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I show that a generic quantum phenomenon can drive cosmic acceleration without the need for dark
energy or modified gravity. When treating the universe as a quantum system, one typically focuses on the
scale factor [of a Friedmann-Robertson-Walker (FRW) spacetime] and ignores many other degrees of
freedom. However, the information capacity of the discarded variables will inevitably change as the
universe expands, generating quantum bias (QB) in the Friedmann equations. If information could be
stored in each Planck volume independently, this effect would give rise to a constant acceleration 10120

times larger than that observed, reproducing the usual cosmological constant problem. However, once
information capacity is quantified according to the holographic principle, cosmic acceleration is far smaller
and depends on the past behavior of the scale factor. I calculate this holographic quantum bias, derive the
semiclassical Friedmann equations, and obtain their general solution for a spatially flat universe containing
matter and radiation. Comparing these QB-CDM solutions (which include standard cold dark matter) to
those of ΛCDM, the new theory is shown to be falsifiable, but nonetheless consistent with current
observations. In general, realistic QB cosmologies undergo phantom acceleration (weff < −1) at late times,
predicting a big rip in the distant future.
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I. INTRODUCTION

We know the universe is expanding at an accelerating
rate [1–4], but the cause of this acceleration remains a
mystery to fundamental physics [5–7]. Current observa-
tions are broadly consistent with the simplest proposal:
acceleration driven by a cosmological constant Λ > 0 [8].
But if we are to understand Λ as the energy density of
empty space, we cannot currently explain the extremely
tiny value Λobs ∼ 10−122=l2

pl without anthropic reasoning
[9–13]. Alternatively, we may hope to derive cosmic
acceleration from new dynamical fields or modifications
to Einstein’s gravity [14,15]. However, these models often
struggle to fit local constraints (from the Solar System [16]
and gravitational wave observations [17]) and still generate
the acceleration we observe [18–20].
In this paper, I will motivate and develop a new

explanation for cosmic acceleration—one that does not
require a cosmological constant, new dynamical fields, or
modified gravity. Instead, we will examine an overlooked
quantum phenomenon [21,22] and show that its application
to cosmology gives rise to a new acceleration term in the
Friedmann equations. This quantum bias depends on the
maximum information the universe can hold, which wewill
quantify according to the holographic principle [23–26].

Besides this step, our approach will be broadly independent
of the details of quantum gravity at the fundamental level.
Empirically, this new theory has many features that

distinguish it from a typical dark energy/modified gravity
model. First, it describes a purely global phenomenon: the
background undergoes accelerated expansion without addi-
tional local effects (e.g., perturbations in a dark fluid or
deviations from the Einstein field equations). Second, the
universe can end in a big rip [27], with quantum bias
resembling phantom dark energy at late times. Third, the
model has very little freedom: it only introduces a single
new parameter, has no free functions, and cannot be tuned
to mimic Λ to arbitrary accuracy. Nonetheless, a quick
comparison with ΛCDM will suggest the theory is con-
sistent with current observations.
We will take a systematic approach, working all the way

from first principles to exact cosmological solutions. (In
contrast, there are numerous attempts to link holography to
dark energy that invokeadhocmodifications to theFriedmann
equations, or derive only approximate solutions, e.g., [28–
39].) Before describing how the paper will unfold, it will be
helpful to first give a brief summary of the generic quantum
phenomenon [21,22] that forms the basis of this theory.

A. Quantum bias

Suppose we are interested in an observable x of some
physical system with many degrees of freedom (d.o.f.)*lmb@roe.ac.uk
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ðx;φ1;φ2;…Þ. If the classical behavior of x can be derived
from an action

I ½xðtÞ�≡
Z

dt

�
m
2
_x2 − VclðxÞ

�
; ð1Þ

without reference to the other variables φ ¼ ðφ1;φ2;…Þ,
we say that the other d.o.f. φ can be discarded when
predicting the classical path xðtÞ.
However, once quantum effects are considered, we

cannot always continue to use the action (1) to predict
the behavior of x. Indeed, if the discarded d.o.f. have a
Hilbert space Hφ that depends on x, with information
capacity SðxÞ≡ lnðdim½HφðxÞ�Þ ≠ const, then a quantum
correction will appear in the effective potential [21]

ΔVeff ¼
ℏ2

8m

��
1 − 4ξ

dþ 1

d

�
ð∂xSÞ2 þ 2ð1 − 4ξÞ∂2

xS
�
;

ð2Þ

where ξ ∈ R is a curvature coupling parameter and d ∈ N
the dimensionality of the discarded configuration space.
(See Appendix A for a brief summary of the derivation of
this result and a discussion of its generality.) The correction
(2) introduces a bias in the behavior of x,

m∂2
t hxi ¼ −h∂xVcl þ ∂xΔVeffi; ð3Þ

so the classical equation of motion mẍ ¼ −∂xVcl is no
longer true on average. This motivates the use of a
semiclassical action

J ½xðtÞ�≡
Z

dt
�
m
2
_x2 − VclðxÞ − ΔVeffðxÞ

�
; ð4Þ

which generates trajectories consistent with the average
motion (3). Moreover, the semiclassical action (4) sets the
phase of paths xðtÞ in the path integral, once the discarded
variables have been integrated out [22].

B. Outline of paper

The aim of this article is to apply the above results to
cosmology. The universe is clearly a quantum system with
many d.o.f.1; moreover, the classical behavior of its scale
factor a can be derived from an action of the form (1).
Hence, if the other d.o.f. have an information capacity
SðaÞ ≠ const, we should expect there to be a quantum
bias (2) forcing aðtÞ off its classical trajectory. We wish to

determine whether this effect can explain the cosmic
acceleration we observe today.
The paper will proceed as follows. In Sec. II, we

construct an action similar to (1) that generates the classical
behavior of the scale factor aðtÞ of an FRW spacetime. In
Sec. III, we obtain the quantum bias (2) from the other
d.o.f., with information capacity fixed according to the
holographic principle. In Sec. IV, having assembled the
semiclassical action (4), we derive the semiclassical
Friedmann equations. In Sec. V, we solve these equations
for a spatially flat universe containing matter and radiation.
Finally, in Sec. VI, we compare these solutions to ΛCDM,
and argue that the new theory is likely to be consistent with
current observations.

II. CLASSICAL ACTION

Here we lay out our basic definitions and derive the
action (1) that encodes classical cosmology. It is important
to realize that we cannot simply write down an action
I ½aðtÞ� and check that it generates the classical Friedmann
equations. We must also ensure that the normalization of
the action is correct, as this is critical for quantum effects.
Hence we work from first principles, starting with the
action for general relativity:

I ¼ IG½gμν� þ IM½gμν;Ψ�; ð5Þ

IG ≡ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p
Rþ 1

κ

Z
∂M

d3yϵ
ffiffiffiffiffiffi
jhj

p
K; ð6Þ

where the Gibbons-Hawking-York term [40–42] is
included for regions M with nontrivial boundary
∂M ≠ ∅.2 We use the generic symbol Ψ to denote matter,
having energy-momentum tensor

Tμν ≡ −2ffiffiffiffiffiffi−gp δIM

δgμν
; ð7Þ

and set the cosmological constant Λ ¼ 0, the aim being to
generate cosmic acceleration nonetheless.

A. FRW spacetime

To construct an action of the form (1) we must discard
almost all the d.o.f. in general relativity, restricting the
action (6) to spacetimes that are completely homogeneous
and isotropic. It is convenient to use the following form of
the FRW metric:

1The laws of quantum mechanics are expected to apply to all
physical systems, and the universe is no exception. The question
is, how accurate is the classical approximation to the universe
that we typically use in cosmology? In general, this approxima-
tion will be accurate only when quantum bias (2) can be
neglected.

2We set c ¼ 1, write κ ≡ 8πG, g≡ detðgμνÞ, h≡ detðhμνÞ, and
adopt the sign conventions of Wald [43]: ημν ≡ diagð−1; 1; 1; 1Þ,
½∇μ;∇ν�vα ≡ Rα

βμνvβ, Rμν ≡ Rα
μαν. The metric hμν ≡ gμν −

ϵnμnν and extrinsic curvature Kμν ≡ hμα∇αnν of the boundary
∂M are constructed from the outward unit normal nμ, with
ϵ≡ nαnα ¼ �1.
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ds2 ¼ ½aðtÞ�2ð−½NðtÞ�2dt2 þ dχ2 þ ½rkðχÞ�2dΩ2Þ; ð8Þ

where aðtÞ is the scale factor, χ is the comoving distance,
and dΩ2 ¼ dθ2 þ sin2 θdϕ2. The lapse function NðtÞ con-
trols the gauge of the time coordinate t,3 and the spatial
geometry is described by the function

rkðχÞ≡

8>><
>>:

sinðχÞ; k ¼ þ1;

χ; k ¼ 0;

sinhðχÞ; k ¼ −1;
ð9Þ

for a closed, flat, or open universe, respectively. (Note that
χ is dimensionless, and a is the radius of spatial curvature
for k ≠ 0.) As such, a surface of constant χ and t is a sphere
of area A ¼ AðχÞ½aðtÞ�2 and volume V ¼ VðχÞ½aðtÞ�3,
where

AðχÞ≡ 4π½rkðχÞ�2; VðχÞ≡ 4π

Z
χ

0

dχ0½rkðχ0Þ�2: ð10Þ

For the sake of evaluating IG, we will also need the scalar
curvature of the FRW spacetime (8),

R ¼ 6

a2N2

�
ä
a
−

_a _N
aN

þ kN2

�
; ð11Þ

where dots indicate differentiation with respect to t.

B. Integration region and boundary

Besides evaluating the action (6) on the metric (8), we
must also choose a suitable region M over which to
integrate. Rather than attempt an integral over all space
(with an infinite result for k ∈ f0;−1g) we limit ourselves
to the spherically symmetric region

M∶
t ∈ ½t−; tþ�; θ ∈ ½0; π�;
χ ∈ ½0; χ��; ϕ ∈ ½0; 2πÞ; ð12Þ

and promise to send χ� → ∞ (or χ� → π, for k ¼ 1) at the
end of the calculation. It is easy to see that the boundary
of (12) has three components: ∂M ¼ ∂Mχ� ∪ ∂Mt− ∪
∂Mtþ ; their extrinsic scalar curvatures are

K½∂Mχ� � ¼
A0�
A�a

; K½∂Mt�� ¼ � 3_a
a2N

����
t¼t�

; ð13Þ

where the prime denotes a derivative, and asterisks indicate
evaluation at χ ¼ χ�. With M defined, we can now discuss

the matter action IM, and then evaluate the gravitational
action IG on the FRW metric (8).

C. Matter action

In order to provide matter terms for the Friedmann
equations, we require formulas for the functional deriva-
tives of IM with respect to variations δaðtÞ, δNðtÞ in the
FRWmetric (8). Note that these variations cause the inverse
metric to change by

δgμν ¼ −2gμν
δa
a
− 2g00δμ0δ

ν
0

δN
N

; ð14Þ

and hence the matter action varies according to

δIM ¼
Z
M

d4x
δIM

δgμν
δgμν

¼
Z
M

d4x
ffiffiffiffiffiffi−gp

ð−2Þ Tμν

�
−2gμν

δa
a
− 2g00δμ0δ

ν
0

δN
N

�

¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
T
δa
a
þ T00g00

δN
N

�
; ð15Þ

where we used (7) in the second line. Homogeneous and
isotropic matter Ψ ¼ ΨðtÞ has energy density ρ ¼ ρðtÞ and
pressure p ¼ pðtÞ that depend on t only, with T ¼ 3p − ρ
and T00g00 ¼ −ρ. As such, Eq. (15) becomes

δIM ¼ V�

Z
tþ

t−

dta3½Nð3p − ρÞδa − aρδN�: ð16Þ

Consequently,

δIM

δa
¼ V�a3Nð3p − ρÞ; δIM

δN
¼ −V�a4ρ ð17Þ

are the functional derivatives we need.

D. Gravitational action

Finally, we assemble the gravitational part of the
classical action by inserting (11) and (13) into (6). After
integrating the ä term by parts (to cancel the contributions
from ∂Mt�), we obtain

IG ¼ 3V�
κ

Z
tþ

t−

dt

�
−
_a2

N
þ kNa2

�
þA0�

κ

Z
tþ

t−

dtNa2: ð18Þ

In general, the integral proportional to A0� can be dropped
whenM covers the entire space. For k ¼ 0, this happens in
the obvious fashion, V� ¼ 4πχ3�=3 and A0� ¼ 8πχ�, so the
first integral dominates over the second in the limit
χ� → ∞. For k ¼ 1, the full space is covered by sending
χ� → π, with V� → 2π2 and A0� → 0 as a result. Thus, the
full-space limit gives

3We cannot fix the gauge at this stage because we will need to
take variations δNðtÞ, in addition to δaðtÞ, to obtain both
Friedmann equations from the action (6). Afterwards, we will
adopt the gauge NðtÞ ¼ 1 in which t is equivalent to conformal
time η.
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IG½aðtÞ; NðtÞ� ¼ 3V�
κ

Z
tþ

t−

dt

�
−
_a2

N
þ kNa2

�
; ð19Þ

for k ∈ f0; 1g at least.4 This fixes the normalization of the
total action (5), being the sum of the gravitational action
(19) and a matter action IM with derivatives (17). It is easy
to check that this combination generates the correct
Friedmann equations for the metric (8). Moreover, these
equations are correct for all k ∈ f−1; 0; 1g, so (19) must be
the correctly normalized classical action, even for an open
universe.
To complete our calculation, we express (19) in terms of

the conformal time coordinate η ¼ ηðtÞ, defined by

dη ¼ Ndt; η� ≡ ηðt�Þ; ð20Þ

and find that N drops out completely:

IG½aðηÞ� ¼
3V�
κ

Z
ηþ

η−

dη

�
−
�
da
dη

�
2

þ ka2
�
: ð21Þ

This classical action has exactly the form (1) we require.

III. COSMOLOGICAL QUANTUM BIAS

To calculate the cosmological effect of quantum bias, we
first compare the classical action (21) to the standard form
(1): formally identifying x → a, t → η, and m → −6V�=κ,
the quantum bias (2) becomes

ΔVeff ¼ −
4π2l4

pl

3V�κ

��
1 − 4ξ

dþ 1

d

�
ð∂aSÞ2

þ 2ð1 − 4ξÞ∂2
aS

�
; ð22Þ

where lpl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏκ=8π

p
is the Planck length.5 The bias ΔVeff

arises from the many quantum d.o.f. we have discarded by
describing the universe in terms of the single observable
aðηÞ—all the particles and inhomogeneities that could exist
within the spatial region χ ∈ ½0; χ��. Although we would
need a complete understanding of quantum gravity to
describe these fundamental d.o.f. in detail, the holographic
principle will suffice to fix their maximum entropy/infor-
mation S; we can then treat ξ and d as unknown constants,
to be determined by experiment.
I now claim that we can drop the ∂2

aS term in (22) and
simply write

ΔVeff ¼
4π2l4

pl

3V�κ

�
4ξ

dþ 1

d
− 1

�
ð∂aSÞ2: ð23Þ

There are two distinct reasons for this. The first is practical:
ð∂aSÞ2 ∼ S2=a2 is far bigger than ∂2

aS ∼ S=a2 whenever
the information capacity is very large, i.e., S ≫ 1. This will
always be the case for regions χ ∈ ½0; χ�� that are much
larger than the Planck length: aχ� ≫ lpl. We can take this
for granted as χ� → ∞ for k ∈ f0;−1g; for k ¼ 1, it can fail
only if the universe is Planckian (aπ ∼ lpl) and therefore
unsuitable for a semiclassical treatment anyway.
The second reason is theoretical: even though the ∂2

aS
contribution is tiny, it is not exactly zero, so it retains the
potential to break a symmetry of the classical theory. In
Appendix B, I show that this is indeed the case. The
classical theory has a gauge freedom NðtÞ and is also
invariant under a redefinition of the dynamical variable
a → aðãðtÞÞ; it turns out that the ∂2

aS term breaks this
combined symmetry. Therefore, to insist that ΔVeff respect
both these classical symmetries compels us to set ξ ¼ 1=4
and banish the ∂2

aS term entirely. The result is Eq. (23) with
the replacement �

4ξ
dþ 1

d
− 1

�
→

1

d
: ð24Þ

Given that we cannot properly interpret ξ or d without
reference to a theory of quantum gravity, it seems wise to
retain the full generality of ξ ∈ R, despite this symmetry
argument. Nonetheless, this discussion motivates us to
absorb ξ and d into a single dimensionless parameter

d̄≡
�
4ξ

dþ 1

d
− 1

�
−1

∈ R; ð25Þ

so that (23) becomes

ΔVeff ¼
4π2l4

pl

3V�κd̄
ð∂aSÞ2; ð26Þ

with d̄ ¼ d for the symmetric case ξ ¼ 1=4. As such, the
symmetry argument restricts d̄ ∈ N for the minimal model
of discarded d.o.f. (A2), while the generalization (A5)
allows d̄ ∈ Rþ. In general, we will use an overbar to label
the key dimensionless parameters of the theory.

A. Volumetric information capacity

Before we invoke the holographic principle, it is
instructive to first consider a counterfactual argument,
based on the naive idea that one should be able to store
information in every Planck volume independently. This
discussion will connect our work to the old cosmological
constant problem, and serve as a warm-up for the holo-
graphic calculation to come.

4For k ¼ −1,A0� ∼ 4V� as χ� → ∞, so (19) cannot be obtained
from the limit of (18).

5As covered in Appendix A, the path integral derivation of
ΔVeff ensures that (22) is valid for the general form
S ¼ SðaðηÞ; R η dη0fðaðη0ÞÞÞ, with ∂a derivatives acting on the
first argument of S only [22]. This includes the case S ¼
SðaðηÞ; ηÞ that will be most useful here.
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So suppose it were possible to store exactly n qubits in
every Planck volume. Then the information capacity of the
region χ ∈ ½0; χ�� would be

Sv ¼ n ln 2 · V�a3=l3
pl; ð27Þ

leading to a quantum bias (26) as follows:

ΔVeff ¼
12π2n2ðln 2Þ2V�a4

κl2
pld̄

: ð28Þ

We would then construct the semiclassical action (4) by
inserting quantum bias (28) into the classical action (21):

J G¼ IG½aðηÞ�−
Z

ηþ

η−

dηΔVeff

¼ 3V�
κ

Z
ηþ

η−

dη
�
−
�
da
dη

�
2

þka2−
4π2n2ðln2Þ2a4

l2
pld̄

�

¼ 3V�
κ

Z
tþ

t−

dt

�
−
_a2

N
þkNa2−

4π2n2ðln2Þ2Na4

l2
pld̄

�
: ð29Þ

But notice the quantum bias term closely resembles the
contribution from a cosmological constant,

IΛ ¼ −
1

κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p
Λ ¼ −

V�
κ

Z
tþ

t−

dtNa4Λ: ð30Þ

In other words, the semiclassical action (29) is

J G ¼ 3V�
κ

Z
tþ

t−

dt

�
−
_a2

N
þ kNa2 −

ΛeffNa4

3

�
; ð31Þ

with an effective cosmological constant

Λeff ¼
12π2n2ðln 2Þ2

l2
pld̄

: ð32Þ

For n; d̄ ∼ 1, we see that Λeff ∼ 10124Λobs reproduces the
enormous cosmological constant that normally arises from
summing zero-point energies up to the Planck scale.
A priori, there was no reason to expect a connection

between cosmological quantum bias (22) and vacuum
energy. Nonetheless, when we place independent d.o.f.
in each Planck volume (27) these two phenomena generate
the same cosmic acceleration (32). It is unclear whether this
resemblance is purely superficial or evidence of some
fundamental connection between vacuum energy and
quantum bias. The second option suggests an exciting
possibility: counting d.o.f. correctly (i.e., holographically)
may not only suffice to generate the cosmic acceleration we
do observe but also could explain away the large vacuum
energy predicted by quantum field theory. We leave this

discussion for another time, content to tackle the former
problem without a definitive answer to the latter.

B. Holographic information capacity

In fact, the volumetric formula (27) is wrong: informa-
tion cannot be stored in each Planck volume independently.
As detailed in Appendix C, quantum gravity considerations
(the holographic principle [23–26] and black hole com-
plementarity [44,45]) lead us instead to the following
formula for the information capacity of the region χ ∈
½0; χ�� at conformal time η:

Shða; ηÞ ¼
Aðη̄ − ηÞa2

4l2
pl

·
μ̄V�

Vðη̄ − ηÞ ; ð33Þ

where η̄ is the final conformal time (the limiting value of η
in the far future), μ̄ ¼ 1=ð24 ln 2 − 15Þ ≈ 0.61142 is a
numerical constant, and the functions Að·Þ and Vð·Þ
measure the comoving area and volume of a sphere
(10). In Eq. (33) the first fraction quantifies the information
capacity of a sphere the size of the cosmological event
horizon, and the second fraction is the number of these
spheres inside χ ∈ ½0; χ��. (The filling factor μ̄ accounts for
the organization of holographic information in spacetime;
see Appendix C for details.) In Sec. V D, we will con-
firm that η̄ really is the final conformal time: quantum bias
ΔVeff generates cosmic acceleration that inevitably sends
aðηÞ → ∞ as η → η̄.
The derivation of (33) assumes that the universe is

expanding _a > 0, and that the event horizon is far smaller
than the radius of spatial curvature: jkjðη̄ − ηÞ ≪ 1. For our
universe, these assumptions can break down only at very
early times, either during inflation or before a big bounce.
Hence, Eq. (33) is certainly suitable for a theory of late-
time cosmic acceleration. (I will revisit these assumptions
in a future publication, when I examine the role of quantum
bias in the very early universe.) At the very least, a reader
who is skeptical of the arguments in Appendix C can
always take (33) to be a well-motivated holographic
hypothesis, the cosmological consequences of which we
will now examine in detail.
We begin, as with the volumetric case, by calculating the

quantum bias (26),

ΔVeff ¼
3π2μ̄2V�

κd̄

�
Aðη̄ − ηÞ
3Vðη̄ − ηÞ

�
2

a2: ð34Þ

Once again, this combines with the classical action (21) to
form the semiclassical action (4),
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J G½aðηÞ� ¼ IG½aðηÞ� −
Z

ηþ

η−

dηΔVeff

¼ 3V�
κ

Z
ηþ

η−

dη

�
−
�
da
dη

�
2

þ ka2

−
π2μ̄2

d̄

�
Aðη̄ − ηÞ
3Vðη̄ − ηÞ

�
2

a2
�
: ð35Þ

Notice that the integration limits η� determine the interval
over which this action defines the dynamics of the
spacetime. There is no reason to truncate our theory at
late times, so we must send ηþ → η̄. On the other hand, we
may want to keep η− as a cutoff at early times, for when
energy densities approach the Planck scale and the semi-
classical approximation breaks down. In general, the details
of this Planckian cutoff η− ∼ ηpl will only be relevant at
very early times; after the end of inflation, we can model
the universe as containing only matter and radiation, and
conflate the cutoff with the classical big bang: aðη−Þ ¼ 0.
Finally, we reexpress the semiclassical action (35) in

terms of the generic time coordinate t, so that we have two
dynamical variables ða;NÞ with which to derive the two
semiclassical Friedmann equations. Recalling the definition
of conformal time (20), the action (35) becomes

J G½aðtÞ; NðtÞ� ¼ 3V�
κ

Z
t̄

t−

dt

�
−
_a2

N
þ kNa2

−
�
AðR t̄

t Nðt0Þdt0Þ
3VðR t̄

t Nðt0Þdt0Þ
�

2

ḡNa2
�
; ð36Þ

where

ḡ≡ π2μ̄2

d̄
ð37Þ

is a convenient shorthand, and t̄ ∈ R ∪ f∞g is the final
value of the t coordinate,

lim
t→t̄

ηðtÞ ¼ η̄: ð38Þ

The semiclassical action (36) is the first major result of
this paper. Even though this action includes an unusual
“integral inside the integral” term, it will still define
well-behaved equations of motion. These are obtained in

the next section, by infinitesimal variations δaðtÞ and
δNðtÞ.

IV. SEMICLASSICAL FRIEDMANN EQUATIONS

The semiclassical Friedmann equations are the equations
of motion generated by the total semiclassical action,
comprising both gravitational and matter parts,

J ≡ J G þ IM: ð39Þ

[It is purely by convention that we absorb cosmological
quantum bias (34) into the gravitational action; really, it is a
correction to the total action, I → J .] As usual, these
equations follow by insisting that δJ ¼ 0 under arbitrary
infinitesimal variations δaðtÞ, δNðtÞ in the trajectories aðtÞ,
NðtÞ. Given that functional derivatives of the matter action
(17) are already known, our main task is to obtain the
derivatives δJ G=δaðtÞ and δJ G=δNðtÞ.

A. Functional derivatives

Rather than proceed directly from the general for-
mula (36) we first recall the assumption jkjðη̄ − ηÞ ≪ 1,
and hence use the series expansion�

AðχÞ
3VðχÞ

�
2

¼ 1

χ2
−
4k
15

þOðjkjχ2Þ ð40Þ

to neglect terms Oðjkjðη̄ − ηÞ2Þ in the action (36):

J G¼ 3V�
κ

Z
t̄

t−

dt
�
−
_a2

N
þ
�
1þ4ḡ

15

�
kNa2−

ḡNa2

ðR t̄
t Nðt0Þdt0Þ2

�
:

ð41Þ

It is straightforward to take the functional derivative of this
action with respect to the scale factor:

δJ G

δaðtÞ ¼
6V�
κ

�
d
dt

�
_a
N

�
þ
�
1þ 4ḡ

15

�
kNa−

ḡNa

ðR t̄
t Nðt0Þdt0Þ2

�
:

ð42Þ

However, the NðtÞ derivative requires a little more care.
Under a variation δNðtÞ, the action (41) changes by

δJ G ¼ 3V�
κ

Z
t̄

t−

dt

�
δNðtÞ

�
_a2

N2
þ
�
1þ 4ḡ

15

�
ka2 −

ḡa2

ðR t̄
t Nðt0Þdt0Þ2

�
þ 2ḡNa2

ðR t̄
t Nðt0Þdt0Þ3

Z
t̄

t
δNðt00Þdt00

�
: ð43Þ

We can then swap the order of integration in the last term:

Z
t̄

t−

dt

�
NðtÞ½aðtÞ�2
ðR t̄

t Nðt0Þdt0Þ3
Z

t̄

t
δNðt00Þdt00

�
¼

Z
t̄

t−

dt
Z

t̄

t
dt00

NðtÞ½aðtÞ�2δNðt00Þ
ðR t̄

t Nðt0Þdt0Þ3 ¼
Z

t̄

t−

dt00
Z

t00

t−

dt
NðtÞ½aðtÞ�2δNðt00Þ
ðR t̄

t Nðt0Þdt0Þ3 ; ð44Þ

which becomes
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Z
t̄

t−

dt00δNðt00Þ
�Z

t00

t−

dt
NðtÞ½aðtÞ�2
ðR t̄

t Nðt0Þdt0Þ3
�
¼

Z
t̄

t−

dtδNðtÞ
�Z

t

t−

dt00
Nðt00Þ½aðt00Þ�2
ðR t̄

t00 Nðt0Þdt0Þ3
�
; ð45Þ

after relabeling the dummy variables t ↔ t00. Hence, Eq. (43) is equivalent to

δJ G ¼ 3V�
κ

Z
t̄

t−

dtδNðtÞ
�
_a2

N2
þ
�
1þ 4ḡ

15

�
ka2 −

ḡa2

ðR t̄
t Nðt0Þdt0Þ2 þ 2ḡ

Z
t

t−

dt00
Nðt00Þ½aðt00Þ�2
ðR t̄

t00 Nðt0Þdt0Þ3
�
; ð46Þ

which implies

δJ G

δNðtÞ ¼
3V�
κ

�
_a2

N2
þ
�
1þ 4ḡ

15

�
ka2 −

ḡa2

ðR t̄
t Nðt0Þdt0Þ2 þ 2ḡ

Z
t

t−

dt00
Nðt00Þ½aðt00Þ�2
ðR t̄

t00 Nðt0Þdt0Þ3
�
: ð47Þ

B. Results

We now have all we need to assemble the semiclassical Friedmann equations. Combining Eqs. (17), (42), and (47), we
see that the total semiclassical action (39) is stationary if and only if

_a2

N2
¼ κ

3
ρa4 −

�
1þ 4ḡ

15

�
ka2 þ ḡa2

ðR t̄
t Nðt0Þdt0Þ2 − 2ḡ

Z
t

t−

dt00
Nðt00Þ½aðt00Þ�2
ðR t̄

t00 Nðt0Þdt0Þ3 ; ð48aÞ

d
dt

�
_a
N

�
¼ κ

6
ðρ − 3pÞa3N −

�
1þ 4ḡ

15

�
kNaþ ḡNa

ðR t̄
t Nðt0Þdt0Þ2 : ð48bÞ

Note that V� has dropped out of these equations, so we are now free to send χ� → ∞ as desired. Differentiating (48a) with
respect to t, and comparing the result with (48b), we see that the two equations are indeed consistent, provided matter obeys
the standard continuity equation:

a_ρþ 3_aðρþ pÞ ¼ 0: ð49Þ

As usual, NðtÞ is not determined by the dynamical equations. Instead, this function must be specified by a choice of
gauge, which fixes the physical meaning of the coordinate t. An intuitive representation of the dynamical equations is
achieved by setting NðtÞ ¼ 1=aðtÞ, so that t is the proper time τ of a comoving observer in the FRW spacetime (8). The
semiclassical Friedmann equations (48) then become

H2¼ κ

3
ρ−

�
1þ 4ḡ

15

�
k
a2

þ ḡa−2

ðR τ̄
τ

dτ0
aðτ0ÞÞ2

−
2ḡ
a4

Z
τ

τ−

dτ00
aðτ00Þ

ðR τ̄
τ00

dτ0
aðτ0ÞÞ3

; ð50aÞ

dH
dτ

þ 2H2 ¼ κ

6
ðρ − 3pÞ −

�
1þ 4ḡ

15

�
k
a2

þ ḡa−2

ðR τ̄
τ

dτ0
aðτ0ÞÞ2

; ð50bÞ

where H ≡ d ln a=dτ is the Hubble parameter. Subtracting (50a) from (50b) we can also obtain the acceleration equation:

1

a
d2a
dτ2

¼ dH
dτ

þH2 ¼ −
κ

6
ðρþ 3pÞ þ 2ḡ

a4

Z
τ

τ−

dτ00
aðτ00Þ

ðR τ̄
τ00

dτ0
aðτ0ÞÞ3

: ð51Þ

This confirms our basic hypothesis—quantum bias (34)
does indeed generate cosmic acceleration, without the need
for a cosmological constant, dark energy, or modified
gravity. Note that ḡ > 0 gives quantum bias the correct
sign, producing positive cosmic acceleration. This sign is
guaranteed by the symmetry-breaking argument of

Appendix B: we are forced to set ξ ¼ 1=4 in the definition
(25) and hence restrict d̄ ∈ N for the minimal model (A2)
or d̄ ∈ Rþ for the generalization (A5); in either case, we
have ḡ≡ π2μ̄2=d̄ > 0.
To study this new form of cosmic acceleration (51) in

detail, we must, of course, solve the semiclassical
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Friedmann equations. To this end, the gauge NðtÞ ¼ 1 is an
extremely profitable choice: t is then equivalent to con-
formal time (20) and the semiclassical Friedmann equa-
tions (48) simplify to

�
da
dη

�
2

¼ κ

3
ρa4 −

�
1þ 4ḡ

15

�
ka2 þ ḡa2

ðη̄ − ηÞ2

− 2ḡ
Z

η

η−

dη0
½aðη0Þ�2
ðη̄ − η0Þ3 ; ð52aÞ

d2a
dη2

¼ κ

6
ðρ − 3pÞa3 −

�
1þ 4ḡ

15

�
kaþ ḡa

ðη̄ − ηÞ2 :

ð52bÞ

In the next section, we will find exact solutions to these
equations, for k ¼ 0.

V. SPATIALLY FLAT UNIVERSE WITH
MATTER AND RADIATION

Let us model the universe as a spatially flat FRW
spacetime (8) containing pressure-free matter (so-called
“dust”) and radiation. In other words, we set k ¼ 0 and

ρ ¼ ρm0a30
a3

þ ρr0a40
a4

; p ¼ ρr0a40
3a4

: ð53Þ

Here, ρm0 is the energy density of matter and ρr0 the energy
density of radiation, when the scale factor has some
arbitrary reference value a ¼ a0. (Typically, we interpret
fa0; ρm0; ρr0g as “present-day” values.) The semiclassical
Friedmann equations (52) are therefore

�
da
dη

�
2

¼ κ

3
ðρm0a30aþ ρr0a40Þ þ

ḡa2

ðη̄ − ηÞ2

− 2ḡ
Z

η

0

dη0
½aðη0Þ�2
ðη̄ − η0Þ3 ; ð54aÞ

d2a
dη2

¼ κ

6
ρm0a30 þ

ḡa
ðη̄ − ηÞ2 ; ð54bÞ

where the cutoff η− has been placed at the big bang,

η− ¼ 0; lim
η→0

aðηÞ ¼ 0: ð55Þ

As with our preceding analysis, we ignore the details of the
very early universe, including inflation and the possibility
of a big bounce.6

A. Derivation

Let us first simplify our notation. We define the constants

βm ≡ η̄2κρm0a30
3

; βr ≡ η̄2κρr0a40
3

; ð56Þ

and express the conformal time in terms of the variable

u≡ η̄ − η

η̄
: ð57Þ

This recasts the dynamical equations (54) as

�
da
du

�
2

¼ βmaþ βr þ
ḡa2

u2
− 2ḡ

Z
1

u
du0

½aðu0Þ�2
u03

; ð58aÞ

d2a
du2

¼ βm
2

þ ḡa
u2

; ð58bÞ

which we shall now proceed to solve.
To obtain the general solution of (58b), note that the

homogeneous equation

d2a
du2

¼ ḡa
u2

ð59Þ

has general solution

a ¼ Cþuð1þ
ffiffiffiffiffiffiffiffi
4ḡþ1

p Þ=2 þ C−uð1−
ffiffiffiffiffiffiffiffi
4ḡþ1

p Þ=2; ð60Þ

for arbitrary constants C�. Let us write this as

a ¼ Cþuð1þγ̄Þ=2 þ C−uð1−γ̄Þ=2; ð61Þ

where

γ̄ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ḡþ 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2μ̄2

d̄
þ 1

s
ð62Þ

repackages the unknown constant d̄ in a convenient
fashion. We will generally be interested in γ̄ > 1, which
corresponds to positive cosmic acceleration: ḡ > 0 in
Eq. (51). Beyond this, the solutions (61) remain well
defined for all ḡ ≥ −1=4, and we can take γ̄ ≥ 0 without
loss of generality. (As there are no real solutions for
ḡ < −1=4, such values are completely untenable.)
In addition to the homogeneous solutions (61) we require

a particular integral. It is easy to check that

a ¼ βm
4 − 2ḡ

u2 ¼ 2βm
9 − γ̄2

u2 ð63Þ

satisfies the second semiclassical equation (58b); hence

6The behavior of aðηÞ at very early times (e.g., during
inflation) will slightly affect the value of the integral in Eq. (54a);
however, this section of the integral is far smaller than all the
other terms and can safely be neglected. (We will prove this in a
future publication, when we cover the very early universe in
detail.) As such, the postinflationary universe (54) can be treated
as though it began with a classical big bang (55).
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a ¼ 2βm
9 − γ̄2

u2 þ Cþuð1þγ̄Þ=2 þ C−uð1−γ̄Þ=2 ð64Þ

is its general solution.
We now impose the following conditions on the scale

factor (64):

aju¼1 ¼ 0; ð65aÞ
da
du

����
u¼1

¼ −
ffiffiffiffi
βr

p
: ð65bÞ

The first equation (65a) is simply the big bang condition
(55) expressed in terms of u. The second (65b) ensures that
the other Friedmann equation (58a) is satisfied at u ¼ 1,
with the negative root providing an expanding universe:
da=dη > 0. In fact, this condition guarantees that (58a) is
satisfied for all u. To see this clearly, move all the terms in
(58a) to one side of the equation and call this sum EðuÞ.
Differentiating with respect to u, one finds that E0ðuÞ
vanishes whenever (58b) is satisfied, so our solution (64)
guarantees E0ðuÞ ¼ 0 ∀ u. Given that (65b) sets Eð1Þ ¼ 0,
we conclude that EðuÞ ¼ Eð1Þ − R

1
u E

0ðu0Þdu0 ¼ 0, mean-
ing that Eq. (58a) is satisfied for all u. Thus, the conditions
(65) ensure that our solution (64) solves both semiclassical
Friedmann equations (58) and has a big bang at η ¼ 0.
Inserting (64) into (65) we obtain

2βm
9 − γ̄2

þ Cþ þ C− ¼ 0; ð66aÞ
4βm
9 − γ̄2

þ 1þ γ̄

2
Cþ þ 1 − γ̄

2
C− ¼ −

ffiffiffiffi
βr

p
; ð66bÞ

and hence

C� ¼∓ 1

γ̄

�
βm

3 ∓ γ̄
þ

ffiffiffiffi
βr

p �
: ð67Þ

Substituting these coefficients back into Eq. (64) we obtain
the general solution

a ¼ βm
γ̄

�
2γ̄u2

9 − γ̄2
−
uð1þγ̄Þ=2

3 − γ̄
þ uð1−γ̄Þ=2

3þ γ̄

�

−
ffiffiffiffi
βr

p
γ̄

ðuð1þγ̄Þ=2 − uð1−γ̄Þ=2Þ; ð68Þ

which also determines the proper time since the big bang,

τ ¼
Z

η

0

dη0aðη0Þ ¼ η̄

Z
1

u
du0aðu0Þ

¼ 2η̄βm
γ̄ð9 − γ̄2Þ

�
γ̄

3
ð1 − u3Þ þ uð3þγ̄Þ=2 − uð3−γ̄Þ=2

�

þ 2η̄
ffiffiffiffi
βr

p
γ̄

�
2γ̄

9 − γ̄2
þ uð3þγ̄Þ=2

3þ γ̄
−
uð3−γ̄Þ=2

3 − γ̄

�
: ð69Þ

This completes the task of solving the semiclassical
Friedmann equations (48). Equations (68) and (69) are
parametric solutions a ¼ aðuÞ, τ ¼ τðuÞ, u ∈ ½0; 1� that
generate the expansion history aðτÞ of a spatially flat
universe (containing matter and radiation) accelerated by
holographic quantum bias (34). In addition to faðuÞ; τðuÞg
we can also write down a simple parametric expression for
the conformal time that has elapsed since the big bang,

η ¼ η̄ð1 − uÞ; ð70Þ

as follows directly from the definition of u (57). In the next
section, we will express results (68)–(70) in a more useful
form and extract the behavior of key cosmological
observables.

B. Cosmological solutions

For the sake of brevity, we write the parametric solutions
(68)–(70) as

a ¼ βm½F0̄
γðuÞ þ αG0̄

γðuÞ�; ð71aÞ
u ∈ ½0; 1�∶ τ ¼ −η̄βm½Fγ̄ðuÞ þ αGγ̄ðuÞ�; ð71bÞ

η ¼ η̄ð1 − uÞ; ð71cÞ

having introduced the functions

Fγ̄ðuÞ≡ −2
γ̄ð9 − γ̄2Þ

�
γ̄

3
ð1 − u3Þ þ uð3þγ̄Þ=2 − uð3−γ̄Þ=2

�
;

Gγ̄ðuÞ≡ −2
γ̄

�
2γ̄

9 − γ̄2
þ uð3þγ̄Þ=2

3þ γ̄
−
uð3−γ̄Þ=2

3 − γ̄

�
; ð72Þ

and the ratio

α≡ ffiffiffiffi
βr

p
=βm: ð73Þ

The aim of this section is to eliminate the unfamiliar
quantities fη̄; βm;αg and connect the solutions (71) to
standard cosmological observables.
Consulting definitions (56) and (73), we begin by

expressing the density parameters as follows:

Ωm ≡ κρm
3H2

¼ κρm0a30=a
3

3H2
¼ βm

a
·

1

ðaη̄HÞ2 ;

Ωr ≡ κρr
3H2

¼ κρr0a40=a
4

3H2
¼

�
αβm
a

�
2

·
1

ðaη̄HÞ2 : ð74Þ

Notice that the factors on the right can be calculated
directly from the expansion histories (71): clearly
βm=a ¼ ½F0̄

γðuÞ þ αG0̄
γðuÞ�−1, and

aη̄H ¼ η̄
da
dτ

¼ −
F00̄
γ ðuÞ þ αG00̄

γ ðuÞ
F0̄
γðuÞ þ αG0̄

γðuÞ
: ð75Þ
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Hence, the densities (74) become

Ωm ¼ F0̄
γðuÞ þ αG0̄

γðuÞ
½F00̄

γ ðuÞ þ αG00̄
γ ðuÞ�2

; ð76aÞ

Ωr ¼
α2

½F00̄
γ ðuÞ þ αG00̄

γ ðuÞ�2
: ð76bÞ

When evaluated at the current time u ¼ u0, the above
formulas determine the present-day density parameters
fΩm0;Ωr0g. As such, Eqs. (76) allow us to convert the
new variables fu0; αg into standard observables fΩm0;Ωr0g
for each value of the fundamental constant γ̄. In fact, we can
solve Eq. (76b) explicitly,7

α ¼ −F00̄
γ ðu0Þ

ðΩr0Þ−1=2 þG00̄
γ ðu0Þ

; ð77Þ

which allows us to eliminate αwhenever we wish. Inserting
this result into Eq. (76a) we then obtain a formula
Ωm0 ¼ Ωm0ðu0;Ωr0; γ̄Þ, which implicitly relates u0 to
fΩm0;Ωr0; γ̄g. However, without a closed-form solution
u0 ¼ u0ðΩm0;Ωr0; γ̄Þ we cannot completely eliminate u0
from our formalism. Instead, it is convenient to keep u0 as a
basic cosmological parameter—fixing the observer’s
“present day”—and determine Ωm0 with Eq. (76a).
With this in mind, we return to the solutions (71) and

study their behavior at u ¼ u0. In particular, we see

a0 ¼ βm½F0̄
γðu0Þ þ αG0̄

γðu0Þ�; ð78Þ

H0 ¼
�
1

a
da
dτ

�
u0

¼ −½F00̄
γ ðu0Þ þ αG00̄

γ ðu0Þ�
η̄βm½F0̄

γðu0Þ þ αG0̄
γðu0Þ�2

: ð79Þ

Solving these relations for η̄ and βm, and substituting the
result back into the solutions (71), we arrive at a particu-
larly useful representation of the predicted expansion
histories:

a
a0

¼ F0̄
γðuÞ þ αG0̄

γðuÞ
F0̄
γðu0Þ þ αG0̄

γðu0Þ
; ð80aÞ

τ ¼ ½Fγ̄ðuÞ þ αGγ̄ðuÞ�½F00̄
γ ðu0Þ þ αG00̄

γ ðu0Þ�
H0½F0̄

γðu0Þ þ αG0̄
γðu0Þ�2

; ð80bÞ

a0η ¼
u − 1

H0

·
F00̄
γ ðu0Þ þ αG00̄

γ ðu0Þ
F0̄
γðu0Þ þ αG0̄

γðu0Þ
; ð80cÞ

with the Hubble parameter given by

H
H0

¼ F00̄
γ ðuÞ þ αG00̄

γ ðuÞ
F00̄
γ ðu0Þ þ αG00̄

γ ðu0Þ
�
F0̄
γðu0Þ þ αG0̄

γðu0Þ
F0̄
γðuÞ þ αG0̄

γðuÞ
�
2

: ð80dÞ

Equations (76) and (80) represent the main predictions of
the theory, applicable to a spatially flat universe containing
matter and radiation. For given values fH0; u0;Ωr0; γ̄g,
these results describe the evolution of the scale factor,
proper time, conformal time, and matter/radiation densities,
as a function of u: from the big bang u ¼ 1, to present day
u ¼ u0, and into the distant future u → 0. Recall that Fγ̄

and Gγ̄ are defined in (72), α is set by Eq. (77), and

γ̄ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ḡþ 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2μ̄2

d̄
þ 1

s
ð81Þ

is a fundamental constant. [The numerical factor μ̄ ¼
1=ð24 ln 2 − 15Þ ≈ 0.61142 accounts for the arrangement
of holographic information in spacetime—see Appendix C.
The parameter d̄ depends on unknown details of the
discarded configuration space (25) but may be constrained
to d̄ > 0, or even d̄ ∈ N, by the invariance argument of
Appendix B.] For each expansion history (80) in the
theoretically well-motivated class γ̄ > 1, the universe under-
goes positive late-time acceleration (51) due to the quantum
bias (34) from its holographic information capacity (33).
For the remainder of this section, we will study the basic

properties of the predicted cosmologies (80); then, in
Sec. VI, we will make a detailed comparison with the
expansion histories of the standard ΛCDM model.

C. Limiting values of γ̄

At first glance, the functions (72) appear to break down
at γ̄ ¼ 0 and γ̄ ¼ 3. In fact, the limits γ̄ → 0 and γ̄ → 3 are
entirely well behaved:

lim
γ̄→0

Fγ̄ðuÞ ¼
−2
27

ð1 − u3 þ 3u3=2 ln uÞ;

lim
γ̄→0

Gγ̄ðuÞ ¼
−2
9

ð2þ u3=2ð3 ln u − 2ÞÞ; ð82aÞ

lim
γ̄→3

Fγ̄ðuÞ ¼
1

54
ð2ð1 − u3Þ þ 3ð1þ u3Þ ln uÞ;

lim
γ̄→3

Gγ̄ðuÞ ¼
1

9
ð1 − u3 þ 3 ln uÞ: ð82bÞ

Hence, the expansion histories (80) exist for all γ̄ ≥ 0.

D. Final conformal time

We are now in a position to check the self-consistency of
the theory, confirming that η̄ really is the final conformal
time (C6). Evaluating our solutions (71) in the limit u → 0,
we see that

7To ensure the correct sign when taking the square root of
Eq. (76b), consider the big bang limit u → 1, where Ωr → 1,
F00̄
γ ðuÞ → 0, and G00̄

γ ðuÞ → −1.
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lim
η→η̄

a ¼

8>><
>>:

0; γ̄ ∈ ½0; 1Þ;
finite; γ̄ ¼ 1;

∞; γ̄ ∈ ð1;∞Þ;

lim
η→η̄

τ ¼
(
finite; γ̄ ∈ ½0; 3Þ;
∞; γ̄ ∈ ½3;∞Þ: ð83Þ

For the well-motivated values γ̄ > 1, we recover exactly
what we need: an accelerating expanding universe that
attains infinite expansion as η approaches η̄. For γ̄ ∈ ð1; 3Þ
the universe ends in a big rip in finite proper time, while for
γ̄ ∈ ½3;∞Þ the limit η → η̄ is achieved asymptotically as
τ → ∞. In the next subsection, we will interpret these
behaviors in terms of an effective equation of state weff for
holographic quantum bias.
Before then, let us quickly comment on the remaining

(unphysical) values γ̄ ∈ ½0; 1�. For γ̄ ∈ ½0; 1Þ the universe
ends in a big crunch at η ¼ η̄. These solutions pass the basic
consistency check (η̄ is indeed the final conformal time) but
violate the assumption of an expanding universe _a > 0.
This assumption was used to derive the information
capacity (33) so the physical self-consistency of these
solutions remains dubious. Finally, there is the trivial value
γ̄ ¼ 1, which sets ḡ ¼ 0 and reduces the semiclassical
Friedmann equations (54) to the classical Friedmann
equations. These formulas make no reference to η̄, so
nothing special happens at η ¼ η̄ in this case.

E. Effective equation of state

It is often useful to think of quantum bias as though it were
a homogeneous fluid, contributing an effective energy-
density ρeff and pressure peff to the classical Friedmann
equations. Consulting the semiclassical Friedmann equa-
tions (52) for k ¼ 0, we see that this fictitious fluidmust have

κρeff ¼
3ḡ

a2ðη̄ − ηÞ2 −
6ḡ
a4

Z
η

0

dη0
½aðη0Þ�2
ðη̄ − η0Þ3 ;

κpeff ¼ −
ḡ

a2ðη̄ − ηÞ2 −
2ḡ
a4

Z
η

0

dη0
½aðη0Þ�2
ðη̄ − η0Þ3 ; ð84Þ

and equation of state

weff ≡ peff

ρeff
¼ −

a2

ðη̄−ηÞ2 þ 2
R η
0 dη

0 ½aðη0Þ�2
ðη̄−η0Þ3

3
�

a2

ðη̄−ηÞ2 − 2
R η
0 dη

0 ½aðη0Þ�2
ðη̄−η0Þ3

	 : ð85Þ

However, this description should not be taken too literally:
there is nothing to suggest that fρeff; peffg can be interpreted
locally in terms of a physical fluid. Indeed, the cosmological
quantum bias (34) only applies to a volume V� much larger
than the cosmological event horizon, so there is little reason
to believe in variations fδρeff ; δpeffg below this length
scale. As such, we should treat the effective dark fluid

as a purely global phenomenon, which only affects the
behavior of matter perturbations via the evolution of the
background aðτÞ.
To apply this formalism to our exact solutions (80) we

first rewrite the equation of state (85) in terms of the
variable u,

weff ¼ −
a2u−2 þ 2

R
1
u du

0½aðu0Þ�2u0−3
3ða2u−2 − 2

R
1
u du

0½aðu0Þ�2u0−3Þ : ð86Þ

At early times, we can write u ¼ 1 − ϵ and expand the scale
factor (80a) in powers of ϵ≡ η=η̄; using F0̄

γð1Þ¼G0̄
γð1Þ¼

F00̄
γ ð1Þ¼G000

γ̄ ð1Þ¼ 0, G00̄
γ ð1Þ¼−1 and F000

γ̄ ð1Þ ¼ 1=2, we
obtain

a
a0

¼ αϵþ ϵ2=4þOðϵ3Þ
F0̄
γðu0Þ þ αG0̄

γðu0Þ
: ð87Þ

Substituting this expansion into the equation of state (86)
we find

weff ¼ −
1

3
−
4

9
ϵþOðϵ2Þ: ð88Þ

In other words, quantum bias behaves as spatial curvature
wk ¼ −1=3, as we approach the initial singularity.
Intuitively, this is because the integrals in Eq. (84) are small
compared to the termsproportional to1=ðη̄−ηÞ2a2≈1=η̄2a2.
At late times, however, the integrals cannot be neglected.

Considering η → η̄, u → 0, the solutions (80a) behave as
follows:

a ∝ uð1−γ̄Þ=2ð1þOðumin fγ̄;ð3þγ̄Þ=2gÞÞ; ð89Þ
for γ̄ > 1. Hence, the equation of state (86) tends to

lim
η→η̄

weff ¼
3þ γ̄

3ð1 − γ̄Þ : ð90Þ

For γ̄ ∈ ð1; 3Þ, we see that quantum bias resembles phan-
tom dark energy (weff < −1) at late times, explaining the
big rips in Eq. (83). For these solutions (80) the physical
area of the cosmological event horizon AEH ¼
4π½aðηÞ�2ðη̄ − ηÞ2 ∼ u3−γ̄ → 0 at late times (u → 0) causing
ρeff ∼ 1=AEH to grow without bound. The other values γ̄ ∈
ð3;∞Þ generate nonphantom behavior (−1 < weff < −1=3)
at late times, which accelerates the universe over
unbounded proper time. We also note that the special case
γ̄ ¼ 3 has weff → −1, converging on the equation of state of
a cosmological constant. Hence the special solution (82b)
must tend to de Sitter spacetime in the asymptotic future.
The transition from early times (88) to late times (90) is

illustrated in Fig. 1. For numerical calculations, it is often
useful to eliminate the integrals from formula (86) using the
first semiclassical Friedmann equation (58a). If we then
insert the scale factor solution (71a), we arrive at
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weff ¼
ðγ̄2 − 1Þ½F0̄

γ þ αG0̄
γ�2

6u2ðα2 þ F0̄
γ þ αG0̄

γ − ½F00̄
γ þ αG00̄

γ �2Þ
þ 1

3
; ð91Þ

which is a purely algebraic function of fu; α; γ̄g.

VI. COMPARISON WITH ΛCDM

Rather than attempt a full comparison with observational
data here, we can assess the plausibility of the theory by
comparing its predicted expansion histories (80) to those of
ΛCDM. This should assuage fears that the model can be
dismissed “out of hand” as inconsistent with observations.
A few notes before we start our comparison:
(i) We will ignore radiation (Ωr ¼ 0) in the following

analysis. This approximation is sufficient to describe
the universe as far back as recombination
a ¼ a� ≈ a0=1100, when quantum bias will be seen
to be negligible: ρeff�=ρm� < 10−4. We can also be
sure that ρeff is irrelevant at earlier times, due to its
primordial equation of state (88).

(ii) Notation: We shall refer to the new theory as
quantum-bias cosmology, or QB cosmology. Here
we will study QB-CDM cosmologies, which include
the standard cold dark matter component. I shall
distinguish ΛCDM quantities from QB-CDM quan-
tities with superscripts (Λ) and (QB).

We now begin by describing the behavior of the standard
ΛCDM universe.

A. ΛCDM cosmology

According to the classical Friedmann equations, a flat
universe k ¼ 0, containing only matter ρm ∝ a−3 and a
cosmological constant Λ > 0, expands according to

aðΛÞ

aðΛÞ0

¼
�
sinhðvÞ
sinhðv0Þ

�
2=3

; ð92aÞ

τðΛÞ ¼ 2v

3HðΛÞ
0 tanhðv0Þ

; ð92bÞ

aðΛÞ0 ηðΛÞ ¼ 2 coshðv0Þ
3HðΛÞ

0 ½sinhðv0Þ�1=3
Z

v

0

dv0

½sinhðv0Þ�2=3 ; ð92cÞ

HðΛÞ

HðΛÞ
0

¼ tanhðv0Þ
tanhðvÞ : ð92dÞ

These equations express the standard cosmological
behavior [46] in a form akin to the QB-CDM expansion
histories (80) we previously derived. For ΛCDM, the time
coordinate v runs from the big bang v ¼ 0, to the present
day v ¼ v0, and then into the far future v → ∞. As the
counterpart to Eq. (76a) we can express the matter density
parameter as

ΩðΛÞ
m ¼ ½coshðvÞ�−2; ð93Þ

which also implies

v0 ≡ cosh−1½ðΩðΛÞ
m0 Þ−1=2�: ð94Þ

The ΛCDM cosmologies (92) are determined by two

parameters: fHðΛÞ
0 ; v0g, or equivalently fHðΛÞ

0 ;ΩðΛÞ
m0 g. In

comparison, the QB-CDM expansion histories (80) have a
single extra parameter: once radiation has been neglected

(α ¼ 0) we are left with fHðQBÞ
0 ; u0; γ̄g.

B. Matching conditions

We will explore the full fHðQBÞ
0 ; u0; γ̄g parameter space

in a future publication, when we test QB-CDM against
actual data. Our present aim is more modest: we wish to see
how closely QB-CDM can resemble the standard ΛCDM
model of our universe, and hence identify the range of

plausible γ̄. To this end, we shall fix fHðQBÞ
0 ; u0g by fiat—

insisting that the QB-CDM universe has the same present-
day matter content

ρðQBÞm0 ¼ ρðΛÞm0 ð95aÞ

and conformal age

aðQBÞ0 ηðQBÞ0 ¼ aðΛÞ0 ηðΛÞ0 ð95bÞ

FIG. 1. The behavior of the matter density ρm (black line) and
the effective dark energy density ρeff (colored lines) as the
universe expands. For the sake of clarity, we neglect radiation
(Ωr ¼ 0 ⇔ α ¼ 0) and use reference values fρm⋆; a⋆g such that
the early-time asymptote passes through the origin, for each value
of γ̄. [Specifically, ρm⋆ ¼ ρmðu⋆Þ, a⋆ ¼ aðu⋆Þ, with u⋆ solving
F0̄
γðu⋆Þ ¼ 4=ðγ̄2 − 1Þ.] In general, the early-time behavior (88) is

accurate during the matter-dominated era ρeff ≪ ρm, but breaks
down as ρeff approaches ρm. While ρeff ≈ ρm, the effective
equation of state weff becomes more negative, and hence the
gradient d ln ρeff=d ln a increases. Ultimately, quantum bias
dominates ρeff ≫ ρm, and weff converges on its final value
(90). For γ̄ ∈ ð1; 3Þ, the dark energy density ρeff always has a
turning point when ρeff ≈ ρm; the neighborhood of this minimum
resembles the current state of our universe: Ωm ≈ 1=2, weff ≈ −1.
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as the ΛCDM universe that best fits the observations from

Planck [8]: HΛ
0 ≅ 67 km s−1 Mpc−1, ΩðΛÞ

m0 ≅ 0.31. Roughly
speaking, the first matching condition (95a) introduces the
correct amount of dark matter into QB-CDM, while the
second condition (95b) fixes the angular diameter distance
of the surface of last scattering. Of course, this exact
agreement is overly restrictive: in reality, our estimates of
ρm0 and a0η0 have experimental uncertainty and are
(weakly) model dependent. Nonetheless, it is an interesting
exercise to adopt this common ground as a simplifying
assumption and then examine how the other predictions of
QB-CDM differ from ΛCDM. In this fashion, we will
obtain a conservative appraisal of QB-CDM, confident that
a better fit can be obtained by relaxing the assumptions
above.

C. Comparison

Inserting Eqs. (76a) and (93) into (95a), and Eqs. (80c)
and (92c) into (95b), we see that the “matched” cosmol-
ogies obey

1 − u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0̄
γðu0Þ

q ¼ 2

3½sinhðv0Þ�1=3
Z

v0

0

dv

½sinhðvÞ�2=3 ; ð96aÞ

HðQBÞ
0

HðΛÞ
0

¼ −F00̄
γ ðu0Þ

coshðv0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0̄
γðu0Þ

q : ð96bÞ

Recalling that v0 is set by Eq. (94), we can use equa-

tions (96a) and (96b) to fix u0 and HðQBÞ
0 in turn. The

fundamental constant γ̄ remains as our only free parameter.
To compare QB-CDM against ΛCDM, we contrast the

expansion rate H, and angular diameter distance DA≡
aðηÞ · ðη0 − ηÞ, as a function of redshift z≡ ða0=aÞ − 1.
Using the expansion histories (80), (92), and the matching
Eqs. (96) we obtain

δH
H

≡
�
HðQBÞ −HðΛÞ

HðΛÞ

�
zðQBÞ¼zðΛÞ

¼ − tanhðvzÞ½F0̄
γðu0Þ�3=2F00̄

γ ðuÞ
sinhðv0Þ½F0̄

γðuÞ�2
− 1 ð97Þ

and

δDA

DA
≡

�
DðQBÞ

A −DðΛÞ
A

DðΛÞ
A

�
zðQBÞ¼zðΛÞ

¼ 3½sinhðv0Þ�1=3ðu − u0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0̄
γðu0Þ

q R
v0
vz

dv0½sinhðv0Þ�−2=3
− 1; ð98Þ

where

vz ≡ sinh−1
��

F0̄
γðuÞ

F0̄
γðu0Þ

�
3=2

sinhðv0Þ
�

ð99Þ

is thevalue of v that achieves zðΛÞ ¼ zðQBÞ. Aswemove from
the big bangu ¼ 1, to the present day u ¼ u0, Eqs. (97)–(99)
describe the fractional difference in H and DA, between
QB-CDM and ΛCDM universes with the same present-day
matter density (95a) and conformal age (95b), compared at
equal redshift.

D. Results

Using the formulas above, we plot the behavior of
δH=H, δDA=DA, and aðτÞ in Fig. 2. There are a number
of details to notice:

(i) There is no γ̄ for which there is absolute agreement
δHðzÞ ¼ 0 over the entire cosmic history. In general,
QB-CDM cannot reproduce ΛCDM to arbitrary
accuracy.8 The new theory is therefore falsifiable.

(ii) In general, there is close agreement between QB-
CDM and ΛCDM at early times. This occurs for two
reasons. First, the primordial equation of state (88)
ensures that ρeff becomes negligible as a → 0. (For
example, γ̄ ¼ 1.6 has ρeff�=ρm� ≈ 8 × 10−5 at
z� ≈ 1100.) Second, the matching conditions (95)
have “calibrated” the QB cosmologies such that
the limits κρm 0 ¼ lima→0f3H2a3=a30g and a0η0 ¼
lima→0fDAa0=ag agree exactly with ΛCDM. Con-
sequently, the QB cosmologies considered here will
be consistent with observations of the cosmic micro-
wave background (CMB). Indeed, a more realistic
treatment would account for the experimental un-
certainty in ρ0 and a0η0: small deviations would be
tolerated at a ¼ 0, allowing closer agreement at
late times.

(iii) At late times, the QB cosmologies diverge from
ΛCDM and each other. Hence, γ̄ will be well
constrained by direct measurements of the Hubble
constant H0. At present, there is significant tension
between the directly measured H0 ¼ ð73.52�
1.62Þ km s−1 Mpc−1 from standard candles in the
local universe [47,48], and ΛCDM constrained by

CMB data: HðΛÞ
0 ¼ ð67.66� 0.42Þ km s−1Mpc−1

[8]. As the second plot shows, values near γ̄ ≈ 1.6
are able to resolve this tension, generating a
deviation of δH0=H0 ≈ 5% that would reconcile
the present-day expansion rate with observations
of the early universe.

8Sending γ̄ → 1 (⇒ ḡ → 0) will remove quantum bias from
the semiclassical Friedmann equations (48); however, this does
not recreate ΛCDM. There is no cosmological constant in QB-
CDM, so this limit corresponds to a classicalΩm ¼ 1 Einstein–de
Sitter universe, which does not accelerate.
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(iv) At moderate redshift, baryon acoustic oscillations
(BAOs) will provide the tightest constraints on QB-
CDM. The distances to redshifts near z ¼ 0.5 have
been measured to a precision of roughly 1% [49] and
found to be consistent with CMB-constrained
ΛCDM [8]. Consulting the third plot, we see that
QB-CDMwith γ̄ ≈ 1.5 cannot be distinguished from
ΛCDM by these measurements. Moreover, these
values naturally resolve the aforementioned Hubble
tension: δH0=H0 ≈ 10%. Once the matching con-
ditions (95) are relaxed, the constraint on γ̄ will
loosen—nonetheless, it appears that current BAO
measurements will favor values near γ̄ ≈ 1.6 and
select QB cosmologies with slightly larger H0

than ΛCDM.
(v) The favored values γ̄ ≈ 1.6 have an effective equa-

tion of state (85) that is phantom weff < −1 at late
times (90). We see the consequences (83) of this
feature in the fourth plot: the QB universes end in a
big rip at τ̄=τ0 ≈ 1.7.

This brief analysis suggests that current measurements
cannot distinguish QB-CDM from ΛCDM, at least for

some values of the parameters fHðQBÞ
0 ; u0; γ̄g. It is therefore

unlikely that QB-CDM can be ruled out with present data.
In a future paper, I will confront the theory with observa-
tional data directly, inferring a posterior distribution for

fHðQBÞ
0 ; u0; γ̄g without using ΛCDM as a reference model.

VII. CONCLUSIONS

We have motivated and developed a new fundamental
theory of cosmic acceleration (quantum-bias cosmology)
that does not require dark energy or modified gravity.
Instead, the expansion of the universe is accelerated by a
subtle quantum phenomenon [21,22] that emerges in any
system with information capacity S that depends on a
dynamical variable. In general, a quantum correction (2)
induces a bias in the behavior of the system (3) that forces it
off its classical trajectory; one accounts for this effect
semiclassically by including the bias in the action (4).
Quantum-bias cosmology brings this formalism to bear on
the universe as a whole, with the cosmological information
capacity (33) quantified according to the holographic
principle (Appendix C). Once quantum bias (34) has been
included in the cosmological action (36), we arrive at
semiclassical Friedmann equations (48) in which cosmic
acceleration (51) arises automatically:

1

a
d2a
dτ2

¼ −
κ

6
ðρþ 3pÞ þ 2ḡ

a4

Z
η

0

dη0
½aðη0Þ�2
ðη̄ − η0Þ3 ; ð100Þ

which depends on the past behavior of the scale factor. We
have solved the semiclassical Friedmann equations for a
spatially flat universe containing matter and radiation (80).

FIG. 2. The QB-CDM expansion histories (80) are compared to

ΛCDM (92) with ΩðΛÞ
m0 ¼ 0.31. As explained in Sec. VI B, the

parameters fHðQBÞ
0 ; u0g have been chosen so that the two models

are in exact agreement over the present-day matter density (95a)
and conformal age of the universe (95b). The two topmost graphs
show the fractional difference in the Hubble expansion rate (97)
at each redshift: first for the wide range of values 1.3 ≤ γ̄ ≤ 5
used in Fig. 1; then for a small group γ̄ ∈ f1.5; 1.6; 1.7; 1.8g that
agrees with ΛCDM most closely. The third graph depicts the
fractional difference in the angular diameter distance (98) for the
narrow range of γ̄. Finally, the scale factor is plotted as a function
of proper time, for γ̄ ∈ f1.5; 1.6; 1.7; 1.8g and ΛCDM. Here,

vertical dotted lines indicate the proper times τ̄ðQBÞ=τðΛÞ0 ≈
f1.46; 1.65; 1.89; 2.17g at which the respective QB cosmologies
undergo a big rip.
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As shown in Fig. 2, these solutions succeed in reproducing
the predictions of ΛCDM to within the accuracy of current
observations. We conclude that quantum bias provides
cosmic acceleration “for free,” consistent with experiment,
as a natural consequence of treating the universe as a
holographic quantum system.
Free parameter. QB-CDM introduces a single unknown

dimensionless constant γ̄ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ḡþ 1

p
. For no value of γ̄ is

there an exact match between the predictions of QB-CDM
and ΛCDM, so the new theory is falsifiable. A preliminary
analysis (Sec. VI) suggests that CMBþ BAO observations
favor γ̄ ≈ 1.6, generating slightly larger values of H0 than
ΛCDM. (In a subsequent paper, I will determine whether
this effect can resolve the well-known tension between
local measurements of H0 [47,48] and the CMB [8].) The
quantity ḡ ¼ π2μ̄2=d̄ is set by a numerical filling factor
μ̄ ¼ 1=ð24 ln 2 − 15Þ ≈ 0.61142 that accounts for the
organization of holographic information in spacetime
(C27) and a constant d̄, defined by Eq. (25), which depends
on unknown details of the cosmological configuration
space (Appendix A). In the future, we will investigate
whether d̄ can be derived from fundamental theory.
Coincidence. The favored values γ̄ ≈ 1.6 predict a big rip

at τ̄ ≈ 1.7 × τ0. This prediction ameliorates the coincidence
problem [50] because there is no longer an infinite future
(with ΩΛ ≅ 1) where we should expect to find ourselves
[27,51]. Instead, QB-CDM places us at a rather typical
point in cosmological history, roughly halfway between the
initial singularity a ¼ 0, and the final singularity a ¼ ∞.
Fine tuning. In quantum-bias cosmology, the magnitude

of cosmic acceleration (100) is essentially determined by
the area of the cosmological event horizon. (This is the
reverse of the usual view, wherein Λ sets the size of the
horizon.) Hence, we can seek to explain the extremely
small valueΛobs ∼ 10−122=l2

pl as the result of some physical
process that expands this area at early times. Inflation is the
obvious candidate for such a mechanism, conceivably
solving the fine-tuning problem in the same fashion as
the flatness problem. I will investigate this possibility in a
future publication, when I extend quantum-bias cosmology
to the very early universe.
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APPENDIX A: DISCARDED DEGREES
OF FREEDOM

Here we summarize the derivation of the quantum-bias
formula

ΔVeff ¼
ℏ2

8m

��
1 − 4ξ

dþ 1

d

�
ð∂xSÞ2 þ 2ð1 − 4ξÞ∂2

xS
�
ðA1Þ

and briefly discuss how this result might be generalized.
In the first paper of this series [21], Eq. (A1) is derived

by modeling the full configuration space of the classical
system (1) as a warped manifold,

ds2 ¼ dx2 þ e2SðxÞ=dgijðφÞdφidφj; ðA2Þ

so that the discarded variables φ ∈ Mφ cover a closed
d-dimensional submanifold of physical volume vol½Mφ� ∝
exp½SðxÞ�. Once the system is quantized (and UV regu-
larized) the discarded Hilbert subspace Hφ then has
dim½Hφ� ∝ vol½Mφ� ∝ exp½SðxÞ� as required. (The con-
stants of proportionality, and the UV regulator, drop out of
the final result). The quantized system is evolved according
to a covariant Schrödinger equation over the curved
configuration space (A2); this equation is unique up to a
curvature-coupling term with constant coefficient ξ ∈ R,
the only significant quantization ambiguity. Once Hφ is
discarded, one arrives at a Schrödinger equation for the x
observable alone; therein, one finds the potential to be
Vcl þ ΔVeff , differing from the classical system (1) by the
above quantum correction (A1). Besides the constants ξ
and d, this result is completely independent of the internal
geometry of the discarded configuration space gijðφÞ. In
this sense, Eq. (A1) generically captures the effect of a
dynamic information capacity SðxÞ.
The path integral approach [22] allows us to extend this

reasoning to discarded d.o.f. with a history-dependent
information capacity

S ¼ S
�
x;
Z

t
dt0fðxðt0ÞÞ

�
; ðA3Þ

which includes S ¼ Sðx; tÞ as the special case f ¼ 1. The
formula (A1) is unchanged by this generalization, with the
∂x derivatives acting only on the first argument of S. (In
particular, unitary evolution ensures that ∂tS terms do not
appear.) The formula (A1) is therefore sufficiently powerful
to capture the most general form of cosmological infor-
mation capacity S ¼ Sða; R η dη0fðaðη0ÞÞÞ considered in
this paper.
Beyond the history-dependent extension (A3) of the

warped configuration space (A2) there does not appear
much to be gained. The warped metric can obviously be
generalized; however, these nonminimal models typically
introduce new functions λðxÞ that have no relation to the
discarded information capacity SðxÞ. Without a fundamen-
tal motivation for these new functions, and some physical
principles to constrain them, there is little reason to explore
such models in detail.
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As an alternative approach, we can ignore the structure
of configuration space entirely and simply write down the
most general ΔVeff that can be formed from fℏ; m;Sg and
∂x derivatives. With this method, dimensional consider-
ations restrict us to

ΔVeff ¼
ℏ2

m

X
k

½AkSkð∂xSÞ2 þ BkSk∂2
xS�; ðA4Þ

where fAk; Bk∶k ∈ Qg are a set of unknown dimensionless
constants. But notice that we can always redefine our
system (1) by including irrelevant d.o.f., i.e., discarded
variables φ0 that are completely independent of x and φ.
These redefinitions send S → S þ const, but cannot affect
the behavior of x; hence, they cannot cause more than a
shiftΔVeff → ΔVeff þ const. This argument forces us to set
Ak ¼ Bk ¼ 0 for all k ≠ 0, reducing our general construc-
tion (A4) to the standard form (A1). The net effect of this
abstraction is to replace ðξ; dÞ ∈ R × N with a slightly
larger parameter space ðA0; B0Þ ∈ R2 that has no obvious
physical interpretation. As far as the conclusions of this
paper are concerned, this generality is equivalent to
allowing d to take noninteger values.
To see how d ∉ N might arise concretely, consider

a separable discarded configuration space Mφ ¼
Mφð1Þ × � � � ×MφðNÞ, where each (dn-dimensional) sub-
manifold MφðnÞ scales at a different rate:

ds2 ¼ dx2 þ
XN
n¼1

e2αnSðxÞ=dngðnÞij ðφðnÞÞdφi
ðnÞdφ

j
ðnÞ: ðA5Þ

Here, we have introducedN free parameters αn ∈ R, but no
free functions. (In fact, there are only N − 1 free param-
eters: we need

P
nαn ¼ 1 to ensure vol½Mφ� ∝ exp½SðxÞ�.)

In this model, the discarded space not only changes size as
a function of x, it also changes shape. Rerunning the
derivation [21], one finds that the only modification to
Eq. (A1) is the replacement

�
1 − 4ξ

dþ 1

d

�
→

XN
n¼1

α2n

�
1 − 4ξ

dn þ 1

dn

�
; ðA6Þ

in the first term. For the cosmologically preferred value
ξ ¼ 1=4 (see Appendix B) the replacement (A6) becomes

1

d
→

XN
n¼1

α2n
dn

∈ Rþ; ðA7Þ

which can be realized in Eq. (A1) by allowing d to take
positive noninteger values.

APPENDIX B: NEW VARIABLES
AND GAUGE INVARIANCE

In this Appendix, we examine the extent to which
cosmological quantum bias (22) is consistent with two
key symmetries of the classical theory: (i) the gauge freedom
of the time coordinate, and (ii) our ability to redefine the
dynamical variable a ¼ fðãÞ. To keep this discussion self-
contained, let us briefly summarize the process by which the
semiclassical action (36) is derived.
Starting with the metric

ds2 ¼ ½aðtÞ�2ð−½NðtÞ�2dt2 þ dχ2 þ ½rkðχÞ�2dΩ2Þ; ðB1Þ
we first obtain the classical gravitational action (19):

IG½aðtÞ; NðtÞ� ¼ 3V�
κ

Z
tþ

t−

dt
�
−
_a2

N
þ kNa2

�
: ðB2Þ

The conformal time coordinate η ¼ ηðtÞ, defined by

dη ¼ Ndt; η� ≡ ηðt�Þ; ðB3Þ
then allows us to write the action (B2) in canonical form

IG½aðηÞ� ¼
3V�
κ

Z
ηþ

η−

dη

�
−
�
da
dη

�
2

þ ka2
�
: ðB4Þ

Comparing this action with Eq. (1), we formally identified
x → a, t → η, m → −6V�=κ; hence, the quantum bias (2)
becomes (22), and the semiclassical action (4) is

J G½aðηÞ� ¼
3V�
κ

Z
ηþ

η−

dη

�
−
�
da
dη

�
2

þ ka2

þQ1ð∂aSÞ2 þQ2∂2
aS

�
; ðB5Þ

where S ¼ Sða; ηÞ is the information capacity of the
discarded d.o.f., and

Q1 ≡
4π2l4

pl

9V2�

�
1 − 4ξ

dþ 1

d

�
;

Q2 ≡
8π2l4

pl

9V2�
ð1 − 4ξÞ ðB6Þ

depend on the unknown constants ξ and d. Finally, we
reexpress the semiclassical action (B5) in terms of the
generic time coordinate t,

J G½aðtÞ; NðtÞ� ¼ 3V�
κ

Z
tþ

t−

dt

�
−
_a2

N
þ kNa2

þ NðQ1ð∂aSÞ2 þQ2∂2
aSÞ

�
; ðB7Þ

so that the semiclassical Friedmann equations (48) can be
obtained by variations δaðtÞ, δNðtÞ.
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For the present discussion, the critical step above is the
selection of η as the time coordinate that renders IG in the
canonical form (B4). At first glance, it appears that η is
the only such coordinate that can achieve this goal,
allowing us to make contact with the quantum theory of
Sec. I A. However, suppose we define the scale factor using
an invertible differentiable function f,

a ¼ fðãðtÞÞ; ðB8Þ
and consider ãðtÞ and NðtÞ as our new dynamical variables.
Then the classical action (B2) becomes

ĨG½ãðtÞ; NðtÞ�≡ IG½fðãðtÞÞ; NðtÞ�

¼ 3V�
κ

Z
tþ

t−

dt

�
−
_̃a2

N
½f0ðãÞ�2 þ kN½fðãÞ�2

�
;

ðB9Þ

which takes on canonical form

ĨG½ãðη̃Þ� ¼
3V�
κ

Z
η̃þ

η̃−

dη̃

�
−
�
dã
dη̃

�
2

þ k½f0ðãÞfðãÞ�2
�
;

ðB10Þ

when we use a new time coordinate η̃ ¼ η̃ðtÞ, with

dη̃ ¼ ½f0ðãÞ�−2Ndt; η̃� ≡ η̃ðt�Þ; ðB11Þ

as its defining equations.
As far as the classical theory is concerned, the pair ðã; η̃Þ

stands on the same footing as ða; ηÞ. General covariance
regards η and η̃ as equally valid coordinates, and there is no
reason a priori that the spacetime (B1) should be para-
metrized by a, rather than ã ¼ 1=a or ã ¼ a2, say.
Furthermore, since ĨG½ãðη̃Þ� has the canonical form (1)
we are free to apply the quantum theory asserted in
Sec. I A, and hence derive a new semiclassical action
J̃ G½ãðη̃Þ�. The question is, will this J̃ G agree with the
semiclassical action (B7) derived with our original varia-
bles? In other words, does the ðã; η̃Þ ↔ ða; ηÞ equivalence
survive the quantum correction?
To answer this question, we shall calculate J̃ G explicitly

and see how it differs from J G. Exactly as before, we
compare the classical action (B10) to the standard (1) and
see that we must now identify x → ã, t → η̃, and
m → −6V�=κ. Quantum bias (2) therefore transforms the
classical action (B10) into the following semiclassical
action:

J̃ G½ãðη̃Þ� ¼
3V�
κ

Z
η̃þ

η̃−

dη̃

�
−
�
dã
dη̃

�
2

þ k½f0ðãÞfðãÞ�2 þ Q̃1ð∂ ãSÞ2 þ Q̃2∂2
ãS

�
; ðB12Þ

with Q̃1 and Q̃1 defined by (B6) but allowing the unknowns to take new values ðξ̃; d̃Þ for the sake of generality. To evaluate
the last two terms in (B12) we will need to write the discarded information capacity Sða; ηÞ as a function of our new
variables ðã; η̃Þ. This is achieved by noting that (B3) and (B11) imply

ηðη̃Þ ¼ η− þ
Z

η̃

η̃−

dη̃0½f0ðãðη̃0ÞÞ�2 ⇒ Sða; ηÞ ¼ S
�
fðãÞ; η− þ

Z
η̃

η̃−

dη̃0½f0ðãðη̃0ÞÞ�2
�
: ðB13Þ

In terms of ðã; η̃Þ, the information capacity S is history dependent (A3) so the path integral construction [22] ensures the
validity of (B12) with the ∂ ã derivatives acting on the first argument of S only. Thus, for the purposes of calculating (B12)
we have

∂ ãS ¼ f0ðãÞ∂aS; ∂2
ãS ¼ ½f0ðãÞ�2∂2

aS þ f00ðãÞ∂aS: ðB14Þ

Inserting these formulas into equation (B12) we obtain

J̃ G½ãðη̃Þ� ¼
3V�
κ

Z
η̃þ

η̃−

dη̃

�
−
�
dã
dη̃

�
2

þ k½f0ðãÞfðãÞ�2 þ Q̃1½f0ðãÞ�2ð∂aSÞ2 þ Q̃2ð½f0ðãÞ�2∂2
aS þ f00ðãÞ∂aSÞ

�
; ðB15Þ

as our new semiclassical action.
We are now in a position to “close the loop” of this calculation, and we return to our original dynamical variables aðtÞ and

NðtÞ. We first use (B11) to write (B15) as an integral over t,

J̃ G½ãðtÞ; NðtÞ� ¼ 3V�
κ

Z
tþ

t−

dt

�
−
_̃a2

N
½f0ðãÞ�2 þ kN½fðãÞ�2 þ Q̃1Nð∂aSÞ2 þ Q̃2N

�
∂2
aS þ f00ðãÞ

½f0ðãÞ�2 ∂aS
��

; ðB16Þ
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and then invert (B8) to express everything as a function of aðtÞ:

J̃ G½f−1ðaðtÞÞ; NðtÞ� ¼ 3V�
κ

Z
tþ

t−

dt

�
−
_a2

N
þ kNa2 þ Q̃1Nð∂aSÞ2 þ Q̃2N

�
∂2
aS þ f00ðf−1ðaÞÞ

½f0ðf−1ðaÞÞ�2 ∂aS
��

: ðB17Þ

Comparing this with our original semiclassical action (B7) we see that the ðã; η̃Þ approach has altered our result by

ΔJ G ≡ J̃ G − J G ¼ 3V�
κ

Z
tþ

t−

dtN

�
ðQ̃1 −Q1Þð∂aSÞ2 þ ðQ̃2 −Q2Þ∂2

aS þ Q̃2

f00ðf−1ðaÞÞ
½f0ðf−1ðaÞÞ�2 ∂aS

�
: ðB18Þ

Notice that there are no t derivatives in the integrand, so
ΔJ G contains no surface terms. Hence, J̃ G and J G will
generate identical semiclassical behavior if and only if
ΔJ G ¼ 0. Assuming that ∂aS and ∂2

aS are not identically
zero, then the only way to achieve ΔJ G ¼ 0 for all f is to
set Q̃1 ¼ Q1 and Q̃2 ¼ Q2 ¼ 0.9 Consulting (B6) we see
that this is equivalent to

ξ ¼ ξ̃ ¼ 1=4; d ¼ d̃: ðB19Þ
We conclude that quantum bias (22) is consistent with
(i) the gauge invariance of t, and (ii) arbitrary redefinitions
of the dynamical variable a ¼ fðãÞ, if and only if d is
independent of f, and ξ ¼ 1=4.

APPENDIX C: THE HOLOGRAPHIC UNIVERSE

Here we derive the holographic formula (33) that
quantifies the information capacity of a comoving volume
(12) of the FRW universe (8). We begin with a brief review
of the holographic principle.

1. The holographic principle

As Bekenstein first realized [52], the maximum entropy
(or information) of a system is not set by its volume, but by
the area of an enclosing surface. This understanding arose
from the study of black hole thermodynamics [53–58],
culminating in the Bekenstein-Hawking formula

SBH ¼ A
4l2

pl

; ðC1Þ

for the entropy of a black hole, A being the area of its event
horizon. Roughly speaking, SBH is the maximum entropy

that can ever be stored within a region enclosed by a surface
of area A. (If this upper bound were ever violated S > SBH,
we could always send energy in through the surface until
the region became a black hole. This process would lower
the entropy S → SBH, and hence violate the second law of
thermodynamics.) This idea was given a precise and
general formulation by Bousso [59] as the covariant
entropy bound:

S½L� ≤ A½B�
4l2

pl

: ðC2Þ

Here, A½B� is the area of an arbitrary two-dimensional
spacelike surface B, and S½L� is the entropy on a light sheet
L (a hypersurface of null geodesics with nonpositive
expansion) that originates orthogonal to B. Because L can
be past directed or future directed, Bousso’s bound (C2) is
symmetric under time reversal, and cannot be understood as a
purely thermodynamical statement [25]. We are therefore
compelled to interpret (C2) as arising from the number of
independent microscopic d.o.f. present in nature.
The holographic principle [23–26] elevates these

insights to a guiding rule for quantum gravity. At the most
basic level, it asserts that the entire (quantum-gravity)
state on L can always be encoded on B, using qubits that
occupy an area no less than δA ¼ 4ðln 2Þl2

pl. In other
words, the states of L live in a Hilbert space HL of
dimension dim½HL� ≤ 2A½B�=δA, meaning that L has infor-
mation capacity

S½L�≡ ln ðdim½HL�Þ ≤
A½B�
4l2

pl

: ðC3Þ

Under this premise, the entropy bound (C2) becomes
trivial, because the entropy of a system can never exceed
its information capacity: S ≤ S.
For this article, we will not need to know how the states

of L are encoded on B, nor the process by which three-
dimensional physics is expected to emerge from a two-
dimensional theory [60]. Nonetheless, it is sometimes
useful to fix the geometry of B, and explore the range
ofL states that can be encoded. For instance, let us consider
the case where B has the geometry of a sphere. Within a
semiclassical approximation, each state encoded on B
should determine the geometry and matter content of a

9Proof: Given that ∂aS ≠ 0, each choice of f will alter the way
the last term of (B18) depends on a; in contrast, the other terms can
only depend on f through the constants Q̃1 and Q̃2, and this does
not change their a dependence. Hence, ΔJ G can only vanish for
all f if this last term vanishes, meaning Q̃2 ¼ 0 is required. But
thenΔJ G can only depend onf through the first term Q̃1Nð∂aSÞ2,
and as we need ΔJ G ¼ 0 independent of f, we must have Q̃1

independent of f also. But then consistency with the trivial case
fðãÞ ¼ ã reveals that Q̃1 ¼ Q1. This leaves−Q2N∂2

aS as the only
term in the integrand of (B18), so Q2 ¼ 0 is required also.
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light sheet L that extends into the interior of B. Now, some
of these states will correspond to the interior of a
Schwarzschild black hole with event horizon at B; indeed,
the Bekenstein-Hawking entropy (C1) must count all such
states. Comparing this entropy to (C3), and recalling that
S ≤ S, we conclude that the information capacity bound is
saturated,

S½L� ¼ A½B�
4l2

pl

; ðC4Þ

whenever B is spherical.10 This is the key holographic
result that will allow us to quantify the information capacity
of a homogenous, isotropic, expanding universe.

2. Holograms for cosmology

To apply Eq. (C4) to cosmology, we require a family of
(spherical) surfaces B, whose light sheets L cover the entire
FRW spacetime (8). It is natural to insist that the “holo-
grams” ðB;LÞ respect the symmetries of the metric; hence,
each surface B should indeed be spherical and must lie on
some hypersurface of simultaneity t ¼ const. To complete
our universal covering, we need to specify (i) the size of
each B, (ii) whether the L are directed into the past or
future, and (iii) how the holograms ðB;LÞ are arranged in
spacetime.
Let us start by imagining we have selected a hologram

ðB;LÞ as a candidate for our universal covering. Now
suppose we can construct a larger hologram ðB0;L0Þ that
completely engulfs our candidate: L0 ⊃ L. In principle,
Eq. (C4) should apply to both holograms. However,
ðB0;L0Þ is clearly a more fundamental description, as it
contains ðB;LÞ as a subsystem. We should therefore
discard the candidate ðB;LÞ and use the larger hologram
ðB0;L0Þ instead. By this logic, our universal covering must
be composed of holograms that are maximal, i.e., those for
which no such superset holograms exist.
As illustrated in Fig. 3, a superset hologram ðB0;L0Þ can

be constructed from a (sufficiently small) candidate ðB;LÞ
by extending the light sheet L backwards through B. If at

some point this process fails, then ðB;LÞ will be maximal
and suitable for our universal covering. Indeed, there are
two fundamental constraints that can cause a backwards
extension to fail:
(1) The geometric constraint. By definition, L is com-

posed of null geodesics with nonpositive expansion.
This stipulation is a local representation of the
notion that L should point “inwards” from B, a
key property that allowed Bousso to formulate his
entropy bound (C2) in the first place [59]. Back-
wards extension will therefore fail if we ever have
A½B0� < A½B�: the null rays from B0 to B must then
have positive expansion, so L0 will fail to be a valid
light sheet.

(2) The causal constraint. We require each hologram
ðB;LÞ to lie inside the past light cone of some
hypothetical observer. This constraint is imposed by
black hole complementarity [44,45], which prevents
us from applying the laws of quantum mechanics
to systems that can never be observed in their
entirety.11 While it is conceivable that the entropy

FIG. 3. Here we depict the past-directed light sheet L of a
simultaneous spherical surface B, within an expanding FRW
universe (8). If B is sufficiently small, we can expand the
hologram (B;L) by extending the converging null geodesics
of L backwards through B. (For a past-directed L, this extends
the light sheet toward the future.) This produces a new hologram
ðB0;L0Þ that is a strict superset of the former: L0 ⊃ L. The new
hologram must be considered the more fundamental description,
as it contains all the information of the original hologram and
more besides. This process of backwards extension can continue
until cosmological constraints intervene. The results of this
maximization procedure define the natural holograms to cover
the FRW spacetime.

10Strictly speaking, S½L� must be slightly larger than SBH,
because SBH only measures the subspace ofHL spanned by states
that correspond to the interior of a Schwarzschild black holewith an
event horizon at B. Indeed, we should have S½L� ¼ SBH þ IBH,
where IBH > 0 is the amount of information conveyed by the
statement “B is the event horizon of a Schwarzschild black hole.”
This information is simply the macrostate of L, including its total
massM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
πA½B�p

=κ and angular momentum J ¼ 0. However,
(C1) and (C4) suggest that S½L� ¼ SBH, i.e., that IBH is negligible
within the semiclassical approximation, A½B� ≫ l2

pl. This comes
about because the smallest quantum of energy that can be confined
toB is amassless particle ofwavelengthλ ∼Oð ffiffiffiffiffiffiffiffiffi

A½B�p Þ. HenceHL
must have a discrete energy spectrum with minimum spacing
δM ∼Oðℏ= ffiffiffiffiffiffiffiffiffi

A½B�p Þ. The macrostate information will then be
IBH ∼OðlnðM=δMÞÞ ∼OðlnðA½B�=l2

plÞÞ ≪ S½L�, as claimed.

11Without complementarity, the unitary formation and evapo-
ration of a black hole [61–64] would violate the no-cloning
theorem [65]. Even if a firewall forms at the scrambling time [66],
we still need complementarity to prevent cloning before then
[67,68]. A stricter interpretation of complementary would require
ðB;LÞ to lie inside a causal diamond, i.e., the intersection of
some past light cone and some future light cone [69,70]. We
adopt the more tolerant version for now; in any case, this
distinction would only be important in the very early universe
(i.e., during inflation) when the particle horizon is closer than the
event horizon.
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bound (C2) remains valid for light sheets that break
this constraint, these L cannot be treated as quantum
systems. Without a Hilbert space HL with known
information capacity (C4) we cannot apply the
quantum theory of Sec. I A.

In a universe such as ours, which is expanding _a > 0 and
has low spatial curvature, holograms ðB;LÞ with past-
directed light sheets L will always satisfy the geometric
constraint. However, the causal constraint will halt back-
wards extension as soon as B coincides with the cosmo-
logical event horizon. In other words, a maximal
past-directed hologram, centered at χ ¼ 0, will have its
boundary at

Bη∶ χ ¼ η̄ − η; ðC5Þ

where η is the conformal time (20) and

lim
η→η̄

aðηÞ ¼ ∞ ðC6Þ

defines the final conformal time η̄. (We check that η̄ exists
in Sec. V D.) Even if spatial curvature is large, the only
way (C5) will break down is if the universe is closed and
the event horizon lies beyond the equator: η̄ − η > π=2.
Then the geometric constraint can halt backwards exten-
sion before the event horizon is reached. However, η̄ −
η > π=2 can only occur at very early times (during
inflation) so we can ignore this special case for now.
(We will revisit this issue in a separate publication, when
we investigate quantum bias in the very early universe.)
Of course, maximal holograms need not be centered on
χ ¼ 0; but if we place one hologram ðBη;LηÞ there, then a
neighboring maximal hologram ðBηþδη;LηþδηÞ will also
have to be centered at χ ¼ 0 if the two are to be disjoint.
In this fashion, maximal past-directed holograms natu-
rally stack to form a spherically symmetric causal
diamond, as depicted on the left of Fig. 4. We will build
our universal covering from these holographic units in the
next section.
Before then, we should also consider future-directed

holograms. In contrast to the previous case, the causal
constraint is unable to halt backwards extension, because if
ðB;LÞ fits inside the event horizon, then ðB0;L0Þ will fit
inside also. Instead, the extension halts once B coincides
with the apparent horizon,

rkðχAHÞ ¼
�
1

a2

�
da
dη

�
2

þ k

�
−1=2

; ðC7Þ

by virtue of the geometric constraint. These holograms are
unsuitable for our universal covering, for two distinct
reasons. First, the area of the apparent horizon (C7) clearly
depends on da=dη, so we would arrive at an information

capacity S ¼ Sða; da=dηÞ that is incompatible with for-
mula (2) for quantum bias.12 Second, the apparent horizon
(C7) is determined by the behavior of the scale factor, so
any pattern of future-directed maximal holograms, intended
to cover the universe with minimal overlap, will only
succeed for a specific expansion history aðηÞ. This poses a
serious problem for our approach, because S must be robust
to arbitrary variations δaðηÞ in order to be included in the
semiclassical action J ½aðηÞ�.13 For the sake of practicality
and generality, then, we must build our covering using the
past-directed holographic units described in the previous
paragraph.

3. Holographic covering

If the classical action (21) were an integral over a single
causal diamond, then the holographic unit (on the left of
Fig. 4) would provide all the structure we need. However, to
make contact with the quantum theory of Sec. I A, it was
necessary to integrate over a region (12) of fixed comoving
volume, with a view to sending χ� → ∞ at the end of our
calculation. In order to count all the d.o.f. in the action, we
therefore need a systematic way to cover the entire FRW
spacetime (8) with holographic units, such that there is
minimal double counting from overlapping holograms. In
1þ 1 dimensions, this problem has a particularly elegant
solution, shown on the right of Fig. 4. This two-dimen-
sional picture will suffice to understand the calculation
below, deriving the cosmological information capacity up
to a numerical constant μ̄. Then, in the final section of this
appendix, we will generalize this self-similar pattern to
3þ 1 dimensions, account for the small gaps or overlaps
that arise, and determine the value of μ̄.
With a prototypical holographic covering at hand (Fig. 4)

we aim to calculate the information capacity of some spatial
slice η ¼ const, within the integration region χ ∈ ½0; χ��.
We think of the bulk spacetime as composed of holograms
ðBη;LηÞ, with the state of each light sheet Lη specified by
information on the boundary Bη. Hence, the information
capacity on η ¼ const is simply the information capacity
(C3) of each sphere Bη, multiplied by the number of these
spheres N �ðηÞ within χ ∈ ½0; χ��:

S ¼ N �ðηÞ ·
A½Bη�
4l2

pl

: ðC8Þ

12The theory summarized in Appendix A is valid for the
general class S ¼ Sða; R η dη0fðaÞÞ [22]. It is doubtful whether
these results can be generalized to Sða; da=dηÞ, as this form of
information capacity requires a phase space that is not a cotangent
bundle.

13Conceivably, there might be a general algorithm for covering
spacetime with these holograms (with minimal overlap) valid
for any aðηÞ; however, this would presumably define a nonlocal
functional S½aðηÞ� that would greatly exacerbate our first
issue.
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If the spheres could be packed perfectly, without gap or
overlap, then one might expect

N �ðηÞ ¼?
V�
Vη

; ðC9Þ

where V� ¼ Vðχ�Þ½aðηÞ�3 is the volume of the integration
region χ ∈ ½0; χ�� and Vη ¼ Vðη̄ − ηÞ½aðηÞ�3 is the volume
enclosed by each Bη. However, Fig. 4 shows us that this is
not the case. Even for the (1þ 1)-dimensional tiling, which
does indeed cover the universe without gaps or overlap, the
Bη do not fill each spatial slice. In general, only a fraction

μ≡N �ðηÞVη

V�
≲ 1 ðC10Þ

of the volume is taken up by the Bη; the rest is occupied by
the lower half of other (smaller) holographic units, foliated
by holograms with their boundaries on future slices.
Consulting Fig. 4, it appears that μ will oscillate—

decreasing from μ ¼ 1 to μ ¼ 1=2 as the spatial slice
ascends through each cycle η ∈ ½η̄ − 2nΔη; η̄ − 2n−1ΔηÞ.
However, the phase of this oscillation clearly depends on
the arbitrary scale Δη:

μ ¼ μ

�
η̄ − η

Δη

�
: ðC11Þ

Fortunately, there is a natural way to remove this spurious
feature: a unique average over Δη that recovers the
symmetry of the underlying spacetime. As we will soon
show, this provides a physically well-defined constant
value

μ̄≡ hμiΔη ¼
1

lnm

Z
mx

x
μ

�
η̄ − η

Δη

�
dðΔηÞ
Δη

ðC12Þ

that correctly counts the spheres Bη in χ ∈ ½0; χ�� without
reference to Δη:

N �ðηÞ ¼
μ̄V�
Vη

¼ μ̄V�
Vðη̄ − ηÞ : ðC13Þ

Inserting this well-defined counting into Eq. (C8) we
finally obtain the information capacity

S ¼ μ̄V�
Vðη̄ − ηÞ ·

Aðη̄ − ηÞ½aðηÞ�2
4l2

pl

; ðC14Þ

as used in Sec. III B.
To finish this derivation, we must justify the averaging

procedure (C12) and show that it does not depend on the
choice of x > 0. To this end, let us consider an arbitrary
function f that (like μ) depends only on the phase of a self-
similar holographic covering at conformal time η. As such,
f will have the following structure:

FIG. 4. Holographic units are spherically symmetric causal diamonds, bounded into the future by a cosmological event horizon, and
foliated by the past-directed light sheets of the event horizon at each conformal time η. On the right, these units are arranged into a self-
similar pattern that perfectly tiles an expanding universe with one spatial dimension and final conformal time η̄. (We generalize this
pattern toD spatial dimensions in Sec. C 4.) Each holographic unit begins at η ¼ η̄ − 2nΔη for some n ∈ Z; all reference to the arbitrary
scale Δη can be removed by a natural averaging procedure described in the main text. On each spatial slice η ¼ const, the event horizon
is a sphere Bη of area A½Bη� ¼ Aðη̄ − ηÞ½aðηÞ�2 that encloses a volume Vη ≡ Vðη̄ − ηÞ½aðηÞ�3; each Bη generates a past-directed light
sheet Lη with information capacity set by the holographic formula (C4). Note that even though the pattern covers the entire (1þ 1)-
dimensional spacetime without gaps or overlap, the (cyan shaded) volumes Vη do not fill each spatial slice: some parts of the slice
(magenta dashed line) are occupied by the lower half of a holographic unit (orange triangle), the information capacity of which will be
counted on a future slice. Hence the number of spheres Bη in a large volume V� is N � ¼ μV�=Vη, for some “filling factor” μ≲ 1.
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f ¼ f

�
η̄ − η

Δη

�
; fðmxÞ ¼ fðxÞ; ∀ x > 0; ðC15Þ

where m ∈ f2; 3;…g is the scaling factor under which the
pattern is self-similar. (The pattern in Fig. 4 hasm ¼ 2.) For
a function with these properties, any arithmetic mean over
Δη can be represented as an integral over a single scaling
cycle,

hfiΔη ≡
Z

mx

x
f

�
η̄ − η

Δη

�
gðΔηÞdðΔηÞ; ðC16Þ

with some measure gðΔηÞ normalized by

Z
mx

x
gðΔηÞdðΔηÞ ¼ 1: ðC17Þ

We will seek a gðΔηÞ that allows hfiΔη to respect the
symmetry of the underlying spacetime, for every f with the
appropriate structure (C15).
Let us assume for the moment that k ¼ 0, so that the

underlying spacetime has the metric

ds2 ¼ ½aðηÞ�2ð−dη2 þ dχ2 þ χ2dΩ2Þ: ðC18Þ

Note that this spacetime is invariant under the following
conformal transformation:

ds2 →

�
aðαηþ ð1 − αÞη̄Þ

aðηÞ
�

2

α2ds2; ðC19Þ

for any constant α > 0; indeed, the above transformation is
equivalent to a coordinate rescaling,

η → αηþ ð1 − αÞη̄; χ → αχ; ðC20Þ

that leaves η̄ invariant. We notice, however, that the holo-
graphic coveringwill break this symmetry almost entirely—
all that survives are transformations with α ∈ fmn∶n ∈ Zg.
As a case in point, consider f. Because this is purely a
function of the phase of the holographic covering, it will not
depend on the scale factor and so is invariant under theWeyl
transformation (C19). If this functionwere to respect the full
symmetry of the underlying spacetime, it would therefore
also need to be invariant under the coordinate rescaling
(C20). However, its properties (C15) only guarantee invari-
ance for α ¼ mn, n ∈ Z.
Now, by construction, the average (C16) is also inde-

pendent of aðηÞ, and hence invariant under the Weyl
transformation (C19). Thus, hfiΔη will recover the full
symmetry of the underlying spacetime (C18) if and only if
it is invariant under the coordinate rescaling (C20) for all
α > 0. In other words, hfiΔη cannot depend on η at all.
Thus we seek a measure gðΔηÞ that ensures

hfiΔη ¼ const ðC21Þ

for all f with the aforementioned properties (C15). But note
that

∂ηhfiΔη¼
Z

mx

x
∂ηf

�
η̄−η

Δη

�
gðΔηÞdðΔηÞ

¼
Z

mx

x

�
Δη
η̄−η

�
∂Δηf

�
η̄−η

Δη

�
gðΔηÞdðΔηÞ

¼ 1

ðη̄−ηÞ

�

f

�
η̄−η

Δη

�
gðΔηÞΔη

�
mx

x

−
Z

mx

x
f

�
η̄−η

Δη

�
∂ΔηðgðΔηÞΔηÞdðΔηÞ

�
: ðC22Þ

Hence the symmetry condition (C21) requires this last line
to vanish for every f obeying (C15). This will happen if and
only if

∂ΔηðgðΔηÞΔηÞ ¼ 0; ∀ Δη ∈ ½x;mx�; ðC23Þ

and recalling the normalization (C17) we see that

gðΔηÞ ¼ 1

lnm
·
1

Δη
; ∀ Δη ∈ ½x;mx�; ðC24Þ

is the only solution. Thus the unique mean (C16) that
recovers the symmetry of the underlying spacetime is

hfiΔη ≡ 1

lnm

Z
mx

x
f

�
η̄ − η

Δη

�
dðΔηÞ
Δη

; ðC25Þ

as used in Eq. (C12). Furthermore, it is easy to check that
this construction does not depend on our choice of x,

∂xhfiΔη ¼
1

lnm

�
m ·

1

mx
f

�
η̄ − η

mx

�
−
1

x
f

�
η̄ − η

x

��
¼ 0; ðC26Þ

by virtue of the second property (C15).
For k ¼ �1, the holographic covering will not be exactly

self-similar (spatial curvature introduces a special comov-
ing scale χ ¼ 1) and theWeyl transformation (C19) will not
be an exact symmetry. Nonetheless, when the event horizon
is much smaller than the radius of spatial curvature
jkjðη̄ − ηÞ ≪ 1, the k ¼ 0 case will be an excellent approxi-
mation, and we can safely use the average (C25) to define
μ̄. This approximation can only break down in the very
early universe.

4. Filling factor

It is presumably impossible to generalize Fig. 4 to 3þ 1
dimensions without introducing either gaps (regions not
covered by a holographic unit) or overlaps (regions covered
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by more than one unit). Nonetheless, we can aim to make
these defects as small as possible and correct for the
resultant under/overcounting when we calculate the filling
factor μ̄.
For instance, suppose we construct a reasonably efficient

packing pattern, with small gaps but no overlap, as
described in Fig. 5. Some volume fraction μ of each spatial
slice will be covered by the Bη, i.e., the (cyan shaded)
horizon-bound regions that form the top half of each
holographic unit; also, some fraction ν will be covered
by the (orange) light sheet–bound regions that constitute
the bottom half of each unit. The tiling of Fig. 4 had perfect
coverage μþ ν ¼ 1 on every slice, so we were able to
identify μ̄ ¼ hμiΔη using the invariant average (C25).
However, the gaps μþ ν < 1 in Fig. 5 mean that parts
of the spacetime are not described by any hologram
(Bη;Lη); as such, hμiΔη for this pattern will inevitably
underestimate μ̄ and provide only a lower bound on S.
Conversely, a reasonably efficient covering, with overlaps
but no gaps (μþ ν > 1), will yield a hμiΔη that slightly
overestimates μ̄, due to double counting. To correct for
these defects, we identify

μ̄≡ hμiΔη
hμþ νiΔη

: ðC27Þ

This formula generalizes the earlier definition (C12),
accounting for any net deficit hμþ νiΔη < 1 (due to gaps)
or excess hμþ νiΔη > 1 (due to overlap) in the holographic
coverage. Crucially, this formula is completely independent
of our choice of holographic pattern. We can evaluate the
right-hand side of Eq. (C27) using any self-similar con-
figuration—the value of μ̄ will be exactly the same. As a
consequence, there is no need to worry about finding a
maximally efficient packing or covering. Finding a more
efficient pattern will simply move hμþ νiΔη closer to 1 and
hμiΔη closer to μ̄, with μ̄ ¼ hμiΔη=hμþ νiΔη unchanged. (In
other words, μ̄ is the limiting value of hμiΔη as the pattern is
made more efficient.) To prove this surprising fact, and
determine μ̄ numerically, we now describe a completely
general self-similar pattern of holographic units.
Let us consider a spatially flat FRW universe with Dþ 1

dimensions and introduce a pattern of holographic units
that are self-similar under a rescaling η̄ − η → mðη̄ − ηÞ for
some m ∈ f2; 3;…g. To fully describe any such pattern,
we need only specify its behavior within a single scaling
cycle,

η ¼ η̄ − sΔη; s ∈ ½1; mÞ; ðC28Þ

where Δη is an arbitrary scale that will need to be averaged
out (C25) at the end of the calculation. As we saw in Fig. 5,
each holographic unit will contain two types of spatial

region: (i) the (cyan shaded) spheres bound by a cosmo-
logical event horizon (blue circle); and (ii) the (orange)
spheres bound by an initial light sheet (red circle). If we
imagine the spatial sections η ¼ η̄ − sΔη of our generic
pattern, and increase s through s ∈ ½1; mÞ, the comoving
radii of the horizon-bound spheres will grow according to
χ ¼ η̄ − η ¼ sΔη, while the radii of light sheet–bound
spheres will shrink at the same rate, until they vanish
entirely. In addition, there will be particular phases of the
pattern si ∈ ð1; mÞ where some holographic units have
corners: a subset of the horizon-bound spheres will
suddenly transform into light sheet–bound spheres. (To
avoid ambiguity, any transitions at s ¼ 1 should be
considered to happen at s ¼ 1þ ϵ, for some small ϵ > 0.)
Figure 6 illustrates how the number and scale of each

type of sphere will evolve over the cycle (C28). At s ¼ 1,
we have some number

FIG. 5. This cycle generalizes the self-similar pattern of Fig. 4,
packing holographic units into an expanding (2þ 1)-dimensional
universe without overlap. Each frame represents the state of a
comoving square lattice on a sequence of spatial slices η ¼ const.
The pattern is easiest to follow in reverse chronological order
(clockwise) starting from the top-left frame: as η decreases, the
comoving radii of the event horizons (blue circles) grow, while
the initial light sheets (red circles) shrink. Whenever two event
horizons touch (frames 1 and 4) every other horizon is trans-
formed into an initial light sheet (frames 2 and 5). These
transitions represent the “corner” of a holographic unit, e.g.,
the η ¼ η̄ − Δη=2 slice of the unit depicted on the left of Fig. 4.
This process prevents any holographic unit from overlapping, but
allows small gaps (grey) to appear in the covering. Once we reach
the bottom-left frame, the lattice has returned to its starting state,
scaled up by a factor of m ¼ 2. This algorithm is easily
generalized to pack holographic units in Dþ 1 dimensions or
modified to construct (partially overlapping) patterns that cover
the entire spacetime.
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n0 ≡N �jη¼η̄−Δη ∝ V�=ðΔηÞD ðC29Þ

of horizon-bound spheres within the integration region
χ ∈ ½0; χ��. As we increase s, we encounter each transition
s ¼ si in turn, with n0fi horizon-bound spheres becoming
light sheet–bound spheres. Consequently, the horizon-
bound spheres occupy a volume fraction

μðsÞ≡N �ðηÞVη

V�

����
η¼η̄−sΔη

¼ VðsΔηÞ
V�

N �ðη̄ − sΔηÞ

¼ Vð1ÞðsΔηÞD
V�

�
n0 −

X
i

n0fiHðs − siÞ
�

¼ μð1ÞsD
�
1 −

X
i

fiHðs − siÞ
�
; ðC30Þ

where H is the Heaviside step function and

μð1Þ ¼ Vð1ÞðΔηÞDn0
V�

ðC31Þ

is a numerical constant.14 Equation (C30) was derived for
the cycle s ∈ ½1; mÞ, but must continue to hold at s ¼ m
because there are no transitions at s ¼ m. Hence, the self-
similarity (C15) of the pattern implies

μð1Þ ¼ μðmÞ ⇒
X
i

fi ¼ 1 −m−D: ðC32Þ

In addition to the volume fraction of horizon-bound spheres
(C30), we must now account for the light sheet–bound
spheres.
Consulting Fig. 6 again, we see that the n0fi light sheet–

bound spheres that form at s ¼ si have radius χi ¼ ð2si −
sÞΔη and vanish at s ¼ 2si. Those that appear at si > m=2
will still exist at the end of the cycle: s ¼ m ⇒ χi ¼
ð2si −mÞΔη > 0. Hence mDn0fi light sheet–bound
spheres, of radius χ0i ¼ ðð2si=mÞ − sÞΔη, must have sur-
vived the previous cycle s ∈ ½1=m; 1Þ. We conclude that the
volume fraction of light sheet–bound spheres is

νðsÞ ¼ 1

V�

�X
i

n0fiVðχiÞHðs − siÞHð2si − sÞ þ
X

i∶si>m=2

mDn0fiVðχ0iÞH
�
2si
m

− s

��

¼ μð1Þ
�X

i

fið2si − sÞDHðs − siÞHð2si − sÞ þ
X

i∶si>m=2

fið2si −msÞDH
�
2si
m

− s

��
: ðC33Þ

Although this equation was only derived for s ∈ ½1; mÞ, it must also hold at s ¼ m by continuity. In contrast to the previous
result (C30), Eq. (C33) is automatically self-similar: νð1Þ ¼ νðmÞ; hence we obtain no constraints on the fi besides
Eq. (C32).
To recover the symmetry of the underlying spacetime and obtain the invariant versions of μ and ν, we now average over

the arbitrary scale Δη. With η̄ and η fixed, Eq. (C28) implies that the natural average (C25) can be written as follows:

hfiΔη ¼
1

lnm

Z
m

1

fðsÞ ds
s
; ðC34Þ

FIG. 6. Over a single scaling cycle (C28) the spatial slices of a
self-similar pattern of holographic units undergo two types of
evolution. Continuous: As s increases, the comoving radii of the
event horizons (blue lines) grow, while the initial light sheets (red
lines) shrink.Discrete: At each s ¼ si, a fraction of the holographic
units have corner transitions—their event horizons terminate and
become initial light sheets. The diagram above represents a simple
example, with two transitions: s1 < m=2 < s2. The terms running
along diagonal lines indicate the number of such sphereswithin the
integration region χ ∈ ½0; χ��. Note that the s2 transition produces
n0f2 light sheet–bound spheres which still exist at the end of the
cycle s ¼ m. By the self-similarity of the pattern, there must be
mD × ðn0f2Þ similar spheres (smaller by a factor of 1=m) that
survive the previous cycle s ∈ ½1=m; 1Þ and enter the current
cycle at s ¼ 1.

14Vð1Þ ¼ πD=2=Γð1þD=2Þ is the volume enclosed by a unit sphere in D dimensions. Consulting Eq. (C29) we see that μð1Þ is
independent of the scale Δη and the integration volume V�.
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where we have chosen x ¼ ðη̄ − ηÞ=m to align this integral with the cycle s ∈ ½1; mÞ. Taking the average of Eq. (C30) we
obtain

hμiΔη ¼
μð1Þ
lnm

Z
m

1

sD
�
1 −

X
i

fiHðs − siÞ
�
ds
s
¼ μð1Þ

D lnm

�
mD − 1 −

X
i

fiðmD − sDi Þ
�

¼ μð1Þ
D lnm

X
i

fisDi ; ðC35Þ

where equation (C32) was used for the last step. Next, we take the average of Eq. (C33),

hνiΔη ¼
μð1Þ
lnm

2
64 X
i∶si≤m=2

fi

Z
2si

si

ð2si − sÞDds
s

þ
X

i∶si>m=2

fi

Z
m

si

ð2si − sÞDds
s

þ
X

i∶si>m=2

fi

Z
2si=m

1

ð2si −msÞDds
s

3
75: ðC36Þ

Rescaling s → s=m in the third set of integrals, this
simplifies to

hνiΔη ¼
μð1Þ
lnm

X
i

fi

Z
2si

si

ð2si − sÞDds
s

¼ μð1Þ
lnm

�X
i

fisDi

�Z
2

1

ð2 − sÞDds
s

; ðC37Þ

where we replaced dummy variables s → sis to produce the
final line. We conclude that the invariant coverage is

hμþ νiΔη ¼ hμiΔη þ hνiΔη
¼ μð1Þ

lnm

�
1

D
þ
Z

2

1

ð2 − sÞDds
s

�X
i

fisDi ; ðC38Þ

for a general self-similar pattern of holographic units.

We now have everything needed to calculate the filling
factor (C27). Dividing Eq. (C35) by Eq. (C38), we obtain
our final result:

μ̄ ¼
�
1þD ·

Z
2

1

ð2 − sÞDds
s

�−1
: ðC39Þ

Remarkably, all the variables fm; si; fi; μð1Þg have can-
celed, so the details of the pattern are completely irrelevant.
This demonstrates the naturalness of our definition (C27)
and provides an extremely simple formula for μ̄. For our
universe, with D ¼ 3 spatial dimensions, the holographic
filling factor (C39) is simply

μ̄ ¼ 1

24 ln 2 − 15
¼ 0.61142…: ðC40Þ

This completes our calculation of the cosmological holo-
graphic information capacity (C14).
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