
 

Baryogenesis via gravitational spontaneous symmetry breaking
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We study baryogenesis in effective field theories where a Uð1ÞB−L-charged scalar couples to gravity
via curvature invariants. We analyze the general possibilities in such models, noting the relationships
between some of them and existing models, such as Affleck-Dine baryogenesis. We then identify a novel
mechanism in which Uð1ÞB−L can be broken by couplings to the Gauss-Bonnet invariant during inflation
and reheating. Using analytic methods, we demonstrate that this mechanism provides a new way to
dynamically generate the net matter-antimatter asymmetry observed today and verify this numerically.
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I. INTRODUCTION

There is more matter than antimatter in the Universe.
This fact by itself is hardly surprising: The baryon and
lepton number are accidental symmetries of the standard
model that are broken by higher-dimensional operators and
nonperturbative objects (sphalerons) [1–10] so that the only
conserved quantity is their difference B − L. One would
therefore expect some asymmetry in the Universe, the exact
amount of which can be quantified by the baryon to entropy
ratio nB=ns, a quantity that is observed to be ∼10−10
[11,12]. Whether or not the standard model can account for
this depends on the magnitude of CP-violating effects and,
crucially, on the nature of the electroweak phase transition.
In particular, only a first-order transition can produce a
sufficient asymmetry. The measurement of the Higgs mass
at 125 GeV (e.g., [13]) implies that the transition is a
crossover, and therefore some new physics beyond the
standard model (BSM) is required to generate the observed
asymmetry dynamically.
There is a profusion of BSM mechanisms and models

that could generate such an asymmetry (see [3,14–16] for
reviews). Many BSM theories, including supersymmetric
theories, include new scalar particles that are charged
under Uð1ÞB−L (this is a consequence of the fact that this
combination is anomaly-free), and several baryogenesis
mechanisms employ a breaking of B − L to achieve a

dynamical generation of the asymmetry, transferring it to
the standard model at a later time or through sphaleron
processes. A particularly well-studied mechanism for
breaking the symmetry in these scenarios is the Affleck-
Dine mechanism [4,7,17,18]. Here, the Uð1ÞB−L can be
broken during single-field slow-roll inflation or reheating
due to a coupling between the scalar and the kinetic and
potential energy and the inflaton. If the reheating is
perturbative—i.e., the inflaton is oscillating about the
minimum of its potential—then this coupling will dominate
over any nonderivative couplings, and baryogenesis may
proceed due to the symmetry breaking. However, the
process of reheating is likely more complicated and non-
linear than simple perturbative scenarios [19,20]. Similarly,
inflation may be more complicated than single-field slow
roll. This has motivated recent searches for symmetry-
breaking mechanisms that are less sensitive to the precise
details of inflation and reheating or decoupled from them
completely. In particular, Ref. [21] presented a new model
where a coupling of a scalar to dark matter or, equivalently,
to the Ricci scalar (see also [22,23]) can provide the
symmetry breaking needed without any reference to infla-
tion whatsoever. Similarly, Ref. [24] constructed a similar
mechanism in which the symmetry is instead broken by a
coupling to a new vector that spontaneously breaks Lorentz
invariance when it aligns with the cosmic rest frame.
The purpose of this paper is to systematically study the

different mechanisms by which a U(1) symmetry can be
broken by gravitational effects. To accomplish this, we
consider the low-energy effective field theory (EFT) of a
U(1)-charged scalar (that we will eventually identify with
B − L) coupled to gravity via curvature tensors. We will
also include potential couplings to the inflaton for illus-
trative purposes and to make contact with the Affleck-Dine
literature. In doing so, we will identify a new symmetry-
breaking mechanism that arises due to a coupling between
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the scalar and the Gauss-Bonnet (GB) invariant. This
symmetry breaking exhibits novel features compared with
the Affleck-Dine and scalar-dark matter scenarios (as well as
other scalar-Gauss-Bonnet [25] baryogenesis scenarios),
which we exploit to devise a new mechanism for baryo-
genesis: During inflation, the symmetry is broken and the
field sits at its constant, symmetry-breaking minimum. After
inflation, and during reheating, the GB term redshifts, which
causes the symmetry-breaking minimum to move closer to
zero, and the symmetry is ultimately restored once this term
has redshifted sufficiently. During this time, the motion of
the angular field generates a net B − L dynamically. After
reheating, the symmetry is restored so that the field has a
zero vacuum expectation value (VEV). The asymmetry is
later transferred to the standard model via couplings of the
scalar to the left-handed sector, for example, via a neutrino
portal. This coupling therefore allows for a baryogenesis
scenario with some similarities to the Affleck-Dine mecha-
nism but for more general reheating (and preheating)
mechanisms (e.g., [26]). It is often the case that models
where scalars couple to the Ricci scalar do so in a manner
that does not give rise to spontaneous symmetry breaking
[27–30]. In these cases, baryogenesis cannot occur unless the
symmetry is broken by other terms in the EFTafter inflation.
Our mechanism is the first example of this.
Scalar fields coupled to the Gauss-Bonnet invariant are

ubiquitous in cosmology and gravitational physics, and they
also arise in the low-energy effective action of certain string
compactifications [31]. In cosmology, they may play the role
of dark energy [32–34] and can drive inflation [35–38]. They
are one of the few theories that are known to violate the no-
hair theorem for black holes [39], which has made them the
focus of current strong gravity research. Theoretically, these
couplings are of interest, since they do not introduce new
ghost degrees of freedom, so that the resultant theories are
healthy (provided one does not choose phantom kinetic
terms or a potential that is unbounded from below). Despite
the intense theoretical interest in these models, to our
knowledge, there have been no investigations into whether
these theories include a mechanism for baryogenesis and
whether they have the potential to produce the matter-
antimatter asymmetry we observe in our Universe. We will
demonstrate in this paper that, indeed, they can.
The paper is organized as follows: In the next section, we

take an effective field theory approach to categorizing how
gravitational effects can give rise to baryogenesis in the
types of models discussed above. In Sec. III, we then focus
on a novel baryogenesis mechanism employing a coupling
to the Gauss-Bonnet invariant and study its implications
before summarizing our results in the final section.

II. BARYOGENESIS WITH SCALAR-GRAVITY
COUPLINGS

The building blocks of our theory are a massless spin-2
graviton gμν and a new scalar ϕ which has charge q under

Uð1ÞB−L. In order to make contact with the Affleck-Dine
mechanism, we will also include an inflaton field Φ, but
this will play no role in the mechanism described in this
work. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Mpl

2

2
R −

1

2
∇μΦ∇μΦ −∇μϕ∇μϕ⋆

−m2
ϕjϕj2 − λjϕj4 − c

jϕj2
M2

∇μΦ∇μΦ − V infðΦÞ

− VintðΦ; jϕjÞ − αjϕj2R� jϕj2
M2

G
�
; ð1Þ

where G¼RαβμνRαβμν−4RμνRμνþR2 is the Gauss-Bonnet
invariant. Some explanation is in order. Equation (1) is the
effective field theory for our new scalar coupled to gravity
and the inflaton up to dimension-six operators, with the
cutoff denoted byM. We have not included every possible
coupling (e.g., inflaton-Gauss-Bonnet, Gμν∂μϕ∂νϕ, or
Φ2R, for example) in the interest of compactness; these
operators are either unimportant or do not qualitatively
change the dynamics. The inflaton self-potential V infðΦÞ is
responsible for driving inflation, while the interaction
potential V intðΦ; jϕjÞ represents other possible interactions
with the scalar ϕ that are not forbidden by symmetries.
They are included for completeness and play no role in
what follows, so we will not concern ourselves with their
specific form. Finally, we must supplement Eq. (1) with
symmetry-violating terms

Ssymmetry violating ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
ε

4
ϕ4 þ ε⋆

4
ϕ⋆4

�
: ð2Þ

These operators are ubiquitous in any theory where there
are several new scalar degrees of freedom [18]. For
example, if the Uð1ÞB−L charge is q and there is another
heavy charged field χ with charge 4q, the leading-order
interaction is

Sϕχ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕ4χ�

M̄
þ H:c:

�
: ð3Þ

If χ acquires a nonzero VEV, then we can integrate it out to
find precisely Eq. (2) with

ε ¼ 4
hχ⋆i
M̄

: ð4Þ

In this example, we expect hχ⋆i ≪ M̄ so that jεj ≪ 1.
Equations (1) and (2) imply an effective potential for ϕ:

Veffðϕ;ϕ⋆Þ¼
�
m2

ϕþc
_Φ2

M2
þαR� G

M2
þV int;ϕϕ� ðΦ̄Þ

�
jϕj2

þλjϕj4þ ε
ϕ4

4
þ ε⋆ϕ

⋆4
4

; ð5Þ

QIUYUE, JEREMY SAKSTEIN, and MARK TRODDEN PHYS. REV. D 100, 063518 (2019)

063518-2



where _Φ2 is the kinetic energy of the inflaton and Φ̄ is the
background value of the inflaton. We will see presently that
the sign of the Gauss-Bonnet term depends on the equation
of state, so we have included both signs for now in order to
be general. Note also that the effective potential can either
be symmetry preserving or symmetry breaking, depending
on the sign of the coefficient of the quadratic term. In
particular, if this term is negative, the symmetry can be
broken, which allows for the possibility of baryogenesis.
By inspection, one can discern four possibilities for this.
First, if V int;ϕϕ� ðΦ̄Þ < 0, then the scalar’s mass is tachyonic
during inflation. Second, if c < 0, then the kinetic coupling
of ϕ to the inflaton can drive a symmetry breaking. The
Affleck-Dine mechanism [4,17,18] utilizes a combination
of these two possibilities. In this case, one has _Φ2 ∼
H2Mpl

2=M2 so that the symmetry-breaking term is propor-
tional to cðMpl

2=M2ÞH2, and, furthermore, the cosmo-
logical dynamics of the inflaton are such that are
V int;ΦΦðϕ̄Þ ∝ −c0H2 for some c0 > 0 and Oð1Þ [18].
Third, if α < 0 and there is some amount of nonrelativistic
matter present, then the symmetry can be broken, because
R ∼ ρm=Mpl

2. This is the mechanism of Refs. [21,22].
Finally, if �G < 0—with the sign chosen depending on the
sign of G—then the symmetry can be broken by the Gauss-
Bonnet invariant. This possibility has not been considered
previously, and so we will focus on this exclusively in the
present work.1

For a Friedmann-Robertson-Walker universe

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2
S2Þ ð6Þ

dominated by a perfect fluid with equation of state w, the
Gauss-Bonnet invariant is

G ¼
�− 64ð1þ3wÞ

27ð1þwÞ4t4 w ≠ −1;

24H4 w ¼ −1.

This implies that, if we choose the negative sign in Eq. (5),
the symmetry is broken when −1 ≤ w < −1=3 (i.e., when-
ever the universe is accelerating, including during an exact
de Sitter phase). If, instead, we choose the positive sign,
then the symmetry is broken if w > −1=3 (i.e., whenever
the universe is decelerating). Therefore, the choice of sign
is determined by the cosmological epoch during which one
requires the symmetry to be broken. In order to decide this,
it is instructive to consider the symmetry-breaking mini-
mum, which, using Eq. (5), is given by (ignoring the Ricci-
coupling and the symmetry-breaking terms for now)

jϕjmin ¼
1ffiffiffiffiffi
2λ

p
����� G

M2

���� −m2
ϕ

�
1=2

: ð7Þ

During inflation (or, to be more precise, in exact de Sitter
space), the position of this minimum is constant, but on a
general cosmological solution it is time dependent, and
one has

jϕjmin ¼
1ffiffiffiffiffi
2λ

p
�

64jð1þ 3wÞj
27ð1þ wÞ4M2t4

−m2
ϕ

�
1=2

: ð8Þ

This is the first difference between Gauss-Bonnet-induced
symmetry breaking and Affleck-Dine or dark-matter-
induced baryogenesis. In the latter two mechanisms, the
symmetry-breaking term redshifts as t−2, whereas in the
former it redshifts as t−4, allowing for a novel phenom-
enology. Considering an epoch where w can be treated as a
constant, the symmetry is restored at a time

t̄4 ¼ 64jð1þ 3wÞj
27ð1þ wÞ4M2m2

ϕ

: ð9Þ

Now, since there is a strong time dependence, it is not
necessarily the case that the minimum is an attractor.
Indeed, changing variables to

t ¼ t̄ez; ξ ¼ ϕðzÞ
ϕminðzÞ

; ð10Þ

the equation of motion for the scalar at early times when
t ≪ t̄ is

ξ00−
3þ5w
1þw

ξ0 þ2
1þ3w
1þw

ξþm2
ϕt̄

2e−2zξðξ2−1Þ¼0: ð11Þ

The equivalent equation for Affleck-Dine or scalar-dark
matter mechanisms has a fixed point near ξ ¼ 1 (the fixed
point is not exactly at ξ ¼ 1 due to nonlinear effects and
cosmological time dependence) [18]. In our case, setting
ξ0 ¼ ξ00 ¼ 0, one has

ξ2 ¼ 1 − 2
e2z

m2
ϕ t̄

2

1þ 3w
1þ w

; ð12Þ

so that on long enough timescales (i.e., t ≫ t̄) the field will
move away from the minimum exponentially. This is a new
feature of the scalar-Gauss-Bonnet coupling. In practice,
we are interested in the dynamics when t ≪ t̄—in fact, the
approximations used to derive Eq. (11) break down at times
t ∼ t̄—so this instability is not important. The important
term for determining the stability in Eq. (11) is the second
one, which represents a negative friction that will drive
the field away from the minimum unless −1 ≤ w < −3=5.
This means that, in order for baryogenesis to proceed in
the absence of fine-tuning, any mechanism based on a

1Note that the bounds on scalar-gravity couplings of this form
from GW170817 [40–43] do not apply to our models, since the
scalar is cosmologically subdominant throughout the entire
Universe’s history [44].
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scalar-Gauss-Bonnet coupling must necessarily occur dur-
ing an epoch where the equation of state lies within this
range. Clearly, this is not the case during the matter- and
radiation-dominated eras. The patent epoch is reheating,
which occurs at some time between the end of inflation,
where the equation of state w ≈ −1, and the start of the
matter era, where w ¼ 1=3.2 The scenario we will therefore
develop envisions that during reheating the equation of
state changes from w ¼ −1 to w ¼ 1=3 due to the pro-
duction of radiation. During this time, the symmetry is
broken and the minimum is an attractive fixed point,
allowing for stable baryogenesis. We will now derive the
dynamics of this mechanism in detail.

III. BARYOGENESIS FROM A
GAUSS-BONNET COUPLING

Having understood the dynamics of symmetry breaking
due to a scalar-Gauss-Bonnet coupling, we are now in a
position to describe a scenario for baryogenesis using this
mechanism. Since such a scenario can be viable only
during reheating and when−1 ≤ w < −3=5, we fix the sign
of the scalar-Gauss-Bonnet coupling to be negative in
Eq. (5) so that the Uð1ÞB−L can be broken spontaneously
during this epoch [see the discussion below Eq. (7)]. The
scenario is as follows.

A. Inflation and initial conditions

During inflation, the absolute value of the field jϕj sits
at the (constant) minimum of the effective potential (5).
Considering slow-roll inflation, which is the scenario
favored by Planck observations [45], we can ignore the
kinetic coupling to the inflaton, and furthermore we neglect
the interaction potential in order to study the effects of
the Gauss-Bonnet coupling, but one should not ignore the
Ricci coupling in a consistent effective field theory. The
effective potential for this field is then

VðjϕjÞ ¼
�
m2

ϕ þ 12αH2
I − 24

H4
I

M2

�
jϕj2 þ λjϕj4; ð13Þ

where HI is the Hubble constant during inflation and
R ¼ 12H2

I . Provided that HI > ðα=2Þ1=2M [one should
not takeHI ≫ ðα=2Þ1=2M, since this would be tantamount
to applying the EFT above its cutoff], the symmetry is
broken during inflation and the field sits at the minimum,
approximately given by

jϕIj ∼
ffiffiffiffiffi
12

λ

r
H2

I

M
: ð14Þ

The mass at the minimum is of the order of H2
I =M≳HI ,

so that the field is sufficiently heavy that it does not acquire
isocurvature perturbations, nor does it impact the dynamics
of the inflaton. Writing ϕ ¼ jϕjeiθ, there is a small potential
for the angular field θ due to the symmetry-breaking terms

ΔVðθÞ ¼ ε0
2
jϕj4 cosð4θ þ ψÞ; ð15Þ

where we have written ε ¼ ε0 expðiψÞ. Recalling that
the angular field is not canonically normalized, so that
L ⊃ jϕj2ð∇μθÞ2, we infer that the mass for this field is

m2
θ ∼ ε0jϕIj2 cosð4θ0 þ ψÞ ∼ ε0

H2
I

M
cosð4θ0 þ ψÞ; ð16Þ

where θ0 is the initial value of θ during inflation. Now,
since ε0 ≪ 1, we expect this mass to be sub-Hubble, so
that the field is overdamped and is fixed to θ0. In fact, if
this is not the case, the field would minimize its potential
during inflation and no net B − L would be produced
thereafter. This implies that θ acquires isocurvature per-
turbations [46–48]

hδθi ¼ HI

2πjϕIj
: ð17Þ

Since the symmetry-breaking terms are responsible for
the generation of the net B − L, the amplitude of these
perturbations is given by

SBγ ≡ δρB
ρB

−
3

4

δργ
ργ

¼ δnB
nB

; ð18Þ

where the subscript B denotes baryons and the subscript γs
denotes photons. Ultimately, nB arises from nB−L after
sphaleron reprocessing of the generated B − L. Therefore,
we can estimate the amplitude of isocurvature perturbations
by estimating nB−L. This is generated by the motion of the
angular field, so we have

nB−L ∝ ∂θΔVðθÞ ∝ sinð4θ þ ψÞ;

which yields δnB=nB ∼ 4 cotð4θ0 þ ψÞδθ. Using Eq. (17)
and the isocurvature bounds from Planck [45], SBγ <
3 × 10−4, we have

HI

jϕIj
¼ π

2
tanð4θ0 þ ψÞSBγ ≲ 3 × 10−4: ð19Þ

This imposes a bound on the initial conditions and on the
model parameters. We thus restrict to values where this
is satisfied. It turns out this is not a very restrictive

2One could imagine this process happening during inflation,
but this would imply isocurvature modes and could possibly alter
the dynamics of inflation itself. It is also highly likely that any net
B − L generated would rapidly redshift unless one fine-tunes the
parameters to have the requisite amount of B − L produced very
close to the end of inflation.
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requirement, and we will verify later that it is satisfied by
any reasonable model.

B. Reheating and baryogenesis

When inflation ends, the equation of state increases from
−1 through reheating, ultimately ending up at 1=3, which
signifies the beginning of the radiation epoch. During this
phase, the effective potential is now given by

VðjϕjÞ ¼
�
m2

ϕ þ αRRH þ 64ð1þ 3wÞ
27ð1þ wÞ4M2t4

�
jϕj2 þ λjϕj4;

ð20Þ

where RRH denotes the Ricci scalar during reheating.
During reheating, the Ricci scalar scales as

R ¼ 4

3

�
1 − 3w
ð1þ wÞ2

�
t−2; ð21Þ

for a constant equation of state, so that for w < 1=3 the sign
of this term is given by the sign of α (the same is true during
inflation). Given that we end inflation in the symmetry-
breaking minimum set by the Gauss-Bonnet coupling, there
are three scenarios depending on the sign of α. For α < 0,
the Ricci coupling contributes a tachyonic mass for the
scalar that redshifts at a slower rate than the tachyonic mass
due to the Gauss-Bonnet coupling. This means that at some
time t⋆ ∼M−2 the symmetry-breaking effects are domi-
nated by the Ricci coupling, and the evolution of the
minimum will behave in a similar manner to that described
by Ref. [21]. If, instead, the symmetry is restored before
this term comes to dominate, then the Gauss-Bonnet term
will dominate throughout. Since this scenario is novel, we
will focus on this in what follows, although it would be
interesting to study hybrid scenarios in the future. Finally,
if α > 0, then the Ricci coupling is not responsible for
symmetry breaking and, instead, adds a correction to the
bare mass of the scalar that redshifts over time. Our analysis
below will also encapsulate this scenario. Interestingly, in
many string theory compactifications, scalars coupled to
the dilaton arise without associated Ricci couplings [31,49].
For this reason, models commonly studied in the literature
omit such couplings from the outset (e.g., [50–54]). Our
analysis also applies to these models by construction.
We now proceed to calculate the baryon-to-photon ratio

under the assumption that the Ricci coupling does not
interfere with symmetry breaking. As discussed above, the
main effect of this coupling is to correct the bare mass of
the scalar. To parameterize our ignorance of this, we define

m̄2
ϕ ¼ m2

ϕ þ αRRH; ð22Þ

which we take to be constant. We requiremϕ < M in order
to be consistent with the effective field theory (allowing

mϕ > M is tantamount to ignoring new light states that
enter above the cutoff) but note that there is no such
restriction on m̄ϕ. With this in mind, the time-dependent
minimum is given by

jϕminðtÞj ¼
m̄ϕffiffiffiffiffi
2λ

p
��

t̄
t

�
4

− 1

�
1=2

; ð23Þ

where t̄ is given by Eq. (9). The symmetry is restored at a
time t ¼ t̄, and, for the sake of providing a concrete
scenario, we assume that the equation of state crosses
w ¼ −1=3 at a time later than t̄ so that the symmetry is
restored due to the redshifting of the Gauss-Bonnet term
but not due to the sign change that occurs when the
equation of state exceeds −1=3.3 The Hubble parameter
when the symmetry is restored is

H̄ ¼ 2

3ð1þ wÞt̄ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
m̄ϕM

q
: ð24Þ

In order to generate a net B − L, the angular field must
begin to roll at around this time so that its mass mθ ∼ H̄.
This gives the condition

m̄2
θ ¼

ΔVθθ

jϕj2min

∼ ε0jϕj2min ∼ H̄2; ð25Þ

which allows us to fix the magnitude of the symmetry-
breaking terms:

ε0 ∼
H̄2

jϕj2min

∼ λ
M
m̄ϕ

: ð26Þ

The motion of the angular field generates the B − L
asymmetry. In particular, the time component of the
conserved Uð1ÞB−L current, which corresponds to nB−L, is

nB−L ¼ j0 ¼ 2qImðϕ⋆∂0ϕÞ ¼ 2qjϕj2 _θ;

where q is the B − L charge of the scalar. One can see
that angular motion is necessary to generate a net B − L.
The equation of motion for the angular field can be
expressed in the form

_nB−L þ 3HnB−L ¼ 2qε0jϕj4 sinð4θ þ ψÞ: ð27Þ

Approximating _nB−L by HnB−L, using Eq. (26), and
ignoring order-unity factors, we have

3A more stringent requirement is that the equation of state
should exceed −3=5 at a time t > t̄ so that the minimum is always
a stable attractor. In practice, this distinction is negligible, since
the field begins near the minimum and tracks it for a long time in
both cases.
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nB−L ≈ ε0
jϕj4
H̄

sinð4θ þ ψÞ ∼ jϕj2minH̄: ð28Þ

Since baryogenesis occurs during reheating, the entropy
density around this time is

s ∼
Mpl

2H̄2

TRH
ð29Þ

so that the ratio

nB−L
s

∼ 10−10
�
10−5

λ

��
TRH

1012 GeV

��
m̄ϕ

108 GeV

�
3=2

×

�
M

106 GeV

�
−1=2

: ð30Þ

Equation (30) is the main result of this section. It
demonstrates that the mechanism that we have developed
in this section can generate the observed matter-
antimatter asymmetry observed in the Universe with
suitable parameter choices. As it stands, this asymmetry
is entirely stored in the new scalar ϕ, but, provided that
the scalar can decay to the left-handed sector of the
standard model, sphalerons will reprocess this into a net
baryon and lepton asymmetry. The potential couplings of
such scalars to the standard model were discussed at
length in Ref. [24], and we have nothing new to add here.
We simply remark that many such couplings are possible,
and constraints from direct and indirect detection as well
collider bounds are not yet at the level where such
couplings are sufficiently forbidden.
Some comments are in order. First, we have made several

approximations. This was both for simplicity (e.g., ignoring
order-unity factors, assuming a constant equation of state
w, etc.) and to make the calculation analytically tractable.
For example, we approximated _nB−L by HnB−L and
assumed that the evolution of the scale factor is given
by the standard Friedmann equations without accounting
for the backreaction of the Gauss-Bonnet term on the
equation of motion of the metric. Said another way, we
assumed that the contribution of the scalar field to the
evolution of the Universe was subdominant throughout
this entire process. This latter assumption is easy to verify.
The contribution of the scalar potential to the Friedmann
equation is

Ωϕ ∼
m̄2

ϕjϕj2
Mpl

2H2
∼

m̄4
ϕ

λMpl
2H̄2

∼
m3

ϕ

λMpl
2M

≲ 10−12; ð31Þ

where we have used Eqs. (7) and (24) and the fiducial
values needed to set every term in Eq. (30) to unity.
Similarly, the contribution from the Gauss-Bonnet
coupling is

ΩG ∼
jϕj2
M2

H4 þ _HH2

H2Mpl
2

∼
jϕj2
Mpl

2

H2

M2
≲ 10−12: ð32Þ

Evidently, the backreaction is indeed negligible. The other
assumptions require numerical computations to verify. We
do precisely this in the next section, where we solve the
equations of motion numerically and verify Eq. (30).

C. Numerical examples

In this section, we will verify numerically that baryo-
genesis during reheating from a scalar-Gauss-Bonnet
coupling can indeed generate the net matter-antimatter
asymmetry observed in the Universe as predicted analyti-
cally by Eq. (30), validating our approximations made in
the previous sections. Since we have already established
that the backreaction of the scalar on the Friedmann
equations is negligible, we will solve only the equation
of motion for the scalar

ϕ̈þ 3H _ϕþ ∂Veffðϕ;ϕ⋆Þ
∂ϕ⋆ ¼ 0; ð33Þ

with Veff given by

Veffðϕ;ϕ⋆Þ ¼
�
m̄2

ϕ − 24
H4 þH2 _H

M2

�
jϕj2

þ λjϕj4 þ ε

4
ϕ4 þ ε⋆

4
ϕ⋆4; ð34Þ

i.e., we are now including the symmetry-breaking terms
and the effective mass m̄ in its definition. In order to be
agnostic about the details of reheating, we parameterize the
Hubble constant during reheating as

HðtÞ ¼ HI

½1þ 4ðHItÞ2�1=2
; ð35Þ

so that it interpolates between a constant value HI during
inflation and tends to 1=ð2tÞ at late times, corresponding to
a radiation-dominated universe [55,56]. The intermediate
epoch is presumed to encapsulate reheating. Given the
simple and smooth evolution, it is likely that this

gnitaeheR noitaidaRnoitalfnI

–6 –4 –2 0 2 4 6

–1

–0.5

0.33

FIG. 1. The equation of state as a function of time that gives rise
to the parameterization of the Hubble constant given in Eq. (35).
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approximation corresponds to some form of perturbative
reheating with the inflaton close to the minimum of its
potential. One could use more complicated parameter-
izations to describe more complicated and nonperturbative
scenarios. Note that there is no period where H ¼ 2=3t
(i.e., w ¼ 0), so this parameterization does not include a
potential with VðϕÞ ∝ ϕ2 near the minimum, which is the
preferred scenario for Affleck-Dine baryogenesis. As dis-
cussed above, our mechanism would not work in this case,
because the minimum would not be a stable attractor. The
equation of state as a function of time for this para-
metrization is shown in Fig. 1. As a consistency check,
we integrated the equations with several alternate param-
eterizations; all gave qualitatively similar results.
The results of our integrations are shown in Figs. 2 and 3.

In all cases, we used the fiducial values m̄ϕ ¼
7 × 108 GeV, M ¼ 106 GeV, HI ¼ 1.6 × 107 GeV,
TRH¼2.1×1012GeV, λ¼3.3×10−4, and ε0¼3.2×10−7

and checked that qualitatively similar results are obtained
for other choices. The isocurvature bound given in Eq. (19)
can also be satisfied for this parameter choice. The
evolution of the scalar is shown in Fig. 2. The left panel
shows the evolution of the scalar compared with the
theoretical prediction for the evolution of the minimum.
One can see that the field adiabatically tracks the minimum

until the symmetry is restored. The right panel shows the
real and imaginary parts of the scalar, and the angular
motion that generates the B − L asymmetry is evident.
Finally, we plot the ratio nB−L=s in Fig. 3. A value of the
order of 10−10 is reached asymptotically, confirming our
approximations in the previous sections and their ultimate
analytical prediction given in Eq. (30). We have found that
changing the initial conditions and the parameters yields
qualitatively similar behavior.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have studied the effective field theory
of a U(1) scalar field coupled to both gravity and the
inflaton. This theory contains several natural mechanisms
for spontaneously breaking the U(1) symmetry, including
the Affleck-Dine mechanism [4,17,18], the matter-induced
breaking of Ref. [21], and a novel mechanism where a
coupling to the Gauss-Bonnet invariant can induce a
tachyonic instability for the scalar around the symmetry-
preserving point in field space. Identifying the charge with
B − L, we have then developed a novel scenario for
baryogenesis that employs this breaking mechanism.
The Gauss-Bonnet term has some unique properties that

give rise to several novel features compared with other
scenarios that make use of cosmological dynamics to
realize an inverse symmetry-breaking transition. First,
the Gauss-Bonnet term has different signs depending on
the equation of state, with the threshold given by
w ¼ −1=3. This means that the symmetry can be broken
either during reheating and inflation or during the standard
big bang cosmological history, but not both. Second, the
contribution to the effective mass of the scalar redshifts
like t−4 rather than t−2 as is the case for Affleck-Dine and
matter-induced baryogenesis. We have shown that this
causes the (time-dependent) minimum to be an attractor
when −1 < w < −3=5 and an unstable fixed point other-
wise, signaling that any stable baryogenesis mechanism
must happen during a cosmological epoch dominated by a

–4 –2 2 4
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FIG. 2. Left: The evolution of jϕjminðtÞ calculated analytically [using the parameterization in Eq. (35)] and the results of the numerical
integration for jϕjðtÞ. Right: The evolution of real and imaginary parts of the scalar.
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FIG. 3. The ratio nB−L=s as a function of time.
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component with an equation of state in this range, inflation
and reheating being the patent epochs.
Using the above facts, we have constructed the following

scenario: During inflation, the symmetry is broken and the
radial part of the scalar minimizes its effective potential (the
position of the minimum is constant), while the angular
field is frozen due to Hubble damping. After reheating
begins, the minimum of the effective potential begins to
move towards zero as the Gauss-Bonnet term starts to
redshift. At this time, the angular field begins to roll down
its potential, which arises due to small Uð1ÞB−L-breaking
terms in the action, generating a net B − L. Finally, the
symmetry is restored when the Gauss-Bonnet term has
redshifted sufficiently, and the radial part of the field
rapidly returns to zero. We have analytically predicted
the amount of B − L produced, demonstrating that the net
matter-antimatter asymmetry observed in the Universe can
be accounted for using reasonable parameter choices. We
have also verified our analytic predictions using numerical
computations.
Of course, this is just the first part of the story. In order to

fully account for the observed asymmetry, the B − L must
be transferred into the left-handed sector of the standard
model. This is not particularly difficult, and there are
several portals to the standard model that are allowed by
current constraints [21]. Any of these are sufficient for our
purposes.
An important question is whether these theories can be

tested observationally. Interestingly, theories of this kind

exhibit a phenomenon known as spontaneous scalarization
[50–54,57] (see also [58–61]), whereby black holes and
neutron stars can suddenly acquire a large scalar charge (or,
equivalently, hair) due to quadratic scalar-Gauss-Bonnet
coupling. Indeed, it is precisely the same tachyonic
instability we identified here that underlies this mechanism.
So far, all of the studies of spontaneous scalarization have
used real fields, so it would be interesting to generalize
these to complex fields. In particular, Ref. [52] studied an
identical EFT to Eq. (1) (without the inflaton coupling)
with the exception that the scalar field there was real. The
cutoff for theories that scalarize solar mass black holes is
M ∼ 10−22 GeV (∼35 km) [52], several orders of magni-
tude smaller than the cutoff for our baryogenesis mecha-
nism. It would be interesting to explore which type of
objects could become scalarized in our theory. Recently,
Ref. [62] studied the most general subset of Horndeski
theories that can give rise to a tachyonic mass for a real
scalar field. It would be interesting to generalize this to
complex scalars and determine whether any new baryo-
genesis mechanisms exist.
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