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We consider chiral cosmological models (CCMs) and modified gravity theories associated with them.
Generalization of the superpotential method for a general CCM with several scalar fields is performed, and
the method of construction CCMs admitting exact solutions is developed. New classes of exact solutions in
the two-component CCM connected with an f(R) gravity model with an additional scalar field have been
constructed. We construct new cosmological solutions for a diagonal metric of the target space, including
modified power-law solutions. In particular, we propose the reconstruction procedure based on the
superpotential method and present examples of kinetic part reconstruction for periodic and hyperbolic
Hubble parameters. We also focus on a cyclic type of Universe dubbed the quasi-steady-state (QSS) model,
with the aim of constructing single- and double-field potentials for one and the same behavior of the Hubble
parameter using the developed superpotential method for the CCM. The realization of this task includes a
new set of solutions for a CCM with a scale factor characterized by the QSS theory. We also propose a
method for reducing the two-field CCM to the single scalar field model.
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I. INTRODUCTION

Scalar fields play an important role in model building for
early Universe and late time cosmic evolution. Observations
[1-3] show that the Universe evolution can be described by
the spatially flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetime as background and cosmological pertur-
bations. Models with scalar fields are well suited to describe
such an evolution. As for the modified theories of gravity, in
general, they can be thought of as the Einstein theory of
general relativity plus extra degrees of freedom; for instance,
f(R) gravity models correspond to general relativity models
with a single self-interacting scalar field.

Scalar fields are important in inflationary scenarios
[4-9], including the Starobinsky R> model [10] and in
Higgs-driven inflation [11]. Models with a single scalar
field nonminimally coupled to gravity as well as f(R)
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gravity models can always be transformed to models with a
minimally coupled scalar field with a canonical kinetic term
by the metric and scalar field transformations. On the other
hand, models with a few fields nonminimally coupled with
gravity, in general, do not admit such a transformation [12].
After the metric transformation, one obtains the chiral
cosmological models (CCMs) in the Einstein frame [13].
Multifield inflationary models do not contradict the Planck
data [3] and are being actively studied [13-16]. It was
recently argued that, compared to single field models, a
system with several scalar fields can be better reconciled
with observation. For instance, it was shown in Ref. [13]
that additional degrees of freedom can produce enough
power in isocurvature perturbations, which could account
for the anomaly in the Planck observation data. It is
needless to mention that extra degrees of freedom are
generic features of modified theories of gravity.

At the same time, it has been proven that at least one
fundamental scalar field (the Higgs boson) exists. This
gives good motivation to consider modified gravity models
with an additional scalar field. For example, inflationary
models obtained from f(R) gravity models with additional
scalar fields [17] are very popular now [18-22]. The
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implementation of the inflationary scenario within a well-
defined model of particle physics consistent with collider
phenomenology would be a fundamental step towards the
unification of physics at all energy scales. The standard
model of particle physics that includes only one funda-
mental scalar field could be an effective limit of some
supersymmetry or grant unification theory that has the
scalar sector with a few Higgs bosons, and there is no
reason to assume that only one scalar field plays a role in
the Universe’s evolution. In the Einstein frame, all of the
above-mentioned models are CCMs. Quantum motivated
higher-order generalizations of general relativity under
some conditions can be equivalent to adding several scalar
fields to the Einstein-Hilbert action [23].

The CCM allows one to describe not only the infla-
tionary epoch of the Universe evolution but also the present
accelerated expansion of the Universe [24-26]. It has been
shown in a recent paper [27] that the present value of the
equation-of-state dark energy parameter has to be phantom-
like, and for other redshifts, it either has to be a phantom or
should have a phantom crossing. It has been shown [28]
that such transitions are physically implausible in one-field
models because they are either realized by a discrete set
of trajectories in the phase space or are unstable with
respect to the cosmological perturbations. This is a strong
motivation to consider quintom models [29], which are a
particular case of CCMs.

In the case of single scalar cosmology with a generic
potential, the integration procedure is reduced to solving
the Ivanov-Salopek-Bond equation [7,30]. There are many
methods of obtaining physically relevant solutions, includ-
ing that with the Higgs potential [30-33]. The reduction of
a CCM to a single scalar field model was proposed in
Ref. [34]. A new approach to studying a CCM when
gravitational field equations are represented in a linear form
under the point transformation was developed in Ref. [35].
For a specific geometry of the target space and a special
form of the potential, the way to obtain the solutions to the
gravitational field equation has been found.' In the case of
several scalar fields with kinetic interaction, progress in
obtaining exact solutions has been achieved for later
Universe evolution [36], the emergent Universe [37],
Einstein-Gauss-Bonnet cosmology [38], and the tensor-
multiscalar model [39] as well.

The goal of this paper is to propose a way to get a
particular solution of the CCM in the analytic form. We do
not seek solutions for a given potential but construct the
potential of the scalar field such that the resulting model has
exact solutions with important physical properties. Such a
method is similar to the Hamilton-Jacobi method (also
known as the superpotential method or the first-order
formalism) and is applied to cosmological models with

"t is difficult to consider such solutions as exact ones without
involving the dynamic equations of the chiral fields.

minimally [7,30,33,40-49] and nonminimally [50] coupled
scalar fields. This method has been used, in particular, to
find exact solutions in single scalar field inflationary
models [8,59-62]. Note that a similar method is used
for the reconstruction procedure in brane [44,63-66] and
holographic models [67,68].

The key point of the superpotential method is that the
Hubble parameter is considered a function of the scalar
fields ¢ (7). Note that there is an important difference
between one-field and multifield models. In the case of
one-field models, the above-mentioned procedure is
straightforward because only one superpotential (up to a
constant) corresponds to the given scalar field ¢ (7). In the
case of two or more fields, the knowledge of a particular
solution ¢*(¢) does not fix the potential. An explicit
example of essentially different potentials of two-field
models with the same particular solution ¢*(¢) is given
in Ref. [40]. On the other hand, presenting the Hubble
parameter as a function of K scalar fields, which satisfy the
first-order equations, one can get a K-parametric set of the
exact solutions. One parameter corresponds to the shift of
time, whereas other parameters correspond to different
evolutions of the Universe depending on the initial con-
ditions. An explicit example of a quintom model with a
two-parametric set of exact solutions is given in Ref. [41].
In this paper, we generalize the superpotential method on
the CCM by constructing new models with exact solutions.
In Secs. IV-VI, two-field CCMs with two-parametric sets
of exact solutions are constructed.

The term multifield model is similar to chiral cosmologi-
cal model, which is defined as the self-gravitating nonlinear
sigma model with the potential of (self-)interactions
employed in cosmology. Let us mention that the term
multiscalar field cosmology was first introduced as the
collection of scalar fields with the sum of kinetic (canonical)
parts and with the potential depending on all fields. The
model with kinetic interaction between the scalar fields is
represented in some articles (for example, in the recent
work [35]), whereas the term multifield was first introduced
in the work by de Alfaro et al. [69], with the aim of
obtaining instanton and meron solutions in a 4D model.
They introduced geometrical restriction: all fields take
values in the n-dimensional sphere. The potential term
was not presented in the model, which was called the
“four-dimensional sigma model coupled to the metric tensor
field.” Perelomov in 1981 [70] introduced terminology by
exchanging the term “group invariant sigma model” for
“chiral model,” and he also introduced the metric of a chiral
model and extended the model from 2D for N-dimensional
models, the so-called chiral models of general type. In
Ref. [70], there was no connection with gravity. [vanov [71],

’Other methods allowing one to find exact solutions in infla-
tionary models were presented in Refs. [26,31,32,34,51-58] (fora
recent review, see Ref. [33]).
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independently of Ref. [69], came to the “nonlinear sigma
model coupled to gravity” by considering the Lorentz
signature metric of spacetime, and scalar (chiral) fields as
the source of gravity, besides the kinetic interaction, have
been introduced as the metric of “chiral” space.

The potential of the interaction of chiral fields was
introduced by Chervon in 1994 [72]. Such a model in
Ref. [72] was called the “self-gravitating nonlinear sigma
model with the potential.”” Then in further publications,
using terminology introduced by Perelomov, the model was
referred to as the “chiral inflationary model” and then the
“chiral cosmological model.” Thus, the term “chiral cos-
mological model” reflects the geometrical interactions of
fields via the metric of the target (chiral) space which
includes the kinetic interactions.

Let us stress the difference between the pure multifield
model (without kinetic coupling and cross interaction
between fields) and the CCM. Generally speaking, it is
impossible to reduce a CCM with a functional component
of the target space metric to a conformal Euclidean (or
Lorentzian) diagonal metric. For example, in the two-
dimensional case, when a surface is embedded in 3D
Euclidean space for a C?-smooth 2D metric component
in some neighborhood of the point, it is possible to define
the coordinates in which the metric takes the form of a
conformal Euclidean diagonal metric. But to calculate the
form of new coordinates, one needs to solve a rather
complicated Beltrami equation [73].

In this paper, we generalize this reconstruction procedure
on models with an arbitrary finite number of scalar fields
minimally coupled to gravity. The structure of the paper is
as follows. In Sec. II, we connect the CCM with modified
gravity. In Sec. III, the superpotential method develops on
CCMs with an arbitrary number of scalar fields. In
Secs. IV-VII, we consider two-component CCMs. In
Sec. 1V, the considered CCMs correspond to f(R) gravity
models with an additional scalar field. In Secs. V and VI,
we find models with Ruzmaikin solutions, solutions that
correspond to the intermediate inflation and modified
power-law solutions for models with the given kinetic
terms of the actions due to the choice of the potential. A
procedure for construction of CCMs with trigonometric
and hyperbolic Hubble functions due to a suitable choice of
the kinetic term is proposed in Sec. VII. In Sec. VIII, we
construct models with the Hubble parameter that describe a
cyclic type of Universe dubbed the quasi-steady-state. A
method for reducing two-field CCMs to single scalar field
models is proposed in Sec. IX. Our results are summarized
in Sec. X.

II. THE CONNECTION BETWEEN
CHIRAL COSMOLOGICAL MODELS
AND MODIFIED GRAVITY

Chiral cosmological models with K scalar fields ¢* (¢ =
L., are described by the following action,
oL P7... P~ described by the followi i

/ d4xr[ Do R has@)0,00,8" 8 ~ V(D).
(1)

where the functions /,5(¢p) and the potential V() are
differentiable functions; Mp; denotes the reduced Planck
mass: Mp = 1/+/8xG. We assume that 1,5 = hp, and that
the determinant of this matrix is not equal to zero, so this
matrix can be considered the field-space metric.

Varying action (2), we get the Einstein equation

1 1
R,—-=-9,R=—75T,, (2)
w5 Iy M12>1 Hv

where the energy-momentum tensor is

T/w = hyp (q_j)aﬂ('[)"‘ayd)B
— G EhAB((f;) 0,002 ? +V(@)|. (3)

Variation action (1) on the chiral field ¢€ leads to the
field equation

\/— y(\/_ggthCB¢B) - _g”DhAB c¢ ¢y ,.C (ff_)) =0,
(4)
where hypc = %}%
In the spatially flat FLRW metric with the interval
ds®> = —di* 4+ a*(1)(dx? + dx3 + dx3), (5)
Einstein equations (2) have the following form:
3H? M%l’ (6)
2H +3H = —-L (7)
My,
where
Q= —T8 = %hAB(ﬁl;)ff.’Afi’B + V(‘f_’)
p =T} =S ha " ~ V() ®)

the dots denote the time derivative, and the Hubble
parameter H(¢) is the logarithmic derivative of the scale
factor, H = d/a.
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In the FLRW metric (5), Eq. (4) is transformed into

— hep(d® + 3H4'5B) - hCB,D¢D¢B
1 o
+ EhDB,C(ﬁD(ﬁB -Ve=0. )

Contracting this equation with #4€, we obtain’

$* 4 3HG + 10" 9% + AV =0,  (10)
where I}, are the Christoffel symbols for the field-space
manifold defined by the metric /i45.

Let us introduce a new variable,

X = hypd”. (11)
From Egs. (6) and (7), we get
. X
H=——3. (12)
2M5,

Multiplying Eq. (9) by ¢C, summing it, and using

X = 2hupdg® + hAB,c‘i’A‘l'ﬁB‘i’c’

we get the following equation:

%X+3HX+V:O. (13)
Note that Eq. (13) is a consequence of Egs. (6) and (12).

Many modified gravity models are connected with chiral
cosmological models. In particular, let us consider models
with nonminimally coupled scalar fields that are described
by the following action:

S,z/d“xf{ DR~ 3 Gani? 0,00, ~ V(7).
(14)
By the conformal transformation of the metric
2 o
G = M—%]f(rﬁ)gﬂw (15)

one gets the following action in the Einstein frame [6]:

si= [ d“x\/_[ PR~ han( )0, 0,0 ~ Ve
(16)

*Note that the upper index A could not be moved down with
the chiral metric h4p.

where

3faf B _an v
@) } Ve=Mugm

Mg [
21 () {G

and f 4, = Of /0¢™.
For the class of f(R) gravity models with scalar fields
described by

e [ o lpak

hAB(Q{_)) -

V(#)|.
(17)

g””GABa 0,4 -

one can introduce an additional scalar field without the
kinetic term ¢ *! and rewrite S as follows [74]:

/ \/w{ (¢. %)

dgerT R= 0 4 £(§.95)
1 ~ -
39" Cap0, 0,0 - V<¢>} .

(18)

Therefore, we get the model with K + 1 scalar fields
described by action (14) and can transform it to the chiral
cosmological model with action (16).

III. THE SUPERPOTENTIAL METHOD
FOR THE CCM

Generalizing the superpotential method for multifield
models with the standard kinetic term [7] and for two-field
models with a constant kinetic term [40-42], we describe
the superpotential for the general CCM.

We assume that functions ¢ are solutions of the
following system of K ordinary differential equations:

i’

= =), (19)

In this case, the Hubble parameter H(¢) is a function of
all scalar fields,

H(1) = W(¢) + Cy,

where superpotential W is a differentiable function, and Cy,
is a constant part of the Hubble function that plays a special
role (see, for example, [33]). It is convenient to write Cy,
separately. Thus, Egs. (6) and (7) take the following form:

SMYW(P) + Cul? = hasF FP V(). (20)

M3QW AR £ 3W(F) + Cy ) = =3 hasFFP 4 V().
e1)
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Subtracting Eq. (20) from Eq. (21), we get

1
4 —hapFB|FA =0. 22
( ,A+2M12)l AB ) (22)

One can see that a sufficient condition to satisfy Eq. (22)
is the following relation:

hapF*®
2M3,

Wy = (23)

for all A. This is a rather tight restriction which is equivalent
to the decpmpos_ition method used in Refs. [33,36,39].
Using ¢# = F® = F5FP, we rewrite field equation (9)
as follows:
1
hCBFfj)FD + heppFPF® — EhDB,CFDFB
+ 3[W() + CylhcpgFB +V o =0. (24)

From Eq. (20), it follows that

- 1
V.o =6M§[W(p)+ Cy]W - EhDB,CFDFB — hppFRFE.

(25)
Substituting this expression of V . into Eq. (24), we get

3[W(g)+Cwl{2MEW c+hpcFP}
= (hppF%=hpcF'3)FP + (hppc—hepp) FPFP. (26)

If condition (23) is satisfied, then
(hpsF'e = hpcFBIFP + (hpp.c —hepp) FPFP =0, (27)
Also, from the obvious equality W cp = W g, we get
(hp.c = hepp)FP = hepF'y — hgpFe-. (28)

Condition (27) is a consequence of Eq. (28). Matrix hyp is
symmetric, and the conditions in Eq. (28) are trivial at
B = C, soitis enough to check Eq. (28) for all B < C only.

Thus, the task of solving the dynamic equations of the
model is reduced to Egs. (20), (23), and (28). The last
equation guarantees that the solution of chiral field equa-
tion (24) is true.

Further we will use the expression for the potential V(¢)
in terms of the superpotential W(¢), which follows from
Egs. (20) and (23):

V() =3M}[W() + Cy]* + MEW 4F*. (29)

Applying Eq. (23) once more, the physical potential can
be presented in the form

V(g) = 3M3[W(p) + Cyl* = 2ME R BEW 4, W 5. (30)
From Eq. (10), we obtain
FE 4 TEGFPFB 4 3WFE + h°EV . =0.  (31)

To demonstrate how one can get exact solutions due to
the superpotential method, we consider a diagonal matrix
hup such that each hgg depends only on ¢*, with A < B,
and has the following form:

hyy = Sl(‘l”l)v hpp = MB(¢1’ ~--7¢B_1)SB(¢B) (32)

forall B=2,...,K.

Let us prove, for any hpp given by Eq. (32), that we can
construct the CCM with exact solutions obtained either in
analytic form or in quadratures. We choose

H(r) = ZK: Wa(¢*) + Cw. (33)

where W, (¢*) are differentiable functions.
The function W fixes the potential V by Eq. (29). For any
A, the function F4 is defined as follows:

FA = -2M3, hm" : (34)

Let us check conditions (28). For the matrix %,p, defined
by Eq. (32) and B < C, we get

d
g7 (hecF€) =0 (35)

without summing on C. It is easy to see that the functions
FA, defined (for each index A) by Eq. (34) satisfy these
conditions. Therefore, we obtain all functions F4, and
system (19) takes the following form:

~ Wii(e")
I _ ) 2 L’
v =M
2
;2 -2 2 W2.2(¢ ) .
VM)
¢K _ _2M2 WK.K(¢K) (36)

Phik(9 97 %)

This system can be solved, at least in quadrature. Indeed,
the first equation of this system, as the first-order autono-
mous differential equation, can be solved in quadrature. Let
us assume that all ¢* are known for A < B, and consider
the equation for 2. Using hgp = ug(@', ..., %) sp(4?),
we get

063522-5
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53(473)
W (")

2M3,
ug(@' (1), ..., "' (1))

This equation is integrable for any up given as a function of
t. So, the solution is found, and the statement is proven by
induction.

Note that the superpotential method allows us to con-
struct such a one-parametric set of the CCM that the
corresponding Hubble parameters differ on an arbitrary
constant Cy,. We have shown that any of these CCMs has a
K-parametric set of exact solutions that can be found
explicitly or in quadrature.

In the next sections, we restrict ourselves to two-dimen-
sional h,p. In particular, we show that two-dimensional
hap in the form of Eq. (32) naturally arise from f(R)
gravity models with one scalar field.

AP = —

dr.  (37)

IV. EXACT SOLUTIONS FOR AN f(R)
GRAVITY MODEL WITH AN
ADDITIONAL SCALAR FIELD

In this and the following sections, we consider two-
component CCMs and denote

P =y. =7

¢'=F' =Uy.y). ¢ =F =5y

It was shown in Refs. [21,22] that under the metric
transformation

Vay
— 3Mp
g;w - e‘/_MPl g;wa

the f(R) gravity model with a scalar field y, described by
the action

$i= [ @5V | 1R =57 0,0.2] . 39)

transforms to the chiral cosmological model, described by
action (1) with

1 0
= ( ) (39)
0 K(y)
where
_ 31‘412’1 i g _ ,Cy
w =1/ 5 In <M%1 58| ) K(y) =€, (40)

and there is a constant C = —, /3#.
Pl

Let us consider this CCM to obtain exact solutions
due to the superpotential method described in the previous
section.

From Eq. (23), we get
1

W = W - - U 5 )
N W ZM%I (l// )()
Ky)
Wo=W, =— Sy, y). 41
2 N4 ZM%,I (Vf )() ( )
To get W in the form of Eq. (33), we choose
o(x)
Uy, x) = Uy), Sy, x) =— = 42
. =Uw). S =gl @)
where Q( y) is an arbitrary function.
The superpotential W is defined as follows:
W = ! / Udy + / Qd (43)
Y v )

To get an exact particular solution, we assume the
explicit form of the functions U(y) and Q(y) and solve
the corresponding system for the first-order differential
equations:

=) i=g (44)
We choose
Uy) = Foe™™, (45)
where Fj and A; are constants. Therefore,
(o) = 3 Fol = 1) (46)
and
K(y) = eV = (A Fo(r = 19)) /™. (47)

Substituting the obtained y(¢), we get y(¢). For example,
for

O(y) = Foe ™1, A, = const, (48)

we obtain

1 C—A,
x(1) = _A_zln <A2(C2 — [AFo(t = fo)]l_C/A‘)) 49)

where C, is an integration constant.
The Hubble parameter
H(t) = Wi(w) + W2 (x) + Cw. (50)

where

063522-6
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Fo
20N M3,

__F
C2MM3,

Wiw) = MV Wa(y) ehox,
(51)

So, the considered model with the potential

3
V:m(AzFoe_Alw +A1 F()e_AZX +2M%)1A1A2CW)2
PI*M 422
F(z) —Cy—2A —2A
——(6 v=2Mox e Wl) (52)

has exact solutions with the following Hubble parameter:

1
2A%M12)1(t — 1)

Fo(C—Ay)
2(NIME[Cy — (A Fo (1 — 1)) =CM])

H=Cy+

+

(53)

Note that the Hubble parameter depends on two integration
constants, ¢, and C,.

We get a one-parametric set of models with exact
solutions. Let us check that for some values of model
parameters we get a slow-roll regime that maybe suitable
for inflation.

Let us assume that A; > 0 and that A, > 0. In this case,
the potential has a finite non-negative limit

V - 3M%C3,

at the scalar fields, which tend to plus infinity such that
We consider large initial values of the scalar fields and
assume that the scalar fields monotonically decrease during
inflation, choosing F; < 0. For large positive values of the
scalar fields we have quasi-de Sitter solutions with
H~Cy. So, we get a model that looks suitable for
describing inflation. Full analysis of the possible infla-
tionary scenarios with calculations of the inflationary
parameters will be a subject of further investigation.

V. DIAGONAL CONSTANT METRIC
OF THE TARGET SPACE

Studying a canonical scalar field equation, we set the
metric coefficient /;; equal to unity: i;; = 1. Therefore, it
will be of interest to study the diagonal metric with a
constant chiral metric component, z,, = 1.

Equation (22) takes the form

1% 1, 1,
ar o =——U?-=8% (54
WU(W,)(H ;(S(W’)O SUT =55 (54)

Let us insert the metric components of the target space
into the field equation (26). After simple algebra, we obtain

3WERW,, +Uly. x)) = S,S-U,S, (55)
3WERW,, + Sy, ) =U_U-S,U. (56

If we suggest that U= U(y) and S = S(y), then
Egs. (55) and (56) are reduced to

2W,, + U(w) =0, (57)

2W ,+S(y) =0. (58)

Let us note that the consistency relation W, = W, is
satisfied.

Such a representation gives us the possibility to perform
integration and find the superpotential W (y, y):

_21\14]2,1 (/ U(‘/’)d‘/’+/$(x>dx>. (59)

Let us choose the linear dependence of the chiral field
derivatives

W:

Uly) = my + ¢y, S(x) =pax +c2.  (60)

From here, one can find the chiral field evolution

1

V/:_eﬂlt_ﬁ’ (61)
Hi Hi
1 tiot Cy

y=—e ——. (62)
H2 H2

Then the superpotential can be obtained by the integra-
tion of Eq. (23) and reads

L H
W, x) = =5 (71412 + 61w+72)(2 + Cz)(>~ (63)

Further inserting the chiral fields into Eq. (63), we can
obtain the Hubble function H = H(t) in two-parametric
form:

1 2upt 2 2ust 2
H(t)———(e —ﬁ+e——2). (64)
A\ o o

Thus, we obtain a double exponent solution for the scalar
factor.
Let us choose the following dependence:
Uy) = myh, S(x) = i (65)
The exceptional situation k; = k, = 0 leads to a very
interesting solution,

063522-7
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Wy 1) = = (2 + ). (66)

2

Remembering that H(t) = W(y, x) + Cy, we find that

1
a(t) = a, exp -2 (U3 + u3)> + Cyt|.  (67)

This scale factor corresponds to Ruzmaikin’s solutions
[75,76].
When ky, k, # 0, 1, we have solutions for the fields

w(t) = [(1 = ky) Gy + ¢1)] 7, (68)

2(1) = [(1 = k) (ot + )] 7%, (69)

The Hubble function, once again in two-parametric
form, is

HE) = —1[ KU1 = k)t + )R

2=k + ) ] 0

The scale factor is

kp+l

(1= ky) 0 [(u + ¢)]70

a(t) = a, exp [klﬂ—lk 7

H2 (1 k)P (ot + €2)]75 + Cypt|. (T1)
I+ 1 2 H2 2 wl]-

Thus, the obtained solution corresponds to the inter-
mediate inflation.

VI. MODIFIED POWER-LAW SOLUTIONS

As known, solutions with the power-law Hubble para-
meter correspond to the radiation and matter dominated
epochs. It is interesting to get exact solutions with the
Hubble parameter H = C,, + C /t, where constants C; can
be chosen in such a way that the solution has both dark
matter and dark energy parts.

We consider the CCM with the metric of the target space

M2
l,IZPI 0
hap = 72
an et | (712)
XZ

and we assume the following form of the superpotential,
W=—Yy™ =Yy ", (73)

where Y; and m; are constants.

Using expression (29), we get the potential

V = 3M2,C3, — 6M3,CyyY 1™ — 6M2,Cyy Y, ™
MpYi(3C, = 2m3)
c W
1

ny

+OME Yy Yo " +

| MBY3(3C; = 2m3)

2m; 74
c, X (74)

Equation (23) is

. Y]ml . Y2m2
=2——ymtl, =2 ymtl (75
v c v ¥ c, X (75)
This system has the following solution:
_Cl 1/my _C2 1/m,
= 2Y1m%(t—t0) ’ r= 2Y2m%(t—?0) ’
(76)

where t, and 7, are integration constants. Substituting the
obtained solution for the superpotential, we get the Hubble
parameter

G G
H(t)=C —. 77
v W+2m%(f—fo)+2m%(f—fo) )
Choosing #, = 0 and 7, = 0, we get
1/C, G
H=C —|—=+-=]). 78
wt 2t (m% + m%) (78)

So, the Hubble parameter is a sum of a constant that
corresponds to the dark energy dominant epoch and the

power-law function that corresponds to the radiation
dominant epoch at % + % =1 or to the matter dominant
LG g
m% m% 3
complicated solutions. So, starting from an exact solution
with H = Cy + C,/t and using the superpotential method,
we not only reconstruct the corresponding potential but
also find that the model obtained has a two-parametric set

of the exact solution, described by formulas (76) and (77).

epoch at Choosing 7, # ty, we get more

VII. TARGET SPACE RECONSTRUCTION
FROM THE SUPERPOTENTIAL

A. The search of the CCM with the given H(¢)

From the given superpotential (Hubble function) it is
possible to reconstruct the kinetic part to get the exact
solution of the model.

Considering single scalar field cosmology, we may find a
different formulation of the problem because we have two
independent differential equations with three functions.
Therefore, we must choose which function we have to
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consider as the given one. To fix the potential energy
(or, simply, the potential) is preferable because it may be
collected from high energy physics. If we study a canonical
scalar field, we suggest the unit multiplier in the kinetic
energy term. Extending such an approach to CCMs, we
assume that the metric of a chiral space should be fixed and
the analogue to the canonical field will be the unit diagonal
metric. In the models with symmetry (for example,
SO(3)—invariant CCM), the chiral metric is fixed also.

Another approach can be proposed when we use the
superpotential method. If we are looking for the CCM
which obeys the given superpotential (or, equivalently, the
Hubble function) we can use the so-called deformation of a
chiral space method. That is, we define such metric
components which match the given data. Such an approach
is similar, in some sense, to the “fine tuning of the
potential” method for a single scalar field, where a given
Hubble function allows one to define the potential and
kinetic energies. Analyzing Eq. (23), which takes for the
first field y the following form,

2M12>1W.y/ = —hll(ll/>l/7, (79)

one can come to the conclusion that the functional part of
the lhs may be included in the chiral metric component
hy1(w), and one can set y equal to unity: y = 1. This gives
us the possibility (performing the same procedure for the
second field y) of choosing the linear dependence of the
fields on time:

w=t+y,., y=t+y. (80)

B. Examples of periodic Hubble functions

To demonstrate such an approach, let us study an
example of the following periodic Hubble function:

H(t) = Hysin(4r) + Cy. (81)

We may represent the superpotential in the following
form,

W(w. x) = Ho[(1 = ) sin(Ay) + Ao sin(dy)].  (82)

where Hy, A, and 4, are constants.
The field equations (23) are nothing but the definition of
the chiral metric component

hi(w) = =2HoMp,(1 = Ag)Acos(Ay),
ho(x) = —21110]‘/11291/10/1 cos(4y). (83)

The potential can be defined by Eq. (30):

. . C
Vw.) =3HgMp, | (1=Ao) sin(Aw) +dosin(Ay) + -
0

+HoM3A((1=2g)cos(Ay) +Agcos(Ay)).  (84)

It is interesting to note that solution (83) belongs to
the two-field case in Eq. (36) with u = 1. Putting
v, =y, =0, we obtain the Hubble parameter (81). If
v, = x. = —r/(22), then we get

H(t) = Hycos(dt) + Cy. (85)

The model constructed has a two-parametric set of exact
solutions with

H(t) = Hy[(1 = A9) sin(A(7 + w,)) + Ao sin(A(7 + x.))]
+ Cy. (86)
Note that the case
H(t) = Hysin?(1t) + Cy (87)

is reduced to the previous one due to the substitution
sin(At) = 1-2 cos(241).
For

H(t) = Hyexp(—atsint), (88)
the same approach gives us the solution

Hy'W(y, x) = (1 = &) exp(—ay siny)
+ Agexp(—ay sin y), (89)

hi(w) = 2HoMpa(1 = o) [sin(y) + y cos(y)]
x exp(—ay sin(y)), (90)

hyy(x) = 2HoMyad[sin y + y cos y]exp(—aysin(y)),
(91)

where w =t+wy,, y =t+ y..
The potential V(y, y) is

V(. x) = 3HMp[(1 = 4) exp(—ay siny)
+ Ao exp(—ay sin y)]?
— HoM3,a[(1 = Ay)(siny + w cosy)

x exp(—ay siny)
+ Ag(sin y + ycos y)exp(—aysin y)|.  (92)
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C. Example of a hyperbolic Hubble function

Another example is connected with the scale factor
a(t) = aylk, sinh(A1)]*/3,

which corresponds to the A cold dark matter model. The
Hubble function is

2
H:Hocoth(/lt), H() 25/1
The corresponding superpotential is

Wy, x) = Ho[(1 = 49) coth(2y) + 4o coth(4r)].

The solution is

w=t+y,, (93)
x=1t+x. (94)
hi(w) = 2MyHo(1 = 29)2sinh™ (Zy), (95)
hya () = 2MpHogAsinh ™ (A ). (96)

Here and further we assume that w — (y —w,) and
x — (x — x.). The physical potential is

V(y, x) = 3MEHG[(1 = ) coth(2y) + 29 coth(Ax)]?
— M3,HyA[(1 = Ag)sinh =2 (Ay) + Agsinh=2(1y)].
(97)
Using the superpotential method, it is possible to get
different models for the given time dependence of the
Hubble parameter, which we demonstrate in the next
section.
VIII. THE CYCLIC UNIVERSE

In this section, we focus on a cyclic type of Universe
dubbed quasi-steady-state (QSS) introduced to address the
outstanding problems of the hot big bang, for instance, the
singularity problem—in particular, see Refs. [77-79] and

the references therein. In this case, the Hubble parameter
might increase at late times to account for the well-known
tension between Planck and local observations. The pro-
posed early Universe modifications—namely, the interac-
tion between known matter components or their interaction
with dark energy—do not seem to account for the discrep-
ancy [80]. One might attribute the latter to late time
physics, for instance, to the emergence of phantom behav-
ior at late times. The quasi-steady-state model includes
such a feature. In what follows, we construct single-
(double-) field potentials corresponding to the QSS.

A. One-field models

Let us construct a CCM with the following form of scale
factor that characterizes the quasi-steady-state theory,
a(t) = ape™'(1 + acos(ut)), (98)
where a(, @, and u are constants. This type of dynamics
corresponds to the quasi-steady-state model [77-79]. We
assume that a(r) > 0 for any values of ¢, so |a| < 1. The
shift of time # — ¢ + x/p is equivalent to the change of the
sign of @, so we can assume that 0 < a < 1 without loss of
generality." For the same reason, we can put u > 0. The
corresponding Hubble parameter is

uasin (ut)
H=Cy—-——""F"—, 99
Y1+ acos (ur) (99)
and it has the following time derivative:
. 5 a+cos(ut)
H = —p’a (100)

[1 4+ acos (ut)]*

Such behavior of the Hubble parameter can be repro-
duced in one-field models. Reconstructing the chiral metric
component as in the previous section, we choose y = ut
and get

Vig)

b 2a(cos ¢ + a) (101)
" (1 4 acos¢)?
and
|

N Ci + a?(C3 — p?) cos? p + acos p(2C%, — ) — 2aCyusin (1 — acos @) (102)

(1 + acos ¢)? '

The alternative is to consider a y(¢) that tends to finite limits at t - +oo:
2 V1-a? ut

t) = ———=arctan | ——tan| — | |. 103
v~ e (e (3) 19

*The case a = 0 corresponds to a de Sitter solution.
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It is easy to check that

i (1 — a)cos? ("—12_“2 1//)
cos? (3) = i

1 + a — 2acos? (’% z//)
a — cos (yv 1 - a2w>
acos(,uvl - a2w> 1

= cos(ut) = (104)

Thus, the function w(7) is a solution of the following
equation:

| 1 —acos (,uv 1- azy/)
' ==-————_= U = .
Y1+ acos (ut) ) 1—a?
(105)
In the case of a one scalar field model,
H Lo (w)y? (106)
= "5 Mtu\y)yr,
o3,
therefore,
hiy = 2Mpy (o + acos(ut)]
= 2M12>1,u2a[(1 = o) cos (uV1 - aZW)} .
1 —acos (uV'1 — a?y)
Using Eq. (23), we obtain
W', = placos (,u 1 - a2w>
w2 Gn (,4 - azw). (107)
1-a?

The potential of the model constructed is defined by
Eq. (20) and has the following form:

M2 2
V= 1P1ﬂ2a[3a—cos<u l—azz//)—Zacosz(/,t l—azwﬂ
-
6auCy M3
—%Sm(ﬂ 1=y ) +3M3,C. (108)

Note that h;; changes its sign during the scalar field
evolution, so y is neither an ordinary scalar field nor a
phantom scalar field [81,82]. Assuming that the consider-
ing one-field models describe the dark energy, we get the
result that the obtained exact solutions have the state
parameters crossing the cosmological constant barrier. It
has been shown in Ref. [28] that such transitions are
physically implausible in one-field models because they are
either realized by a discrete set of trajectories in the phase
space or are unstable with respect to the cosmological

perturbations. To describe such a type of dark energy, one
can use quintom models [29,40,41,83-86].

B. The CCM quasi-steady-state models

To construct a two-field CCM with the Hubble parameter
given by Eq. (99), we use relations W, = — 1k (y)y,
W, = —%hzz()())?’ and

dw 1 1

ar = —5 11(1//)1,1./2 —*hzz()())'fz-

5 (109)

First of all we can easily make a reconstruction of the
chiral metric component as in previous section.
We choose the superpotential in the form

ap cos ut(y)
Wy, y) =—-(1 -4
(l// )() ( 0)(1+acosﬂt(l//))2
ay cos put( )
- ) 110
T+ acosui( ) (o)
Then we choose the dependence on ¢ as
w=tty,  x=t+g. (111)
The chiral metric components will be
2ap? cos py
h = 112
ll(lll) (1 +GCOS,LH//)2 ( )
20y
hy(x) = (113)

(1 +acosuy)?*’

The physical potential can be easily derived by Eq. (29).
(It can be written here, but it is rather large.)

The superpotential is evidently defined by Eq. (110) with
the substitution of Eq. (111).

There are other possible solutions connecting with the
choice of chiral metric components. Let us study a few
of them.

From Eq. (110), we find that

aw ay?
= —%(cos(yt) +a).

dr (1 + acos(ut)) (114)

Further we can decompose the expression above into the
following two:

OW(y, x) ay® cos ut 1 -
- - 1
OW (w, x) o’ 1 .
— ——h 2 (11
Dy (1 + acos ut)? 2 2002 (116)
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Using relations (111), we can perform integration of the
Egs. (115) and (116) and obtain two parts of the super-
potential W, (y) and W,(y) in terms of elementary
functions, but in rather complicated form. Therefore, our
task is to make a combination which allows to integrate the
expressions for the fields and for the superpotential with a
more suitable result.

To this end, we can choose

.2 ?

78 :m, h11:2acos,ut,

(117)

Y u?

S o hyy = 20
“ (1 + acos ut)? n=oa

(118)

As the result, we obtain the following solution for the
chiral fields:

w(t) = %azarctan (%tan (’g)) (119)

2 1- t
arctan < ¢ tan <&> > . (120)
1 —a? 1 —a? 2

From solution (119), one can obtain the chiral metric
component i (y) in the form

x(t) =

(1-a)-(1 +a)tan2(@w)
(1—a)+ (1 + a)tan? <@y/) .

hii(y) = 2a (121)

Once again such a presentation does not give for us a
suitable form for the superpotential and for physical
potential.

For the same representation (117), one can choose
another appearance for y and h,,. For example,
2

> = 2a°, —_—. 122
d * (1 + acos ut)? (122)

h22 =

Then the solution for y is

x=2at+ g,
and for hy,(y),
2
u
hy(x) = B 2"
(1 + acos (EZ))

Thus, we can state that the chiral metric, the fields,
and the physical potential may be different with respect to
the given Hubble function. To stress this fact and to find
the suitable form of the superpotential, we generalize the
procedure of solutions generated by introducing two

arbitrary functions, f(uf) and y(ut), in the following
way:

o f(ut)cospr 1 ,

" F(ut)*(1 4+ acosut)? Zhll(’l/)‘lf . (123)
2

P y(ut) —lhzz()())'(z. (124)

y(ut)*(1 + acosut)> 2

The functions f(ut) and y(ut) can be selected in such a
way that integration is performed while finding fields. For
example, if we are finding the field y, we have to perform
the integral

_ d(ut)
= /f(/tt)(l +acosut)’

To make the integral with an elementary function a
solution, one can choose as an example f(ut) = Sm'm.
Then the solution is

(125)

1
w =——In(1+acosut), where a < 1. (126)
a

Under suggestion (125), one can find the chiral metric
component 4, in the following way:

hiy(w) = 2af (ut)* cos ut. (127)

cos ut

In our case, h|; = 2a S Finding dependence ¢ on y

from (126), one can obtain dependence 4, on y as follows:

e W —1

— 2
hll(l//) =2a a2 _ (e—ay/ _ 1)2 :

(128)
Further we consider which types of superpotential and
physical potential will correspond to the solution for field
w (126) and chiral metric component A (y) (128) using
the freedom of the possible choice of function y(y).
Let us start with the solution for the y part in the form
(la| < 1)

flut) =

1
= ——In(1 1), =——, (129
y =~ In(1+acosur) s 12

e W — 1

— 2
hll =2a —az— (e_m//— 1)2

(130)

Note that

V/(W) — /ieay/ a2 _ (e—m// _ 1)2
a
To find the dependence W on v, we have to integrate the
relation
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1 .
W.(,/ = _Ehll (l//)ll/,

which can be transformed to the following:

oW B e —1
— = —pae™ ™ .
31// a2_ (e—ay/_ ])2

(131)

The solution is

where

z=exp(ay), F(z)=V-a’z"+2z-1, a*=1-a*>0.

Further we have various possibilities to define y and
hy(y). Let us select the nontrivial choice y(ut) =
1 — acos ut. Then we have the solution for the field y,

1

l-a

tan pt
X = arctan[ a ] 2

Jieal Tt

The chiral metric component /5, is

2

hy(x) :20(2(1 —a<1 +(1 —az)tanz( 1—(12)())_1/2)2.

Thus, we get
P __(1—a2)3/2( 1+ (1-a*)v —a) (I+v*)~2,
v=tan(V 1—a?y). (133)

The solution for the y part of the superpotential is

Wy(y) =-— s {2(0{2 — 1) arctan(v/P(v))

— (2a? — 1) arctan(av/P(v))
av(a+1)P(v) V1-a? a*v
* 1+ 02 2 o 1}’

P(v) = /v*(1 —a?) + 1.

The superpotential is equal to

(134)

Wy, x) = Wi(w) + W(x).

The next step is to calculate the potential V(w, y) by
Eq. (29). This is possible, but the answer will be too long.

It is possible to get the same time evolution of the scalar
factor using a quintom model. The time derivative of the
Hubble parameter (100) can be presented in the following
form:

__pra(a+ cos(ut))
1+ acos(ut)?
@l | e

[1 +acos(ur)]* 1 —a+ 2acos*(§)]*

Let us introduce two scalar fields with the same time
behavior:

(1) = 72 arctan ( - tan <’u—t>>
v _,u\/l—oc2 l+a 2))

2 <\/ 1 —a? (yt))
x(t) = ——=arctan tan( = | ].
w1l —a? l+a 2
Using Eq. (104), the time derivative of H can be
rewritten as follows:

(136)

H=—(1 + a)au’y>

Jica
(1‘“)°°Sz<ﬂ(f¢%fzf> 2 (37)
2

+2au? |1 -
1 + a — 2acos?

So, we get the matrix h,p as diagonal and

hy = 2(1 4+ a)aMzu?,

2a(1 + a)u*M3, [1 —cos (,um;(ﬂ
1 —acos (/Am)() .

hy == (138)

The field y(¢) is an ordinary scalar field, whereas y (1) is a
phantom scalar field.

We assume that the superpotential has the form given by
Eq. (33):

W =W (y)+ Wa(x). (139)

Using Eq. (23), we get

2 2
Hra ua )
W, = - sm( 1— ) 140
1= @) 7 w). (140)
W, = ¢ Ka in (4v/T=cy).  (141)
= 7 — sin(uvV1-—a*y).
Pa-1" V1—da-1)

Using Eq. (29), we get the potential of the obtained two-
field model in the following form:
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3M3,

V= e s et 1)

{azﬂ“(az - D + 27 + 2t (o = Dy y

+2aCy(a+1)(a— 1Py + ulaCyla+ D(a— 12 + @+ 1)(a—1)Cy

—a?(a? + 1)u? = 2a’p? sin (u 1- a21//> sin </4 l-—a )()

+2auV 1 = &y (x +y) +
+20°uV 1 = @l (x +w) +

1
+ g,uzaz[(a +2) cos (,u 1 - az)()

1

IX. REDUCING TWO-FIELD DYNAMIC
EQUATIONS TO THE SINGLE-FIELD ONES

For simplification of the generation of the exact solutions
for CCMs, we consider the possibility of reducing the
dynamic equations in such a type of model to a single-
field case.

For this aim, we write the dynamic equations in terms of
the effective field ¢, which is connected with CCM fields
¢" by the following relation [34]:

@ = hapdp®,

where ¢ are the fields of the CCM, and /5 is the metric
tensor of a target space.

The double kinetic energy X = ¢ of the effective field ¢
was considered earlier the X field (11). For positive
X = ¢* > 0, one has the canonical effective scalar field
@, and X <0 corresponds to the phantom one. The
dynamic equations in CCMs (6)—(10) can be noted as

(143)

1.
3HMG, =567 + V(9), (144)
= —2HM3, (145)
D,¢" + 3H¢" + PV 5 =0, (146)
where
d¢’
Dt =g (147)

is a covariant derivative in a target space.
Also, one can rewrite the first dynamic equation (144) on
the basis of Eq. (145) in the following form:
V(o)

= M} (3H? + H). (148)

(a —1)Cy]sin

+§,uz(a(1—a2)cos< l—a )()—1—2(1 (a—1) cos(u l—azw))]

(a—=1)Cy] sm(,u l-—a )()

(i)

+ (2% + «a cos(,u 1—0:21//)2

(142)

|

Therefore, in the general case, the connection between
particular solutions of CCMs and one-field models is
defined on the basis of Eq. (146) as follows:

P+ T4 +3H" + 1PV 5 =0
S ¢+3Hp+V,=0 (149)
for all A.

Further we consider the fulfillment of this condition for
the case of a CCM with two identical scalar fields y = y by
the specific connections between components of the
tensor hiyp.

A. The CCM with two scalar fields

Now, we consider the partial case of a CCM with two
identical scalar fields y =y and the specific connections
between components of the tensor /,p.

Firstly, we write the dynamic equations (144)—(146) for a
CCM with two fields:

| L1
3H* M, :§h11)(2+h12)(1//+§h221112+V(l//,)()’ (150)
g 2 1 2 .« . 1 %)
—HMp = Shi 7+ ho v+ hoyr”, (151)
. ) 0 ) .. 10hy .
3H(h h i hoy — L9 o,
(hyx + 121//)+8t( ux -+ hoy) >0y, 7
ah]z . . 1(9/’122 ) 6‘/
S sy o =0, 152
oy LV aa, Ty (152)
. . 0 . . 10h, .
H(hys g + haoyy) +8—(h12)( + hoyyr) — 58—1/111 7
Ohi, . . 10hy ., 0OV
- - 0. 153
o Y 3oy Y Toy (153)
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Secondly, for models with the following metric tensor of
the target space,

2_h , h ,
g = (2 12(1// )() ) 12(1// )() ) (154)
hlz(l//, )() §—h12(l//, )()
where hyy = hy, =5 — hy, hy; = hy, and n is an arbitrary
constant, under condition y =y, we have
hll)(+hlzl//:h12)(+h221//:§)(:§1l/, (155)
10hyy ., Ohyy. . 10hy .,
2 dy X dy ){W+2 Oy v
18h11 9 8h12 .. lahzz )
> oy ¥ aw)n//+2 oy (156)
—hu){ +hoyy+s hzzl// -z i :El/ﬂ- (157)
2 2 24 72
Thus, from Egs. (150)—(153), we obtain
V(y, x) = My(3H? + H) = V(p),  (158)
. n n 1
—HM% =~ i* = —y* = = ¢?, 159
M= =Y =50 (159)
. 20V . 20V
¥+3Hy+———=vy+3Hy +—-——=0. (160)
ndy n Oy

From Eq. (160), taking into account the equality of the
scalar fields y = y, we have the condition of symmetry of
the potential g—g gv‘j with respect to these fields.

Therefore, one can write

dv._oVdy 0oVdy _

4 oVdy
d(p aj(d(p awd(p

8;(d(p

ov dy

161
apdg OV

Finally, we note that from Egs. (158)-(159), one can
obtain Eq. (160) and the equation

¢+3Hp+V,=0 (162)

is a differential consequence of Eqs. (158) and (159) as

well, which can easily be obtained by substituting the
effective field

YR +y) (163)

¢=+7
in the form ¢ = ++/n y or ¢ = +/ny into Eq. (162) using
the relations (161).

Therefore, in this case, we have the fulfillment of
condition (149), which allows one to reduce the initial
CCM with two scalar fields to the one-field model.

Further we consider the following superpotential of the
effective field
W)= H() (164)

and write the dynamic equations (158)—(160) as

Vig) = 3 3wl - 2 ()] e

de
) dW (o)
@ = —2M3 ( )
Pl d¢

for the effective field (163), where the constant parameter n
defines the character of an effective field p—mnamely, this
field can be canonical or phantom for the different signs of n.

Thus, we have a connection between chiral cosmological
models with two canonical scalar fields y and y, and a
single-field model with a effective field ¢. The sign on the
parameter n depends on the choice of field ¢: for a
canonical effective field one has n > 0, for a phantom
one the parameter n < 0.

As an example of the proposed approach, we will obtain
the exact solutions for two identical scalar fields y and y
with linear dependence from cosmic time for an arbitrary
function A, (y,y) in the metric tensor of the target space
(154) by choosing the special form of the superpotential
W(g). Thus, these solutions will differ from ones consid-
ered earlier in Sec. VII and Sec. VIII with a specific
expressions of the components of the tensor 445 for a given
type of the evolution of scalar fields.

For the following superpotential,

(166)

a

W(p) = "

2 o, (167)

from Eq. (166), we have

(1) = at = J. (168)
where f is the constant of integration.
The Hubble parameter and the scale factor are
H(1) = =52 (at = ) (169)
= ——1\al — .

2M3,
1) = 12 t 170
alt) = avexp |z rp=an]. (170

corresponding to the Ruzmaikin solutions [75,76].
From Eq. (165), we obtain the following potential of the
effective field:

Vip) = (2 ;Pl)z[%oz — 2My].

(171)

After substituting Eq. (163) into the solutions for ¢, we
obtain
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20 =w(t) = i%(m—m, (172)
Vi) = (g ) [ crwr -], )

the potential and evolution of the CCM fields correspond-
ing to the same dynamics (169) and (170) of the early
Universe.

For the other example, we consider the exact solutions
defined by the following superpotential,

W(p) = 2+, 174
(@) =3 gt (174)

where A and A are arbitrary constants.

From Egs. (165) and (166), one has
H(t) = Bexp(—At) + 4, (175)

B 4
a(t) = agexp lt—Ze H, (176)
8B

(1) = \/Xexp <— 5 t), (177)

V((p):3( A >2¢4+é(3a—i‘>¢2+3z2, (178)

8Mp, 4 2

which correspond to the Higgs potential.
As a special case for 4 = A/6, one has the potential for
chaotic inflation

A \? 4 2
Vip) =3 32
(@) <8MP]> ot +

After replacing the effective field ¢ on CCM fields,

(179)

8B A
20 =wi) =\ prew(-50). (150)
we have
3 [ An \?
v == 4
. 2)=1¢ (SMm) (x +v)
A A
20 (8-S ) (r w2432 (181)
16 2
For 1 = A/6, the potential of the CCM fields is
3 [/ An \?2 4
== 322, (182
Vo) = 15 () (et w432 (182

Under condition h,(y,w) =0, one has the same
solutions for the trivial case of a constant diagonal
tensor /i p.

Similarly, one can generalize any exact solutions in
single-field models (see, for example, Refs. [33,87]) on this
special class of chiral cosmological models with two
components.

B. The generalization of the exact solutions for
a CCM with an arbitrary number of fields

Now, we generalize the proposed method on the case of a
CCM with an arbitrary number of interacting similar scalar
fields ¢' (1) = ¢*(t) = ... = ¢X(¢). In this case, we deter-
mine the connection between the diagonal and nondiagonal
components of the metric tensor of the target space h,p as

K
P
;CBK

for all C, with the following condition for nondiagonal
components hcp = hpc.
Hence, the first diagonal component is determined as

(183)

n
hy :E—hlz—hn—'“—huo (184)

and the other components are defined similarly.

In this case, Eqgs. (144)—(146) are reduced to
V(§) = My(3H + H) = V(9), (185)

. nog 1.
— HM, :§¢A¢A 254027 (186)
s 20V

A+ 3HG += =0. 187
PABHY (187)

Therefore, we can generalize the exact solutions (164)—
(166) for the effective field

(S0

For a CCM with K components, any (similar) field ¢*
can be obtained from the effective field as follows:

(188)

10) = %m0l (189)

For example, we can generalize solutions (167)—(170)
for the case of K number of fields:

D) = 42(0) = oo = () = (=), (190)

Ky
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V() = <2A‘;P1>2[%" <AZ:¢A)2—2M%1]- (191)

In the same way, it is possible to generalize exact solutions
for any other models with one scalar field.

Thus, this method gives an integrable class of exact
solutions of Egs. (6)—(9) for a special case of identical
scalar fields and relation (183) between the components of
the metric of the target space.

X. CONCLUSIONS

In this paper, we develop the superpotential technique for
chiral cosmological models. The key point in this method is
that the Hubble parameter is considered a function of the
scalar fields, and this allows one to reconstruct the scalar
field potential. The CCM models are actively used in
cosmology and can be connected with modified gravity
models due to the conformal transformation of the metric.
So, the proposed method allows one to construct modified
gravity models with exact solutions. In particular, CCMs
that correspond to f(R) gravity models with one scalar field
are considered in Sec. IV. Corresponding two-field CCMs
with asymptotic de Sitter solutions are constructed. In the
future, we shall explore the possibility of applying our
results to inflation.

The superpotential method is an effective procedure to
construct models with exact particular solutions. In the case
of a model with K scalar fields, the superpotential method
gives the possibility of getting a K-parametric set of
solutions, as we show in Sec. III. In Secs. IV-VI, we
find two-parametric sets of exact solutions for two-field
CCMs.

To demonstrate that the proposed reconstruction pro-
cedure is powerful, we construct the CCM with different
behaviors of the Hubble parameter that are actively used in
cosmology. In particular, in Secs. V and VI, we find models
with Ruzmaikin solutions that correspond to the inter-
mediate inflation and modified power-law solutions, for
which the Hubble parameter is the sum of a constant and a
function inverse proportional to the cosmic time. These
solutions are found for models with the given kinetic terms
of the actions. In our case, it is possible to choose both the

potential and the function that defines the kinetic term. The
construction of trigonometric and hyperbolic Hubble func-
tions due to a suitable choice of kinetic term is proposed in
Sec. VIL

In Sec. VIII, we construct one- and two-field models
that correspond to the Hubble parameter that describes a
cyclic type of Universe dubbed the quasi-steady-state. We
demonstrate that the superpotential method allows one to
construct different models with one and the same Hubble
parameter.

In Sec. IX, we show that exact solutions of the CCMs
can be obtained by the single-field superpotential method.
Comparing this method with the multifield superpotential
method developed in Sec. 111, one can see that the use of the
single-field superpotential method allows one to obtain
only a one-parametric set of solutions, whereas the multi-
field superpotential method gives rise to a K-parametric set
of exact solutions if system (19) is integrable. Also, the
multifield superpotential method is preferable to get exact
soluble models with a nonmonotonic Hubble parameter,
which corresponds to models with both ordinary and
phantom scalar fields. At the same time, for a nonintegrable
system (19), the method proposed in Sec. IX is a more
simple way to obtain exact solutions.

The correspondence between one- and multifield models
is actively used for multifield inflationary models in the
method of cosmological attractors [15,16]. Let us note that,
compared to the method of cosmological attractors, the
proposed algorithm allows one to obtain the exact sol-
utions. The superpotential method is suitable for construc-
tion of inflationary scenarios in one-field models [8,59-62].
In the future, we plan to generalize this method to the chiral
cosmological inflationary models with many scalar fields.
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