðnÞ ≃ r�
16

eð1−nsÞΔn;

HðnÞ ≃H� exp
�
−

r�
16ð1 − nsÞ

ðeð1−nsÞΔn − 1Þ
�
; ð3Þ

where 8πGH2� ≡ r�Asπ
2=2. Using the standard procedure

for reconstructing the inflaton and its potential [7–12],
we find

ffiffiffiffiffiffiffiffiffi
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p
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r
½e1
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ð4Þ

ð8πGÞ2VðφÞ ≃ 3

2
π2r�As exp

� ffiffiffiffiffi
r�
8

r
Δψ −

�
1 − ns

4

�
Δψ2

�
:

ð5Þ

Nature is under no compulsion to comply with human
aesthetic prejudices, so the featureless, gently sloping
potential (5) may be all there is to primordial inflation.
However, it raises severe issues with the fine-tuning of
initial conditions needed to make inflation start, and with
the tendency for small fluctuations to produce dramatically
different conditions in distant portions of the universe [13].
What to make of this has provoked controversy even
among some of the pioneers of inflation [14–16].
The power spectrum data [17] actually provide marginal

evidence for more structure in the form of “features.” These
are transient fluctuations away from the best fit—usually
a depression of power followed by an excess at smaller
angular scales—which are visible in the Planck residuals
for 20≲ l≲ 1500 [18]. These were first noticed in WMAP
data [19–21] and have persisted [22,23]. None of the
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observed features reaches the 5σ level of a detection, but it
is conceivable that this threshold might be reached by
correlating them with other data sets [24]. We have
suggested the possibility of doing this (in the far future)
with data from the tensor power spectrum [25,26]. Here we
study the prospects for exploiting non-Gaussianity.
Maldacena’s analysis [27] established that single-scalar

inflation (1) cannot produce a detectable level of non-
Gaussianity if the potential is smooth like (5). The effect
from a smooth potential is widely distributed over the
angular bispectrum so the standard estimators average
over all possible three-point correlators in order to maxi-
mize the signal [28,29]. Planck has not seen a statistically
significant indication of non-Gaussianity using any of these
standard estimators [30]. On the other hand, it has long
been recognized that much stronger transient effects can
come from features [31–33]. Because these effects are
concentrated at certain angular scales, the standard estima-
tors do not resolve them well. An approximate computation
of the effect from the first feature indicated that its non-
Gaussian signal is not detectable [31]. We will reexamine
this problem using some recently developed improvements
in approximating the scalar mode functions [26,34], which
unfortunately do not alter the previous conclusion.
This paper consists of five sections, of which this

Introduction is the first. Section II is devoted to notation
and conventions. The various contributions to non-
Gaussianity are listed there, and the one associated with
features is identified. In Sec. III we apply our approxima-
tion for the scalar mode function to derive an analytic
expression for the bispectrum as a functional of the infla-
tionary geometry. Section IVoptimizes the parameters for a
simple model of the first feature in which the bispectrum
can be computed exactly. Our conclusions comprise Sec. V.

II. NOTATION AND CONVENTIONS

Our purpose is to elucidate how quantities depend func-
tionally on the geometry of inflation. We employ the Hubble
representation [35] using Hubble parameter H and the first
slow roll parameter ϵ of the homogeneous, isotropic, and
spatially flat background geometry of inflation,

ds2 ¼ −dt2 þ a2ðtÞdx⃗ · dx⃗ ⇒ H ≡ _a
a
> 0;

ϵ≡ −
_H
H2

< 1: ð6Þ

It is convenient to regard our time variable as n≡
ln½aðtÞ=ai�, the number of e-foldings from the beginning
of inflation. If inflation ends after ne e-foldings, then the
more familiar number of e-foldings until the end of inflation
is N ≡ ne − n. With this time variable ϵðnÞ provides the
simplest representation for the geometry of inflation with the
Hubble parameter evolved from its initial value Hi,

HðnÞ ¼ Hi exp

�
−
Z

n

0

dmϵðmÞ
�
: ð7Þ

We use a prime to denote differentiation with respect to n,
as in ϵ ¼ −H0=H.
The key unknown in computing both the scalar power

spectrum and the bispectrum is the scalar mode function
vðn; kÞ. In our notation its equation, Wronskian normali-
zation, and asymptotically early time form are [36,37]

v00 þ
�
3 − ϵþ ϵ0

ϵ

�
v0 þ k2v

H2a2
¼ 0;

vv0� − v0v� ¼ i
ϵHa3

; v →
exp½−ik R n

0
dm
Ha�ffiffiffiffiffiffiffiffiffiffiffiffi

2kϵa2
p : ð8Þ

Let nk stand for the e-folding of the first horizon crossing,
when modes of wave number k obey k≡HðnkÞaðnkÞ. One
can see from (8) that the mode function rapidly approaches
a constant after this time. The scalar power spectrum is
computed by evolving vðn; kÞ from its early time form to
this constant,

Δ2
RðkÞ ¼ 4πG ×

k3

2π2
× jvðn; kÞj2n≫nk : ð9Þ

Maldacena’s expression for the bispectrum [27] can
be expressed as the sum of seven contributions, of which
three pairs are usually combined [33]. In our notation the
I ¼ 1;…; 7 contributions each take the form

BIðk1; k2; k3Þ ¼ ð4πGÞ2Re
�
vðne; k1Þvðne; k2Þvðne; k3Þ

× i
Z

ne

0

dnϵðnÞHðnÞa3ðnÞ

× B�
I ðn; k1; k2; k3Þ

�
: ð10Þ

The four unconjugated BIðn; k1; k2; k3Þ combinations are

B1þ3¼ ϵ

�
K4

123

k22k
2
3

v1v02v
0
3þ

K4
231

k23k
2
1

v01v2v
0
3þ

K4
312

k21k
2
2

v01v
0
2v3

�
; ð11Þ

B2 ¼ ϵ

��
k21 þ k22 þ k23

H2a2

�
v1v2v3

�
; ð12Þ

B5þ6 ¼ ϵ2
�
K4

k22k
2
3

v1v02v
0
3 þ

K4

k23k
2
1

v01v2v
0
3 þ

K4

k21k
2
2

v01v
0
2v3

�
;

ð13Þ

B4þ7 ¼
ϵ0

ϵ

��
k21 þ k22 þ k23

H2a2

�
v1v2v3

− v1v02v
0
3 − v01v2v

0
3 − v01v

0
2v3

�
; ð14Þ
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where the fourth order momentum factors in (11) and
(13) are

K4
123 ≡ k21ðk22 þ k23Þ þ 2k22k

2
3 − ðk22 − k23Þ2; ð15Þ

K4 ≡ k41 þ k42 þ k43 − 2k21k
2
2 − 2k22k

2
3 − 2k23k

2
1: ð16Þ

Two things are apparent from the initial factors of ϵ in
expressions (11)–(14). First, non-Gaussianity is small for
smooth potentials such as (5) because ϵ is small and varies
slowly. From (3) we see that ϵ ∼ 1

16
r� < 0.0044, and even

the factor of ϵ0=ϵ in (14) is 1 − ns ∼ 0.034. Second, much
larger non-Gaussianity can arise from B4þ7 in models with
features. In that case ϵ remains small, but ϵ0=ϵ can reach
order one over a small range of n.
The mode-dependent factors inside the square brackets

of (11)–(14) are also informativewhen combined with three
insights from the mode equation (8):
(1) The mode function vðn; kÞ is oscillatory and falling

off like 1=a until it freezes into a constant VðkÞ
(which might be complex) around n ≈ nk;

(2) The approach to VðkÞ has real part Re½vðn; kÞ=
VðkÞ� ∼ ðk=HaÞ2; and

(3) The approach has Im½vðn; kÞ=VðkÞ�∼
−1=2ϵHa3jVðkÞj2.

Together with the general form (10), these facts imply that
the n integrand for each of the four contributions is
oscillatory before the largest of the three wave numbers
has experienced horizon crossing and falls off like 1=a2

thereafter. This has important consequences for designing
estimators to detect non-Gaussianity. When the potential is
smooth, both ϵðnÞ and ∂n ln½ϵ� are nearly constant, so all
wave numbers will show nearly the same effect and the best
strategy is to combine them as the standard estimators do.
However, when a feature is present, the factor of ∂n ln½ϵðnÞ�
in (14) becomes significant in a small range of n, and the
non-Gaussian signal will be much larger for modes that
experience horizon crossing around that time. Averaging
over all observable wave numbers runs the risk of drowning
a real signal in noise.
Because conventions differ we close by reviewing how

the fundamental fields relate to Δ2
RðkÞ and Bðk1; k2; k3Þ.

We use the gauge of Salopek, Bond, and Bardeen [38] in
which time is fixed by setting the inflaton to its background
value and the graviton field is transverse. In this gauge
the metric components g00 and g0i are constrained and the
dynamical variables ζðn; x⃗Þ and hijðn; x⃗Þ reside in the
spatial components,

gijðn; x⃗Þ ¼ a2e2ζðn;x⃗Þ × ½ehðn;x⃗Þ�ij; hiiðn; x⃗Þ ¼ 0: ð17Þ

Scalar perturbations derive from ζðn; x⃗Þ whose free field
expansion is

ζ̃ðn; k⃗Þ≡
Z

d3xe−ik⃗·x⃗ζðn; x⃗Þ

¼
ffiffiffiffiffiffiffiffiffi
4πG

p h
vðn; kÞαðk⃗Þ þ v�ðn; kÞα†ð−k⃗Þ

i
; ð18Þ

where α† and α are creation and annihilation operators,

½αðk⃗Þ; α†ðp⃗Þ� ¼ ð2πÞ3δ3ðk⃗ − p⃗Þ; αðk⃗ÞjΩi ¼ 0: ð19Þ

Assuming the wave numbers experience horizon crossing
before the end of inflation ne, our power spectrum and
bispectrum are

hΩjζ̃ðne; k⃗Þζ̃ðne; p⃗ÞjΩi ¼
2π2

k3
× Δ2

RðkÞ × ð2πÞ3δ3ðk⃗þ p⃗Þ;
ð20Þ

hΩjζ̃ðne; k⃗1Þζ̃ðne; k⃗2Þζ̃ðne; k⃗3ÞjΩi
¼ Bðk1; k2; k3Þ × ð2πÞ3δ3ðk⃗1 þ k⃗2 þ k⃗3Þ: ð21Þ

Note that while the power spectrum is dimensionless, the
bispectrum has the dimension of k6.

III. ANALYTIC APPROXIMATION
FOR THE BISPECTRUM

In this section we first convert the key contribution (14)
from the mode function vðn; kÞ to its norm square Nðn; kÞ.
Then we introduce an approximation [26,34] that should be
very accurate for the physically relevant case of small ϵðnÞ
but significant ∂n ln½ϵðnÞ�. Finally, we study a model of
the first feature to compare our result for B4þ7ðk1; k2; k3Þ
with the simpler approximation of Adshead, Hu, Dvorkin,
and Peiris [31].

A. Approximating the mode functions

Even considered as a purely numerical problem, it is
better to convert Eqs. (8) for vðn; kÞ into relations for
Nðn; kÞ≡ jvðn; kÞj2 [39]. Avoiding the need to keep track
of the phase makes about a quadratic improvement in
convergence. Further, nothing is lost because the phase can
be recovered by a simple integration [26],

vðn; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðn; kÞ

p
exp

�
−i

Z
n

0

dm
2ϵHa3N

�

≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðn; kÞ

p
eiθðn;kÞ: ð22Þ

It is best to begin with the outer factors of vðne; kÞ in
expression (10). Assuming the various wave numbers have
experienced horizon crossing, these outer mode functions
can be expressed in terms of the power spectrum (9),

vðne; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
π

2Gk3

r
ΔRðkÞeiθðne;kÞ: ð23Þ
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We next combine each outer phase with the appropriate
inner phase,

v̂ðn; kÞ≡ vðn; kÞe−iθðne;kÞ ⇒ θðn; kÞ − θðne; kÞ

¼
Z

ne

n

dm
ϵHa3N

≡ ϕðn; kÞ: ð24Þ

Note that ϕðn; kÞ approaches zero like 1=a3 for large n. At
this stage one can recognize the real part of the undiffer-
entiated terms,

Re½iv̂�1v̂�2v̂�3� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2N3

p
sinðϕ1 þ ϕ2 þ ϕ3Þ: ð25Þ

The differentiated terms are more complicated,

v̂0ðn; kÞ ¼ v̂ðn; kÞ
�
N0ðn; kÞ
2Nðn; kÞ þ iϕ0ðn; kÞ

�
: ð26Þ

Hence we have

Re½iv̂�1v̂0�2 v̂0�3 �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2N3

p �
sinðϕ1 þ ϕ2 þ ϕ3Þ

�
N0

2

2N2

N0
3

2N3

− ϕ0
2ϕ

0
3

�

þ cosðϕ1 þ ϕ2 þ ϕ3Þ
�
N0

2

2N2

ϕ0
3 þ

N0
3

2N3

ϕ0
2

��
: ð27Þ

There are three terms such as (27), so putting everything
together gives

B4þ7ðk1; k2; k3Þ ¼
4π4ΔRðk1ÞΔRðk2ÞΔRðk3Þ

k21k
2
2k

2
3

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gk1k2k3

π

r Z
ne

0

dnϵ0Ha3

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2N3

p �
sinðϕ1 þ ϕ2 þ ϕ3Þ

��
k21 þ k22 þ k23

H2a2

�
−

N0
2

2N2

N0
3

2N3

þ ϕ0
2ϕ

0
3 − � � �

�

− cosðϕ1 þ ϕ2 þ ϕ3Þ
�
N0

1

2N1

ðϕ0
2 þ ϕ0

3Þ þ
N0

2

2N2

ðϕ0
3 þ ϕ0

1Þ þ
N0

3

2N3

ðϕ0
1 þ ϕ0

2Þ
��

: ð28Þ

To develop a useful approximation for (28) we first
factor Nðn; kÞ into the instantaneously constant ϵ solution
N0ðn; kÞ times the exponential of a residual gðn; kÞ, which
is sourced by derivatives of ln½ϵðnÞ� [26,34],

Nðn; kÞ ¼ N0ðn; kÞ × exp

�
−
1

2
gðn; kÞ

�
: ð29Þ

Of course, the derivatives of ln½ϵðnÞ� that source gðn; kÞ are
of great concern in the study of features, as is the potentially
large factor of 1=ϵ in N0ðn; kÞ. Taking all the other factors
of ϵ to zero causes a negligible loss of accuracy. The
resulting approximation involves three functions g̃ðn; nkÞ,
γ̃0ðn; nkÞ, and ϕ̃ðn; nkÞ, which must be tabulated over a
narrow range of n and nk,

B̃4þ7ðk1; k2; k3Þ ¼
4π4ΔRðk1ÞΔRðk2ÞΔRðk3Þ

k21k
2
2k

2
3

× −
Z

ne

0

dn∂n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GH2ðnÞ
πϵðnÞ

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2Δn1Þð1þ e2Δn2Þð1þ e2Δn3Þ

q
e−

1
2
ðg̃1þg̃2þg̃3Þ

�
sinðϕ̃1 þ ϕ̃2 þ ϕ̃3Þ

×

�
e−2Δn1 −

�
1

1þ e2Δn2
þ 1

4
γ̃02

��
1

1þ e2Δn3
þ 1

4
γ̃03

�
þ ϕ̃0

2ϕ̃
0
3 þ ð231Þ þ ð312Þ

�

− cosðϕ̃1 þ ϕ̃2 þ ϕ̃3Þ
��

1

1þ e2Δn1
þ 1

4
γ̃01

�
ðϕ̃0

2 þ ϕ̃0
3Þ þ ð231Þ þ ð312Þ

��
: ð30Þ

Here and henceforth Δni ≡ n − ni, where ni is the e-
folding at which wave number ki experiences horizon
crossing.
The tabulated function g̃ðn; nkÞ represents an approxi-

mation of the amplitude residual gðn; kÞ in (29). It is
expressed as Green’s function integral over sources before
and after horizon crossing,

SbðmÞ ¼ ∂2
m ln½ϵðmÞ� þ 1

2
ð∂m ln½ϵðmÞ�Þ2 þ 3∂m ln½ϵðmÞ�;

ð31Þ

Saðm; nkÞ ¼
2∂m ln½ϵðmÞ�
1þ e2Δm

þ
�
2e−Δm ϵðnkÞ

ϵðmÞ
1þ e2Δm

�
2

; ð32Þ
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where Δm≡m − nk. The integral expression for
g̃ðn; nkÞ is

g̃ðn; nkÞ ¼ −2θð−ΔnÞ
Z

n

0

dmGðΔm;ΔnÞSbðmÞ

þ 2θðΔnÞ
�
Gð0;ΔnÞ ϵ

0ðnkÞ
ϵðnkÞ

−
Z

nk

0

dmGðΔm;ΔnÞSbðmÞ

−
Z

n

nk

dmGðΔm;ΔnÞSaðm; nkÞ
�
; ð33Þ

where Green’s function is

GðΔm;ΔnÞ ¼ 1

2
ðeΔmþ e3ΔmÞ×sin½2e−Δm − 2tan−1ðe−ΔmÞ

− 2e−Δnþ 2tan−1ðe−ΔnÞ�: ð34Þ

Differentiating the Green’s function with respect to n gives

∂nGðΔm;ΔnÞ ¼
�
eΔm þ e3Δm

eΔn þ e3Δn

�
× cos½2e−Δm

− 2tan−1ðe−ΔmÞ− 2e−Δn þ 2tan−1ðe−ΔnÞ�:
ð35Þ

It occurs in the second of the tabulated functions,

γ̃0ðn; nkÞ ¼ 2θð−ΔnÞ∂n ln½ϵðnÞ� þ ∂ng̃ðn; nkÞ: ð36Þ

The final tabulated function is our approximation of the
angle ϕðn; kÞ,

ϕ̃ðn; nkÞ ¼
Z

ne

n
dm

e−Δmþ1
2
g̃ðm;nkÞ

1þ e2Δm
: ð37Þ

Note that its derivative does not require separate tabulation,

ϕ̃0ðn; nkÞ ¼ −
e−Δnþ1

2
g̃ðn;nkÞ

1þ e2Δn
: ð38Þ

Adshead, Hu, Dvorkin, and Peiris [31] introduced a
much simpler approximation that, in our language,
corresponds to setting g̃ðn; nkÞ and γ̃0ðn; kÞ to zero in
expression (30). Note that this reduces the angle and its
derivative to be functions of just the single variable
Δn ¼ n − nk,

ϕ̃ðn; nkÞ
			
g̃¼0

¼ e−Δn − tan−1ðe−ΔnÞ;

ϕ̃0ðn; nkÞ
			
g̃¼0

¼ −
e−Δn

1þ e2Δn
: ð39Þ

This approximation is certainly simpler to implement, but it
completely ignores how the inner mode functions change in
response to the feature.

B. The step model

The model we shall study belongs to a class introduced
in 2001 by Adams, Cresswell, and Easther [40],

VðφÞ ¼ 1

2
m2φ2 ×

�
1þ c tanh

�
φ − b
d

��
: ð40Þ

A fit to the first feature (20≲ l≲ 40Þ using WMAP data
gave [41]

b ¼ 14.668ffiffiffiffiffiffiffiffiffi
8πG

p ; c ¼ 1.505 × 10−3;

d ¼ 0.02705ffiffiffiffiffiffiffiffiffi
8πG

p ; m ¼ 7.126 × 10−6ffiffiffiffiffiffiffiffiffi
8πG

p : ð41Þ

Figure 1 shows the first slow roll parameter and its
logarithmic derivative for this model. Two obvious points
are the following:
(1) The first slow roll parameter is always very

small;1 and
(2) The crucial factor of ∂n ln½ϵðnÞ� that sources

non-Gaussianity is only significant for the two
e-foldings 170.8≲ n≲ 172.8.

Inflation ends for this model at ne ≃ 225.6 so the feature
peaks about 54 e-foldings before the end of inflation.
Let us first establish that our approximations for the

amplitude correction (33) and for the phase (37) are valid.
Figure 2 displays the exact results (in blue) versus our
approximations (in yellow) for the case of nk ¼ 172.5
where the amplitude correction is close to its maximum.
The agreement is good, except for an offset at late times that
is due to gðn; kÞ having become large enough around n ≈
172 that nonlinear corrections matter [34]. For most values
of nk this is not an issue and, even for nk ¼ 172.5, the
rightmost graph of Fig. 1 shows that the offset has little
effect on non-Gaussianity.
In view of point 2 above, we only require the tabulated

functions g̃ðn; nkÞ, γ̃0ðn; nkÞ, and ϕ̃ðn; nkÞ for the two e-
foldings from n ¼ 170.8 to n ¼ 172.8. Figure 3 shows
contour plots of these functions for modes that experience
horizon crossing in the range 170 < nk < 173.5. It is
important to bear in mind that the source ∂n ln½ϵðnÞ� in
Fig. 1 modulates how the corrections of Fig. 3 affect
non-Gaussianity. So although the graph of g̃ðn; nkÞ shows
a strong amplitude enhancement for nk ≃ 171.5, and an
equally strong suppression for nk ≃ 172.5, the latter effect

1It is actually a little too large for the improved bounds on the
tensor-to-scalar ratio [6] since the time of WMAP. However, the
model serves well enough for the purposes of illustration.
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is much less significant because it peaks for n≳ 172.1, by
which point ∂n ln½ϵðnÞ� is small. Because of this modula-
tion, the biggest correction comes from the large positive
phase shift at nk ≃ 172.6, which peaks at n ≃ 171.7.

Figure 4 gives some idea of the significance of the
various corrections we have introduced to the approxi-
mation of Adshead, Hu, Dvorkin, and Peiris [31], but
it is limited by the assumption that k1 ¼ k2 ¼ k3. The

FIG. 2. Comparison between exact results (in blue) and our approximations (in yellow) for the amplitude correction (33) and the
phase (37). The left-hand graph shows gðn; kÞ and the right-hand graph shows sin½ϕ̃ðn; kÞ�.

FIG. 3. Various correction factors for the step model. The left-hand graph gives our approximation (33) for (−4 times the logarithm of)
the amplitude correction gðn; nkÞ in the step model. The middle graph shows the derivative factor (36). And the right-hand graph shows
how much our approximation (37) differs from the de Sitter result (39).

FIG. 1. The left-hand graph gives ϵðnÞ for the step model (40)–(41). The right-hand graph shows ∂n ln½ϵðnÞ� for this model. Note that
the logarithmic derivative is only significant in the narrow range 170.8≲ n≲ 172.8.
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correlators Hung, Fergusson, and Shellard [42] provide a
more detailed comparison between any two bispectra
Biðk1; k2; k3Þ and Bjðk1; k2; k3Þ that possess the same
power spectrum Δ2

RðkÞ. They are formed from ratios of
“inner products” defined as

½Bi; Bj�≡ const ×
Z
VB

dk1dk2dk3ðk1k2k3Þ4

×
Biðk1; k2; k3ÞBjðk1; k2; k3Þ
Δ2

Rðk1ÞΔ2
Rðk2ÞΔ3

Rðk3Þ
; ð42Þ

where VB indicates the range of the wave numbers that
obey the triangle condition (jk1 − k2j < k3 < k1 þ k2), plus
whatever other restrictions we wish to impose, and the
multiplicative constant is irrelevant. Hung, Fergusson, and
Shellard use these inner products to form, respectively,
shape, amplitude, and total correlators,

SðBi; BjÞ≡ ½Bi; Bj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Bi; Bi�½Bj; Bj�
p ; AðBi; BjÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Bi; Bi�
½Bj; Bj�

s
;

ð43Þ

T ðBi; BjÞ≡ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Bj − Bi; Bj − Bi�

½Bj; Bj�

s
: ð44Þ

We evaluated all three correlators to compare our approxi-
mation (as Bi) with the simpler approximation (as Bj)
of Adshead, Hu, Dvorkin, and Peiris [31] over the narrow
range 170.8 < ni < 173 of the greatest response. The
results are

S ≃ 0.9578; A ≃ 1.3436; T ≃ 0.5189: ð45Þ

Even though the equilateral triangle case shown by Fig. 4
seems to roughly agree we can see there is quite a large
mismatch in the amplitudes that leads to a substantial
degradation of the total correlator.

IV. THE SQUARE WELL MODEL

In 1992 Starobinsky proposed a simple model in
which the first slow roll parameter makes an instantaneous
jump from one value to another, which permits the
mode functions to be solved exactly [43]. Because the
fundamental source of non-Gaussianity ∂n ln½ϵðnÞ� is a
delta function for this case, one can exactly compute
B4þ7ðk1; k2; k3Þ and derive excellent approximations for
the remaining contributions [44–46]. We shall make a
slight modification of this model in which ϵðnÞ returns to its
original value after a short number of e-foldings Δn,

ϵðnÞ ¼ ϵ1θðn0 − nÞ þ ϵ2θðn − n0Þθðn0 þ Δn − nÞ
þ ϵ1θðn − n0 − ΔnÞ: ð46Þ

We first solve exactly for the mode functions. Next a
determination is made of the parameter values for n0, Δn,
ϵ1, and ϵ2 to cause the scalar power spectrum of this model
to agree with a numerical determination of the step model
power spectrum of Sec. III. B over the crucial range
170.8 < nk < 172.8. After doing that B4þ7ðk1; k2; k3Þ is
computed exactly, and then in the approximation of setting
all small factors of ϵ to zero. We close by using the
correlators (43) and (44) of Hung, Fergusson, and Shellard
[42] to compare this exactly solvable model with our
approximation and with the simpler approximation of
Adshead, Hu, Dvorkin, and Peiris [31].

FIG. 4. The left-hand graph shows the “inner” part of expression (30), starting from −
R ne
0 dn…, for the equilateral triangle case of

k1 ¼ k2 ¼ k3. The blue curve shows our approximation while the yellow curve shows the simpler approximation of Adshead, Hu,
Dvorkin, and Peiris [31]. The right-hand graph shows the integral of the square of our approximation (in blue) versus the product of our
approximation times theirs (in yellow). The ratio of the areas under the yellow to the blue curves is about 0.637 at the end.
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For ϵðnÞ ¼ ϵi for all time then the exact mode function is

viðn; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

4ϵið1 − ϵiÞHa3

r
Hð1Þ

νi

�
k

ð1 − ϵiÞHa

�
;

νi ¼
1

2

�
3 − ϵi
1 − ϵi

�
: ð47Þ

For the actual parameter (46) the mode function takes the
form,

vðn; kÞ ¼ v1ðn; kÞθðn0 − nÞ
þ vBðn; kÞθðn − n0Þθðn0 þ Δn − nÞ
þ vCðn; kÞθðn − n0 − ΔnÞ; ð48Þ

where vBðn; kÞ and vCðn; kÞ are,

vBðn; kÞ ¼ αv2ðn; kÞ þ βv�2ðn; kÞ; ð49Þ

vCðn; kÞ ¼ α½γv1ðn; kÞ þ δv�1ðn; kÞ�
þ β½γv1ðn; kÞ þ δv�1ðn; kÞ��: ð50Þ

The appropriate matching conditions at n ¼ n0 and n ¼
n0 þ Δn are the continuity of vðn; kÞ and of the product
ϵðnÞ × v0ðn; kÞ. The coefficients α and β involve the mode
functions (47) and their derivatives evaluated at n ¼ n0,

α ¼ −iHa3½ϵ2v1v�02 − ϵ1v01v
�
2�;

β ¼ iHa3½ϵ2v1v02 − ϵ1v01v2�: ð51Þ

The coefficients γ and δ involve the mode functions (47)
and their derivatives evaluated at n ¼ n0 þ Δn,

γ ¼ −iHa3½ϵ1v2v�01 − ϵ2v02v
�
1�;

δ ¼ iHa3½ϵ1v2v01 − ϵ2v02v1�: ð52Þ

From expression (50) and the small argument form of the
Hankel function we infer the late time limit of the mode
function,

lim
n≫nk

vCðn; kÞ ¼ −
iHðnkÞffiffiffiffiffiffiffiffiffiffiffi
2ϵ1k3

p ×
Γðν1Þ½2ð1 − ϵ1Þ�

1
1−ϵ1ffiffiffi

π
p

× ½αðγ − δÞ − βðγ� − δ�Þ�: ð53Þ

Substituting this in expression (9) gives the square well
model’s prediction for the scalar power spectrum,

Δ2
RðkÞ ¼

GH2ðnkÞ
πϵ1

×
Γ2ðν1Þ½2ð1 − ϵ1Þ�

2
1−ϵ1

π

× jαðγ − δÞ − βðγ� − δ�Þj2: ð54Þ

Figure 5 compares (54) with a numerical determination
of Δ2

RðkÞ for the step model. There is no way to make the
two results agree for all values of nk; however, very good
concurrence over the key range of 170.8 < nk < 172.8
results from the following choices for the square well
parameters,

n0 ¼ 171.3; Δn¼ 0.7; ϵ1 ¼ 0.0093; ϵ2 ¼ 0.0137:

ð55Þ

The infinite sequence of oscillations (“ringing”) evident in
Fig. 5 is the result of the sharp transitions in ϵðnÞ for the
square well model (46). For smooth transitions, such as
those of the step model, the oscillations decay rapidly.

FIG. 5. Both graphs show the Δ2
RðkÞ as a function of e-folding of horizon crossing, for the step model (in blue) and for the best fit

square well model (in yellow). The approximate conversion to the wave number is k ≃ aimen
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150 − 2

3
n

q
, where ai is the scale factor at

the beginning of inflation and m ¼ 7.126 × 10−6
ffiffiffiffiffiffiffiffiffi
8πG

p
.
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Of course, no one understands what caused features (if they
are present) so it may be that the transition really is
instantaneous, in which case ringing is a prominent
signature that persists long after the transition. This
possibility was pursued in a fascinating study by
Adshead, Dvorkin, Hu, and Lim [32]. However, we shall
here take the view that ringing is an artifact of modeling
smooth transitions as instantaneous, and we shall accord-
ingly focus narrowly on the two e-foldings 170.8 < nk <
172.8 over which the square well model is in reasonable
agreement with the step model.
The great advantage of the square well model is that the

key modulation factor of ϵ0=ϵ in expression (14) is a delta
function,

ϵ0ðnÞ
ϵðnÞ ¼ ln

�
ϵ2
ϵ1

�
½δðn − n0Þ − δðn − n1Þ�; ð56Þ

where n1 ≡ n0 þ Δn. We must also understand how to
evaluate certain discontinuous factors at the jumps,

ϵðn0Þ ⟶
�
ϵ1 þ ϵ2

2

�
← ϵðn1Þ; ð57Þ

ϵðn0Þv0ðn0; kαÞv0ðn0; kβÞ

⟶

�
ϵ1 þ ϵ2

2

�
ϵ1
ϵ2
v01ðn0; kαÞv01ðn0; kβÞ; ð58Þ

ϵðn1Þv0ðn1; kαÞv0ðn1; kβÞ

⟶

�
ϵ1 þ ϵ2

2

�
ϵ2
ϵ1
v0Bðn1; kαÞv0Bðn1; kβÞ: ð59Þ

Substituting relations (56) and (57)–(59) into expressions
(10) and (14) gives

B4þ7ðk1; k2; k3Þ ¼ ð4πGÞ2
�
ϵ1 þ ϵ2

2

�
ln

�
ϵ2
ϵ1

�
Re½ivCðne; k1ÞvCðne; k2ÞvCðne; k3Þ

× ½Hðn0Þa3ðn0ÞF�ðn0; k1; k2; k3Þ −Hðn1Þa3ðn1ÞG�ðn1; k1; k2; k3Þ��; ð60Þ

where the upper and lower factors are

Fðn; k1; k2; k3Þ≡ ðk21 þ k22 þ k23Þ
H2ðnÞa2ðnÞ v1ðn; k1Þv1ðn; k2Þv1ðn; k3Þ −

ϵ1
ϵ2
v1ðn; k1Þv01ðn; k2Þv01ðn; k3Þ

−
ϵ1
ϵ2
v01ðn; k1Þv1ðn; k2Þv01ðn; k3Þ −

ϵ1
ϵ2
v01ðn; k1Þv01ðn; k2Þv1ðn; k3Þ; ð61Þ

Gðn; k1; k2; k3Þ≡ ðk21 þ k22 þ k23Þ
H2ðnÞa2ðnÞ vBðn; k1ÞvBðn; k2ÞvBðn; k3Þ −

ϵ2
ϵ1
vBðn; k1Þv0Bðn; k2Þv0Bðn; k3Þ

−
ϵ2
ϵ1
v0Bðn; k1ÞvBðn; k2Þv0Bðn; k3Þ −

ϵ2
ϵ1
v0Bðn; k1Þv0Bðn; k2ÞvBðn; k3Þ: ð62Þ

Expressions (60)–(62) are exact, but somewhat opaque
because they conceal certain large factors of 1=ϵ, and
because they are obscured by many other negligibly small
positive powers of ϵ. There is no appreciable loss of
accuracy, and a considerable simplification, by extracting
the large factors of 1=ϵ and setting the other factors of ϵ to
zero. Note that this makes the Hubble parameter constant.
Two ratios that involve the momenta are

κi ≡ ki
Hðn0Þaðn0Þ

→ enki−n0 ;

λi ≡ ki
Hðn1Þaðn1Þ

→ enki−n1 ¼ κie−Δn: ð63Þ

Applying these approximations to the mode functions (at
n0 and n1) and their first derivatives gives

viðn0;kÞ→−
iHð1− iκÞeiκffiffiffiffiffiffiffiffiffiffiffi

2ϵik3
p ; v0iðn0;kÞ→

iHκ2eiκffiffiffiffiffiffiffiffiffiffiffi
2ϵ1k3

p ; ð64Þ

viðn1;kÞ→−
iHð1− iλÞeiλffiffiffiffiffiffiffiffiffiffiffi

2ϵik3
p ; v0iðn1;kÞ→

iHλ2eiλffiffiffiffiffiffiffiffiffiffiffi
2ϵik3

p : ð65Þ

These approximations carry the first set of combination
coefficients (51) to

αi →
i
2κi

�
ð1 − iκiÞ

ffiffiffiffiffi
ϵ2
ϵ1

r
− ð1þ iκiÞ

ffiffiffiffiffi
ϵ1
ϵ2

r �
; ð66Þ

βi →
i
2κi

ð1 − iκiÞ
� ffiffiffiffiffi

ϵ2
ϵ1

r
−

ffiffiffiffiffi
ϵ1
ϵ2

r �
e2iκi : ð67Þ
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Only the difference of the second set (52) matters, and it
becomes

γi − δi →
eiλi

λi

�
ð1 − iλiÞ sinðλiÞ

ffiffiffiffiffi
ϵ1
ϵ2

r

−
�
sinðλiÞ − λi cosðλiÞ

� ffiffiffiffiffi
ϵ2
ϵ1

r �
: ð68Þ

With these approximations expression (14) assumes the
form

B4þ7ðk1; k2; k3Þ

→
ðπGH2Þ2
k21k

2
2k

2
3

�
ϵ1 þ ϵ2

ϵ31

�
ln

�
ϵ2
ϵ1

�
Re

�
iA1A2A3

κ1κ2κ3

×

�
F �e−iðκ1þκ2þκ3Þ −

�
ϵ1
ϵ2

�3
2

G�e−iðλ1þλ2þλ3Þ
��

; ð69Þ

where Ai ≡ αiðγi − δiÞ − βiðγ�i − δ�i Þ and the approximated
factors are

F ¼ ðκ21 þ κ22 þ κ23Þð1 − iκ1Þð1 − iκ2Þð1 − iκ3Þ
−
ϵ1
ϵ2

κ21κ
2
2ð1 − iκ3Þ −

ϵ1
ϵ2

κ21κ
2
3ð1 − iκ2Þ

−
ϵ1
ϵ2

κ22κ
2
3ð1 − iκ1Þ; ð70Þ

G ¼ eΔnðκ21 þ κ22 þ κ23Þ
Y3
i¼1

½αið1 − iλiÞ − βið1þ iλiÞe−2iλi �

− e−Δn
ϵ2
ϵ1

X3
i¼1

�Y
j≠i

κ2jðαj − βje−2iλjÞ
�

× ½αið1 − iλiÞ − βið1þ iλiÞe−2iλi �: ð71Þ

One can see from Fig. 5 that the power spectra of the
square well model and the step model agree almost
perfectly over the region 170.8 < n < 173. This might
seem to indicate that they would produce nearly the same
non-Gaussian signal, at least when restricted to the same
narrow range. However, the results are disappointing when
the two models are compared using the shape, amplitude,
and total correlators (43)–(44) of Hung, Fergusson, and
Shellard [42],

S ≃ 0.7976; A ≃ 1.1050; T ≃ 0.3230; ð72Þ

where Bi was the square well model and Bj was the step
model. The amplitudes of the two models are in much
better agreement than for the comparison (45) of the step
model with the approximation of Adshead, Hu, Dvorkin,

and Peiris [31]. However, the shapes disagree, which results
in an even lower total correlator. Note that the problem
in this case did not arise from inaccurately modeling the
non-Gaussian response to a given history ϵðnÞ, but rather
from the fact that different histories produce different
bispectra, even when the power spectra are very similar.
We also compared the square well model (as Bi) with the

approximation of Adshead, Hu, Dvorkin, and Peiris [31]
(as Bj),

S ≃ 0.8946; A ≃ 1.4847; T ≃ 0.2598: ð73Þ

Both the shape correlator and the amplitude correlator are
worse than for the comparison (45) of our approximation
with that of Adshead, Dvorkin, Hu, and Peiris, resulting in
a much smaller total correlator.

V. EPILOGUE

We have examined the non-Gaussianity associated with
conjectured sharp variations in the first slow roll parameter
ϵðnÞ known as “features.” In Sec. II we identified the
crucial contribution, Eq. (14), which becomes significant
for features. Section III applied an approximation for how
the scalar mode functions depend analytically on ϵðnÞ
[26,34] to develop an approximation (30) for this term. Our
result involves three tabulated functions of the instanta-
neous e-folding n and the e-folding of horizon crossing nk:
(1) g̃ðn; nkÞ given in expression (33);
(2) γ̃0ðn; nkÞ given in expression (36); and
(3) ϕ̃ðn; nkÞ given in expression (37).

Although generating these functions is numerically chal-
lenging, it only needs to be done over the narrow range of n
and nk associated with the feature. This is illustrated in
Fig. 3, which identifies the small ranges of n and nk over
which significant corrections would occur for a model of
the first feature.
Our technique is more time consuming, but also

more accurate, than the approximation of Adshead, Hu,
Dvorkin, and Peiris [31]. When the two approximations
were compared using the total correlator (44) of Hung,
Fergusson, and Shellard [42], the result (45) was nearly a
50% degradation of the signal, even when the comparison
was restricted to a narrow range around the feature.
Accurate modeling is crucial when studying features
because they produce an oscillating signal, so that even
small errors in the phase can significantly degrade the
signal. This is especially relevant because the response to a
feature is delayed to later crossing wave numbers. Unless
the late time phase information is accurately modeled,
trying to boost the signal by including the delayed response
will actually reduce the measured signal.
In Sec. IV we presented a slight elaboration of a

model due to Starobinsky [43] for which the crucial
contribution (14) can be computed exactly, without any
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approximation [44–46]. In our model ϵðnÞ jumps from ϵ1 to
ϵ2 and then falls back down after an interval Δn, hence the
name “square well model.” Expression (60) gives the exact
result for the bispectrum of the square well model. However,
taking the inessential factors of ϵ to zero produces a simpler
and more transparent result (69), which is almost as accurate.
A consequence of the sharp transitions is the persistence of
oscillations for wave numbers that experience horizon
crossing long after the transition. We regarded this as an
artifact of the square well approximation, and truncated the
late oscillations. For a different point of view we recommend
the study of Adshead, Dvorkin, Hu, and Lim [32].
Figure 4 shows that the power spectra of the square well

model agree with that of the step model over the narrow
range of 170.8 < n < 173. However, the bispectra they

produce are very different. We found a total shape corre-
lator (72) of only about one-third. This underlines the
importance of knowing the history ϵðnÞ in addition to
accurately modeling the response to it.
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