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Dark matter halos grow by hierarchical clustering as they merge together to produce ever larger
structures. During these merger processes, the smaller halo can potentially survive as a subhalo of the larger
halo, so a galaxy-scale halo today likely possesses a rich abundance of substructure. This substructure can
greatly boost the rate of dark matter annihilation within the host halo, but the precise magnitude of this
boost is clouded by uncertainty about the survival prospects of these subhalos. In particular, tidal forces
gradually strip material from the subhalos, reducing their annihilation signals and potentially destroying
them. In this work, we use high-resolution idealized N-body simulations to develop and tune a model that
can predict the impact of this tidal evolution on the annihilation rates within subhalos. This model predicts
the time evolution of a subhalo’s annihilation rate as a function of three physically motivated parameters of
the host-subhalo system: the energy injected into subhalo particles per orbit about the host, the ratio of
stretching to compressive tidal forces, and the radial distribution of tidal heating within the subhalo. Our
model will improve the accuracy of predictions of the magnitude and morphology of annihilation signals
from dark matter substructure. Additionally, our parametrization can describe the time evolution of other
subhalo properties, so it has implications for understanding aspects of subhalo tidal evolution beyond the
annihilation rate.
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I. INTRODUCTION

Despite overwhelming evidence for the existence of dark
matter (e.g., Refs. [1–3]), its microphysical details remain
unknown. Numerous models have been considered, but
none have been experimentally confirmed (see Refs. [4–8]
for reviews). However, to explain the present abundance of
dark matter, a large class of models, including the popular
weakly interacting massive particle [9], propose that dark
matter was pair produced from the thermal plasma in the
hot early universe. In this scenario, the dark matter can
annihilate back into standard-model particles today, leading
to prospects for the detection of high-energy gamma rays or
other annihilation products (e.g., Ref. [10]).
The rate of dark matter annihilation scales as the square

of the dark matter density, so it is strongly sensitive to the
spatial distribution of the dark matter. At galactic scales and
above, this spatial distribution is well understood. Initially
overdense patches in the Universe collapse into gravita-
tionally bound dark matter halos, which thereafter merge to
produce successively larger structures. Numerical simula-
tions demonstrate that the spherically averaged mass
distributions of the resulting dark matter halos are well
described by the Navarro-Frenk-White (NFW) density
profile [11,12],

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ð1Þ

which has scale parameters rs and ρs. Baryonic effects may
subsequently alter this density profile (e.g., Ref. [13]).
However, at subgalactic scales, the spatial distribution of

the dark matter is less clear. As a halo is built up through
hierarchical merging, it accretes smaller halos that survive as
subhalos within the larger host. These subhalos gradually
lose mass due to the influence of tidal forces from the host
(e.g., Refs. [14,15]), surviving until either they are com-
pletely stripped or dynamical friction causes them to sink
into the host’s center [16]. However, for sufficiently small
subhalos dynamical friction is inefficient [15]. Moreover,
numerous analyses have found that if the subhalos possess
divergent central density, as in the NFW profile, then tidal
forces may never fully strip them [17–20].
Thus, a galactic-scale dark matter halo is likely to

possess a multitude of subhalos. This substructure can
significantly boost the rate of dark matter annihilation,
depending on the scale of the smallest halos and when they
form [20–34] (see Ref. [35] for a recent review). When the
smallest halos are microhalos of roughly earth mass,
annihilation rates may be boosted by a factor of about
10 [31,34] relative to those expected in the absence of
substructure, assuming that these halos arise from primor-
dial density fluctuations comparable to the large-scale*delos@unc.edu
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fluctuations inferred from the cosmic microwave back-
ground (e.g., Ref. [3]). Moreover, this boost can be raised
by orders of magnitude by cosmological scenarios that
amplify small-scale density fluctuations and thereby lead to
earlier and more abundant microhalo formation. Such
scenarios include a period of domination by a heavy
species [36–39] or a fast-rolling scalar field [40] prior
to nucleosynthesis, along with a variety of inflationary
models [41–63]. In these cases, the high density within
these microhalos causes them to completely dominate any
dark matter annihilation signal (e.g., Refs. [64–66]).
Unfortunately, all estimates of the substructure’s boost to

annihilation rates are subject to uncertainties about the
impact of tidal effects on subhalos. Cosmological simu-
lations cannot resolve subhalos that are much smaller than
the host, and those that are resolved are prone to artificial
destruction [67–69]. Numerous semianalytic models have
been developed to describe the dynamical evolution of
subhalos; Refs. [70–77] model a subhalo’s loss of mass due
to tidal stripping, and Refs. [18,78] predict the impact of
this mass loss on the halo’s density profile. However, these
models are typically tuned to the results of cosmological
simulations, so their predictions are affected by the artificial
subhalo disruption occurring therein. They cannot fully
reproduce the results of idealized simulations [68,79].
Meanwhile, calculations of the dark matter annihilation

rate in the substructure have employed a number of
different treatments of tidal evolution. Some, such as
Refs. [33,34], employ a combination of the models above
to predict the time evolution of subhalo density profiles.
Others, such as Refs. [30–32,39], employ simpler models,
often either truncating subhalos at a characteristic tidal
radius or formulating a destruction condition for subhalos
and assuming the survivors are unaltered. Still others, such
as Refs. [25–28,64–66] neglect the tidal disruption of the
substructure altogether.
Our work is motivated by this context. Since cosmologi-

cal simulations cannot resolve the smallest substructures, we
followRefs. [18,69,78–81] in using idealized simulations of
an N-body subhalo inside an analytic galactic potential.
However, unlike theseworks,we focus on understanding the
impact of tides on the subhalo’s annihilation rate, a goal that
requires significantly better resolution than has been
attained in previous studies. Moreover, previous works have
focused on understanding the evolution of subhalos of scales
resolvable in cosmological simulations, such as halos
associated with dwarf galaxies within a galactic halo.
Accordingly, they probe only the subhalo properties and
orbits that are found in such simulations. For instance,
Ref. [79] only studies subhalos orbiting above the host’s
scale radius. In contrast, we seek to probe the full range of
subhalos down to the smallest microhalos, which span a far
broader range of properties and orbits.
Using the results of 52 high-resolution N-body simu-

lations, we develop a physically motivated model that can

predict the time evolution of a subhalo’s annihilation rate
due to tidal effects. In the process, we isolate three physical
variables that determine this evolution:
(1) The energy injected by tidal forces into subhalo

particles over the course of each orbit about the host,
in units of the particle’s binding energy to the subhalo;

(2) The ratio of stretching (radial) tidal forces to
compressive (tangential) tidal forces;

(3) The range of radii in the subhalo across which
material is heated by tidal forces, which is set by the
shape of the subhalo’s orbit.

This model predicts the suppression of a subhalo’s anni-
hilation rate, characterized by its J factor1

J ≡
Z

ρ2dV; ð2Þ

as a function of its orbit about the host. To assist the
application of our model, we supply convenient fitting
functions.
This article is organized as follows. In Sec. II, we detail

how we carry out our N-body simulations. Section III
qualitatively discusses the trajectory of a subhalo’s J factor,
interpreting simulation trends physically and motivating
our model. In Sec. IV, we develop our predictive model for
the evolution of a subhalo’s J factor, and Sec. V summa-
rizes the model and discusses limitations and extensions. In
Sec. VI, we compare the model’s predictions to those of
previous semianalytic models. Section VII concludes, after
which we supply a variety of appendixes. Appendix A
supplies further details about our simulations, while
Appendix B quantifies the range of subhalo sizes over
which the results of these simulations are applicable.
Appendix C presents fitting formulas and other computa-
tional details that aid in applying our model. Appendix D
tests our model against a publicly available simulation
library [79]. Finally, in Appendix E, we observe that our
model can be adapted to describe the evolution of subhalo
properties beyond the J factor.

II. SIMULATIONS

Owing to the difference in scales between a host and its
smallest subhalos, the computational challenge in simulat-
ing subhalo evolution in a cosmological context is formi-
dable. A number of previous works have addressed this
problem by simulating an N-body subhalo inside an
analytic host potential [18,69,78–81]; our approach is
similar but differs in one key step. Instead of placing a
subhalo in orbit about the host potential, we subject the
subhalo directly to the time-dependent tidal force field
experienced by an analytic orbit about the host. This
procedure minimizes the impact of numerical precision

1We assume the dark matter annihilation cross section is
velocity independent in the nonrelativistic limit.
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errors that can result from differences in scale between the
subhalo’s orbital and internal dynamics. In this section, we
detail that procedure and present qualitative results.
We assume that both the host and the subhalo possess

the NFW density profile given by Eq. (1). While there is
evidence that many galactic halos possess constant-density
cores instead of the NFW profile’s cusp [82], at least some
galactic halos appear to be cuspy [83]. Additionally, while
microhalos are expected to form with ρ ∝ r−3=2 inner
profiles [24–26,65,84–88], it is likely that mergers will
drive their inner cusps toward the ρ ∝ r−1 of the NFW
profile [87–89].
To model the host’s tidal field we begin with an analyti-

cally computed orbit, describedby the time-dependent vector
RðtÞ pointing from host center to subhalo center. The tidal
acceleration at position r relative to the subhalo center is2

FtidalðrÞ ¼ −
dF
dR

ðr · R̂ÞR̂ − FðRÞ r − ðr · R̂ÞR̂
R

ð3Þ

at linear order in r=R, where FðRÞ is the force profile of the
host, R ¼ jRj, and R̂ ¼ R=R. We modified the GADGET-2
N-body simulation code [90,91] to include this tidal
acceleration.
We prepare the initial N-body subhalo with an NFW

profile by drawing particles from an isotropic distribution
function computed using the fitting form in Ref. [92].
Additionally, we sample the subhalo’s central region at
increased resolution; particles whose orbital pericenters are
below rs=3, where rs is the subhalo scale radius, have 1=64
the mass and 64 times the number density of the other
particles. Appendix A demonstrates that there is no
significant relaxation associated with the use of particles
of different masses. We cut off the density profile at
r ¼ 500rs; subhalo particles this far out are stripped
immediately, so as long as the cutoff radius is much larger
than rs, the precise choice makes no difference.3 We
represent the subhalo using a total of 8 × 106 particles,
and roughly 70% of them, carrying roughly 4% of the total
mass, are high-resolution particles. All of our subhalos
have rs ≃ 10−6Rs, where Rs is the scale radius of the host,
but as we will soon discuss, the precise choice of rs has no
impact on dynamics.
For our simulations, we consider a variety of orbits about

the host. An orbit in a spherically symmetric potential is

characterized by two parameters: energy E and angular
momentum L or, equivalently, a scale parameter and
a shape parameter. For convenience, we use the circular
orbit radius4 Rc, defined as the radius of the circular orbit
with energy E, and the “circularity” η ¼ L=Lc, where Lc is
the angular momentum of the circular orbit with the same
energy. In each simulation the subhalo begins at its orbital
apocenter.
Figure 1 illustrates a simulation executed through this

arrangement. The host has scale radius Rs ¼ 0.8 kpc and
scale density Ps ¼ 5 × 107 M⊙=kpc3, while the N-body
subhalo is initially a microhalo with scale radius rs ¼
6 × 10−7 kpc that has ρs=Ps ¼ 1285 times the scale density
of the host. The subhalo orbit has Rc ¼ 0.15 kpc and
η ¼ 0.5. The simulation runs through 18 orbits about the
host, and Fig. 2 plots the density profile of the subhalo at
each apocenter. Consistently with the results of other
works, such as Refs. [17–20], we find that this subhalo’s
central cusp is highly resistant to disruption by the host’s
tidal forces. 91% of the subhalo’s mass is stripped
by simulation termination, but its central density profile
is largely unscathed.
Our goal in this work is to understand how the annihi-

lation signal decays due to tidal effects. For this purpose,

FIG. 1. The projected density field of a microhalo simulated in
orbit about a galactic halo. The width of each frame is 0.03 pc,
and the arrow indicates the direction and distance to the host
center. The density is computed using a k-nearest-neighbor
density estimate with k ¼ 50 and is plotted with a logarithmic
color scale (lighter is denser).

2We experimented with using the full tidal force FtidalðrÞ ¼
FðRþ rÞ − FðRÞ, but because r ≪ R in our simulations, it offers
no advantage; moreover, it is less numerically stable due to the
subtraction of two close numbers.

3The natural place to cut off the density profile would be where
the density reaches that of the subhalo’s background: the host.
However, tidal forces automatically truncate a subhalo’s density
profile at roughly the radius where its average density equals that
of the host [see, e.g., Eq. (24)], so it is not necessary to tune a
cutoff radius by hand.

4Note that Rc is roughly the time-averaged radius; for a power-
law potential ϕðRÞ ∝ Rn, Rc ¼ hRni1=n. See Appendix C for a
more precise relationship for NFW profiles.
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we consider the J factor, Eq. (2), integrated over the
subhalo mass distribution. This J factor is the factor in
the annihilation rate that depends on mass distribution, and
Appendix A discusses our procedure to extract it from the
simulations. We also show in Appendix A that the resulting
J-factor trajectories are converged with respect to simu-
lation parameters.
Finally, we conclude this section by discussing the

applicability of our simulation results. The linearized tidal
force in Eq. (3) is valid for r ≪ R, and in Appendix B
we show that it yields accurate results in simulations
as long as

rs ≲ 0.1Rc: ð4Þ

Our simulation results are only applicable if this condition
is satisfied. Additionally, since we do not simulate the host
halo’s dynamics, we cannot account for dynamical friction.
Reference [79] found that dynamical friction5 has minimal
impact on a subhalo’s mass evolution for host-to-subhalo
mass ratios M=m≳ 100. However, since subhalos relevant
to dark matter annihilation may orbit over significantly
longer timescales than considered in Ref. [79], it is also
useful to have an analytic estimate for when dynamical
friction can be neglected. It follows from the analysis in
Ref. [15] that for a subhalo that accretes onto a host at
redshift z, dynamical friction can be neglected as long as
the host-to-subhalo mass ratio M=m satisfies

M=m
lnðM=mÞ ≳ 10ð1þ zÞ3=2: ð5Þ

Our results may be considered applicable as long as
Eqs. (4) and (5) are satisfied, but we remark that if one
is satisfied, then the other likely is too.

III. TRENDS IN THE TIDAL EVOLUTION

In this section, we explore trends in the evolution of J as
a function of system and time and attempt to explain them
physically. Our goal is to find the J factor as a function of
time t, orbital parameters Rc and η, subhalo parameters rs
and ρs, and host parameters Rs and Ps. The dimensionality
of this space is large, but some immediate simplifications
are evident:
(1) As long as the subhalo is much smaller than its

orbit, or rs ≪ Rc, the value of rs has no impact
on dynamics.6 All of our simulated subhalos have
rs ≃ 10−6Rs, which leads to rs ≪ Rc for all orbits
we consider.

(2) If instead of time t we use the orbit count n ¼ t=T,
where T is the orbital period, then the overall density
scale has no impact on dynamics, and only the ratio
ρs=Ps enters.

(3) The overall size of the host-subhalo system is
irrelevant, so only the ratio Rc=Rs affects dynamics.

We have verified that all of these simplifications are borne
out in our simulations. Hence, if Jinit is the initial J factor,
then J=Jinit is now a function of time n ¼ t=T and just three
system parameters: ρs=Ps, Rc=Rs, and η. Notably, the tidal
evolution is independent of the subhalo’s mass, a property
also noted in prior works (e.g., Ref. [79]).

A. Trends in the simulations

We first inspect the results of selected simulations in
order to find trends in the behavior of J. As a further
simplification, we focus on the Rc ≪ Rs regime. The host
potential is self-similar in this regime, reducing the tidal
evolution problem in two additional ways:
(1) The orbital radius Rc is degenerate with properties of

the host and subhalo. For instance, reducing the
orbital radius is equivalent to making the host denser.

(2) Orbits with the same circularity η have the same
shape; they are rescaled versions of one another.

The first simplification further reduces the parameter
space so that in this self-similar regime, there are only
two parameters,7

x̃≡ Rcρs
RsPs

ð6Þ

and η. Figure 3 shows the success of this parameter
reduction; different systems with the same x̃ and η follow
precisely the same JðnÞ trajectories. Meanwhile, the second

FIG. 2. The density profile evolution of the halo depicted in
Fig. 1. 91% of the initial mass of the microhalo is stripped by
t ¼ 0.9 Gyr, but the central density profile is largely unaffected.

5Specifically, Ref. [79] studied dynamical self-friction, or the
dynamical friction that results from the subhalo’s own tidal tail.
This friction can be considerably more efficient than that resulting
from the host’s material alone [93,94].

6For fixed density, the internal velocities of particles in a
subhalo are proportional to its radius. Since the tidal acceleration
in Eq. (3) is also proportional to the radius, fractional velocity
changes induced by tidal forces are independent of the subhalo’s
radius.

7We reserve x (without the tilde) for later use as a modified
version of x̃.
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simplification allows us to isolate the impact of these two
parameters; we can vary the “reduced orbital radius” x̃
without altering the orbit’s shape.
We first investigate the impact of orbit shape. Figure 4

shows the trajectory of the J factor for several values of η.We
see immediately that the J factor oscillates with the orbital
period with a larger amplitude for more eccentric orbits. This
trend is explained by noting that all tidal forces are com-
pressive in the self-similar regime,8 so the subhalo becomes
most compact near the orbital pericenter. The subhalo’s
J factor, being proportional to its mass-weighted average
density [e.g., Eq. (A3)], is maximized at this point. The
precise appearance of these oscillations can be complicated
because a subhalo’s response to these tidal forces is delayed;
for instance, double peaks in Fig. 3 arise because the subhalo
and its unbound tidal stream are maximally compressed at
different times. However, these oscillations are relatively
unimportant. If subhalos are at random points in their orbits,
then the J factor averaged over an orbital period suffices to
predict the aggregate signal from a population of subhalos.
We discuss this point further in Sec. V.
More interesting trends arise in the broader time

evolution. Figure 5 plots the running power-law index
d ln J=d ln t of the J factor with time, and the equation

d ln J
d ln t

¼ −bn1−c ð7Þ

describes the evolution of this index reasonably well as
long as jd ln J=d ln tj < Oð1Þ. Here, b > 0 and c > 0 are
constant parameters, and c is smaller for more eccentric
orbits. Figures 4 and 5 also show fits to the J-factor
trajectories using this form, which determines JðnÞ up to a
constant multiple. The exponent in Eq. (7) is so defined
because it leads to the more evocative expression

1

J
dJ
dn

¼ −bn−c: ð8Þ

If c ¼ 0, this equation tells us that the J factor would decay
by the same factor e−b over each orbit. The parameter c,
when c > 0, accommodates some physical process by
which tidal effects lose efficiency over time.
We show the impact of the orbital radius in Fig. 6, which

plots the trajectories of J and d ln J=d ln t for a variety of
reduced orbital radii x̃ ranging from 0.7 to 230. Evidently, x̃
affects the initial decay rate of the J factor, described by the

FIG. 3. Trajectories of the J factor for different systems with the
same x̃ ¼ Rcρs

RsPs
and η. Scaled to the orbital period, these systems

all have the same trajectory.

FIG. 4. Trajectories of the J factor for different orbital shapes.
The J factor oscillates with the orbital period; the dashed lines
show fits using Eq. (7) (for jd ln J=d ln tj < 1).

FIG. 5. The impact of orbit shape on the J-factor trajectory.
This figure plots the logarithmic slope of the orbital period-
averaged trajectory to make the trends clearer. Notably, the slope
runs more rapidly for more eccentric orbits. The points show the
simulation results, while the lines correspond to fits using Eq. (7)
(for jd ln J=d ln tj < 1).

8Tangential tidal forces are always compressive, while radial
tidal forces are negligible when Rc ≪ Rs; see Sec. IVA for
further discussion.
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parameter b in Eq. (7), without altering the rate at which the
decay slows over time. This figure also shows more clearly
that there is a steepness limit to the decay of the J factor:

d ln J
d ln t

≃ −min fbn1−c; Bg; ð9Þ

where B ∼Oð1Þ.

B. Physical interpretation

Behavior similar to that of Eq. (9) can be reproduced in a
toy model. Suppose the subhalo has potential ϕðrÞ ∝ rγ up
to an additive constant; for instance, an NFW profile would
have γ ¼ 1 for r ≪ rs. Now discretize time, perhaps as a
count of orbits, letting rn be the radius of the subhalo’s
outer boundary at time tn. Any material outside rn at time tn
is free, fixing the additive constant in the potential such
that ϕnðrÞ ∝ rγ − rγn (where ϕ ≥ 0 implies freedom). Now
suppose that at each time step, particles in the subhalo
experience an injection of energy ΔE ∝ rα due to tidal

forces, and any radius with ΔEþ ϕ > 0 no longer belongs
to the halo. For instance, if the time step is constant, then
α ¼ 2 since the energy injection is proportional to the
square of the tidal force, which is in turn proportional to
the radius. This tidal heating rule leads to the evolution
equation ϕnðrnþ1Þ þ ΔEðrnþ1Þ ¼ 0, or

rγnþ1 − rγn þ frαnþ1 ¼ 0; ð10Þ

where f incorporates all of the proportionality constants.
For simplicity, we may assume r0 ¼ 1, absorbing its

dimensionful value into f. For α > γ, Eq. (10) obeys

Δ ln r
Δ ln n

≃
�−fn=γ; fn ≪ 1;

−1=ðα − γÞ; fn ≫ 1;
ð11Þ

where Δ denotes the discrete difference across time steps.
If J ∝ rβ, then

Δ ln J
Δ ln n

≃ −min fbn; Bg ð12Þ

with b ¼ βf=γ and B ¼ β=ðα − γÞ. The quantity fn can be
understood as (up to factors of order unity) the ratio of the
tidal energy injection to the subhalo’s internal energy. The
two separate regimes arise physically because when
fn ≪ 1, the total radius change jrn − r0j ≪ r0. Since the
radius does not change appreciably, the efficiency of
tidal heating does not change, so r and J drop by the
same fraction in each orbit. However, when fn ≫ 1,
jrn − r0j ∼ r0. In this case, the radius is decreasing signifi-
cantly, which implies that the density at the halo’s shrinking
outer boundary is increasing and hence that the halo is
becoming more difficult to strip.
This toy model has reproduced Eq. (7) with c ¼ 0,

successfully explaining the apparent upper limit in
jd ln J=d ln tj. We remark, however, that there is another,
completely different, physical reason to expect an upper
limit in jd ln J=d ln tj: an unbound tidal stream grows in
length L as L ∝ t. Hence, its volume grows as V ∝ t, so its
J factor drops as J ∝ M2=V ∝ t−1. Once a subhalo has
been stripped to the point that its own J factor is dwarfed
by that of its tidal stream, the J factor of the subhalo
remnant decays as J ∝ t−1. The combination of these two
processes—the increasing density of the subhalo as its
radius drops and the J factor of its tidal stream—may
explain the behavior in Figs. 5 and 6 wherein jd ln J=d ln tj
initially shallows toward some value larger than 1 before
subsequently returning back to 1. Note, however, that the
precise evolution of the J factor in the jd ln J=d ln tj ∼ 1
regime is of little consequence. By this point, the subhalo
has already lost most of its J factor and contributes little to
annihilation signals.
The physical explanation for the c > 0 behavior

observed in the simulations remains unclear. However, it

FIG. 6. The impact of the orbital radius on the J-factor trajectory.
Top: The J-factor trajectory as in Fig. 4 (solid lines); the dashed
lines show fits using Eq. (7). Bottom: The logarithmic slope of the
orbital period-averaged trajectory, as in Fig. 5; the points show the
simulation results, while the lines correspond to the fits.Weonly fit
the trajectories that do not pass jd ln J=d ln tj ¼ 1.
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is necessarily connected to how the shape of the subhalo’s
density profile changes in response to tidal effects (see
Fig. 2), which the toy model does not account for. In a more
complete picture, the rate dJ=dn of tidal evolution should
be sensitive only to the instantaneous host-subhalo system
with no explicit dependence on the time n. Hence, it should
be possible to replace the factor n−c in Eq. (8) with a
function of the subhalo’s density profile (and other proper-
ties of the system). However, in the jd ln J=d ln tj < 1
regime, the total change in J is much smaller than J itself,
and if we neglect changes in the shape of the density
profile, then any parameter of the density profile (e.g., ρs
or rs) must experience a similarly small change. Since
the factor n−c can change by an order of magnitude in the
same regime, it is not possible, except in a very contrived
way, to replace this factor with a function of the density
profile.
Thus, the c > 0 behavior must follow from changes in

the density profile’s shape. As a result of these changes, the
density profile picks up new parameters that can potentially
vary wildly without significantly altering J, and the factor
n−c can be replaced with a function of those parameters.
For instance, by introducing a new parameter q, we can
write

1

J
dJ
dn

¼ −bq;
1

q
dq
dn

¼ −cq1=c: ð13Þ

This system no longer has explicit time dependence, but if
q ¼ 1 when n ¼ 1, then it is equivalent to Eq. (8).

IV. MODELING THE TIDAL EVOLUTION

Motivated by the results of the previous section, we seek
a model of the form

ln
J
Jinit

¼ b

�
a −

1

1 − c
ðn1−c − 1Þ

�
ð14Þ

for the case where jd ln J=d ln tj < 1. The parameters b and
c follow immediately from Eq. (7), and we have inserted
another parameter a to fix the overall normalization. Our
goal is now to relate a, b, and c to the parameters of the
host-subhalo system. For this purpose, we use the results
of 52 idealized N-body simulations that we carried out as
described in Sec. II. The parameter space covered by these
simulations is depicted in Fig. 7.
For each simulation we obtain the trajectory of the

subhalo’s J factor, stopping if jd ln J=d ln tj ≥ 1 or other-
wise at an arbitrarily chosen simulation termination time.
As we discussed in the previous section, the evolutionary
behavior changes markedly when jd ln J=d ln tj ≥ 1, but
precise predictions in this regime are unnecessary. Next, we
convolve the J-factor trajectory in log space with a top-hat
filter of width equal to the radial (apocenter-to-apocenter)

orbit period.9 This step suppresses the influence of the
periodic oscillatory behavior observed in Sec. III; we are
effectively finding the moving logarithmic average of J
over this period. Finally, we fit Eq. (14) to this smoothed
trajectory of J, but we only employ times after the end of
the first radial period (so the first point is at n ¼ 1.5, whose
corresponding J factor averages from n ¼ 1 to n ¼ 2). This
restriction is intended to remove the influence of any
transient effects associated with suddenly turning on the
tidal field. Additionally, in case the smoothing procedure
fails to fully suppress periodic effects, we minimize any
resulting bias by ending the fit at an integer number of
orbits (so for instance, we might end at n ¼ 15.5, corre-
sponding to the average J from n ¼ 15 to n ¼ 16). The
number of radial orbits fit through this procedure is

FIG. 7. These figures summarize the 52 simulations we use to
tune our model. Top: The simulations distributed in the host-
subhalo system parameters. Bottom: The simulations distributed
in the reduced parameters x, y, and z (see the text). Simulations
with x ≲ 1 are not included in this sample because they lead to
jd ln J=d ln tj ≥ 1 too quickly. The radius of each marker is
proportional to the number of orbital periods, which ranges from
5 to 20.

9For circular orbits the radial orbit period is ill defined, and we
substitute its limit as the orbit approaches circular as obtained
using the fitting form in Appendix C.
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represented in Fig. 7 as the marker size; this number is a
proxy for how much information that simulation pro-
vides.10 Figure 8 illustrates the procedure; the smoothing
filter suppresses oscillations quite effectively.

A. Parameter b: The initial J-factor decay rate

From Fig. 6 we anticipate that b should depend strongly
on the orbital radius. For simplicity we first study the self-
similar regime, Rc ≪ Rs. The upper panel of Fig. 9 plots b
against the reduced orbital radius x̃ for the 36 of our
simulations that satisfy Rc=Rs < 0.3. While b is strongly
sensitive to x̃, there is also significant sensitivity to the
orbital shape, parametrized by η. However, it turns out that
we can eliminate the shape dependence of b by defining
the reduced orbital radius more carefully.
We first remark that x̃ ∼ jEbj=ΔE, where Eb is the

binding energy of a particle at the subhalo’s initial scale
radius rs and ΔE is the energy injected into that particle by
tidal forces over the subhalo’s orbital period. To see this,
observe that the particle’s binding energy is

Eb ¼ −4πðln 2ÞGρsr2s ð15Þ

(per mass). Meanwhile, the tidal acceleration on this
particle is roughly ðrs=RÞF, where R is the subhalo’s
orbital radius and F is the host force (per mass) at
radius R. In the self-similar regime, F ∼GPsRs. The total
velocity injected into the particle is Δv ∼ FT, where T is
the subhalo orbital period. Since T ∼

ffiffiffiffiffiffiffiffiffi
R=F

p
, the energy

injection (per mass) is ΔE ∼ ðΔvÞ2 ∼ GPsRsr2s=R, and
since R ∼ Rc, this leads to jEbj=ΔE ∼ x̃.

With this motivation, we define

x≡ jEbj=ΔEimp ð16Þ

as a more exact version of x̃. Here, ΔEimp is the energy
injection per orbit on a particle at rs computed using the
impulse approximation as in Ref. [95]. In this approxima-
tion, the subhalo particle is treated as stationary while
Eq. (3) is integrated to find the velocity (and hence energy)
injection. We supply a fitting formula for ΔEimp in
Appendix C for convenience. As intuition, x is of order
the ratio

x ∼ ρs=P̄ð< RcÞ ð17Þ

between the subhalo’s density and the average host density
within the subhalo’s orbital radius, a connection that
follows from the observation that ΔEimp=r2s ∼ FðRcÞ=Rc

(see Appendix C). In the bottom panel of Fig. 9 we plot b
against x for the self-similar regime. Evidently, our defi-
nition of x captures most or all of the sensitivity of the
parameter b to the orbit shape, and

FIG. 9. The dependence of the trajectory parameter b on system
parameters in the self-similar regime (Rc=Rs ≪ 1). Top: There is
a trend between b and x̃, but it is polluted by residual sensitivity to
the orbit-shape parameter η. Bottom: b is a power law in x with
little residual sensitivity to the orbit shape, and the best fit is
plotted as a solid line. The color scale is the same for both panels.
Each marker is a simulation, and the marker radius is proportional
to the number of orbital periods, which ranges from 7 to 20 for
this sample.

FIG. 8. Demonstration of the fitting procedure for J-factor
trajectories. The trajectory (thin oscillating line) obtained from
the simulation is smoothed (thick line) using a top-hat filter with
width equal to the orbital period. Equation (14) is fit (dashed line)
to the smoothed trajectory.

10When performing fits, we weight a simulation spanning n
orbits by

ffiffiffi
n

p
.
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b ¼ b0x−b1 ; if Rc ≪ Rs; ð18Þ

with b0 ¼ 0.58 and b1 ¼ 0.58. This success is remarkable;
the approximation that subhalo particles are stationary
during the application of tidal forces can only be valid
for highly eccentric orbits, and yet the impulsive energy
calculation accurately predicts the tidal evolution for more
circular orbits as well.
To complete our understanding of the parameter b we

must move beyond the self-similar regime. In the upper
panel of Fig. 10, we plot b against x for all of our simulated
subhalos. The color scale indicates the time-averaged
orbital radius R̄ in units of Rs. It appears that the effect
of leaving the self-similar regime is to alter the normali-
zation of b while keeping the power-law sensitivity to x
unchanged. In particular, we may write

b ¼ b0x−b1 ½1þ b2fðyÞ�; ð19Þ

for some function fðyÞ and parameter b2, where we define

y≡ R̄=Rs: ð20Þ

For convenience, we supply a fitting formula for R̄ in
Appendix C. While we could use the circular orbit radius
Rc instead, we favor R̄ because its physical significance is
clearer.
To define the function fðyÞ, we consider the physical

impact of leaving the self-similar regime. The magnitudes
of the tidal forces are altered, but this effect should be
accounted for by the definition of x. However, the direc-
tions of the tidal forces also change. In particular, Eq. (3)
implies that there are stretching tidal forces proportional to
dF=dR along the radial axis from the host and compressive
tidal forces proportional to F=R along the perpendicular
directions. When the host force profile FðRÞ is self-similar,
the ratio between the stretching and compressive forces is
fixed.11 Beyond the self-similar regime, however, the ratio
between these forces can change. With this motivation, we
define fðR=RsÞ≡ ðdF=dRÞ=ðF=RÞ as this ratio. For the
NFW profile this definition implies that

fðyÞ ¼ 2 lnð1þ yÞ − yð2þ 3yÞ=ð1þ yÞ2
lnð1þ yÞ − y=ð1þ yÞ : ð21Þ

In the bottom panel of Fig. 10, we plot b=ðb0x−b1Þ against y
for the purpose of tuning the parameter b2 in Eq. (19). We
find that this equation12 works reasonably well, and we
obtain b2 ¼ 1.29. The introduction of stretching tidal
forces increases the efficiency of tidal effects, which is
reflected as an increase in the decay rate b of the J factor.

B. Parameter a: The J-factor normalization

We next handle the overall normalization of J=Jinit.
According to Eq. (14), the J factor changes by the factor
eab after the first orbit, which is sensitive to a second
parameter: a. Because of the way we defined this param-
eter, it turns that a is almost wholly sensitive to y ¼ R̄=Rs
alone. Figure 11 plots a against y for all of our simulations,
and we find that with only moderate scatter,

a ¼ a0 − a1fðyÞ ð22Þ

with a0 ¼ 0.44 and a1 ¼ 1.32.
In some sense, the parameter a describes the initial

behavior of the subhalo as it equilibrates—to the extent that
this is possible—into the tidal field generated by the host.
When y ≪ 1 all nonzero tidal forces are compressive, so
the J factor is initially slightly boosted (a > 0). However,
when y≳ 1, the stretching tidal forces cause the J factor
to be initially suppressed (a < 0). Note that the trajectory
given by Eq. (14) is only valid after this equilibration takes
place, so it is not valid for n < 1.

FIG. 10. The dependence of b on x and y. Top: At each radius
y ¼ R̄=Rs, b appears to follow a similar power law in x with a
different normalization. The solid line is duplicated from Fig. 9.
Bottom: Scaling of the normalization of b with radius y. The best
fit is plotted, with fðyÞ defined in Eq. (21). Each marker is a
simulation, and the marker radius is proportional to the number of
orbital periods, which ranges from 5 to 20.

11In fact, for an NFW profile, dF=dR ¼ 0 when R ≪ Rs.
12The force-ratio argument motivates any expression of

the form ½1þ b2fðyÞα�β, but we assume for simplicity that
α ¼ β ¼ 1.
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C. Parameter c: The loss of tidal efficiency

Finally, we address the parameter c that characterizes the
drop in the efficiency of tidal effects over time. As we
found in Sec. III, c is sensitive to the orbit shape; more
eccentric orbits yield smaller values of c while more
circular orbits yield larger values. In the self-similar regime
we could write c as a function of η, since η completely
describes the orbit shape. However, beyond this regime,
orbits with the same η could have different shapes. Thus, to
accurately describe the sensitivity of the parameter c to the
host-subhalo system, it is necessary to find the correct
orbit-shape parametrization.
We argued in Sec. III that the loss of tidal efficiency

encoded in c is related to changes in the shape of the
subhalo density profile. The connection to the orbital shape
is that circular orbits tidally heat material more predomi-
nantly in the outskirts of the subhalo, while eccentric orbits
can alter the density profile further inward. This tendency is
illustrated in Fig. 12, which depicts the tidally altered
density profiles of two subhalos with different orbit shapes.
The subhalo on the circular orbit loses more material from
its outskirts, while the subhalo on the eccentric orbit loses
more material from its interior.
Differences in the radii at which material is heated

can be understood in terms of adiabatic shielding (e.g.,
Refs. [96–99]). Deep within the subhalo, the internal
dynamical timescale is much shorter than the timescale over
which the external tidal field changes. In this case, the
conservation of adiabatic invariants prevents any energy
injection by tidal forces; these radii are adiabatically
shielded. Meanwhile, adiabatic shielding is connected to
the shape of the subhalo’s orbit. The timescale over which
tidal forces change is related to the timescale of the pericenter
passage, which can be very short for highly eccentric orbits.
Up to factors of order unity, the subhalo’s internal

dynamical timescale is tdyn ∼ ðGmðrÞ=r3Þ−1=2 at radius r,

where mðrÞ is the subhalo mass profile [14]. Meanwhile,
the pericenter passage timescale is tp ∼ Rp=Vp, where Rp

and Vp are the radius and velocity at the pericenter,
respectively. To make precise the connection between
the orbit shape and the radii at which tidal heating is
efficient, we define the adiabatic shielding radius ra as
the radius at which tdyn ¼ tp. This definition motivates a
characteristic density scale

ρa ≡ V2
p

GR2
p
¼ η2

MðRcÞRc

R4
p

; ð23Þ

so that ra is the radius at which mðraÞ=r3a ¼ ρa. Note that
we used the definitions of the circular orbit radius Rc and
orbit circularity η to eliminate Vp from Eq. (23); MðRÞ is
the host mass profile at radius R.
To quantify changes in the shape of the subhalo density

profile, we can compare the radius ra below which material
is shielded to the tidal radius rt above which all material is
stripped. The tidal radius is the radius above which the tidal
force from the host exceeds the gravitational force from the
subhalo. There are several definitions of the tidal radius in
the literature, but they are all related to the expression
[100,101] rt ¼ R½mðrtÞ=MðRÞ�1=3 by (possibly nonconst-
ant) factors of order unity (see, e.g., Ref. [68]). The tidal
radius is only well defined for circular orbits, but it is
common to apply the concept to eccentric orbits as well
[68]. In particular, if we seek the radius above which all
material is stripped, we can define the tidal radius rt using
the orbital apocenter radius Ra. In this case, there is a
characteristic density scale

FIG. 12. The influence of the shape of a subhalo’s orbit on its
density profile after tidal evolution. One subhalo is on a highly
eccentric orbit (η ¼ 0.1) while the other its on a circular orbit; we
plot the density profiles after 4 and 14 orbits. The key difference
is that the circular orbit strips material primarily from the
outskirts, while the eccentric orbit strips more material from
the interior. This difference can be understood in terms of the
adiabatic shielding radius ra and its comparison to the tidal radius
rt (see the text), shown as dotted lines for both orbits. The
subhalos are chosen to yield similar density profiles and do not
have the same energy parameter x.

FIG. 11. The dependence of the trajectory parameter a on the
orbital radius parameter y. The best-fitting curve is plotted as a
solid line using the definition of fðyÞ in Eq. (21). Each marker is a
simulation, and the marker radius is proportional to the number of
orbital periods, which ranges from 5 to 20.

M. STEN DELOS PHYS. REV. D 100, 063505 (2019)

063505-10



ρt ≡MðRaÞ=R3
a; ð24Þ

and rt is the solution to mðrtÞ=r3t ¼ ρt.
Anticipating that the drop in the efficiency of tidal effects

encoded in the parameter c is a consequence of changes to
the shape of the subhalo density profile, we may hypoth-
esize that c is sensitive to the ratio

z≡ ra=rt; ð25Þ

which ranges from 0 for radial orbits to 1 for circular orbits.
For simplicity, in defining z we employ the subhalo’s initial
NFW mass profile [see Eq. (C1)]. Figure 13 shows the
relationship between c and z; there is some scatter, but the
trend is that13

c ¼ c0zc1 ð26Þ

with c0 ¼ 0.73 and c1 ¼ 0.21. Note that z is not solely
a function of the subhalo’s orbit. Because it depends on the
subhalo mass profile mðrÞ, it is also sensitive to the density
ratio ρs=Ps. We explored using ρt=ρa, a purely orbital
parameter, instead of ra=rt. This parameter exhibited
a similar power-law relationship with c, but it left signifi-
cant residual sensitivity to the parameter x, which is
related to ρs=Ps. Using z ¼ ra=rt mostly eliminates that
sensitivity.

V. MODEL SUMMARY AND DISCUSSION

In the last section, we developed a model for the
evolution of a subhalo’s J factor due to tidal effects as a
function of parameters of the host-subhalo system. As long
as the J factor decays slower than jd ln J=d ln tj ¼ 1, its
trajectory is well fit by the expression

ln
J
Jinit

¼ b

�
a −

1

1 − c
ðn1−c − 1Þ

�
: ð14Þ

Here, n ¼ t=T is the number of subhalo orbits, and a, b,
and c are parameters that depend on the host-subhalo
reduced system parameters x, y, and z through

a ¼ a0 − a1fðyÞ; ð22Þ

b ¼ b0x−b1 ½1þ b2fðyÞ�; ð19Þ

c ¼ c0zc1 ð26Þ

with a0¼0.44, a1¼1.32, b0¼0.58, b1 ¼ 0.58, b2 ¼ 1.29,
c0 ¼ 0.73, and c1 ¼ 0.21. In Appendix C, we detail how to
compute x, y, z, and T from the subhalo parameters rs and
ρs, host parameters Rs and Ps, and orbital parameters Rc
and η.
Equation (14) applies only when jd ln J=d ln tj < 1.

The J factor’s precise behavior when jd ln J=d ln tj≳ 1
is of little consequence, as the subhalos in this regime
contribute only minimally to aggregate annihilation
signals. Nevertheless, it is useful to have an approximate
treatment in this regime. As we discussed in Sec. III, when
jd ln J=d ln tj ≥ 1 it is a reasonable approximation to
enforce −d ln J=d ln t ¼ 1, i.e., J ∝ n−1. We define

n1 ¼ b1=ðc−1Þ ð27Þ

as the orbit count at which −d ln J=d ln t ¼ 1. Additionally,
when b > 1 (so n1 < 1), we cannot expect our treatment of
the normalization of J (Sec. IV B) to be accurate. To handle
these issues, we can write

J
Jinit

¼

8>>><
>>>:

exp
n
b
h
a − 1

1−c ðn1−c − 1Þ
io

; if n ≤ n1; b < 1;

exp
n
b
h
a − 1

1−c

�
1
b − 1

�io
n1
n ; if n > n1; b < 1;

ea=n; if b ≥ 1;

ð28Þ

where the last case follows from continuity considerations.
We further note that this equation is valid only when n ≥ 1
(see Sec. IV B).
One can now use our model to understand the emission

from a host halo due to dark matter annihilation in subhalos.
In particular, one can sample subhalos from an orbital

FIG. 13. The dependence of the trajectory parameter c on the
system parameter z ¼ ra=rt. With moderate scatter, c follows a
power law in z, shown as the solid line. Each marker is a
simulation, and the marker radius is proportional to the number of
orbital periods, which ranges from 5 to 20.

13We argued in Sec. III B that c > 0 is connected to changes in
the density profile’s shape. In this light, Eq. (26) implies that in
the limit z ¼ 0 where the tidal energy injection is completely
impulsive, the shape of the density profile does not change over
successive orbits. This notion is consistent with the results of
Ref. [102], which found that impulsive point-object encounters
yield a universal density profile.
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distribution in Rc and η (e.g., Refs. [67,73,103–106]).
Accounting for tidal evolution, each subhalo’s contribution
to the dark matter annihilation signal is then scaled by the
orbit-dependent function given by Eq. (28). In Ref. [107]
(in preparation), we will use this model to study the
annihilation signature arising from the extreme-density
microhalos that result from certain early universe scenarios.
In this case, the orbital distribution of subhalos is the same
as that of particles, and one may employ the host halo’s
distribution function (e.g., Ref. [92]) to sample subhaloorbits.
Our model does not include the periodic oscillations in the

J factor observed in Sec. III. These oscillations do not affect
the overall annihilation rate in subhalos, but they still
introduce a systematic biasing effect where subhalos at
smaller radii have larger J, and this effect can alter the
morphology of an annihilation signal. However, we remark
that these oscillations only have a significant amplitude in the
Rc ≪ Rs regime, when all tidal forces are compressive, and
at small x≲ 10. Because of these restrictions, we anticipate
that their impact is minor. However, in forthcoming work
[107] we will quantify the impact of these oscillations.
We also address another potential limitation to our

model. The differential equation driving it, Eq. (8), has
explicit time dependence in the factor n−c, so the resulting
tidal evolution is not completely determined by the sys-
tem’s instantaneous state. Physically, we view n−c as a
proxy for unknown physical variables [e.g., Eq. (13)], and
as long as the host halo’s density profile and the subhalo’s
orbit are static, this formulation poses no difficulty. Since
halos grow from the inside outward, subsequent accretion
is not expected to significantly alter the density profile of a
host halo at the radii of already-present subhalos, so the
host halo is generally expected to remain static. Moreover,
if dynamical friction is negligible [see Eq. (5)], the
subhalo’s orbit is also static. However, there is a scenario
where a subhalo’s host is expected to change dramatically.
If the host is itself a satellite of a larger host halo, then the
subhalo may be tidally stripped from its host, becoming
itself a satellite of the superhost. In this scenario, it is not
obvious how to continue the subhalo’s tidal evolution.
If the initial host-subhalo system yields trajectory

parameters a0, b0, and c0 and the new host-subhalo system
yields parameters a, b, and c, then a self-consistent way to
treat this problem is to substitute the factor n−c in Eq. (8)
with ðnþ n0c0=cÞ−c and integrate the resulting expression.
This treatment follows from the assumption that the
parameter q ¼ n−c in Eq. (13) is a function of the subhalo
alone. Additionally, the J factor should be rescaled by
eba−b

0a0 , a consideration motivated by the discussion in
Sec. IV B. However, it turns out that while this treatment
works reasonably well for a portion of the a0, b0, c0, a, b, c
parameter space, it does not accurately predict every
scenario; the parameter q in Eq. (13) is not a function of
the subhalo alone. We leave a detailed investigation of this
problem to future work.

As another caveat, the long-term accuracy of the tra-
jectory in Eq. (14) relies on the assumption that the
efficiency of tidal effects follows precisely the power
law n−c, as described by Eq. (8). While such a power
law is a natural assumption [e.g., Eq. (13)] and is borne out
in our simulations, it does not have a direct physical
motivation; tidal heating models considered in Sec. III B
and elsewhere [76] can only reproduce c ¼ 0. Without such
motivation it is unclear that this power-law behavior should
extend beyond the n ¼ 20 orbits of our longest simulations.
Also, the system parameter z ¼ ra=rt that sets the power-
law index c is defined based on two concepts that are not
themselves entirely well defined: the adiabatic shielding
radius ra and the tidal radius rt. Moreover, since our model
does not predict the larger evolution of the subhalo density
profile, we use the subhalo’s initial density profile to define
ra and rt even though the density profile quickly begins to
change. For these reasons, we anticipate that it is possible to
find a better-motivated parameter to replace z ¼ ra=rt.
Nevertheless, this model describes the results of our

simulations with remarkable success. As further validation,
we consider the library of idealized subhalo simulations,
called DASH (for dynamical aspects of subhaloes), pub-
lished by Ref. [79]. These simulations have a lower
resolution than ours, but because of the extraordinary
volume of this library, it still supplies a valuable test for
our model. In Appendix D we verify that modulo sub-
stantial scatter and certain systematic effects associated
with their lower resolution, the DASH simulations are
consistent with our model.

VI. COMPARISON TO PREVIOUS WORK

Numerous prior works have endeavored to model the
impact of tidal effects on a subhalo’s dynamical evolution
[18,70–78]. In this section, we explore how our results
compare to those of previous studies. Motivated primarily
by simulations, our model is based on the notion that a
subhalo’s J-factor evolution is determined by

1

J
dJ
dn

¼ −bn−c; ð8Þ

where b and c are functions of the host-subhalo system and
n counts the number of orbits. In contrast to our focus on
the J factor, previous works have largely focused on the
evolution of a subhalo’s total bound mass mbound and of its
maximum circular velocity vmax and corresponding radius
rmax. However, the general form of our model is not specific
to the J factor, and we show in Appendix E that it can also
describe the evolution of vmax, rmax, and mbound.
Despite the broad applicability of our model suggested

by Appendix E, no prior work (to our knowledge) has
proposed tidal evolution of the form given in Eq. (8).
Broadly, prior models of tidal evolution fall into two main
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categories, although a given work may employ more
than one:
(1) Tidal stripping models, where material outside the

characteristic tidal radius [e.g., Eq. (24)] is assumed
to be stripped over some time period;

(2) Tidal heating models, where energy injected by tidal
forces heats subhalo material, causing it to rise and
possibly become freed from the subhalo.

We found in Sec. IVA that the parameter b in Eq. (8),
which characterizes the rate of tidal evolution, is tightly
sensitive to the energy injected by tidal forces (see Fig. 9).
Additionally, we observed in Sec. III that the tidal evolution
in our simulations closely resembles that predicted by a toy
model of tidal heating. Consequently, we anticipate that of
the two classes of models, tidal heating models should yield
results most similar to those of our model. We will first
compare the results of our model to those of the tidal
heating model developed by Ref. [76], hereafter P14.
However, prior treatments of dark matter annihilation

within subhalos predominantly treat the impact of the host
halo’s tidal forces using models based on tidal stripping
[30–35,39]. Tidal stripping models cannot prescribe how to
change a subhalo’s density profile below the tidal radius,
but it is possible to apply a simulation-tuned prescription
for how the density profile responds to mass loss [18,78].
We will subsequently compare the results of our model to
those of a tidal stripping model developed by Ref. [77]
(hereafter J16), using the prescription of Ref. [18] (here-
after P10) to predict the subhalo’s density profile. This pair
of models has been employed by Refs. [33,34] to predict
dark matter annihilation rates in subhalos.

A. Comparison to a tidal heating model

We first compare our model’s predictions to those of the
analytic tidal heating model given in P14. In the tidal
heating picture, energy injected by tidal forces causes
subhalo material to move to higher radii, and P14 employed
the assumption of virial equilibrium to predict this change
in radius and consequently the subhalo’s new density
profile. We follow the prescription in P1414 to compute
the evolution of a subhalo’s density profile, subsequently
integrating it to obtain the J factor. Figure 14 shows a
sample of the resulting J-factor trajectories, and we
compare those trajectories to our model’s predictions and
to the results of our simulations. Generally, we find that for
a model constructed from first principles, the P14 model is
remarkably accurate. However, it does not fully capture the
sensitivity of tidal evolution to system parameters, a matter
we explore next.

The quantity Q ¼ ΔE=r2 employed by P14 is related
to host-subhalo system parameters by Q=ðGρsÞ ¼
4πðln 2ÞN=x, where N is the number of orbits over which
the energy injection is taken and x is the system parameter
(see Sec. IV). For our comparison, we take N ¼ 1 and
iterate the calculation, assuming the halo revirializes during
each orbit. Since the density profile evolution in P14 is only
sensitive to the ratioQ=ðGρsÞ, we see immediately that this
model’s predictions are only sensitive to the system
parameter x and are insensitive to y and z. Additionally,
the J-factor evolution predicted by P14 turns out to be
sensitive only to x in the combination n=x, where n ¼ t=T
is the number of orbits, so every system follows the same
trajectory rescaled in time. In this respect, the P14 model
is similar to the toy model we explored in Sec. III B,
which was only sensitive to the combination fn of system
parameters f and orbit count n. In fact, the P14 model
approximately obeys the toy model solution Eq. (12) with
b ≃ 3.2=x and B ¼ 1, but it can potentially transition
between the n=x ≪ 1 and n=x ≫ 1 regimes extremely
slowly, and all behavior seen in Fig. 14 is in the inter-
mediate regime.

FIG. 14. A comparison between our tidal evolutionmodel (solid
lines) and the analytic tidal heating model developed in Ref. [76]
(P14, dashed lines). This figure shows the J-factor trajectory and
its logarithmic derivative for different host-subhalo parameters
ðx; y; zÞ, listed on the figure. We also show our simulation results
(as circles) for these parameters. The P14 predictions exhibit the
correct trends, but they are only reasonably accurate for a small
range of host-subhalo system parameters.

14For simplicity, we compute the energy injection ΔE directly
using the impulse approximation (Appendix C), neglecting
additional corrections suggested in P14; these corrections will
not qualitatively alter the results.
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The combination of its single time-rescaled trajectory and
its insensitivity to y and z leaves the P14 model unable to
accurately predict tidal evolution in the full host-subhalo
parameter space. We see evidence of this deficiency in
Fig. 14, but we further note that we did not plot any
subhalos in the y ≪ 1 regime. In this regime, the P14 model
dramatically overestimates the impact of tidal stripping since
it does not account for the directions of tidal forces,which are
encapsulated in the parameter y. While the P14 model yields
reasonably accurate predictions over a small range of host-
subhalo system parameters, our model can accurately predict
the evolution of a much broader variety of systems.

B. Comparison to a tidal stripping model

Finally, we compare our model to a semianalytic model
of tidal stripping that has been employed in previous
calculations of annihilation rates in the substructure
[33,34]. This semianalytic model uses the tidal stripping
model in J16 to characterize a subhalo’s mass loss,
subsequently using the results of P10 to connect this mass
loss to the subhalo’s density profile and hence annihilation
signal. In J16, the rate of mass loss for subhalos of mass m
inside a host halo of massM, averaged over subhalo orbits,
is modeled using

dm
dt

¼ −A
m
tdyn

�
m
M

	
ζ

: ð29Þ

Here, A and ζ are simulation-tuned parameters and tdyn is
the host’s dynamical timescale at its virial radius (e.g.,
Ref. [14]). For this comparison we adopt J16’s central
values A ¼ 0.86 and ζ ¼ 0.07.
In P10, it is shown that the subhalo’s maximum circular

velocity vmax and the radius rmax at which it is attained are
related to the fraction m=macc of the subhalo’s mass that
remains gravitationally bound, where macc is the subhalo’s
virial mass at accretion. We confirm in Appendix E that
these relations are reasonably accurate if y > 1 and the
subhalos have concentration rvir=rs ≃ 20 at accretion. If we
assume that subhalos possess NFW profiles, then the mass
fraction m=macc predicted by J16 thereby determines each
subhalo’s J factor.
To compare our model, we employ the same subhalo

orbital distribution considered in J16, which is drawn from
Ref. [73]. The circular orbit radius Rc is taken to be
uniformly distributed between 0.6Rvir and Rvir, where Rvir
is the host’s virial radius. Meanwhile, the circularity η is
distributed proportionally to sin πη, and we assume that
the distributions of Rc and η are independent. By drawing
subhalo orbits from this distribution, we are able to
compute the orbit-averaged15 value of J=Jinit using our

model given in Eq. (28). In Fig. 15, we plot the resulting
orbit-averaged J-factor trajectories along with those pre-
dicted by the semianalytic model of J16 and P10. We
consider two different host-subhalo systems, listed on the
figure, and since the semianalytic model is sensitive to the
total virial masses of the host and subhalo, we employ
the concentration parameter c≡ rvir=rs to describe these
systems; chost is the host halo’s concentration, while csub is
the subhalo’s concentration when it is accreted.
Compared to our model, Fig. 15 shows that the semi-

analytic model underestimates the impact of tidal forces
early on while overestimating their impact at late times.
These discrepancies arise from several sources. As we
show in Appendix E, a subhalo’s J factor after tidal
evolution is about 30% smaller than what would be
predicted from its parameters rmax and vmax assuming an
NFW profile. However, this source of error is relatively
minor. The main differences arise from the model in J16
given by Eq. (29). Since this model does not account for
the subhalo’s density profile, it takes too long to strip the
subhalo’s weakly bound outskirts (beyond rs) that con-
tribute little to annihilation rates.16 This behavior partially
explains why the semianalytic model underestimates the
early impact of tidal effects. Meanwhile, for small ζ ≪ 1,
Eq. (29) describes nearly exponential decay, analogous
to our model, Eq. (8), with c ¼ 0. Without the braking

FIG. 15. A comparison between our tidal evolution model and
the semianalytic model developed in Refs. [77] (J16) and [18]
(P10). This figure shows the orbit-averaged J-factor trajectory of
subhalos of mass m and concentration csub within a host halo of
mass M and concentration chost. Compared to our model, the
semianalytic model underestimates the impact of tidal stripping
early on while overestimating its impact at late times. Since the
plotted trajectories are averagedover subhalo orbits,we cannot plot
simulation results for comparison; nevertheless, Fig. 14 illustrates
that our model matches simulation results reasonably well.

15Specifically, we take the median J=Jinit at each time, but
using the mean or the logarithmic mean instead does not
significantly alter the results.

16For the two cases shown in Fig. 15, it takes, respectively, 6
and 3 dynamical times for the J16 model to bring the subhalo’s
bound mass below its initial mmax, the mass enclosed within the
radius rmax at which the maximum circular velocity is attained.
As we find in Appendix E (see Fig. 21), the drop in the J factor is
minimal above this mass threshold.
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behavior contributed by c > 0 (and attributed to changes in
the shape of the subhalo’s density profile; see Sec. III)
along with the limiting jd ln J=d ln tj ∼ 1 behavior, the
semianalytic model overestimates the impact of tidal effects
at late times. For these reasons, our simulation-tuned model
supplies significantly more accurate predictions of subhalo
annihilation rates.

VII. CONCLUSION

In this work, we used 52 idealizedN-body simulations to
develop a model that can predict the impact of a host halo’s
tidal forces on the rates of dark matter annihilation within
its subhalos. Our model is given by Eq. (28) and summa-
rized in Sec. V, and it predicts the evolution of the subhalo’s
J factor, the factor in the annihilation rate that depends on
mass distribution, as a function of the subhalo’s orbit and
other properties of the host-subhalo system. These proper-
ties are distilled into three physically motivated variables x,
y, and z that characterize the energy injected by tidal forces,
the ratio of stretching to compressive tidal forces, and the
radial distribution of tidally heated material, respectively.
Appendix C details how to compute these variables from
standard properties of the host-subhalo system.
Our model is based on the notion that for sufficiently

small changes in J, the J factor evolves according to

1

J
dJ
dn

¼ −bn−c; ð8Þ

where n ¼ t=T is the time in units of the subhalo’s orbital
period and b and c are parameters that depend on the
system. If c ¼ 0, Eq. (8) states that the subhalo loses a fixed
fraction e−b of its J factor in each orbit. The parameter
c ≥ 0 is motivated by simulation results and adds a braking
mechanism to the J factor’s decay. To our knowledge, a
model of this form has not previously been put forward,
even though we find that it can also describe other
structural properties of the subhalo. We also find that
our model predicts significantly different J-factor trajecto-
ries than prior semianalytic models. We further validate our
model by testing it against the publicly available DASH
library of subhalo simulations [79], finding reasonable
agreement.
Our model has limitations. As presented, it is restricted

to host-subhalo systems in which both halos possess NFW
density profiles. The NFW profile (possibly with minor
corrections; e.g., Ref. [108]) arises generically in dark
matter simulations of halos built by hierarchical clustering
[11,12]. However, the smallest subhalos, forming by direct
collapse, exhibit steeper density profiles [24–26,65,84–88].
Additionally, the density profiles of many galactic halos
(but not all [83]) are inferred to be shallower than the
NFW profile, an observation that may be explained by
baryonic effects or unknown dark matter properties (see
Refs. [13,109] for reviews). Despite being developed using

NFW profiles, we anticipate that the physical manner in
which we defined the model parameters x, y, and z implies
that our model can be adapted to accommodate different
host or subhalo density profiles.
Also, our model only accounts for tidal forces from the

host halo. Subhalos can also be disrupted by encounters
with other subhalos, but the results of Ref. [68] suggest that
this effect is subdominant. More importantly, subhalos can
be affected by baryonic content residing within the host,
such as stars (e.g., Refs. [17,21,24,102,110–115]) or a disk
(e.g., Refs. [31,70,113–121]). These effects are not
included in our model and must be accounted for sepa-
rately. However, we remark that many of the dwarf
spheroidal galaxies, already some of the most promising
targets for dark matter annihilation searches [10], have such
little baryonic content (e.g., Ref. [122]) that it may be
possible to neglect the influence of this content on their
subhalos.
Despite these limitations, we anticipate that our model

will prove useful in understanding the annihilation signals
of dark matter substructure. In a subsequent paper [107],
we will explore the consequences of our model by using
it to study microhalo-dominated annihilation signals in
nearby dwarf galaxies. Such signals are expected to arise
from certain cosmological scenarios, such as an early
matter-dominated era prior to nucleosynthesis, and our
model enables precise characterization of the magnitude
and morphology of these signals.
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APPENDIX A: SIMULATION DETAILS

1. High- and low-resolution particles

As Sec. II notes, we sample the subhalo’s central region
at increased resolution such that particles whose orbital
pericenters are below rs=3 have 1=64 the mass and 64 times
the number density of the other particles. When simulation
particles have different masses, it is possible for two-body
interactions to artificially transfer energy from the heavy to
the light particles. To verify that this effect is not significant
in our simulations, we show in Fig. 16 the density profiles
of light and heavy particles in a subhalo not exposed to tidal
forces. Even after duration t ¼ 318ðGρsÞ−1=2, where ρs is
the subhalo’s scale density, there is no visible tendency for
the heavy particles to sink to smaller radii.
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2. Density profiles and J factors

We obtain each subhalo’s density profile by binning it in
factors of 1.1 in the radius. At small radii, there is a resolution
limit driven by three effects: force softening, Poisson noise,
and artificial relaxation. Each effect is associated with a
minimum resolved radius below which the density profile
artificially flattens. For force softening, that radius is the
distance rsoft ¼ 2.8ϵ, where ϵ is GADGET-2’s force-softening
parameter, at which forces become non-Newtonian. For
Poisson noise, we take it to be the radius r100 enclosing
100 particles. To estimate the radius rrel at which artificial
relaxation becomes significant, we compute the relaxation
time [14]

trelax ¼
N

8 lnΛ
rffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=r
p ðA1Þ

at each radius r, where M and N are the mass and particle
count interior to r, and Λ ¼ maxfN; r=ϵg. If αtrelax at
radius r, with an appropriate proportionality constant α, is
shorter than the system age, then r < rrel. The proportion-
ality constant α is tuned to predict the correct rrel in a
simulation of the subhalo without a host; in that case, any
change to the density profile is artificial since the halo was
built from an equilibrium distribution. From this calibration
we use α ¼ 5. Figure 16 shows how rrel marks where the
density profile begins to shallow due to relaxation effects.
The minimum resolved radius of the density profile is

rmin ¼ maxfrsoft; r100; rrelg. For the purpose of accurately
computing J factors we extrapolate the density profile
below rmin as ρ ¼ Ar−1, where A is the average of ρr in the
three smallest radial bins above rmin, so that

J ¼ 4πA2rmin þ
Z

∞

rmin

ρðrÞ24πr2dr: ðA2Þ

Effectively, this procedure produces a lower bound on J
under the assumption that larger radii are always stripped
more than smaller radii. Below rmin, we simply assume
all radii are stripped equally. We can also compute an
upper bound on J by assuming that radii below rmin are
completely unaffected (so A ¼ ρsrs), and this allows us to
estimate the uncertainty in our J factors. We find that by the
termination time of each subhalo’s J-factor trajectory (as
defined in Sec. IV), the uncertainty in the J factor, taken as
Jupper=Jlower − 1, is 31% for one simulation (parameters
x ¼ 31, y ¼ 11, z ¼ 0.07; see Sec. IV), smaller than 17%
for the remaining 51 simulations, and smaller than 10%
for 44 of them.
To understand the J factors in the cases where

jd ln J=d ln tj ≳ 1, another step is necessary. In this regime,
the elongated tidal stream can contribute significantly to the
J factor, making the spherical integral Eq. (A2) inaccurate.
Thus, we also compute the J factor as the sum over
simulation particles

J ¼
X
i

ρimi; ðA3Þ

where mi is the mass of particle i and ρi is its local density.
The density ρi is estimated as

ρi ¼
XN
j¼1

mjWðrij; hiÞ ðA4Þ

over theN ¼ 50 nearest particles j, where rij is the distance
to particle j, hi is the distance to the Nth particle, and
Wðr; hÞ is the cubic spline kernel defined as in Ref. [91].
Equation (A3) underestimates the J-factor contribution

at r < rmin due to artificial flattening of the density profile.
To accommodate the extrapolation procedure in Eq. (A2)
that addresses this problem, an additional step is required.
We find the bound remnant of the subhalo using a
procedure similar to that in Ref. [68]. Beginning with
the assumption that all particles are bound, we iteratively
compute the gravitational potential of each particle due to
all other bound particles using a Barnes-Hut octree [124]
with θ ¼ 0.7 and the same softening length as the simu-
lation. Subsequently, we mark each particle as unbound if
its total energy is positive and bound if its total energy is
negative. At each step, we find the center-of-mass position
and velocity of the 100 most bound particles and recenter
the full system to be relative to this center of mass. All
particles are initially marked as bound, and the procedure
terminates when the count of bound particles converges.17

FIG. 16. Absence of relaxation effects associated with the use of
different particle masses. This figure shows separately the density
profiles of light (high-resolution) and heavy (low-resolution)
particles inside the same halo; this halo is not exposed to tidal
forces. There is no visible tendency for the heavy particles to sink
to lower radii even after duration t ¼ 318ðGρsÞ−1=2 (dashed lines).
The profile of low-resolution particles is plotted down to the radius
containing 100 such particles. As a separate effect, the density
profile of light particles shallows at small radii due to two-body
relaxation (between light particles alone); the resolution limit rrel
imposed by this effect, described in Appendix A 2, is shown
(vertical line).

17This halting condition is stricter than the one in Ref. [68].
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By assuming that the bound remnant is spherically
symmetric, we can estimate the J factor both including
spherical asymmetry and compensating for the flattening of
the density profile below rmin. If Jfull is the J factor of the
full system computed using Eq. (A3) and Jbd;rad and Jbd are
the J factors of the bound remnant computed using
Eqs. (A2) and (A3), respectively, then

J ¼ Jfull − Jbd þ Jbd;rad: ðA5Þ

3. Numerical convergence

In our simulations, we set GADGET-2’s force-softening
length to be ϵ ¼ 0.003rs. This small value is intended to
evade the artificial subhalo disruption observed by
Ref. [69]. Meanwhile, the subhalo’s high-resolution
particles (see Sec. II) have mass 4.3 × 10−7ρsr3s . To check
that numerical artifacts in our simulations are under
control, we test the impact of changing the softening
length and the particle resolution. Additionally, we test
the impact of altering the (adaptive) integration time steps
in order to ensure there are no artifacts arising from the
application of the host’s tidal field over these discrete
intervals. In Fig. 17, we plot the J-factor trajectory in a
reference simulation (with system parameters x ¼ 34,
y ¼ 0.018, and z ¼ 0.15; see Sec. IV) along with three
simulations of the same system with different particle
resolution, force softening, and integration time steps.
We plot the upper and lower limits of the J-factor
trajectory as discussed above. These limits overlap for
all simulation parameters, suggesting that the simulation
is converged.

APPENDIX B: SUBHALO SIZE

In our simulations we applied the host halo’s tidal
forces using the linearized expression given by Eq. (3),
which is valid in the limit that the subhalo is much
smaller than its orbital radius. Thus, our results are
applicable in the rs ≪ Rc limit. In this appendix, we
explore precisely how far the applicability of our results
can be taken. For this purpose we executed several
simulations using the exact tidal force FtidalðrÞ ¼
FðRþ rÞ − FðRÞ instead of the linearized version, and
we compare the results of these simulations to those of a
simulation that employed the linearized force. The sub-
halos in all of these simulations are cut off at radius 5rs to
avoid excessive overlap with the host’s center; this change
does not affect the comparison since it applies equally to
every simulation.
We subjected subhalos of different sizes to the

same tidal evolution scenario with parameters x ¼ 21,
y ¼ 0.056, and z ¼ 0.18 in the parametrization given in
Sec. IV. Figure 18 shows the tidal evolution of the
subhalo’s J factor for different values of the ratio
rs=Rc between the subhalo’s scale radius and the radius
of its orbit about the host. We find that the tidal evolution
begins to diverge markedly from that induced by the
linearized tidal force when rs ≳ 0.1Rc. Note that this
analysis still neglects dynamical friction (including
self-friction, due to the limited duration of these simu-
lations); the influence of this effect is also sensitive
to the subhalo’s size. Thus, our results are applicable if
both rs ≲ 0.1Rc and dynamical friction can be neglected
(see Sec. II).

FIG. 17. Simulations of the same tidal evolution scenario
carried out with different simulation parameters. For each
simulation, two J-factor trajectories are plotted corresponding
to the lower and upper limits discussed in Appendix A (the lower
limit is the value we use throughout this work). The upper and
lower limits of each simulation overlap, implying numerical
convergence.

FIG. 18. Influence of a subhalo’s size on its tidal evolution.
This figure shows the trajectory of a subhalo’s J factor for several
different values of the ratio rs=Rc between the subhalo’s scale
radius and the radius of its orbit about the host; the relative orbital
radius Rc=Rs is held fixed along with all other parameters. Thin
lines show full trajectories while thick lines show averages over
each orbital period. When rs ≳ 0.1Rc, the tidal evolution begins
to diverge from the evolution in the rs ≪ Rc limit (solid curve).
The double peak in the first orbit arises because of the subhalo’s
truncation radius in these simulations and is not relevant to the
comparison.
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APPENDIX C: Computational details

In this appendix, we present practical ways to compute
the reduced variables x, y, and z along with the orbital
period T. For convenience, we include fitting formulas to
approximate the necessary integrals. In what follows, the
host is assumed to possess an NFW profile with scale radius
Rs and scale density Ps; its mass profile is

MðRÞ ¼ 4πPsR3
s

�
ln

�
1þ R

Rs

	
−

R=Rs

1þ R=Rs

�
; ðC1Þ

its force profile is FðRÞ ¼ GMðRÞ=R2, and its potential
profile is

ΦðRÞ ¼ −4πGPsR2
s
lnð1þ R=RsÞ

R=Rs
: ðC2Þ

Meanwhile, the subhalo’s orbit about the host is para-
metrized by the circular orbit radius Rc and circularity η,
and as shorthand, we define yc ≡ Rc=Rs.

1. Computing x= jEbj=ΔEimp

The binding energy Eb of a particle at the subhalo’s scale
radius rs is given by Eq. (15). Meanwhile, the total energy
ΔEimp injected into a particle at radius r by tidal forces over
the course of a subhalo orbit is computed using the impulse
approximation, as described in Ref. [95]. This energy
depends on the particle’s full three-dimensional position
within the subhalo, but we simplify the picture by averag-
ing this energy over the sphere at radius r. Dimensionally,
ΔEimp=r2 ∼ FðRcÞ=Rc, and we can approximate

ΔEimp

r2
¼ P1ðycÞ exp fP2ðycÞ½1 − ηP3ðycÞ�gFðRcÞ

Rc
; ðC3Þ

where P1ðycÞ is defined

P1ðycÞ ¼
Að1þ B lnð1þ ycÞ − Cyc=ðDþ ycÞÞ
1þ Eðlnð1þ ycÞ − 2yc=ð2þ ycÞÞ

;

A ¼ 3.327; B ¼ 0.6463; C ¼ 0.8837;

D ¼ 0.8809; E ¼ 0.2156; ðC4Þ

P2ðycÞ is defined

P2ðycÞ ¼ Að1þ ðyc=cÞaÞb;
A ¼ 3.005; a ¼ 3.641;

b ¼ 0.08513; c ¼ 0.5703; ðC5Þ

and P3ðycÞ is defined

P3ðycÞ¼
Að1þðyc=c1Þa1Þb1

ð1þðyc=c2Þa2Þb2ð1þðyc=c3Þa3Þb3
;

A¼0.2150; a1¼1.017; b1¼0.8650; c1¼0.5057;

a2¼2.774; b2¼0.2426; c2¼0.6415;

a3¼0.7663; b3¼0.6508; c3¼18.84: ðC6Þ

For η > 0.04, this expression is accurate to within 3% for
yc < 10 and within 14% for yc < 103.

2. Computing y= R̄=Rs

The time-averaged radius R̄ of the orbit is approximately
Rc, and, in fact, R̄=Rc → 1 as Rc=Rs → 0. More broadly,
the expression

R̄
Rc

¼ 1þBð1−FηGÞ lnð1þycÞ−Cyc=½Dð1−HηIÞþyc�
1þEðlnð1þycÞ−2yc=ð2þycÞÞ

;

B¼ 0.3777; C¼ 0.4892; D¼ 2.412; E¼ 0.2426;

F¼ 0.3556; G¼ 1.860; H¼ 0.1665; ðC7Þ

is accurate to within 0.3% for η > 0.04 and yc < 103.

3. Computing z= ra=rt
We define the adiabatic shielding radius ra and the

tidal radius rt as the solutions to mðraÞ=r3a ¼ ρa and
mðrtÞ=r3t ¼ ρt, respectively, where mðrÞ is the subhalo’s
initial NFWmass profile [see Eq. (C1)]. Here, ρa and ρt are
functions of the subhalo’s orbit; in particular,

ρa ≡ V2
p

GR2
p
¼ η2

MðRcÞRc

R4
p

and ρt ≡MðRaÞ
R3
a

; ðC8Þ

where Rp and Ra are the orbital pericenter and apocenter
radii, which may be obtained as the two solutions R to

ΦðRcÞ −ΦðRÞ þ
�
1 − η2

R2
c

R2

	
GMðRcÞ
2Rc

¼ 0: ðC9Þ

4. Computing T

Dimensionally, the radial orbit period T ∼ t0, where
t0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc=FðRcÞ

p
. More precisely, the expression

T
t0
¼ Að1þFηGÞ½1þB lnð1þ ycÞ−Cyc=ðDþ ycÞ�

1þEð1þHηIÞðlnð1þ ycÞ− 2yc=ð2þ ycÞÞ
;

A¼ 3.460; B¼ 0.6076; C¼ 0.8831; D¼ 2.312;

E¼ 0.3325; F¼ 0.04827; G¼ 1.261;

H¼ 0.03606; I ¼ 1.288; ðC10Þ

is accurate to within 0.2% for η > 0.04 and yc < 103.
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APPENDIX D: COMPARISON
TO THE DASH LIBRARY

Reference [79] published a library called Dynamical
Aspects of SubHaloes (DASH) of idealized subhalo sim-
ulations. This library includes the results of 2177 simu-
lations, with different system parameters, of an N-body
subhalo orbiting an analytic host potential. These simu-
lations resolve significantly less of the subhalo density
profile than do ours; as shown in Fig. 19, they can leave
large fractions of the J factor unresolved. Also, the DASH
library covers a smaller parameter range in x, y, and z.
Nevertheless, because of the extraordinary volume of this
library, it can serve as a test for our model.
We use the procedure in Appendix A to find the J-factor

trajectory of each DASH simulation,18 imposing an addi-
tional constraint that the trajectory halt when the maximum
uncertainty in the J factor is larger than a factor of 3. Next,
we fit the parameters a, b, and c to this trajectory as in
Sec. IV. For the DASH simulations, Fig. 20 plots (in the
same way as Figs. 10, 11, and 13) the trajectory parameters
a, b, and c against the system parameters x, y, and z.
Superposed are our model predictions, as solid lines, using
the parameters obtained in Sec. IV.
We first remark that all DASH simulations have y > 2,

so we cannot directly test Eq. (18) describing the behavior
of b in the y ≪ 1 self-similar regime. Nevertheless, the
upper-left panel of Fig. 20 shows that the DASH simu-
lations exhibit roughly the same power-law behavior b ∝
x−0.58 predicted by Eq. (19) (the offset between our curve
and the simulations here is not a discrepancy). The lower
panels show the sensitivity of a and b to y. Because the
DASH simulations only cover a small range of y, we cannot
verify the functional form of each parameter in y. Also,
there is substantial scatter, especially at large x.
Nevertheless, our model predicts roughly the correct values
of a and b for these simulations, although there is a
tendency for the simulations to have smaller values of a and
larger values of b. Finally, although the scatter in c is quite
large, the relationship between c and z is approximately
borne out in the DASH simulations.
The tendency for the DASH simulations to yield small a

and large b can be understood as a resolution artifact.
Below the resolution limit, we extrapolate the density
profile in a way that always underestimates the J factor
(see Appendix A). This underestimation both increases the
immediate loss of the J factor, reducing a, and increases the
rate at which J decays (since artificial relaxation worsens
the resolution over time), raising b.
Also, there is a tendency for systems at the large-x end to

exhibit large scatter in a, b, and c as well as a precipitous
drop in b (sometimes even to b < 0). This trend is also an

unphysical artifact. In our simulations, we observed the
same trend when x≳ 200, which is why our simulation
sample in Sec. IV only includes x < 200. For the lower-
resolution DASH simulations, the trend begins at x≳ 50.
The numerical difficulty with large x is unclear, but it is
likely connected to the fact that large x implies the
subhalo’s internal forces are much stronger than the
external tides. The vast difference in the scales of these
forces could lead to issues in numerical precision when the
tiny tidal forces are added to the large internal forces.

APPENDIX E: THE BROADER
DENSITY PROFILE

References [78] (hereafter H03) and [18] (hereafter P10)
studied the tidal evolution of a subhalo’s density profile,
focusing on the structural parameters vmax, the maximum
circular velocity within the subhalo, and rmax, the radius at
which this velocity is attained. Prior treatments of the
annihilation rate in subhalos (e.g., Refs. [33,34]) have
employed these works’ predictions of rmax and vmax,
along with the assumption that subhalos retain NFW
profiles, to predict subhalo J factors. To understand the
connection between our work and these prior works, this
appendix investigates the evolution of rmax and vmax in our
simulations.
At each snapshot of our simulations, we find rmax as the

radius r < rt that maximizes vcirc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmðrÞ=rp

, and vmax

is the corresponding maximum. We only consider snap-
shots up to the point where jd ln J=d ln tj ¼ 1, as discussed
in Sec. IV. Additionally, we halt the rmax and vmax trajectory
when rmax becomes smaller than the resolution limit

FIG. 19. A resolution comparison between our simulations
(top) and those of the DASH library (bottom). The (log-space)
integrand for the J factor, ρ2r3, is plotted for an example subhalo
from each catalogue with similar system parameters (x, y, and z;
see Sec. IV) at n ¼ 0 and n ¼ 5 orbits. The J factor is the area
under the curve. Below the resolution limit rmin, we plot a
pessimistic extrapolation of the density profile; see Appendix A.

18We use a larger α ¼ 20 to find rrel for the DASH simulations,
obtained by recalibrating for these simulations. Note that larger α
implies more optimism about simulation resolution.
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(see Appendix A), and we only include simulations whose
trajectories cover at least five orbits about the host. This
restriction reduces our simulation count to 41, 33 of which
are in the self-similar regime (Rc=Rs < 0.3).

1. Relations between structural parameters

Following H03 and P10, we first explore the relationship
between a subhalo’s structural parameters and its total mass
loss. These prior works parametrize the mass loss using the
ratio mbound=macc, where mbound is the mass that remains
bound to the subhalo andmacc is its virial mass at accretion.
However, this parametrization implies that the impact of
tides is strongly sensitive to the subhalo’s initial concen-
tration, and we propose that this sensitivity is unphysical
since the outer layers may be stripped almost immediately
upon accretion onto the host. To evade this problem, we
instead parametrize the mass loss using the ratio m̃≡
mbound=mmax;init of mbound to the mass initially enclosed
within rmax; this ratio is initially larger than unity. We
compute mbound using the procedure in Appendix A, and
Fig. 21 shows these relationships. For comparison we
also plot the predictions of H03 and P10 assuming

macc ¼ 4.5mmax;init, which corresponds to subhalo concen-
tration csub ≃ 20 at accretion.
We find that rmax is cleanly related to mbound by a power

law. Additionally, for both rmax and vmax, the predictions of
P10 (with csub ≃ 20) work reasonably well as long as
R̄ > Rs. However, the bottom panel of Fig. 21 shows that
there is substantial scatter in the relationship between J and
mbound, and P10 does not accurately predict the J factor if
an NFW profile is assumed. The scatter partially results
from the modest scatter in vmax, since J ∝ v4max, but it also
reflects that tidally altered density profiles differ signifi-
cantly from NFW. Figure 22 investigates this effect further
and shows that a subhalo’s J factor is roughly 30% smaller
than what would be predicted from rmax and vmax assuming
an NFW profile.

2. Time evolution of structural parameters

We can also predict the evolution of the subhalo’s
structural parameters more explicitly. Subjected to tidal
forces, rmax and vmax follow qualitatively similar trajecto-
ries to the J factor:

FIG. 20. A test of our model against the DASH simulations. This figure plots the J-factor trajectory parameters a, b, and c for the
DASH simulations against the system parameters x, y, and z. The solid curves are our model predictions; they are the same curves shown
in Figs. 10, 11, and 13. Note that the offset between the solid line and the simulations in the upper-left panel is not a discrepancy, for
the solid line is only valid for y ≪ 1. The DASH simulations exhibit significant scatter but broadly support our model with some
systematic discrepancies discussed in Appendix D. The radius of each marker is proportional to the number of orbital periods, which
ranges from 5 to 11.
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ln
rmax

rmax;init
¼ br

�
ar −

1

1 − cr
ðn1−cr − 1Þ

�
; ðE1Þ

ln
vmax

vmax;init
¼ bv

�
av −

1

1 − cv
ðn1−cv − 1Þ

�
; ðE2Þ

where n ¼ t=T is the number of orbits [compare Eq. (14)].
Note that the total bound mass, mbd, behaves similarly; its
trajectory follows from Eq. (E1) by inverting the equation
in the top panel of Fig. 21. As shown in Fig. 23, br, cr, bv,
and cv appear to depend on the system parameters x, y, and
z in the same way that b and c did:

br ¼ 0.48x−0.38½1þ 0.70fðyÞ�; ðE3Þ

cr ¼ 0.91z0.13; ðE4Þ

bv ¼ 0.28x−0.58½1þ 1.36fðyÞ�; ðE5Þ

cv ¼ 0.78z0.22: ðE6Þ

However, the middle panels of Fig. 23 show that unlike a,
the parameters ar and av depend not only on y but also
on x. Moreover, they are only sensitive to x in the self-
similar regime (Rc=Rs < 0.3). We fit the equation ar ¼
ar0 lnðx=ar1Þ, and likewise for av, in the self-similar
regime. Next, we fit ar − ar0 lnðx=ar1Þ½1 − fðyÞ=2� ¼
−ar2fðyÞ, and likewise for av, using all simulations. The
function fðyÞ asymptotes at 2 for large y, so the combi-
nation ½1 − fðyÞ=2� suppresses the x-dependent part of ar
and av at large r. Hence, we obtain

ar ¼ 0.53 lnðx=84Þ½1 − fðyÞ=2� − 1.26fðyÞ; ðE7Þ

av ¼ 0.37 lnðx=12Þ½1 − fðyÞ=2� − 1.21fðyÞ; ðE8Þ

as depicted in Fig. 23.
Broadly, there is more scatter in the trajectory parameters

ar, br, cr, av, bv, and cv of rmax and vmax than in the
parameters a, b, and c of the J factor, when plotted against
the system parameters x, y, and z (cf. Figs. 10, 11, and 13).
The source of this scatter is unclear, but it is likely that
rmax and vmax are more sensitive than J to additional
effects beyond those accounted for by the parameters x, y,
and z. Such heightened sensitivity is plausible for two
reasons. First, rmax and vmax are more sensitive than J to
the density profile at large radii, which could depend on
details of the tidal forces to which the inner profile is
insensitive. Second, rmax and vmax, being defined using the
condition dðmðrÞ=rÞ=dr ¼ 4πrρðrÞ −mðrÞ=r2 ¼ 0, can be
sensitive to fine details in the density profile ρðrÞ. As an
integrated quantity, the J factor does not exhibit this
sensitivity.

FIG. 21. The relationship of the subhalo properties rmax (top),
vmax (middle), and J (bottom) to its bound mass mbound after tidal
stripping. rmax is cleanly related to mbound, but the scatter is larger
for vmax and still larger for J. Each point represents the average
over a single orbit in our simulations, and the solid lines represent
the displayed fitting functions. The dashed and dotted lines
correspond to the predictions of P10 and H03, respectively,
assuming that the initial mass is 4.5mmax;init. The P10 prediction
in the last panel additionally assumes an NFW profile.

FIG. 22. The relationship between a subhalo’s J factor and
its structural parameters rmax and vmax; for an NFW profile,
J ¼ 1.23G−2v4maxr−1max (solid line). In our simulations, the J factor
lies consistently about 30% below the value that would be
expected assuming an NFW profile, as illustrated by the dashed
line. Each point represents the average over a single orbit in our
simulations.
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FIG. 23. The rmax trajectory parameters ar, br, and cr (left panels) and the vmax trajectory parameters av, bv, and cv (right panels)
plotted against the system parameters x, y, and z (cf. Figs. 10, 11, and 13); see Eqs. (E1) and (E2). The radius of each marker is
proportional to the number of orbital periods, which ranges from 5 to 15 for this sample.
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