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We investigate the formation, gravitational clustering, and interactions of solitons in a self-interacting,
nonrelativistic scalar field in an expanding universe. Rapid formation of a large number of solitons is driven
by attractive self-interactions of the field, whereas the slower clustering of solitons is driven by gravitational
forces. Driven closer together by gravity, we see a rich plethora of dynamics in the soliton “gas” including
mergers, scatterings, and formation of soliton binaries. The numerical simulations are complemented by
analytic calculations and estimates of (i) the relevant instability length scales and timescales, (ii) individual
soliton profiles and their stability, (iii) number density of produced solitons, and (iv) the two-point
correlation function of soliton positions as evidence for gravitational clustering.
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I. INTRODUCTION

Solitons are self-localized, persistent configurations in
nonlinear field theories which have been studied intensely
in a broad range of contexts including cosmology, high
energy physics, nonlinear optics and cold-atom physics,
condensed matter physics, fluid mechanics, and mathemat-
ics [1–6].
In cosmology, for example, solitons can emerge natu-

rally at the end of inflation and dominate the energy density
(e.g., [7]), or related configurations can form in the axion
field that might constitute the entirety or part of the dark
matter (e.g., [8]). Depending on the context, they can act as
new sources of gravitational waves [9–13], potentially lead
to the formation of primordial black holes [14–16], be
involved in baryogenesis [17,18], and change the approach
to radiation domination in the early universe [19–21]; they
can also provide novel insights into the small scale
problems in the cold dark matter paradigm [22–26].
To explore many of these implications, it is important to

consider their formation, as well as their interactions
resulting from gravity and self-couplings of the field. In
this paper we explore the gravitational clustering and
gravitational as well as nongravitational interactions of
nonrelativistic solitons, starting with the formation of
solitons from cosmological initial conditions.1 See Fig. 1

for a visual overview of soliton formation and clustering in
an expanding universe.
We focus on nontopological solitons in a nonrelativistic

scalar field theory.We include strong self-interactions in the
theory, while gravity is included under the assumption that it
is weak. In our simulations, the rate of expansion of space is
determined by the average energy density of the field.
There is a large amount of diverse literature on non-

topological solitons in real and complex scalar field theories
in a cosmological context; this paragraph is a sample rather
than a comprehensive review of the literature. For work on
individual solitons, see, for example, [27–37]. For the early
universe, soliton formation in relativistic fields in an
expanding universe, ignoring gravitational interactions,
has been considered, for example, in [7,38–40]. In the late
universe context, gravitational interactions are included in
the nonrelativistic limit, but self-interactions are ignored or
typically assumed to be very weak (e.g., [25,41,42]). In this
nonrelativistic, noninteracting limit, halos and solitons
within them have been shown to form. Binary soliton
collisions or interactions and their implications have also
been explored under controlled initial conditions (e.g.,
[11,42–44]). The fate of a “prepared” collection of relativ-
istic solitons (oscillons) with random velocities was con-
sidered in two dimensions and without gravity in [45]. The
mergers of a small group of preexisting nonrelativistic
solitons, with gravity included but without self-interactions,
was explored in [41,46].
In our work we present the following results for the first

time: We simulate and analyze the case of soliton formation
with strong self-interactions, starting with cosmological
initial conditions. Thereafter, a “gas” of solitons emerges in
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1Here, by cosmological initial conditions, we mean an almost

homogeneous field with small perturbations.
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a self-consistently expanding universe, followed by gravi-
tational clustering of solitons and eventual, dynamically
rich, close encounters. We provide a quantitative under-
standing of the formation, gravitational clustering, individ-
ual properties, and interactions of solitons based on
simulations and analytic calculations. We note that quite
generally, we can use the results in the present work to
understand the formation and gravitational clustering
dynamics of the nonrelativistic limits of oscillons, Q-balls,
and boson stars with strong self-interactions.2

The present work is somewhat related to (but does not rely
on) a recent exploration of gravitational perturbations from
oscillons and transients [13]. In [13], soliton formation in a
relativistic Klein-Gordon equation in an expanding back-
ground was investigated; however, gravitational perturbations
were calculated passively (i.e., gravitational clustering was not
present).Here,we focus on nonrelativistic fields, but clustering
due togravity is included.While themodels andcontext are not
identical, a qualitative comparison between relativistic and
nonrelativisticmodels and results is discussed in theAppendix.
The rest of the paper is organized as follows. In Sec. II

we discuss the model for a nonrelativistic, self-interacting
field in an expanding universe with weak field gravity. In
Sec. III we briefly discuss the lattice simulation and our

numerical algorithm. The initial conditions for the simu-
lations are provided in Sec. IV. We analyze linear insta-
bilities from self-interactions and gravitational interactions
in Sec. V. The numerically calculated power spectrum for
the field perturbations is provided in Sec. VI. In Sec. VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Sec. VIII. The
gravitational clustering of solitons is discussed in Sec. IX,
and resulting strong soliton interactions are explored in
Sec. X. Finally, we present our conclusions and future
directions in Sec. XI. In the Appendix we discuss con-
nections to a related relativistic system (at the level of the
equations, instabilities, solitons, and initial conditions).

II. THE MODEL

We use the following equations of motion (and constraint
equations) to explore the dynamics of a nonrelativistic, self-
interacting, self-gravitating scalar field in an approximately
homogeneous and isotropic universe:

�
i

�
∂t þ

3

2
H

�
þ 1

2a2
∇2 −U0

nlðjψ j2Þ −Φ
�
ψ ¼ 0;

∇2

a2
Φ ¼ β2

2

�
jψ j2 þ 1

2a2
j∇ψ j2 þ Unlðjψ j2Þ

�
−
3

2
H2;

H2 ¼ β2

3

�
jψ j2 þ 1

2a2
j∇ψ j2 þ Unlðjψ j2Þ

�
; ð1Þ

FIG. 1. Projected comoving “densities” a3jψ j2 (averaged along the line of sight) at several scale factors (a ¼ 1 to a ¼ 20) in our 3þ 1
dimensional lattice simulations, with β≡M=mpl ¼ 0.03, and local gravitational interactions switched on (top panels) and off (bottom
panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost homogeneous initial state. A
statistical analysis of the locations of solitons at late times shows evidence for clustering only in the case where gravitational interactions
are included. Note that inside solitons, jψ j2 ¼ const.; that is, their core density does not redshift, whereas the background jψ̄ j2 ∝ a−3.
Moreover, solitons maintain a fixed physical size; hence, the illusion of them shrinking in size in a comoving volume. The initial size of
the box is the size of the horizon at the beginning of the simulation L ≃H−1

in . The solitons contain a dominant fraction of the mass in the
simulation volume. On a technical aside, note that the projected comoving density even in the densest (lightest in color) regions in the
above plot will be smaller than the density inside the cores because of the small volume occupied by the solitons.

2The emergent, approximate Uð1Þ symmetry in the non-
relativistic limit makes oscillons and Q-balls almost identical
[32] or, at the very least, obtainable from one another.

MUSTAFA A. AMIN and PHILIP MOCZ PHYS. REV. D 100, 063507 (2019)

063507-2



where ½� � �� indicates a spatial average, aðtÞ is the scale
factor, HðtÞ ¼ _aðtÞ=aðtÞ is the Hubble rate, ψðt;xÞ is the
complex field amplitude, Φðt;xÞ is the Newtonian poten-
tial, and Unlðjψ j2Þ encodes the self-interactions of the
field.3

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of τm ¼ ℏ=mc2, lengths in units of λm ¼ ℏ=mc, the
Newtonian gravitational potential Φ in units of c2, and jψ j2
in units of m2M2c3=ℏ3. Note that m2M2c3=ℏ3 has dimen-
sions of mass density. We assume that the parameter

β≡ M
mpl

≪ 1: ð2Þ

There are three relevant scales in the equations (not
easily discernible in the nondimensional version): m ¼
mass of particles of our field (without self-interactions),
M determines the strength of the self-interactions, and mpl

is the reduced Planck mass which determines the strength
of gravity. We work in a parameter regime with
m ≪ M ≪ mpl. The fiducial value used in the present paper
isM ¼ 0.03mpl (thoughwe have also variedM by a factor of
a few). This particular parameter regime can be natural when
identifying ψ as the nonrelativistic approximation to the
inflaton field [21] (with m ≃ 2 × 10−4M). The hierarchy
m ≪ M ≪ mpl is also natural for an axionlike field, where
M plays the role of the decay constantf; in this casem can be
much smaller (e.g., [47,48]). We note that m is essentially
setting units of quantities in our equations, and the behavior
we explore will be qualitatively valid for any energetically
dominant, cosmological scalar field regardless of the par-
ticular value of m (modulo initial conditions).
For the purpose of this paper, we chose Unlðjψ j2Þ with a

saturated nonlinearity:

Unlðjψ j2Þ ¼ −
jψ j2
2

jψ j2
1þ jψ j2 : ð3Þ

The saturated nonlinearity refers to the fact that for
jψ j ≫ 1, U0

nlðjψ j2Þ → const: which means that the non-
linearity appearing in the equation of motion for ψ is
bounded. This form is not strictly necessary, and different
powers of jψ j2 in the denominator of Unl [for example,
ð1þ jψ j2Þα or ð1þ jψ j2αÞ with α > 0] are also worth
exploring; however, we do not consider these here.
Note that for jψ j2 ≪ 1, the above choice yields

U0ðjψ j2Þ ¼ −jψ j2, which makes the first equation in (1)
analogous to the usual nonlinear Schrödinger equation with

attractive interactions (ignoring gravity). Equation (1) also
matches the equations of motion for axions, or symmetric
inflationary potentials in this nonrelativistic, small ampli-
tude limit.
While not necessary for our present purposes, we explore

the connection of our nonrelativistic equations to those
obtained from a relativistic theory in the Appendix. We also
refer the reader to (for example) [49,50] for more detailed
discussions of the nonrelativistic limit of relativistic scalar
field systems (typically in the weak interaction limit). At
the leading order, the nonrelativistic limit of real or
complex scalar fields should yield equations similar to ours.

III. LATTICE SIMULATIONS

We solve our Schrödinger-Poisson system in a self-
consistently expanding background [see Eq. (1)] on anN ¼
4003 lattice.4 The field evolution uses the second-order-in-
time (exponential convergence in space) kick-drift-kick
spectral method of [51]. For our numerical method, the
total run time scales as O½N5�, which limits N from being
too large. The initial box size is L ∼H−1, and we run our
simulations from ai ¼ 1 to af ¼ 20 (with corresponding
tf − ti ≃ few × 103 m−1). The box size (L), resolution
(Δx ¼ L=N), and time duration of the simulations are
chosen so that (i) the relevant instability scales (discussed
below) are captured in the simulation, (ii) our solitons are
resolved (afΔx≲O½1�), and (iii) we have a sufficient
number (O½102�) of solitons in our simulation volume to
make statistically significant statements about their proper-
ties, interactions, and clustering.
We find our solitons in the numerical simulations by

locating local maxima in the jψ j2 field (by comparing each
pixel to its nearest neighbor in a 3 × 3 × 3 region) and taking
all points with comoving density about some threshold. We
look at the radial density profiles about these points and
verify that they fall on the central amplitude—radius relation
predicted for solitons shown in Fig. 4. In practice, we found
that we could distinguish solitons from other local inhomo-
geneities (which are less dense), with our threshold of
a3jψ j2 > 25. The results are invariant to the particular choice
of threshold over a range of values: 10 s–100 s. A lower
threshold would start including extraneous linear fluctua-
tions, and a higher threshold would start excluding solitons.

IV. INITIAL CONDITIONS

We begin with an almost homogeneous field with small
spatial perturbations (mimicking zero-point fluctuations) of
the form

3We have checked that qualitatively similar results are obtained
even if we set Unl → 0 in the Poisson and Friedmann equations
but keep Un

0ðjψ j2Þ≡ ∂ jψ j2Unðjψ j2Þ in the nonlinear Schrödinger
equation.

4Smaller lattices were also used to check for convergence and
for other numerical checks. For example, we halved the reso-
lution, and the locations of the solitons did not change. In our
highest resolution simulations, solitons contain ≳10 pixels per
linear dimension (O½103� pixels per soliton volume).
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ψðtin;xÞ ¼ ψ̄ðtinÞ þ
1ffiffiffiffiffiffi
L3

p
�
m
M

�X
k

δψkeik·x;

with ψ̄ðtinÞ ¼ 1 and hjδψkj2i ∼
1

2
; ð4Þ

where jδψkj are drawn from a Raleigh distribution and the
phases for δψk are drawn from a uniform distribution.5

We assume that aðtinÞ ¼ 1. The gravitational perturbations
and H are then obtained self-consistently using Eq. (1).
We choose ψ̄ðtinÞ ¼ 1 because (as we will see) for
ψ̄ðtinÞ ≲ β−1, instabilities due to self-interactions are inef-
fective. On the other hand, for ψ̄ðtinÞ≳ β−1 we are forced to
introduce a timescale H−1 via the Friedmann equation
which is comparable to τm, thus potentially entering a fast
timescale, relativistic regime.
To remain consistent with our nonrelativistic approxi-

mation, we introduce a cutoff in the initial spectrum
hjδψkj2i ¼ 0.5e−k

2

which removes relativistic (k ≫ 1)
modes. We have checked that our results are qualitatively
insensitive to order unity changes in amplitudes of the
initial perturbations as well as the cutoff.

V. LINEAR INSTABILITIES

As seen in Fig. 1, there is a rapid growth in field and
density perturbations on a characteristic length scale,
which results in the formation of solitons. We calculate
and compare this instability with gravitational instabil-
ity below.

A. Self-interaction instability

Let us consider small spatial perturbations around a
homogeneous solution ψ̄ðtÞ:

ψðt;xÞ ¼ ψ̄ðtÞ
�
1þ ε

δψkðtÞ
ψ̄ðtÞ eik·x

�
; ð5Þ

where ε ¼ ðm=MÞL−3=2. Sufficiently long wavelength
perturbations of the field are unstable due to self-
interactions of the field U0ðjψ j2Þ. To see this, let us first
ignore expansion and gravitational interactions (that
is, a ¼ 1, H ¼ 0, Φ ¼ 0), and substitute Eq. (5) into
Eq. (1). At the background level, we find ψ̄ðtÞ ¼ ψ̄ð0Þe−iνt

with ν ¼ U0ðjψ̄ j2Þ < 0. At linear order in the perturbation,
we find6

�
∂2
t þ

k2

4
½k2 þ 4jψ̄ j2U00

nlðjψ̄ j2Þ�
�
δψk

ψ̄
¼ 0: ð6Þ

Note that U00
nlðjψ̄ j2Þ < 0 for our case. Thus, we have

unstable, exponentially growing perturbations jδψk=ψ̄ j ∝
eμkt for

k2 < −4jψ̄ j2U00
nlðjψ̄ j2Þ;

with μk ¼
����i k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4jψ̄ j2U00

nlðjψ̄ j2Þ
q ����: ð7Þ

For a given jψ̄ j, the mode that grows the fastest has a wave
number

k⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2jψ̄ j2U00

nlðjψ̄ j2Þ
q

with μk⋆ ¼ −ψ̄2U00
nlðjψ̄ j2Þ ¼

k2⋆
2
: ð8Þ

The corresponding (approximate) expressions in an expand-
ing universe are obtained via k → k=a. Moreover, in an
expanding universe ψ̄ ∝ a−3=2 and H ∼ βa−3=2.
In an expanding universe, this growth rate should be

compared to H to ascertain whether the growth of pertur-
bations can compete with expansion related dilution. Using
our expressions for Unlðjψ j2Þ in Eq. (7) and H2 from the
Friedman equation (1), we need

μk
H

∼
1

β

1

a3=2
≫ 1 for rapid growth: ð9Þ

In the above expression we have assumed that jψ̄ j≲ 1.

B. Gravitational instability

Spatial perturbations of the field also grow due to
gravitational interactions (we ignore self-interactions for
the moment). Again, ignoring expansion, usual linear
instability analysis of Eq. (1) reveals that the unstable
perturbations grow exponentially jδψk=ψ̄ j ∼ eμkt when [22]

k < kJ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
βjψ̄ j

q
with μk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
β2jψ̄ j2 − k4

4

r
: ð10Þ

5Note that δψk is in units ofm1=2 (with ℏ ¼ c ¼ 1). Recall that
ψ is measured in units of mM and L in units of m−1 which
together lead to the appearance of the m=M ≪ 1 coefficient.
To arrive at the above initial conditions, we found it easiest to
start from the relativistic case with the relativistic field ϕ ¼
ð ffiffiffi

2
p

=mÞℜ½ψe−imt� (see the Appendix for details). For the initial
conditions, we ignore self-interactions, as well as fast time
variations, and assume k ≲m. Refinements are possible [such
as jδψkj2 ∼ ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

eff

p
] but are not expected to change the

results qualitatively.

6To obtain this equation, we found it useful to first derive the
first-order equations for the real and imaginary parts of
the perturbation eik·xδψk=ψ and then combine them to get the
second-order-in-time equations for each part. The real and
imaginary parts satisfy the same second-order linear equation;
thus, we arrive at Eq. (6).
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Heuristically, including expansion means that jψ̄ j and k
redshift, and the k above should be interpreted as a physical
wave number k=a.7

We end this section by noting that there are two instability
scales associated with self-interactions and gravity, respec-
tively [see Eqs. (7) and (10)]. Assuming jψ̄ j ∼ a−3=2 ≲ 1, the
instabilities are active on physical wave numbers

k
a
≲
�
a−3=2 self-interactionsffiffiffi
β

p
a−3=4 gravity:

ð11Þ

The unstable modes have characteristic “growth rates”:

μk
H

∼
�
β−1a−3=2 self-interactions

1 gravity:
ð12Þ

This simple scaling analysis reveals that for β ≪ 1, the self-
interaction instability will dominate at early times.

VI. POWER SPECTRUM

The power spectrum of the field perturbations is shown
in Fig. 2. The initial spectrum (black) is based on our initial
conditions [see Eq. (4), including an exponential cutoff
which removes k ≫ 1 modes at this time].
The dashed blue line is the expected power spectrum at

a ¼ 1.5 based on our instability analysis in Sec. V. This
calculated power spectrum is consistent with the numeri-
cally evaluated spectrum at the same time, which was
obtained using the full lattice simulation, both with local
gravitational interaction included (solid line) and turned off
(dotted line).8

Soon after, the perturbations start becoming nonlinear,
and backreaction of the perturbations on the homogeneous
evolution of the field becomes significant. The scale factor
when the perturbations become nonlinear can be obtained
from the following heuristic criterion which compares the
amplitude of field perturbations to the background homo-
geneous field:

m
M

k3=2hjδψkj2i1=2 ∼ ψ̄ ; ð13Þ

where the left-hand side is an estimate of the variance of
fluctuations on a scale l ∼ k−1. The above criterion is
satisfied by a combination ðanl; knlÞ such that the field

perturbations on the comoving scale knl become nonlinear
first. For β ¼ 0.03, we analytically estimate anl ≃ 2.1 and
knl ≃ 0.7. Note the scale knl=a ≃ 0.35 in the spectrum in
Fig 2 (see the blue curves). A characteristic scale is also
visible in the second column (a ¼ 2) of the snapshots of the
field evolution shown in Fig. 1.

VII. SOLITON FORMATION

Once the perturbations become nonlinear, the attractive
self-interactions lead to the formation of localized, roughly
spherical energy density configurations (our solitons) at the
peaks of the density perturbations. The comoving number
density of such peaks (and hence of solitons) is crudely
given by

a3nsol ∼ ðknl=2πÞ3; ð14Þ

at the time of formation (see [53,54]). Using knl ≃ 0.7,
we get a3nsol ∼ 10−3, consistent with our simulations (see
Fig. 3).
The formation of solitons following the initial linear

instability is clearly visible in the snapshots shown in
Fig. 1. While we do not show the a ¼ 3 snapshot, the
formation of solitons is complete by this time. The a ¼ 4
snapshot shows well-formed and separated solitons, with
typical overdensity inside the solitons of O½10�.

FIG. 2. Power spectrum of the field ψ (scaled by jψ̄ j2 ∝ a3). The
initial conditions are consistent with vacuum fluctuations, with a
cutoff removing relativistic scales. A self-interaction driven in-
stability on the wave number k=a ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2jψ̄ j2U00

nlðjψ̄ j2Þ
p

drives the
initial growth of the perturbations. These perturbations backreact
on the homogeneous condensate around anl ≃ 2.1 on the physical
scale knl=a ≃ 0.35 first. After this time, solitons soon begin to form,
separated by a comoving distance of ∼2π=knl. Note that in
this figure, since we have divided the power spectrum jψ̄ j2,
the backreaction takes place when the spectrum is roughly of
order unity.

7We recognize that including expansion more carefully, the
gravitational instability is power-law type rather than exponential,
and the fractional overdensity must grow as ∼a for k < kJ;
however, our argument is sufficient to capture the slowness of
gravitational instability compared to the self-interaction one [52].

8We note that there is some power on k=a≳ 1 in the power
spectrum; part of this is from initial conditions where we were not
aggressive in removing all k=a≳ 1 modes, and part from
rescattering due to nonlinear evolution. However, at late times,
most of the power is on k=a≲ 1.
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In more detail, Fig. 3 shows the comoving number
density of solitons as a function of time in our simulations.
The initial number density established by the formation of
the solitons is independent of self-gravity. However, gravity
is strong enough to lead to subsequent mergers or dis-
ruptions, which leads to a small drop in number density of
solitons at late times. In addition, we cannot rule out that
gravity is causing some individual solitons to become
unstable. The drop in comoving number density is evident
in the difference between the dashed (ignoring gravitational
interactions) and solid lines (≲10% per Hubble time).
We find that a large fraction (∼70%) of the energy in a

comoving volume of the universe is locked up in solitons.
We only count regions with overdensities ≳4 as part of
solitons for this estimate. This result is consistent with
related earlier simulations using the relativistic nonlinear
Klein-Gordon equation in an expanding universe (but
ignoring gravitational clustering); see for example [7,54].

VIII. INDIVIDUAL SOLITONS

The first two equations in Eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
solutions of the form

ψðt; rÞ ¼ e−iνtΨðrÞ: ð15Þ

We substitute this ansatz into (1) to obtain equations for the
profile ΨðrÞ and gravitational potential ΦðrÞ:

�
νþ 1

2r2
∂rðr2∂rÞ −U0

nlðΨ2Þ −Φ
�
Ψ ¼ 0;

1

r2
∂rðr2∂rÞΦ ¼ β2

2

�
Ψ2 þ 1

2
ð∂rΨÞ2 þUnlðΨ2Þ

�
: ð16Þ

Note that ν can be absorbed into the definition Φ̃ ¼ Φ − ν.
We then find smooth, localized, node-free solutions
for ΨðrÞ for each Ψð0Þ, by appropriately adjusting Φ̃ð0Þ.9
We note that by going to the large r limit of the profile

equations, ΨðrÞ decays in an exponential fashion at large
radii (see [55]). This will be relevant when discussing
soliton interactions.
In Fig. 4 we plot the 1=ewidth of these soliton profiles as

a function of the central amplitude (solid black curve) using
the profiles obtained from the above procedure. Note that
the width is nonmonotonic in the central amplitude. The
data points in this plot correspond to solitons extracted
from our simulations and are in excellent agreement with
the calculated analytic expectation. Note that for early
times (a ¼ 2), not all high density regions are solitons yet;
hence, they do not lie on the analytic curve initially.
While we have done the above calculation including

gravity, the gravitational potential remains small for most
of the solitons, jΦð0Þj ¼ O½10−3� for β ¼ O½10−2�, and

FIG. 3. The comoving number density of solitons a3nsol in our
simulations with (solid) and without (dotted) gravitational inter-
actions. Proper solitons begin to form around a ≈ 4, with O½103�
solitons per Hubble volume H−3 at this time. At late times, the
number density of solitons is lower in the case when gravity is
included due to mergers or disruptions made possible by
gravitational clustering. The curves are obtained by averaging
over 6 runs.

FIG. 4. The relationship between the central amplitude and 1=e
width of the solitons. The points are extracted from our simu-
lations, whereas the curve is calculated semianalytically. Note that
at late times, only solitons that are stable according to the
Vakhitov-Kolokolov stability criterion (on the right of the gray
line) remain. For our parameters, gravity remains weak and does
not significantly alter individual soliton profiles. The gravitational
potential at the center of the solitons is plotted on the top axis.

9If needed, we can recover ν ¼ Φ − Φ̃ by insisting that
ΦðrÞ → 0 for r → ∞. In practice, recovering accurate values
of ν is not easy since Φ̃ falls off as a power law.
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gravity does not significantly affect profiles for central
amplitudes Ψð0Þ≲ few. The same is true in our simula-
tions. We also show the gravitational potential at the center
of these solitons, Fig. 4 (top axis).
The mass (or energy) per soliton is10

E ¼
Z

d3r

�
Ψ2 þ 1

2
ð∂rΨÞ2 þ UnlðΨ2Þ

�
;

¼ O½102� ×
�
M
m

�
2

m; ð17Þ

for the range of central amplitudes shown in Fig. 4 and seen
in simulations. Note that with m ≪ M, E ≫ m. We find
that the energy is a nonmonotonic function of Ψð0Þ, with a
minimum near Ψð0Þ ≃ 1.

A. Stability

From our calculated profiles, we find that for −ν≳ 0.05
[correspondingly, Ψð0Þ≳ 0.9]:

dN
dð−νÞ > 0 where N ≡

Z
d3rΨ2ðrÞ; ð18Þ

whereas it is smaller than zero at smaller amplitudes. This
Vakhitov-Kolokolov stability criterion [56] guarantees sta-
bility for solitons with Ψð0Þ≳ 0.9 against long-wavelength
perturbations.
The stability criterion elegantly explains the dearth of

solitons with central amplitudes below Ψð0Þ≲ 1 in Fig. 4
(see also [50], where this criterion is argued to hold even
when including gravity in the nonrelativisitic limit).11

A more detailed stability analysis including gravity for
our saturated potentials would be useful.12

IX. GRAVITATIONAL CLUSTERING

For β ≪ 1, gravitational clustering is expected to
become important at late times [significantly after the
solitons have formed; see Eq. (12)]. At these late times,
this universe essentially behaves as a matter dominated

universe [aðtÞ ∝ t2=3], with solitons becoming our new
nonrelativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is that
the gravitational clustering of these solitons should proceed
in a manner similar to dust in an expanding universe.
Moreover, we can ignore nongravitational forces between
the solitons at separations much larger than 2re because we
expect them to be Yukawa-like, with the force falling away
exponentially with separation.13

We construct the two-point correlation function of
soliton locations obtained from our simulations to quanti-
tatively investigate the effects of gravitational clustering.
In Fig. 5, we show the two-point correlation function
of the solitons, calculated with the Landy-Szalay estimator
[61,62]:

ξLSðrÞ ¼
DD
RR

− 2
N − 1

N
DR
RR

þ 1; ð19Þ

where there are N solitons (the data D) and N uniform
randomly chosen points R; DD is the number of soliton
pairs in a given comoving radial separation bin, RR is the
mean count for the random points over several realizations
R, and DR is the cross-correlation statistic.
As seen in Fig. 5, the measured two-point correlation

function is the same for the cases with and without
gravitational interactions at early times soon after soliton
formation (a ≲ 4). The distribution is close to Poissonian
on large scales: ξLSðr≳ 10Þ ≈ 0. However, the comoving

FIG. 5. The two-point correlation function of soliton locations
with and without the inclusion of gravitational interactions. At
early times, the correlation functions with and without gravity
agree with each other. However, at late times gravitational
clustering ξLSðrÞ ∝ r−2 is clearly visible for the a ¼ 16 and
a ¼ 20 cases in the above figure.

10Note that ignoring the gradient and potential terms only
changes the answer by a factor of few. We briefly restore units
with ℏ ¼ c ¼ 1 to clarify that each soliton contains a large
number of m particles.

11A long-wavelength stability analysis for relativistic solitons
(oscillons) was carried out in [31,54] (albeit in a different self-
interaction potential, and without gravity), which also showed that
the above stability criterion correctly predicts the survival of large
amplitude oscillons in simulations. We further note that three-
dimensional oscillons in sine-Gordon potentials (for axions, but
without gravity) are not stable and have a relatively short lifetime,
compared to flattened potentials [7,57]. Oscillons in flattened
potentials can last longer than 107 m−1 [57], whereas the duration
of our simulations is tf − ti ∼ few × 103 m−1. See the Appendix
for further references on lifetimes in the relativistic case.

12For a related analysis in the case of axions, see [58,59].

13This is also reminiscent of the force between solitons as
analyzed by [60].
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scale rnl ∼ k−1nl which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k−1nl ).
If we allow for gravitational interactions, solitons begin

to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ξLS (for a≳ 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[63], we find

ξLSðrÞ ∝
1

r2
; ð20Þ

where r is a comoving separation.14 Fitting the model ξLS ∝
aαrβ for our 6 simulations in the range of a ¼ 10 to a ¼ 20,
we find α ¼ 1.7� 0.3, β ¼ −2.1� 0.2. It would be inter-
esting to explore this clustering further in detail, since it
might reveal differences from the point particle case at
late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing
solitons together at late times (i.e., significantly after their

formation), and allows them to interact.15 Figure 6 shows
three different types of interactions that are achieved from
our cosmological initial conditions.
(1) Solitons “repel or bounce off” each other when the

relative phase of the interacting solitons jθ1 − θ2j ≈ π,
where ψaðt;xÞ ¼ ΨaðxÞe−iðνatþθaÞ with a ¼ 1, 2. We
have verified this phase structure in our simulations
during such a repulsive interaction.

(2) A few solitons merge to form more massive solitons
(typically when the relative phase is ∼0), resulting in
a change in the number density of solitons. Such
interactions are typically accompanied by the gen-
eration of a burst of scalar waves as the solitons
settle into new configurations.

(3) A small fraction of solitons form orbiting
binaries, and we even see an occasional three-body
interaction.

(4) Only few-10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.16 This is consistent with the rate of change in
the comoving number density of solitons,

FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to mergers,
strong scattering, and formation of soliton binaries. Nongravitational interactions can play a dominant role in the close encounters, with
the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics makes the soliton gas distinct
from a gravitationally interacting gas of particles. Shown in this figure are projected densities in zoom-ins (box size L=4), around 3
interactions (bounce, merge, and orbit), at 5 times, each separated by time interval corresponding to Δ logðaÞ ¼ 1.16.

14We checked that if we replace the solitons by point particles
after a ¼ 4, the correlation function evolves in a qualitatively
similar manner

15There are interactions at early times when gravity is ignored
as well, but this is not so at late times in our simulations. We find
that some solitons have a significant velocity at early times with
and without gravity, which will be investigated quantitatively in
the future.

16We inspected 6 numerical runs with different initial
conditions to get this number.
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d lnða3nsolÞ
d ln a

≃ 0.1; ð21Þ

as seen from Fig. 3.
We reiterate that bouncing, binary formation, and merg-

ing of solitons are self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich and deviate from
the expectations of treating these solitons as just point
particles. The relative phase of the solitons plays an
important role in these close encounters.
We note that at late times (af ≃ 20), we have about

10 pixels per linear dimension of the soliton (∼103 pixels
per volume of the soliton). As a result, the detailed
dynamics (such as postinteraction kicks at late times) of
individual strong interactions should be interpreted with
some care. While it is not easy to improve the resolution
significantly for the entire simulation, zoom-in, higher
resolution simulations focusing on soliton interactions
using initial conditions from our simulations would be
useful. A more detailed investigation of the rich dynamics
of close encounters with higher resolution simulations is
left for future work. For an early and detailed investigation
of Q-ball interactions (relativistic complex field valued
analogs of our solitons), but without gravity, see [64,65].
The repulsive and attractive behavior of such solitons as

a function of relative phase can be heuristically understood
as follows. Consider a probe soliton moving past another
stationary soliton (in the absence of gravity). The non-
linearity in the Schrödinger equation (∝ jψ j2 for jψ j2 ≪ 1)
can be thought of as a nonlinear refractive index.17 If
the two solitons are in phase, we expect this term to be
larger in the region between the solitons than in the case
when the stationary soliton is absent. It also increases
towards the stationary soliton. As a result, this larger
refractive index, and its gradient, will cause the core of
the probe soliton to bend towards the stationary one; i.e.,
there will be attraction between the solitons. On the other
hand, when our two solitons are out of phase, the jψ j2
between the two solitons will be smaller and have to go to
zero in the middle (from symmetry), causing the probe
soliton to move away from the stationary one (hence
“repulsion”). A more detailed, effective potential based
analysis at large separations is provided by [43,68].

XI. CONCLUSIONS AND FUTURE DIRECTIONS

We investigated the dynamics of nonrelativistic scalar
fields in an expanding background. By including self-
interactions and gravitational interactions, we demonstrated

the formation of solitons driven by self-interactions from
cosmologically relevant initial conditions, followedby gravi-
tational clustering of solitons.We showed that this clustering
leads to dynamically rich interactions between solitons,
including scattering, merging, and binary formation at late
times (which is absent in the case when gravity is not
included). The highly nonlinear dynamics were explored by
numerically solving the Schrödinger-Poisson system of
equations with self-interactions and weak field gravity in a
self-consistently expanding universe.
We provided analytic results and estimates for (i) the

timescales and length scales associated with soliton for-
mation, (ii) the spatial distribution of solitons, (iii) the
number density of solitons, (iv) the individual properties of
our three-dimensional solitons, including their stability, and
(v) the two-point function related to the gravitational
clustering of solitons.
We showed agreement between our analytic calculations

and numerical simulations. The estimates and analytic
results also provide an understanding of how the results
depend on essential physical parameters in our problem,
allowing for broader applicability beyond that of the fiducial
models considered in this paper. In the Appendix we discuss
the connection of our work to the case where the fields
satisfy a relativistic Klein-Gordon equation in an expanding
universe (in particular, [13]). A more careful comparison
with relativistic simulations, and many associated subtleties
and caveats, is left for future work.
Our work points towards a number of new avenues of

exploration: (1) What is the end state of a gravitationally and
nongravitationally interacting “soliton gas”? What is the
velocity and angular momentum distribution? This inves-
tigation is not purely gravitational because of the close
encounters of the solitons in an expanding universe, where
the phase plays a dominant role (see [46] for the non-
interacting case). (2) For our initial conditions, individual
solitons seem to be far from forming black holes. However,
rare, accidental overdensities or overdensities driven by
gravitational clustering and mergers might make it more
favorable to formblack holes.Numerically intensive, general
relativistic simulations of soliton formation from cosmologi-
cal initial conditions and strong self-interactions have not yet
beendone [69,70]. (3) The close encounters could be a source
of stochastic gravitational waves from solitons in the early
universe, in addition to those from formation of the solitons in
the early universe. (4) It is possible to consider a different
expansion history of the background (for example, radiation
domination) and an axionlike potential, as well as inhomo-
geneous initial conditions, which would make parts of our
analysis relevant for the formation of quasistable axitons [8]
and axion miniclusters [71] in the early universe.18

17This is more than an analogy since nonlinear Schrödinger
equations are used to model light pulse propagation in nonlinear
media [66]; we learned of the above heuristic explanation from the
same paper. For soliton formation and interactions in yet another
context (Bose-Einstein condensates), see for example [67].

18Radiation domination makes soliton formation and cluster-
ing more difficult starting from approximately homogeneous
initial conditions.
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APPENDIX A: CONNECTION TO
A RELATIVISTIC MODEL

In the main body of the paper we did not include a
detailed analysis of the nonrelativistic limit of strongly self-
interacting relativistic theories (if it exists). We took certain
nonrelativistic field equations with strong self-interactions
as given, and explored the solutions. As we discuss below,
the equations we use can be justified as being obtained by
integrating out the fast time variation in the weakly
interacting limit. While we believe that some aspects of
the relativistic-nonrelativistic connection persists at large
self-interactions as well, a rigorous mapping is beyond the
scope of the present work. We note that even with strong
self-interactions, the spatiotemporal variations of the sol-
utions of the system under consideration remain non-
relativistic, and the gravitational potential remains small,
making the exploration in the main body of the paper self-
consistent in this respect.
To derive our equations of motion (1) from a relativistic

scalar field theory (in a particular limit discussed below),
consider a real scalar field ϕ within general relativity.
Consider a real scalar field minimally coupled to gravity
with the action

S ¼
Z

d4x
ℏc2

ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
gμν∂νϕ∂μϕ − VðϕÞ

�
; ðA1Þ

where ϕ has dimensions of energy, R is the Ricci scalar, gμν
is the metric, g is the determinant of the metric, and
d4x ¼ ðcdtÞd3x. We are interested in potentials of the form

VðϕÞ ¼ m2c2

2ℏ2
ϕ2 þ VnlðϕÞ; ðA2Þ

where VnlðϕÞ contains the nonquadratic part of the poten-
tial, whose shape is controlled by a scale M. As a
concrete example, we can consider the potential VðϕÞ ¼
ðm2M2=2Þ tanh2ðϕ=MÞ [72,73], although the precise form
is not necessary for most of the discussion that follows.

1. The weak field approximation,
nonexpanding spacetime

In the weak field limit (i.e., forΦ=c2 ≪ 1 whereΦ is the
Newtonian gravitational potential) and in the absence of
expansion, the metric is determined by the line element of
the form

ds2 ¼
�
1þ 2

Φ
c2

�
ðcdtÞ2 −

�
1 − 2

Φ
c2

�
dx2: ðA3Þ

Note that we are ignoring anisotropic stress, as well as
vector and tensor perturbations. In the linear regime,
anisotropic stress is absent and will be absent away from
solitons at the very least. In a time averaged sense, the
anisotropic stress will be small inside the solitons.
The equation of motion (nonlinear Klein-Gordon equa-

tion in curved spacetime) satisfied by the field ϕ is

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ þ ∂ϕVðϕÞ ¼ 0; ðA4Þ

which, to leading order in Φ=c2, yields

∂2ϕ

∂ðctÞ2 −
�
1þ 4

Φ
c2

�
∇2ϕ −

4

c2
∂Φ
∂ðctÞ

∂ϕ
∂ðctÞ

þ
�
1þ 2

Φ
c2

�
∂ϕV ¼ 0: ðA5Þ

In turn, the Einstein equations reduce to the Poisson
equation

∇2Φ ¼ 4πG
c2

T0
0; ðA6Þ

with

T0
0 ¼

1

2

�
1 − 2

Φ
c2

�� ∂ϕ
∂ðctÞ

�
2

þ 1

2

�
1þ 2

Φ
c2

�
ð∇ϕÞ2 þ VðϕÞ: ðA7Þ

2. The nonrelativistic limit

In order to consider the “nonrelativistic” limit, it is
convenient to redefine the real scalar ϕ in terms of a
complex field ψ , factoring out the rest energy contribution

ϕ¼ ℏffiffiffi
2

p
m
ðψe−imc2t=ℏþH:c:Þ¼

ffiffiffi
2

p ℏ
m
ℜ½ψe−imc2t=ℏ�; ðA8Þ
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where the normalization constant is chosen so that (A6) reduces to the usual nonrelativistic Poisson form. Straightforward
substitution into (A5) and (A7) yields

�
iℏ
∂ψ
∂t −

ℏ2

2mc2
∂2ψ

∂t2 þ
ℏ2

2m

�
1þ4

Φ
c2

�
∇2ψþ 2ℏ2

mc4
∂Φ
∂t

�∂ψ
∂t −

imc2

ℏ
ψ

�
þ1

2
mc2ψ

�
e−imc2t=ℏþðH:c:Þ

−
�
1þ2

Φ
c2

��
mc2

2
ðψe−imc2t=ℏþH:c:Þþ ℏffiffiffi

2
p ∂ϕVnlðϕÞ

�
¼ 0; ðA9Þ

and

T0
0¼

ℏ2

4m2c2

�
1−2

Φ
c2

���∂ψ
∂t −

imc2

ℏ
ψ

�
e−imc2t=ℏþH:c:

�
2

þ ℏ2

4m2

�
1þ2

Φ
c2

�
½ð∇ψÞe−imc2t=ℏþH:c:�2þc2

4
ðψe−imc2t=ℏþH:c:Þ2þVnl: ðA10Þ

Let τm ¼ ℏ=mc2 and λm ¼ ℏ=mc. Now let us assume
that jτm∂tψ j ≪ jψ j; similarly, jτm∂tΦj ≪ jΦj. We now
average T0

0 over a period 2πτm assuming that Φ and ψ
do not change appreciably over this period.19 This yields

hT0
0i¼

c2

2

�
1−2

Φ
c2

�����τm∂ψ∂t − iψ

����
2

þ1

2

�
1þ2

Φ
c2

�
c2λ2mj∇ψ j2þc2

2
jψ j2þhVnli: ðA11Þ

It is convenient to define

hVnli≡ Unlðjψ j2Þ: ðA12Þ

Assuming jΦ=c2j ≪ 1, and jτm∂tψ j ≪ jψ j, the above
expression simplifies to

hT0
0i ¼ c2jψ j2 þ 1

2
c2λ2mj∇ψ j2 þ Unl þO½Φ=c2; τm∂t�:

ðA13Þ

Toget the Schrödinger-like equation,wemultiplyEq. (A9)
by eit=τm and average over a period 2πτm, again assuming that
Φ and ψ do not change appreciably over this period. This
temporal averaging will get rid of the h.c part in (A9).
Moreover, we divide the resulting equation by mc2, to get

�
iτm

∂ψ
∂t −

1

2
τ2m

∂2ψ

∂t2 þ
�
1þ 4

Φ
c2

�
1

2
λ2m∇2ψ

þ 2τm
∂ðΦ=c2Þ

∂t
�
τm

∂ψ
∂t − iψ

�
þ 1

2
mc2ψ

�

−
�
1þ 2

Φ
c2

�
τmffiffiffi
2

p heit=τm∂ϕVi ¼ 0: ðA14Þ

We will show in the next subsection that τmffiffi
2

p heit=τm∂ϕVi ¼
ψ∂ jψ j2Unlðjψ jÞ2 ¼ ψU0

nlðjψ j2Þ.
Treating Φ=c2 and τm∂t as separate small parameters,

and keeping leading order terms in each (but ignoring
Φ=c2 × τm∂t), we have

iτm
∂ψ
∂t þ

�
1þ 4

Φ
c2

�
1

2
λ2m∇2ψ −

Φ
c2

ψ

−
�
1þ 2

Φ
c2

�
ψU0

nlðjψ j2Þ ¼ 0: ðA15Þ

After some rearranging

iτm
∂ψ
∂t þ

1

2
λ2m∇2ψ − ψU0

nlðjψ j2Þ

−
Φ
c2

ðψ − 2λ2m∇2ψ þ 2ψU0
nlðjψ j2ÞÞ ¼ 0: ðA16Þ

On the one hand, it is clear that ∇2ψ ≫ ðΦ=c2Þ∇2ψ .
However, for large amplitude solitons λ2m∇2ψ ∼ ψ ; hence,
it is not clear that we can drop this term compared to the ψ
in the term with the Φ coefficient (also see [49]). A similar
argument holds for h� � �i terms. For the discussion that
follows, we will use ∇2ψ ≫ ðΦ=c2Þ∇2ψ to arrive at

iτm
∂ψ
∂t þ

1

2
λ2m∇2ψ − ψU0

nlðjψ j2Þ −
Φ
c2

ψ ¼ 0: ðA17Þ

Using our result for hT0
0i, we also have the Poisson equation

at the lowest order in Φ=c2,

∇2Φ ¼ 4πG

�
jψ j2 þ 1

2
λ2mj∇ψ j2 þ c−2Unlðjψ j2Þ

�
: ðA18Þ19This part is not entirely rigorous, and it deserves to be

handled with care.
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These are our master equations used for time evolution of
the field and for determining the metric potential [see
Eq. (1)]. In arriving at Eq. (1) in this limit (ignoring
expansion for the moment), we assumed weak field gravity
and restricted ourselves to scalar metric perturbations
without anisotropic stress.
Since we were not interested in reproducing the limit of a

particular relativistic theory in the main body of the text, we
simply took Unl to be an effective potential for our theory.
Nevertheless, by using (A12) we can link Unl to Vnl at least
for small amplitudes. We turn to this task next.
The time averaging procedure in Eq. (A12) is math-

ematically well defined for any potential which admits a
Taylor expansion and has a quadratic minimum,

VðϕÞ ¼ m2M2
X∞
n¼1

an

�
ϕ

M

�
2n
; where a1 ¼ 1=2: ðA19Þ

The nonquadratic (nonlinear part) of this potential is

Vnl ¼ VðϕÞ − 1

2
m2ϕ2: ðA20Þ

Using ϕ ¼ ffiffiffi
2

p
ℜ½ψe−it=τm � and taking a time average of this

nonlinear part over a period 2πτm, we have

Unlðjψ j2Þ≡hVnli

¼m2M2
X∞
n¼2

bn

� jψ j2
m2M2

�
n

wherebn¼
ð2nÞ!
2nðn!Þ2an:

ðA21Þ

We also need the time average of ∂ϕVnl for the equations of
motion:

ψU0
nlðjψ j2Þ ¼

τmffiffiffi
2

p heit=τm∂ϕVnli

¼ ψ
X∞
n¼2

cnψ

� jψ j2
m2M2

�
n−1

where cn ¼
ð2n − 1Þ!

2n−1ðn − 1!Þ2 an ¼
bn
n
: ðA22Þ

It is beneficial to have a fitting function for hVnli. For a
potential of the form

VðϕÞ ¼ m2M2

2
tanh2

�
ϕ

M

�
; ðA23Þ

we can find that for jψ j ≤ π=ð2 ffiffiffi
2

p Þ, an excellent approxi-
mation to Unlðjψ j2Þ is provided by

Unlðjψ j2Þ ¼ −
jψ j2
2

jψ j2
m2M2

1þ jψ j2
m2M2

; and correspondingly

U0
nlðjψ j2Þ ¼ −

jψ j2
m2M2

1þ jψ j2
2m2M2	

1þ jψ j2
m2M2



2
: ðA24Þ

Rescaling our field by mM, we recover the potential used
in the main body of the text. We caution that the form
beyond jψ j > π=ð2 ffiffiffi

2
p Þ need not be simply connected to

the relativistic potential. Moreover, at these large ampli-
tudes, we might benefit by time averaging over amplitude-
dependent frequencies.
To include the effect of background expansion we

consider a metric of the form

ds2 ¼ ð1þ 2ΦÞðcdt2Þ − a2ðtÞð1 − 2ΦÞdx2; ðA25Þ

where aðtÞ is the scale factor. Our complete set of equations
then becomes (under the assumption that H−1 ≫ τm and
c=H ≫ λm),

�
i

�
∂t þ

3

2
H

�
þ 1

2a2
∇2 −U0

nlðjψ j2Þ −Φ
�
ψ ¼ 0;

∇2

a2
Φ ¼ β2

2

�
jψ j2 þ 1

2a2
j∇ψ j2 þ Unlðjψ j2Þ

�
−
3

2
H2;

H2 ¼ β2

3

�
jψ j2 þ 1

2a2
j∇ψ j2 þ Unlðjψ j2Þ

�
; ðA26Þ

where ½� � �� indicates a spatial average. The third equation is
obtained from the Einstein equations for a homogeneous
and isotropic universe (the Friedmann equation). This
completes our derivation, with caveats, of the master
equations (1) that are used in the main body of the
paper.
For recent derivations and discussions of the nonrela-

tivistic limit, as well as decay rates for solitons with and
without weak-field gravity (but in a nonexpanding uni-
verse), see [49,50].

APPENDIX B: DETAILS ON
INITIAL CONDITIONS

In this appendix, we derive the vacuum initial conditions
for a free nonrelativistic field from the appropriate rela-
tivistic free field vacuum perturbations. Starting with the
definition of the Fourier transform,
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1ffiffiffiffi
V

p
X
k

e−ik·xϕkðtÞ ¼ ϕðt;xÞ;

¼ 1ffiffiffi
2

p
m
½ψðt;xÞe−imt þ c:c�;

¼ 1ffiffiffi
2

p
m
½fψRðt;xÞ þ iψ Iðt;xÞge−imt þ c:c�;

¼
ffiffiffi
2

p

m
½ψRðt;xÞ cosðmtÞ þ ψ Iðt;xÞ sinðmtÞ�;

¼ 1ffiffiffiffi
V

p
X
k

ffiffiffi
2

p

m
e−ik·x½ψR

kðtÞ cosðmtÞ þ ψ I
kðtÞ sinðmtÞ�; ðB1Þ

where ψR;I
k ðtÞ are the Fourier transforms of ψR;Iðt;xÞ.

Hence, we have

ψR
kðtÞ cosðmtÞ þ ψ I

kðtÞ sinðmtÞ ¼ mffiffiffi
2

p ϕkðtÞ: ðB2Þ

Similarly, we have

−ψR
kðtÞ sinðmtÞ þ ψ I

kðtÞ cosðmtÞ ≈ 1ffiffiffi
2

p _ϕkðtÞ; ðB3Þ

where we have assumed j _ψR;I
k ðtÞj=m ≪ jψ I;R

k ðtÞj. At an
initial time t ¼ 0, we have

ψR
kð0Þ ¼

mffiffiffi
2

p ϕkð0Þ and ψ I
kð0Þ ≈

1ffiffiffi
2

p _ϕkð0Þ: ðB4Þ

Now, following the implementation in Defrost [74], we
can write ϕkð0Þ ¼ bk=

ffiffiffiffiffiffiffiffi
2ωk

p
and _ϕkð0Þ ¼ ck

ffiffiffiffiffiffiffiffiffiffi
ωk=2

p
,

where hbkb�qi ¼ δkq and hckc�qi ¼ δkq with bk and ck
independent complex numbers (4 identically distributed
independent variables). The real and imaginary parts of
each are drawn from a zero mean Gaussian distribution,
with a variance of 1=2. Then, we have

ψR
kð0Þ ¼

m
2

ffiffiffiffiffiffi
ωk

p bk ≈
ffiffiffiffi
m

p
2

bk and

ψ I
kð0Þ ≈

ffiffiffiffiffiffi
ωk

p
2

ck ≈
ffiffiffiffi
m

p
2

ck; ðB5Þ

where in the second equality we assumed k ≪ m so that we
have ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
≈m.

We are interested in ψkðtÞ which is the Fourier transform
of ψðt;xÞ. It can be written as

ψkð0Þ¼ψR
kð0Þþ iψ I

kð0Þ

≈
ffiffiffiffi
m

p
2

fðℜ½bk�−ℑ½ck�Þþ iðℑ½bk�þℜ½ck�Þg: ðB6Þ

Hence,

hjψkð0Þj2i ≈
m
2
; ðB7Þ

with amplitude drawn from a Raleigh distribution and the
phase drawn from a uniform distribution. This is consistent
with the result in the main body of the paper.

APPENDIX C: COMPARISON OF LINEAR
INSTABILITY RELATIVISTIC AND

NONRELATIVISTIC SYSTEMS

The instability analysis discussed in the main text is
connected to Floquet analysis in the corresponding rela-
tivistic theory (see, for example, Ref. [21]). However, the
instability bands as well as the Floquet exponents can differ
from the relativistic case at large amplitudes and relativistic
wave numbers. For the relativistic version (with a ¼ 1,
H ¼ 0), the perturbation to the homogeneous field satisfies

∂2
t δϕk þ ½k2 þ 1þ V 00

nlðϕ̄Þ�δϕk ¼ 0; ðC1Þ

where the field ϕ is measured in units of M and spacetime
in units of m−1. The periodic term in V 00

nlðϕ̄Þ leads to growth
of perturbations of the form δϕk ∼ PkðtÞeℜ½μ̃k�t, where μ̃k
are the Floquet exponents and PkðtÞ are periodic functions.
We find that μk ≈ℜ½μ̃k� for ϕ̄; ψ̄ ≪ 1 and k≲ 1. The
boundary of the nonrelativistic band yields a good approxi-
mation to the relativistic case for ψ̄ ≲ 1 (see Fig. 7).

APPENDIX D: NONRELATIVISTIC SOLITONS
AND OSCILLONS

It is worth making a comparison of our nonrelativistic
solitons discussed in Sec. X to the relativistic ones (oscil-
lons). Recall that ϕ ¼ ffiffiffi

2
p

ℜ½ψe−it�. For small amplitude
solitons (oscillons), we expect ϕðt; rÞ ≈ ϕðrÞ cosðωtÞ þ � � �
(with ω < 1). The solitons in the nonlinear Schrödinger
equation have the form ψðt; rÞ ¼ ΨðrÞe−iνt. Hence
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ϕðrÞ cos½ωt� ≈
ffiffiffi
2

p
ΨðrÞ cos½ð1þ νÞt�

⇒ ΨðrÞ ≈ 1ffiffiffi
2

p ϕðrÞ ν ≈ ω − 1; ðD1Þ

where ν < 0. We caution the reader that this small amplitude
analysis should merely be taken as a guide. The actual
relativistic solitons can include multiple frequencies, such as
breathing modes at large amplitudes. We compared the
profiles of relativistic solitons obtained from the simulations

in [13] and found good qualitative agreement with Fig. 4,
albeit with more scatter around the curve (after appropriate
scaling of the parameters).
A numerical study of the lifetime and stability of large

amplitude relativistic oscillons (but without gravitational
interactions) in flattened potentials like the one we use here
has been discussed in [57]. A more detailed connection
between nonrelativistic solitons and oscillons, as well as
analysis of the stability of relativistic cases (typically for
small amplitude) can be seen in [58,75–77].

FIG. 7. Left: Colors show the growth rate μk as a function of k and ψ̄ . The dark red regions are stable. The color bar indicates the
magnitude of the μk and μ̃k. The dotted lines indicate the flow of k and ψ̄ as the universe expands. To compare this plot with the
corresponding Floquet chart (right) from the relativistic case, we set ψ̄ ¼ ϕ̄=

ffiffiffi
2

p
. The factor of

ffiffiffi
2

p
can be seen from ϕ ¼ ffiffiffi

2
p

ℜ½ψe−it�.
The magnitude of the growth rate of the instability and the boundary of the nonrelativistic instability band (solid black line) deviate from
the relativistic one at large amplitudes. The same is true (to a larger extent) for the magnitude of the Floquet exponent. Also notice that
the higher order instability bands are absent in the nonrelativistic treatment. We use VnlðϕÞ ¼ ð1=2Þm2M2 tanh2ðϕ=MÞ − ð1=2Þm2ϕ2

and Unlðjψ j2Þ ¼ hVnlðϕÞi ≈ −jψ j4=2ð1þ jψ j2Þ for ϕ=M < π=2, and the comparison at large ϕ, ψ is not justified.

FIG. 8. Probability density function of density of the field (left panel) and the gravitational potential (right panel). The PDF is shown
for the case with and without gravitational interactions included. In the PDF for the gravitational potential, at each time slice the spatial
average of the gravitational potential is zero in the simulation volume. Note that the gravitational potential remains small throughout our
simulation. The behavior of the density PDF here can be compared to simulations which involve the relativistic Klein-Gordon equation
in an expanding universe but with a “passively” calculated gravitational potential (Fig. 3 of [13]).
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APPENDIX E: PROBABILITY DENSITY
FUNCTIONS OF THE DENSITY AND

GRAVITATIONAL POTENTIAL

The probability density function (PDF) of the energy
density and the gravitational potential in our simulation is
show in Fig. 8. Note that the gravitational potential in the
simulation volume remains small, jΦj ≪ 1. Moreover, the
formation of the “shelf” in the density PDF (a ≳ 4) is
characteristic of the systems in which soliton formation

takes place; the same qualitative behavior was seen
when simulating relativistic systems with a related self-
interaction potential [13] (see Fig 3. in that paper; however,
note that β ≈ 8 × 10−3 in that figure). Note that β ≪ 1 is
required for the instability that generates solitons to be
effective in a self-consistently expanding universe. The
same β also controls the strengths of the gravitational
potential. This competition makes it difficult to generate
individual solitons with large gravitational potentials via the
self-interaction instability.
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