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We investigate the possibility for the direct detection of low-mass (GeV scale) weakly interacting
massive particles (WIMP) dark matter in scintillation experiments. Such WIMPs are typically too light to
leave appreciable nuclear recoils but may be detected via their scattering off atomic electrons.
In particular, the DAMA Collaboration [R. Bernabei et al., Nucl. Phys. At. Energy 19, 307 (2018)]
has recently presented strong evidence of an annual modulation in the scintillation rate observed at energies
as low as 1 keV. Despite a strong enhancement in the calculated event rate at low energies, we find that an
interpretation in terms of electron-interacting WIMPs cannot be consistent with existing constraints.
We also demonstrate the importance of correct treatment of the atomic wave functions and show the
resulting event rate is very sensitive to the low-energy performance of the detectors, meaning it is crucial
that the detector uncertainties be taken into account. Finally, we demonstrate that the potential scintillation
event rate can be much larger than may otherwise be expected, meaning that competitive searches can be
performed for mχ ∼ GeV scale WIMPs using the conventional prompt (S1) scintillation signals. This is
important given the recent and upcoming very large liquid xenon detectors.
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I. INTRODUCTION

The identity and nature of dark matter (DM) remains one
of the most important outstanding problems in modern
physics. Despite the overwhelming astrophysical evidence
for its existence, no conclusive terrestrial observation of DM
has yet been reported [1,2]. Currently, most of the effort in
the search for DM has focused on weakly interacting
massive particles (WIMPs) with masses mχ ≳ 10–100GeV
through their hypothesized nongravitational interactions
with Standard Model particles. In this work, we consider
low-mass WIMP DM with masses on the order of 1 GeV.
One long-standing claim of a potential DM detection

was made by the DAMA Collaboration, which uses a
NaI-based scintillation detector to search for possible DM
interactions within the crystal in the underground labora-
tory at the Gran Sasso National Laboratory, Istituto
Nazionale di Fisica Nucleare (INFN), Italy [3] (see also

Refs. [4,5]). The results from the combination of the
DAMA/LIBRA and DAMA/NaI experiments indicated
an annual modulation in the event rate at around 3 keV
electron-equivalent energy deposition (with a low-energy
threshold of approximately 2 keV) with a 9.3σ significance
[3]. The phase of this modulation agrees very well with the
assumption that the signal is due to the scattering of WIMP
DM present in the galactic halo. An annual modulation in
the observed WIMP scattering event rate is expected due to
the motion of the Earth around the Sun, which results in an
annual variation of the DM flux through a detector (and the
mean DM kinetic energy); see, e.g., Refs. [6,7].
Despite the significant signal, there is strong doubt that

the DAMA Collaboration result can be due to WIMPs,
since it is seemingly in conflict with the null results of
many other direct detection experiments, e.g., Refs. [8–12].
There are also several works which offer explanations
the DAMA result in terms of non-DM origins, e.g., in
Ref. [13]. However, it is not always possible to compare
different experiments in a model-independent way, mean-
ing it is difficult to make general statements to this effect.
For example, one possibility that has been considered in

the literature is that the DAMA modulation signal may
be caused by WIMPs that scatter off the atomic electrons
[14–16], as opposed to nuclear scattering as is assumed in
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typical experiments. This is particularly applicable for lighter
WIMPs (mχ ≲ 10GeV), which will not leave appreciable
nuclear recoils. Most direct detection experiments try to
reject pure electron scattering events, in order to perform
nuclear recoil searches with as low as possible background.
Conversely, the DAMA experiment is sensitive to WIMPs
which scatter off either electrons or nuclei, potentially
allowing electron-interacting DM to explain the DAMA
modulation while avoiding the tight constraints from other
experiments. In a recent work [17], however, we used
scintillation and ionization signals from the XENON100
[18] and XENON10 [19] experiments to rule out this
possibility for the observed signal above 2 keV; see also
Refs. [20–22].
Recently, newer results from the DAMA/LIBRA-phase2

experiment have become available [23] (see also
Refs. [24,25]). These results strengthen the claim for a
detected signal, with the significance of the annual modu-
lation in the 2–6 keV energy window rising to 12.9σ.
Importantly, the low-energy threshold has been lowered in
the new experiment to 1 keV, and the annual modulation is
also clearly present in this region (9.5σ significance). This
may be of particular significance for the interpretation in
terms of electron-interacting DM. In our previous work
[17], we showed that there would be an almost exponential
increase in the potential event rate at lower energies for
such models of light (mχ ∼ 1GeV) WIMPs.
For the approximately kilo-electron-volt energy deposi-

tions of interest to this work, the relevant process for
electron scattering DM is atomic ionization. Such processes
are kinematically disfavored at these energy scales, and
therefore the scattering probes deep inside the bound-state
wave function, with the main contribution coming from the
wave function at distances much smaller than the character-
istic Bohr radius of an atom. In such a situation, incorrect
small-distance scaling of the wave functions (for example,
by using an “effective Z” model or assuming plane waves
for the outgoing ionization electron) can lead to large errors
in the predicted ionization rates [17]. Further, the relativ-
istic effects for the electron wave function are crucial and
must be taken into account [26]. As such, interpretation in
terms of light WIMPs requires nontrivial calculations of
the atomic structure and ionization rates. Finally, we note
that there are several ongoing experiments [27–34] and
proposals [35–41] to search for light WIMPs in direct
detection experiments. We also note that weak evidence
for annual modulation at 2 keV from the COSINE
Collaboration has been recently made public [42] (see also
Ref. [43]).

II. THEORY

A. Atomic ionization

Throughout the text and in the figures, we use relativistic
units (ℏ ¼ c ¼ 1), with masses, energies, and momenta

presented in electron-volts, as is standard in the field. How-
ever, it is also customary, e.g., to present cross sections in
centimeters squared, event rates in counts/kilogram/kilo-
electron-volts/day. Further, for the calculations of atomic
ionization, it is convenient and common to use atomic units
(ℏ ¼ me ¼ 1; c ¼ 1=α). Therefore, to avoid any possible
confusion, we leave all factors ℏ and c in the equations.
We consider DM particles that have electron interactions

of the form

VðrÞ ¼ ℏcαχ
e−μr

r
; ð1Þ

where μ is the inverse of the length scale for the interaction,
set by the mediator mass (e.g., μ ¼ mvc=ℏ) and αχ is the
effective DM-electron coupling strength. Such effective
interaction Hamiltonians arise generally in the case of
either scalar or vector interactions (e.g., via the exchange of
a dark photon). The coefficient in (1) is chosen so that in the
case of a massless mediator (long-range interaction, μ ¼ 0),
this reduces to a Coulomb(-like) potential (with α → αχ).
In the limit of a very heavy mediator, the above reduces to
the contact interaction: VðrÞ ¼ 4πℏcðαχ=μ2ÞδðrÞ.
The differential cross section (for fixed velocity v) for the

excitation of an electron in the initial state njl is

dσnjl
dE

¼ 8πα2χ

�
c
v

�
2
Z

qþ

q−

qdq
ðq2 þ μ2Þ2

KnjlðE; qÞ
EH

; ð2Þ

where ℏq is the magnitude of the momentum transfer, E is
the energy deposition, and K is the atomic excitation factor,
defined as [26]

Knjl ≡ EH

X
m

X
f

jhfjeiq·rjnjlmij2ϱfðEÞ: ð3Þ

Here, ϱf is the density of final states, m ¼ jz, and the
total cross section is to be summed over all electrons
dσ ¼ P

dσnjl. The factor of the Hartree energy unit
(EH ≡mec2α2 ≃ 27.2 eV) is included in Eqs. (2) and (3)
in order to make the K factor dimensionless (q and μ have
dimensions of inverse length). Since we are considering
ionization processes, the final state is a continuum electron
with energy ε ¼ E − Injl (Injl is the ionization energy).
Formulas for calculating the atomic excitation factor (3) are
given in Appendix.
Equation (2) is to be integrated over all possible values

for the momentum transfer. From the conservation of
momentum, the allowed values fall in the range between

ℏq� ¼ mχv�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χv2 − 2mχE
q

; ð4Þ

where both the DM particle and ejected electron are assumed
to be nonrelativistic. For GeV scale WIMPs leaving keV
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scale energy depositions, the typical momentum transfer
is q ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mχE

p
∼MeV, which is very large on atomic

scales [17].
The resulting differential event rate (per unit mass of

target material) is proportional to the cross section (2)
averaged over incident DM velocities,

dR ¼ nTρDM
mχc2

dhσnjlvχi
dE

dE; ð5Þ

where nT is the number density of target atoms (per unit
mass) and ρDM ∼ 0.3–0.4 GeV cm−3 is the local DM
energy density [44]. We follow Ref. [45] and parametrize
the velocity-averaged cross section as

hdσvi
dE

¼ σ̄e
2mec

Z
dv

fðvÞ
v=c

Z
qþ

q−

a20qdqjFμ
χðqÞj2KðE;qÞ; ð6Þ

where σ̄e is the free electron cross section at fixed
momentum transfer of q ¼ a−10 ; a0 ¼ ℏ=ðmecαÞ is the
Bohr radius, α ≈ 1=137 is the fine-structure constant,
and f is the DM speed distribution [in the laboratory
frame, normalized to

R
fðvÞdv ¼ 1]. In the case of a vector

or scalar mediated interaction such as (1), these are
expressed as

σ̄e ¼ a20
16πα2α2χ

ððmv=meÞ2 þ α2Þ2 ð7Þ

FχðqÞ ¼
ðmv=mcÞ2 þ α2

ðmv=mcÞ2 þ ðαa0qÞ2
: ð8Þ

We have assumed here that mχ ≫ me, which is valid for
the considered mass ranges. In the limit of a heavy mediator
(contactlike interaction), the DM form factor reduces
simply to Fχ ¼ 1, while for an ultralight mediator
(Coulomb-like interaction), it reduces to Fχ ¼ ða0qÞ−2.
This is a convenient way to parametrize the calculations
and allows for easy model-independent comparison
between different results.
There is no contribution to the event rate stemming

from DM velocities below vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=mχ

p
, the minimum

required to deposit energy E. If the majority of the target
momentum-space wave function density lies inside the
ðq−; qþÞ region, then the integration over q in Eq. (2) is
essentially independent of the integration limits, so one
may write

hdσvi ∝ ηðvminÞ
Z

qdqjFDMðqÞj2KðE; qÞdE;

where ηðvminÞ is the mean inverse speed of DM particles
fast enough to cause the ionization (v > vmin) for the given
velocity distribution. This is a common way to calculate

DM direct detection event rates, particularly for nuclear
recoils; however, we note that in the case of electron
scattering it is not valid. The cross section depends strongly
on q− and hence the DM velocity, since, in many cases, the
bulk of the electron momentum-space wave function lies
below the allowed region for momentum transfer. This
means that a careful treatment of the DM speed distribu-
tion, including uncertainties, is required for the analysis
(see also Ref. [46]).

B. Calculation of the atomic ionization factor

In Fig. 1, we show a comparison of the atomic ionization
factor as calculated using a number of different appro-
ximations, as a function of the momentum transfer q (for
fixed E). For the values relevant to this work, around
q ∼ 1 MeV, there are almost 4 orders of magnitude differ-
ence between the various approximations. Also note that
the relativistic effects are very important for large q, and the
corrections continue grow with increasing q [26].
Since the typical kinetic energy of a mχ ∼ GeV mass

WIMP is large compared to typical atomic transition
energies, the minimum momentum transfer is given by
ℏqmin ∼mχvχ ∼ E=vχ (4). Therefore, we see that ℏqmin ≳
mev2e=vχ ¼ peðve=vχÞ ≫ pe, with ve ∼ αc − Zαc being the
typical velocity of an atomic electron. The consequence is
that only the very high-momentum tail of thewave functions
(in momentum space) can contribute to such processes. In
position space, this part of the wave function comes from
distances very close to the nucleus. For a detailed discussion,
see Ref. [26].
Therefore, care must be taken to perform the calculations

of such processes correctly. For example, it is common
to calculate such processes using analytic hydrogenlike
wave functions, with an effective nuclear charge, which
is chosen to reproduce experimental binding energies:
Zeff ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Injl=EH

p
. While such functions give a reason-

able approximation for low q, for the large q values
important for this work, they drastically underestimate

FIG. 1. Atomic factor K (3) for the 3s state of Xe at fixed
energy (2 keV), calculated using different approximations. For
the 3s Xe state, we have Zeff ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Injl=EH

p
≃ 28.
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the cross section. This is because such functions have
incorrect scaling at distances close to the nucleus, which is
the only part of the electron wave function that can
contribute enough momentum transfer.
Another common approach is to approximate the out-

going ionization electron wave function as a plane-wave
state. Such functions also have the incorrect scaling at small
distances and underestimate the cross section by orders of
magnitude for large q. (This is mostly due to the missing
Sommerfeld enhancement as discussed in Ref. [47].) More
details regarding this point are given in Appendix.
Therefore, to perform accurate calculations, one must

employ a technique known to accurately reproduce the
electron orbitals, namely, the relativistic Hartree-Fock
method, including finite-nuclear size, and using conti-
nuum energy eigenstates as the outgoing electron orbitals.
Detailed calculations and discussion were presented in
Ref. [17]. Formulas are given in Appendix.
Given the extreme dependence on the atomic physics

seen in Fig. 1, it is important to estimate the uncertainty in
the calculations. To gauge this, we also calculate the cross
section using other (simpler) methods. Namely, we exclude
the effect of the exchange potential from the Hartree-Fock
method and also solve the Dirac equations using only a
local parametric potential (chosen to reproduce the ioniza-
tion energies) instead of the Hartree-Fock equations. The
effect this has on the calculations is very small, with the
main difference coming from small changes in the calcu-
lated values for the ionization energies. This is as expected,
since the cross section is due mainly to the value of the
wave functions on small distances, close to the nucleus,
where many-body electron effects are less important
(but the correct scaling is crucial). All of these methods
(unlike the effective Z method, or plane-wave assumption)
give the correct small-r scaling of the bound and continuum
electron orbitals.
The finite-nuclear size correction is important for large

values of q but is small compared to the relativistic
corrections and ultimately is not a leading source of error.

In any case, we include this in an ab initio manner,
by directly solving the electron Dirac equation in the
field created by the nuclear charge density, which we
take to be given by a Fermi distribution, ρðrÞ ¼
ρ0½1þ expðr − c=aÞ�−1. Here, t≡ 4a ln 3 ≃ 2.3 fm and
c ≃ 1.1A1=3 fm are the nuclear skin-thickness and half-
density radius, respectively, e.g., Ref. [48], and ρ0 is the
normalization factor. We note that the uncertainties stem-
ming from the atomic physics errors are small compared to
those coming from the assumed dark matter velocity
distribution and detector performance, as discussed in
the following sections.
Plots of the velocity averaged differential cross

sections for several WIMP masses and mediator types
are presented in Fig. 2. We find very good agreement with
similar recent calculations for Xe atoms in Ref. [49].
We present these plots for the xenon atom, since it is
the most common target material. For DAMA/LIBRA
experiment, the cross section is dominated by scattering
off iodine (Z ¼ 53), which has an electron structure very
similar to that of xenon (Z ¼ 54).

C. Annual modulation

We assume the DM velocity distribution is described
by the standard halo model, with a cutoff (in the galactic
rest frame) of vesc ¼ 550ð55Þ km=s, and a circular velo-
city of v0 ¼ 220ð20Þ km=s; see, e.g., Ref. [6,50]. The
numbers in the parentheses above represent estimates
for the uncertainties in the values. This is important,
due to the strong velocity dependence of the cross section
(see also, e.g., Ref. [46]). We use these uncertainties to
estimate the resulting uncertainty in the calculated event
rates.
For the calculations, the velocity distribution is boosted

into the Earth frame, which has a speed of

vEðtÞ ≈ vL þ vorb cos β cosð2π · yr−1tþ ϕÞ: ð9Þ

FIG. 2. Velocity-averaged differential cross section for a single Xe atom, with σ̄e ¼ 10−37 cm2. The left panel is for a contact (heavy
mediator) interaction, and the right is for a long-range (Coulomb-like) interaction. The kinks in the plots are due to the opening up of
deeper electron shells. There is no signal above Emax ¼ mχv2max=2, where vmax is the maximum DM velocity.
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Here, vL ¼ v0 þ 13 km=s is the average local rest frame
velocity, accounting for the peculiar motion of the Sun, vorb
is the Earth’s orbital velocity, and cos β ≈ 0.49 accounts for
the inclination of Earth’s orbit to the Galactic plane. The
cosðωtÞ term accounts of the annual change in the local
frame velocity due to the orbital motion around the Sun,
with phase ϕ chosen such that vE is maximum on June 2,
when the Earth and Sun velocities add maximally in the
Galactic halo frame.
Due to the strong velocity dependence of the cross

section, the resulting event rates are not perfectly sinusoi-
dal, particularly at higher energies and lower WIMPmasses
[17]. However, the general sinusoidal feature remains a
reasonable approximation. We define the modulation
amplitude as ðRmax − RminÞ=2.

III. IMPLICATIONS FROM
DAMA/LIBRA-PHASE2

In order to calculate the number of events detected within
a particular energy range, the energy resolution of the
detectors must be taken into account. To do this, we follow
the procedure from Ref. [14] and take the detector resolution
to be described by a Gaussian with standard deviation

σLE=E ¼ αLE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=keV

p
þ βLE; ð10Þ

which is measured at low energy to be given by
αLE ¼ 0.45ð4Þ, and βLE ¼ 9ð5Þ × 10−3 [51]. The calculated
rate, R, is integrated with the Gaussian profile to determine
the observable event rate, S,

dS
dE

¼
Z

∞

EHW

gσLEðE0 − EÞ dRðE
0Þ

dE0 dE0; ð11Þ

where EHW is the hardware threshold, which for DAMA
is one photoelectron [51]. The extracted number of

photoelectrons is measured by the DAMA Collaboration
to be 5.5–7.5 photoelectrons=keV, depending on the detec-
tor [51]. We take an average value of 6.5, with �1 as an
error term, so that EHW ¼ 0.15ð3Þ keV. We do not take the
detector efficiency into account because the DAMA
Collaboration presents its results corrected for this [23].
The effect of the finite detector resolution is that it allows

events that originally occur at lower energies to be visible in
the observed data above the threshold. This is particularly
important due to the strong enhancement in the cross
section at low energies (see Fig. 2).
Due to the strong atomic number Z dependence, the

cross section for scattering off sodium electrons is negli-
gible [17]. So, for the DAMA NaI crystals, it is sufficient to
calculate the rate due to scattering of the iodine electrons.
We have treated iodine as though it were a free atom,
whereas, in fact, it is bound in the NaI solid. Only the
outermost 5p orbitals are involved in binding. However,
even after accounting for the detector resolution, the 5p
(and 5s) orbitals contribute negligibly, with the dominant
contribution at approximately 1–2 keV coming from the
inner 3s shell, which is very well described by atomic wave
functions.
Using this approach, we calculate the expected event

rate and annual modulation amplitude for DAMA, as a
function of the incident WIMP mass, assuming both an
ultralight and superheavy mediator. Due to the very large
enhancement in the expected event rate at smaller
energies, the calculated modulation amplitude is a poor
fit to the observed DAMA spectrum. In Fig. 3, we present
the calculated spectrum alongside the DAMA/LIBRA-
phase2 data [23]. For the coupling strength (parametrized
in terms of σ̄e), we have fitted the expected event rate to
the observed DAMA modulation signal only for the lowest
1–2 keV bins. Taking the higher-energy bins into account
can only increase the best-fit value for σ̄e, so (as discussed
below) this is the most conservative choice.

FIG. 3. Calculated modulation amplitude for NaI, accounting for the DAMA detector resolution, with σ̄e chosen to reproduce the
observed DAMA/LIBRA-phase2 modulation amplitude averaged across the 1–2 keV energy bin. The black points are the combined
DAMA/LIBRA data (the points below 2 keV from phase2 alone) [23]. The shaded blue region shows the uncertainties from
the calculations (this work), which are mostly due to uncertainties in the DAMA energy resolution. The plot is drawn assuming
mχ ¼ 1 GeV for a contactlike interaction (left) and a long-range interaction (right). Clearly, the fit is poor.
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In Fig. 4, we plot the best-fit regions for the lowest-
energy DAMA/LIBRA-phase2 modulation signal, as a
function of possible DM masses mχ and coupling strengths
σ̄e. Despite the large enhancement in the expected event
rate at the lower energies, and the conservative assump-
tions made for extracting the best fit, the interpretation of
the observed modulation amplitude in terms of electron-
interacting dark matter is inconsistent with existing
bounds. All regions of parameter space that could possibly
explain the observed DAMA signal are excluded by
constraints derived in Ref. [35], using S2 “ionization-only”
results from the XENON10 [19] and XENON100 [52]
experiments.
Note the large uncertainties visible in the plots in

Figs. 3 and 4. The dominating source of error comes from
the uncertainties in the detector response and energy
resolution. Sizable errors also arise due to uncertainties
in the standard halo model DM velocity distribution.
Uncertainties coming from the atomic physics calculations
are also included but are negligible. The uncertainties in the
detector resolution and DM velocities themselves are not so
large (approximately 10%)—but they lead to very large
uncertainties (up to an order of magnitude) in the observable
event rate. This is due to the very strong enhancement in the
event rate at low energies, which makes the observed rate
very sensitive to the detector cutoffs and energy resolution.
Clearly, taking these uncertainties into account is crucial.

IV. PROPSECTS FOR LIQUID
XENON DETECTORS

In this section, we discuss the prospects for the detection
of light (GeV scale) WIMPs using xenon dual-phase time
projection chambers. (We base our discussion here on
XENON Collaboration detectors; see e.g., Ref. [53].
Similar principals apply for other experiments.) When a

scattering event occurs in the liquid xenon bulk of such a
detector, a prompt S1 scintillation signal is induced, which
is proportional to the total energy deposited in the detector.
Then, any ionized electrons are drifted upward through the
liquid/gas boundary (via an applied electric field), where a
secondary scintillation signal (S2) that is proportional to the
number of ionized electrons may be observed. Combining
the x; y spatial resolution of the top and bottom photo-
detectors with the z-resolution from the time between the
S1 and S2 signals allows three-dimensional reconstruction
of the event geometry. This allows for the “fiducialization”
of the target material, where only scattering events occur-
ring within the inner volume of the detector are included in
the analysis. This is an important stage of background
rejection, since charged particles are much more likely to
scatter quickly, i.e., at the outer regions of the xenon
chamber, whereas feebly interacting particles such as
WIMPs are equally likely to scatter anywhere within the
detector volume. Further, the ratio between the relative
strengths of the S1 and S2 signals may be used to
distinguish between nuclear and electronic scattering
events. The combination of both the S1 and S2 signals
is thus key to understanding the source of any scattering
events.
Proposals to use the ionization-only (S2) signals to

search for sub-GeV WIMPs have been made previously
[45,47], and limits from S2 observations using XENON10
and XENON100 experiments have been set [35] (as
discussed in the previous section). It is worth noting that
the best constraints actually come from the older
XENON10 experiment (finished in the year 2011), despite
its much smaller detector mass, older generation of detec-
tors, and much smaller total exposure. This is due to the
detection strategy of the modern experiments, which rely
on the combination of S1 and S2 signals.

FIG. 4. The black line shows the calculated value for σ̄e required to reproduce the observed DAMA modulation signal over the
1–2 keVenergy bin, as a function of the WIMP mass for the heavy (left) and ultralight (right) mediator cases. The green shaded region
shows the 90% C.L. region for the fit, taking into account uncertainties stemming from the detector resolution, standard halo model, and
atomic physics errors. The red and blue curves are the 90% C.L. exclusions from Ref. [35], derived from the S2 ionization signals from
the XENON10 and XENON100 experiments, respectively. The “DAMA-allowed” regions are excluded for all relevant WIMP masses
by these bounds. The fit for DAMA was performed by averaging over just the lowest-energy bins without regard to the shape of the
spectrum. Taking the higher-energy bins into account pushes the DAMA region higher, strengthening this conclusion (see Fig. 3).
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The reason S2 ionization-only signals were considered
is because for low-mass WIMPs the typical energy
deposited in the detectors is much smaller than the
∼ 1–2 keV effective low-energy threshold for S1 signals.
It was thus believed that the S1 scintillation signal produced
from such events would be negligible. In this work,
we demonstrate that, due to the large enhancement from
lower energies and the finite detector resolution, the prompt
S1 scintillation signal can be many times larger than other-
wise expected and that it therefore can be a promising
WIMP direct detection observable. Thus, it would be
possible to perform a low-mass WIMP search with modern
liquid xenon detectors using the combined S1 and S2
signals. Detailed calculations of the observable S2 spec-
trum from low-mass WIMPs was presented recently in
Ref. [35]; here, we present calculations for the correspond-
ing S1 signal.
We calculate the potentially observable S1 (prompt

scintillation signal) event rate and modulation amplitude
for a hypothetical future liquid xenon detector. We model
this detector after that of XENON100 and follow Ref. [54]
for the conversion from the energy deposition to the
observable photoelectron (PE) count (see also Ref. [55]).
In this case, the relevant quantity is a counted rate as a
function of observable photoelectrons, denoted s1.
The calculated event rate for the production of n

photoelectrons is obtained by applying Poisson smearing
to the calculated differential rate [54]. We do this according
to a Poisson distribution, PnðNÞ ¼ e−NðNn=n!Þ, where
N ¼ NðEÞ is the expected/average number of photoelec-
trons produced for a given energy deposition E and n is the
actual number of photoelectrons produced. The relation
between the deposited energy (electron recoil energy) and
the produced number of photoelectrons is given in Fig. 2 of
Ref. [54]. We model this as a power law, NðEÞ ¼ aEb, with
a ¼ 1.00ð25Þ and a ¼ 1.53ð10Þ, which give the best fit for

the lower energies applicable for this work, accounting for
the uncertainties from Ref. [54].
Further, to account for the photomultiplier tube (PMT)

detector resolution, we convolve the calculated rate with a
Gaussian of standard deviation σ ¼ σPMT

ffiffiffi
n

p
, with σPMT ¼

0.5 PE [55]. We do not include uncertainty contributions
from the PMT resolution; though, note that we have
checked, and error in the NðEÞ conversion is by far the
dominant source of uncertainty in this step. Finally, the
detection acceptance is taken into account as ϵðs1Þ ¼
0.88ð1 − es1=3Þ [54]; though, we note that this has an
insignificant impact on the results. The final expression
for the observable event rate, S, as a function of counted
PEs s1 is

dS
ds1

¼ ϵðs1Þ
X
n

gσðn − s1Þ
Z

∞

0

dRðEÞ
dE

PnðNÞdE: ð12Þ

We calculate potential event rates, assuming a value for
σ̄e that is not excluded by current experiment, for a 1 tonne-
year exposure in Fig. 5 as a function of the WIMP mass, for
both a contact and long-range interaction. We show the rate
integrated between 3 and 14 PE, as in Ref. [21] (see also
Refs. [18,20]). This roughly corresponds to the 2–6 keV
energy window. The rate is strongly dominated by the
lower PE contribution, so it does not matter where the
higher PE cut is taken. We also present the expected rates
for the ranges including 1 and 2 PE. The larger and less
well-understood background at these lower energies makes
experiments more difficult to interpret. However, the
much enhanced event rate, and large annual modulation
amplitudes, may make these regions interesting for future
experiments.
In Fig. 6, we show the expected annual modulation

fraction for the same type of experiment. Due to the strong
velocity dependence of the cross section, the fractional

FIG. 5. Hypothetically observable WIMP electron recoil event count expected for a 1 tonne · year exposure of a liquid xenon detector
(based on XENON100) using the prompt scintillation (S1) signal; (left) for a contact interaction (with σ̄e ¼ 10−38 cm−1), (right) for a
contact interaction (with σ̄e ¼ 4 × 10−35 cm−1). The shaded blue regions show the uncertainties in the calculations. The σ̄e values are
chosen to be below the present constraints, which are most stringent around mχ ∼ 0.1GeV (see Fig. 4). Note that for larger masses the
constraints are less stringent, and larger events rates are not ruled out.
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modulation amplitude is large. For example, for an approx-
imately 0.1 GeV WIMP, where the event rate may be
expected to be high, it is approximately 15%–20%. The
peaks in the annual modulation curves (Fig. 6) at around
0.04 and 1 GeV are due to the opening of the n ¼ 3 and
n ¼ 4 shells in Xe. Electrons may only become ionized if
their binding energies are lower than the maximum kinetic
energy of the incident WIMPs:

Injl < Kmax ≃
1

2
mχv2max ∼ 4

�
mχc2

GeV

�
keV: ð13Þ

The ionization rate for shells with energies close to this
number (i.e., that are “only just” accessible) will be
sensitive to small changes in the velocity distribution.
For Xe, these occur for the n ¼ 3 shell just above 1 keV
and the n ¼ 4 shell just below 0.1 keV (see Fig. 2).

V. CONCLUSION

We have calculated the expected event rate for atomic
ionization by GeV scale WIMPs that scatter off atomic
electrons, relevant to the DAMA/LIBRA direct detection
experiment. Though the calculated event rate and annual
modulation amplitude are much larger than may be
expected, we show that such WIMP models cannot explain
the observed DAMA modulation signal without conflicting
with existing bounds, even when just the lowest-energy
1–2 keV bin is fitted. Taking higher bins into account
strengthens this conclusion. Further, we demonstrate
explicitly the importance of treating the electron wave
functions correctly and note that the expected event rates
are extremely sensitive to the detector resolution and low-
energy performance and the assumed dark matter velocity
distribution. Uncertainties in these quantities lead to large
uncertainties in the calculated rates and therefore must be
taken into account. Finally, we calculate the potentially
observable event rate for the prompt scintillation signal of

future liquid xenon detectors. Large event rates would be
expected for dark matter parameters which are not excluded
by current experimental bounds, making this an important
avenue for potential future discovery.
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APPENDIX: ATOMIC IONIZATION FACTOR

1. Continuum final states (energy eigenstates)

For the electron wave functions, we employ the Dirac
basis, in which single-particle orbitals are expressed as

hrjnjlmi ¼ 1

r

� fnjlðrÞΩjlmðn̂Þ
ignjlðrÞΩjl̃mðn̂Þ

�
; ðA1Þ

where Ω is a spherical spinor,

Ωjlm ≡X
σ

hl; m − σ; 1=2; σjj; miYl;m−σðn̂Þχσ; ðA2Þ

with hj1m1j2m2jJMi a Clebsch-Gordon coefficient, Ylm a
spherical harmonic, l̃ ¼ l� 1 for j ¼ l� 1=2, and χσ a
spin eigenstate with σ ¼ �1=2 being the spin orientation.
Note, that in the nonrelativistic limit the small component
g → 0, and f → P, where P=r is the radial solution to the
nonrelativistic Schrödinger equation. To reach nonrelati-
vistic limit in the calculations, we allow the speed of light
c → ∞ inside the code before the Dirac equation is solved.
We also note that the relativistic enhancement discussed in
the main text does not stem from the lower g component,
the contributions to R of which scale as ðZαÞ2 (except in the
case of pseudoscalar/pseudovector interactions, where the g
functions contribute at leading order [17]). Instead, they
come from differences in the radial dependence of the
upper f component [26].
The continuum state orbitals are defined similarly,

hrjεjlmi ¼ 1

r

� fεjlðrÞΩjlmðn̂Þ
igεjlðrÞΩjl̃mðn̂Þ

�
; ðA3Þ

with energy normalization [56], so thatZ
εþδε

ε−δε
hε0jlmjεjlmidε0 ¼ 1: ðA4Þ

In practice, the normalization is achieved by a comparison
with analytic Coulomb functions at large r [56]. Note, this
formalism means that ϱf (3) is included already in the

FIG. 6. Expected fractional modulation amplitude [ðSmax −
SminÞ=2Savg] as a function of the WIMP mass, assuming a heavy
mediator (Fχ ¼ 1), for the prompt S1 signal in a XENON100-like
detector, in the 1–, 2–, and 3–14 PE bins. A discussion of the
features is given in the text.
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definition of the orbitals hrjεjlmi, which have dimen-
sion ½Length�−3=2½Energy�−1=2.
To calculate the atomic ionization factor, we first

expand the exponential in Eq. (3) as a sum over
irreducible spherical tensors: eiq·r ¼ P∞

L¼0

P
L
M¼−L TLM

(see, e.g., Ref. [57]). Then, from the standard rules for
angular momentum, the atomic factor can be expressed as

KnjlðE; qÞ ¼ EH

X
L

X
j0l0

jRj0l0L
njl ðε; qÞj2Cj0l0L

jl : ðA5Þ

Here, R is the radial integral

Rj0l0L
njl ðε;qÞ¼

Z
∞

0

½fnjlðrÞfεj0l0 ðrÞþgnjlðrÞgεj0l0 ðrÞ�jLðqrÞdr;

ðA6Þ

where ε ¼ Injl − E; jl is a spherical Bessel function and C
is an angular coefficient given by (for closed shells)

Cj0l0L
jl ¼ ½j�½j0�½L�

�
j j0 L

−1=2 1=2 0

�
2

ΠL
ll0 ; ðA7Þ

with ½J�≡ 2J þ 1; ð…Þ being a Wigner 3j symbol, and
ΠL

ll0 ¼ 1 if lþ l0 þ L is even and is 0 otherwise. The primed
quantities refer to the angular momentum state of the
ejected ionization electron (final state). For q ≳ 1 MeV,
only the L ¼ 0 term contributes significantly, while for
q≲ 0.01 MeV, only the L ¼ 1 term is important. For the
intermediate region approximately 0.1 MeV, the sum
saturates reasonably rapidly, and convergence is reached
by L ¼ 4. These equations are valid for the case of DM that
interacts via vector and scalar mediators; similar expres-
sions for the case of pseudovector and pseudoscalar
mediators are given in Ref. [17].
Plots of the atomic ionization factors showing the

energy and momentum-transfer dependence, as well as

the contributions from different atomic orbitals, are shown
in Fig. 7.

2. Plane-wave final states

Here, we present the formulas for calculating the
ionization assuming a plane-wave final state. This is done
only as a demonstration; we stress, as discussed above, that
this is not a reasonable approximation for the processes
considered in this work. Take the final ionization electron
state as a plane wave,

hrjpi ¼ eip·r=ℏ; ðA8Þ
with jpj ¼ ffiffiffiffiffiffiffiffiffiffiffi

2meε
p

, subject to the normalization

Z
d3p

ð2πℏÞ3 hpjpi ¼ 1:

The relativistic corrections to (A8) are suppressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε=ð2mec2Þ

p
and can be safely excluded. If ℏk (ℏk0) is

the initial (final) WIMP momentum, the minimum allow-
able momentum transfer can be expressed as ℏq− ¼
ℏjk0 − kj ≈ E=v≳mev2e=v ¼ peðve=vÞ. Since for inner-
shell electrons ve ∼ Zαc, while the DM speed v ∼ 10−3c,
this implies ℏq ≫ pe. Then, the form factor can be
expressed as

Kpw
njl ¼

2EH

π
jΦnjlðqÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m3

eðE − InjlÞ
ℏ3

s
ð2jþ 1Þ; ðA9Þ

with the radial integral defined as

ΦnjlðqÞ ¼
Z

∞

0

fnjlðrÞjlðqrÞrdr: ðA10Þ

This method of calculating the event rate is used widely in
the literature; however, for large values of q, it can drastically

FIG. 7. The left panel shows the dominating contributions to the atomic ionization factor K for E ¼ 0.5 keV. For a given energy, K is
dominated by the deepest accessible shell (lowest principal quantum number n). The solid black line is the total sum (including states
with higher n that are not shown explicitly). The main contribution at low q comes from the states with highest total angular momentum
j, while the main large q contribution comes from states with the lowest orbital momentum l. The right panel shows the totalK (summed
over all accessible atomic electrons) for E ¼ 0.03; 0.5, and 2 keV, which are dominated by the n ¼ 5; 4, and 3 shells, respectively.
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underestimate the cross section by orders of magnitude (see
the main text). This is due partly to the missing Sommerfeld
enhancement, which was also discussed in the context of
DM-induced ionizations in Ref. [47]. The effect arises due to
the attractive potential of the nucleus, which enhances the
value of the unbound electron wave function near the
nucleus. As discussed above in the main text, it is only
the portion of the wave function close to the nucleus that
contributes to the cross section.
The size of the Sommerfeld enhancement can be

estimated for hydrogenlike s-states as (in atomic units)

Kns1=2

Kpw
ns1=2

����
r→0

≈
8πZ

½1 − expð− 2πZ
jp0j Þ�n3jp0j ; ðA11Þ

where each of the K terms is calculated using only the
leading small-r terms in the expansion of the wave function

and p0 ¼ ffiffiffiffiffiffiffiffiffiffiffi
2meε

p
is the momentum of the outgoing

electron. In the nonrelativistic limit, the contribution to
K coming from the first-order term in the small-r expansion
of the electron wave functions is identically zero, and the
leading nonzero contribution only arises at second order.
In contrast, using relativistic functions, one finds that the
lowest-order term survives, leading to significant relative
enhancement due to relativistic electron effects [26].
Therefore, the nonrelativistic equation (A11) also under-
estimates the relative enhancement. Scaling of inner-
shell electron wave functions near the nucleus goes as
jψð0Þj2 ∼ Z3, as for hydrogenlike functions. However, the
scaling for outer-shell electrons is not as simple [58], so it is
important to use electron wave functions that correctly
reproduce the low-r behavior, including the correct screen-
ing and electron relativistic effects (e.g., the relativistic
Hartree-Fock method, as employed here).
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