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We report the existence of a gravitational-wave-driven secular instability in neutron star binaries, acting
on the equilibrium tide. The instability is similar to the classic Chandrasekhar-Friedman-Schutz instability
of normal modes and is active when the spin of the primary star exceeds the orbital frequency of the
companion. Modeling the neutron star as a Newtonian n ¼ 1 polytrope, we calculate the instability
timescale, which can be as low as a few seconds at small orbital separations but still larger than the inspiral
timescale. The implications for orbital and spin evolution are also briefly explored, where it is found that
the instability slows down the inspiral and decreases the stellar spin.
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I. INTRODUCTION

Finite-size effects have been shown to play an important
role during the late stages of a neutron star binary inspiral.
Given that current gravitational-wave (GW) detectors rely
mainly on searching for theoretically predicted signals in
their noisy data stream (matched filtering), the GW signal
obtained by modeling the two stars as point particles may
not be accurate enough due to phase errors induced by the
tidal interaction (e.g., Refs. [1,2]). The significance of tidal
effects on the GW signal and the binary evolution is
determined by the tidal deformability of the stars, para-
metrized by the so-called tidal Love number [3], which
depends on the neutron star equation of state, namely, the
equation of state of cold dense nuclear matter. Hence, the
influence of the tidal interaction on the GW signal can be
used to place constraints on the neutron star equation of
state [4], something that was demonstrated already after the
first detection of GWs from a neutron star binary [5–9].
Another promising source of GWs and potential probe of

the equation of state of supranuclear matter is neutron star
instabilities. As discovered by Chandrasekhar [10] and
rigorously proven by Friedman and Schutz [11,12], certain
oscillation modes in fast-rotating neutron stars are unstable
to the emission of GWs. The instability occurs when a
mode which is retrograde in the frame rotating with the star
appears as prograde in the inertial frame. Then, the GWs
emitted by the deformed star tend to increase the energy of
the perturbation, causing the mode to grow on a secular
timescale (for a review, see, e.g., Refs. [13,14]). This effect
is more pronounced in large-scale perturbations, described
by the star’s fundamental modes (f modes), which have no
radial nodes and emit GWs more efficiently. In addition to
polar modes, where density perturbations prevail and fast
angular velocities are needed for the instability to develop,

axial modes are also prone to the Chandrasekhar-Friedman-
Schutz (CFS) instability. These are characterized mainly by
perturbations of the fluid’s horizontal velocity field and are
caused by rotation itself (r modes [15]), which makes them
CFS-unstable at all rotation rates (in the absence of
viscosity) [16,17].
Unstable oscillation modes are suitable for asteroseis-

mology studies, in order to infer the neutron star equation
of state, and can, in principle, generate large amounts of
GWs [18–22]. Furthermore, the presence of the instability
is expected to play a significant role in the evolution of
nascent neutron stars and neutron stars in low-mass x-ray
binaries (LMXBs), as shown by evolutionary studies
[23–27], whereas it has been suggested as a possible
explanation for the absence of pulsars spinning close to
their break-up (mass-shedding) limit (∼1 kHz) [28–30]. So
far, Advanced LIGO and Virgo have not detected any
evidence for such signals [31–34].
In the present paper, we examine the stability of the tidal

perturbation on a rotating star against the emission of GWs.
To our knowledge, this problem has not been addressed by
previous studies on gravitational radiation from tidally
perturbed stars [35–39] (however, see Ref. [40], where
the resonant excitation of CFS-unstable modes from the
tide is considered).
Assuming that the spinΩ of the primary star is alignedwith

the orbital angular velocity ωorb of its companion, the tidal
perturbation induced on the primary will always be prograde
in the inertial frame, but will appear retrograde in the rotating
frame ifΩ > ωorb. Using the equilibrium tide approximation,
i.e., assuming that the perturbed star is always in hydrostatic
equilibrium, we show that GWs generated by the tidally
deformed primary drive an instability, which develops on a
secular timescale associated with the emission of GWs and
has an impact on orbital and spin evolution.
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We start by introducing the hydrodynamic equations
describing a forced perturbation on the primary star, for
which we derive an energy, as well as an energy rate which
contains contributions from the varying tidal potential and
from the gravitational radiation reaction force (Secs. II A
and II B). Subsequently, we approximate the tidal pertur-
bation with the equilibrium tide (Sec. II C), which is
computed analytically for a polytrope with index n ¼ 1
in the Appendix. In Sec. III we study the stability of the
equilibrium tide against the emission of GWs, where we
derive the instability criterion, calculate the instability
growth time for a neutron star described by a polytropic
equation of state with index n ¼ 1, and compare it to the
inspiral timescale. In Sec. IV we explore the implications of
this instability for orbital and spin evolution, where we
compute the corrections to the inspiral rate and the stellar
spin for the same model. Finally, we summarize the main
points and results and discuss some caveats and other
considerations in Sec. V.

II. THE TIDAL PERTURBATION

A. Equation of motion

We consider a star rotating with an angular velocity Ω
(primary), perturbed by the tidal potential U of a
companion star. The primary is no longer in hydrostatic
equilibrium due to the tidal perturbation. The linearized
(with respect to the perturbation) hydrodynamic equations
for the primary, in the frame rotating with it, read

∂δρ
∂t þ∇ · ðρδvÞ ¼ 0; ð2:1Þ

∂δv
∂t þ 2Ω × δvþ∇δp

ρ
−
∇p
ρ2

δρþ∇δΦþ∇U ¼ 0;

ð2:2Þ

∇2δΦ ¼ 4πGδρ; ð2:3Þ

∇2U ¼ 0; ð2:4Þ

Δp
p

¼ Γ1

Δρ
ρ

; ð2:5Þ

which are the (perturbed) continuity equation, Euler equa-
tion, Poisson equation, Laplace equation for the tidal
potential, and equation of state, respectively. The symbols
have their usual meanings: ρ is the density, p is the
pressure, Φ is the gravitational potential, v is the velocity,
whereas t denotes time and G is the gravitational constant.
Eulerian and Lagrangian perturbations are denoted by
δ and Δ, respectively, and are related by Δf ¼ δfþ
ðξ ·∇Þf, where ξ is the displacement vector associated
with the perturbation. The adiabatic exponent Γ1 is
defined as

Γ1 ¼
�∂ lnp
∂ ln ρ

�
xp

; ð2:6Þ

where xp denotes the proton fraction (i.e., the proton
number density over the baryon number density), which
generally varies throughout the star, but is considered as
“frozen” during an orbital period ðΔxp ≈ 0Þ, due to the
slow timescales on which β reactions operate [41].1

Using the fact that δv ¼ _ξ (where the dot denotes the
time derivative), Eqs. (2.1) and (2.2) are written as

δρþ∇ · ðρξÞ ¼ 0 ð2:7Þ

and

̈ξ þ 2Ω × _ξ þ∇δp
ρ

−
∇p
ρ2

δρþ∇δΦþ∇U ¼ 0; ð2:8Þ

respectively. Furthermore, using the relation between
Lagrangian and Eulerian perturbations, Eq. (2.5) becomes

δρ

ρ
¼ 1

Γ1

δp
p

−A · ξ; ð2:9Þ

where

A ¼ ∇ρ

ρ
−

1

Γ1

∇p
p

: ð2:10Þ

This is the Schwarzschild discriminant, with jAj ≠ 0
denoting the presence of buoyancy in the star (e.g.,
Ref. [42]). In a star with no composition gradients
ðxp ¼ constÞ, jAj ¼ 0 and perturbed fluid elements adjust
instantaneously to the density of their surroundings.2 For
later convenience, we rewrite the Euler equation (2.8) as

̈ξ þ 2Ω × _ξ þ∇
�
pΓ1

ρ

δρ

ρ
þ δΦþ U

�

þ pΓ1

ρ

δρ

ρ
Aþ 1

ρ
∇ðpΓ1ξ ·AÞ ¼ 0: ð2:11Þ

B. Perturbation energy

The rotating-frame energy associated with the perturba-
tion is [12,44]

E ¼ 1

2

Z
½j_ξj2 þ ξ� · CðξÞ�ρd3r; ð2:12Þ

1This assumption may not be valid at large orbital separations,
but the current work is not concerned with this regime.

2Entropy gradients can also generate a nonzero buoyancy in
a star, but are relevant mostly in newborn neutron stars, where
the thermal pressure can be comparable to the degeneracy
pressure [43].
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where the operator C is given by

CðξÞ ¼ ∇
�
pΓ1

ρ

δρ

ρ
þ δΦ

�
þ pΓ1

ρ

δρ

ρ
Aþ 1

ρ
∇ðpΓ1ξ ·AÞ:

ð2:13Þ
Replacing the above in Eq. (2.12) and performing some
integrations by parts, we get

E ¼ 1

2

Z �
ρj_ξj2 þ pΓ1

ρ

jδρj2
ρ

−
1

4πG
j∇δΦj2

− pΓ1

�
ðξ� ·AÞð∇ · ξÞ þ ðξ ·AÞð∇ · ξ�Þ

þ 1

ρ
ðξ� ·AÞðξ · ∇ρÞ

��
d3r: ð2:14Þ

Because of the presence of the tidal potential, the pertur-
bation energy changes at a rate (e.g., see Ref. [12])

dE
dt

¼ Re

�Z
_ξ� · ð−∇UÞρd3r

�
: ð2:15Þ

Equation (2.15) can be further supplemented with dis-
sipation mechanisms, like GWs. In a Newtonian frame-
work, GWs are implemented by introducing a potential that
accounts for their emission by the perturbed star [45,46].
Then, the perturbation energy rate due to GW emission is

�
dE
dt

�
GW

¼ −
1

2

X∞
l¼2

Xl

m¼−l
ð−1ÞlNl

×

�
d2lþ1

dt2lþ1
ðδDm

l e
−imΩtÞ dδD

�m
l

dt
eimΩt

þ d2lþ1

dt2lþ1
ðδD�m

l eimΩtÞ dδD
m
l

dt
e−imΩt

�
; ð2:16Þ

where

Nl ¼
4πG
c2lþ1

ðlþ 1Þðlþ 2Þ
lðl − 1Þ½ð2lþ 1Þ!!�2 ; ð2:17Þ

c being the speed of light, and δDm
l are the mass multipole

moments,3 defined as

δDm
l ¼

Z
rlδρY�m

l d3r; ð2:18Þ

with Ym
l ðθ;ϕÞ denoting the spherical harmonic of degree l

and order m, defined in the rotating frame using a spherical
coordinate system ðr; θ;ϕÞ.

The effects of GWs will be treated as secular, i.e.,
developing on a timescale much longer than the timescale
associated with the perturbation. Then, Eq. (2.16) can be
evaluated by using the solutions to the inviscid problem,
namely, the solutions to Eq. (2.11) [46]. This assumption
will be shown to be valid in retrospect.

C. The equilibrium tide

The general solution for the tidal perturbation is often
considered to comprise two parts: the equilibrium and the
dynamical tides. The former corresponds to the instanta-
neous response of the primary to the tidal field of the
companion, whereas the latter includes the resonant exci-
tation of the primary’s normal modes by the orbiting
companion [48,49].
The equilibrium tide is simply obtained by assuming that

the tidally perturbed star is in hydrostatic equilibrium, i.e.,
by setting the time derivatives in Eq. (2.8) to zero. For
simplicity, we will neglect the effects of rotation, in which
case the eigenfunctions of the equilibrium tide are (e.g.,
Ref. [50])

δp ¼ −ρðδΦþ UÞ; ð2:19Þ

δρ ¼ dρ
dr

δΦþ U
g

; ð2:20Þ

ξr ¼ −
δΦþ U

g
; ð2:21Þ

∇ · ξ ¼ 0; ð2:22Þ

and δΦ is given by

∇2δΦ ¼ 4πG
dρ
dr

δΦþ U
g

; ð2:23Þ

where g ¼ dΦ=dr and ξr is the radial component of the
displacement vector ξ.
In order to express the tidal perturbation, we will use an

inertial frame centered on the primary, with its z axis
parallel to the orbital angular momentum vector (generally
not aligned with the primary’s spin). Denoting the spherical
coordinates of this frame as ðr; θ0;ϕ0Þ, then the tidal
potential is expanded in spherical harmonics as

U ¼ −
X∞
l¼2

Xl

m0¼−l

GM0Wm0
l rl

Dlþ1ðtÞ Ym0
l ðθ0;ϕ0Þe−im0ΨðtÞ; ð2:24Þ

where M0 is the mass of the companion (treated as a point
mass), DðtÞ is the separation between the companion and
the primary,ΨðtÞ is the orbital phase of the companion, and

3Typically, current multipole moments, accounting for grav-
itomagnetic effects, must also be included in Eq. (2.16) (see
Ref. [47]), but they are ignored here since we only have polar
perturbations [see Eq. (2.27)].
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Wm0
l ¼ 4π

2lþ 1
Y�m0
l ðπ=2; 0Þ

¼ ð−Þðlþm0Þ=2
�

4π

2lþ 1
ðlþm0Þ!ðl −m0Þ!

�
1=2

×

�
2l
�
lþm0

2

�
!

�
l −m0

2

�
!

�
−1
; ð2:25Þ

where ð−Þk ¼ ð−1Þk, unless k is not an integer, in which
case it evaluates to zero [51].
Considering a harmonic ðl; m0Þ of the tidal potential and

separating the radial, angular, and time dependence of the
variables, then Eqs. (2.19)–(2.21) give the radial part of the
corresponding eigenfunctions and Eq. (2.23) becomes

1

r2
d
dr

�
r2
dδΦ
dr

�
−
lðlþ 1Þ

r2
δΦ − 4πG

dρ
dr

δΦþ U
g

¼ 0

ð2:26Þ

(henceforth, the tidal potential U and the perturbations will
include only their radial dependence, i.e., their angular and
time dependence shall be omitted). Replacing the displace-
ment vector for polar perturbations, namely,

ξ ¼
�
ξr; ξh

∂
∂θ0 ;

ξh
sin θ0

∂
∂ϕ0

�
Ym0
l ðθ0;ϕ0Þ ð2:27Þ

in Eq. (2.22), we also obtain

ξh ¼
1

lðlþ 1Þr
d
dr

ðr2ξrÞ: ð2:28Þ

For consistency, we will now express the tidal perturba-
tion in the rotating frame used in Sec. II B. Let the rotating
frame be described by the axes ðx; y; zÞ, with the z axis
parallel to the primary’s spin, and the inertial frame by
ðx0; y0; z0Þ, with the z0 axis parallel to the orbital angular
momentum. The two frames are related by the three Euler
angles ðα; β; γÞ, which are obtained as follows: rotate the
inertial frame about the z0 axis by an angle α to obtain the
frame ðx01; y01; z01 ¼ z0Þ; rotate the new frame about the y01
axis by an angle β (spin–orbit inclination angle) to obtain the
frame ðx02; y02 ¼ y01; z

0
2Þ—this is the rotating frame at t ¼ 0,

so z02 ¼ z; finally, rotate the new frame about the z axis by an
angle γ ¼ Ωt, to obtain the rotating frame ðx; y; zÞ.4
Then, the spherical harmonics of the inertial frame

Ym0
l ðθ0;ϕ0Þ are related to the spherical harmonics of the

rotating frame Ym
l ðθ;ϕÞ as

Ym0
l ðθ0;ϕ0Þ ¼

Xl

m¼−l
D�ðlÞ

m0mðα; β; γÞYm
l ðθ;ϕÞ; ð2:29Þ

where the (complex conjugate of the) Wigner D function is
given by

D�ðlÞ
m0m ¼ eim

0αdðlÞm0mðβÞeimγ; ð2:30Þ

with

dðlÞm0mðβÞ ¼ ½ðlþmÞ!ðl−mÞ!ðlþm0Þ!ðl−m0Þ!�1=2

×
X
k

ð−1Þkþm0þmðcos β
2
Þ2lþm−m0−2kðsin β

2
Þm0−mþ2k

k!ðl−m0 − kÞ!ðlþm− kÞ!ðkþm0 −mÞ!
ð2:31Þ

and the summation over k runs over all integer values for
which the factorial arguments are non-negative [52].

III. EQUILIBRIUM TIDE STABILITY

According to the classic CFS instability for normal
modes in rotating stars, an oscillation on the star becomes
unstable to the emission of gravitational radiation when its
inertial-frame frequency changes sign [11,12]. For a mode
with a harmonic dependence eiðmϕþωtÞ, where ω is its
rotating-frame frequency, Eq. (2.16) takes the familiar
form [46]

�
dE
dt

�
GW

¼−ωðω−mΩÞ
X∞
l¼lmin

Nlðω−mΩÞ2ljδDm
l j2; ð3:1Þ

where lmin ¼ maxð2; jmjÞ. Equation (3.1) shows that
_EGW > 0 if and only if ωðω −mΩÞ < 0. Thus, the onset
of the instability occurs when the angular velocity of the
star is such that the inertial-frame frequency of the mode
ωin ≡ ω −mΩ becomes zero. The instability can only
affect retrograde modes ðm > 0Þ, i.e., modes propagating
against the rotation of the star, which, under the influence
of rotation, appear as prograde in the inertial frame.
In the following, we will study the conditions under

which the CFS instability affects the equilibrium tide. For
simplicity, we will assume that the spin of the primary is
aligned with the orbital angular momentum (β ¼ 0). Then,

since dðlÞm0mð0Þ ¼ δm0m (where δm0m is Kronecker’s delta),
Eq. (2.29) gives the anticipated result5

Ym
l ðθ;ϕ0Þ ¼ Ym

l ðθ;ϕÞeimΩt: ð3:2Þ

Hence, the harmonic time dependence of the equilibrium
tide in the rotating frame is eim½Ωt−ΨðtÞ�.

4This is the z-y-z convention, using right-handed frames, with
positive angles obtained by the right-handed screw rule [52].

5The constant phase difference α between the two frames can
be set to zero.
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A. Circular orbit

In the simple case of a static circular orbit, we have
ΨðtÞ ¼ ωorbt, where ωorb is the orbital angular velocity, and
the binary separation D ¼ const. Then, the time depend-
ence of the equilibrium tide in the rotating frame becomes
eimðΩ−ωorbÞt and Eq. (2.16), for a specific harmonic ðl; mÞ of
the tide, gives

�
dE
dt

�
GW

¼ −Nlm2ωorbðωorb −ΩÞðmωorbÞ2l

×

�Z
R

0

dρ
dr

δΦþU
g

rlþ2dr

�
2

: ð3:3Þ

This shows that _EGW > 0 if

Ω > ωorb; ð3:4Þ

or, replacing ωorb from Kepler’s law and normalizing Ω to
the Kepler (mass-shedding) limit for spherical stars, ΩK ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
(where R is the primary’s radius)6 [53], the

instability criterion takes the elegant form

FðΩ;D;M0Þ≡
�

Ω
ΩK

��
D
R

�
3=2

−
�
1þM0

M

�
1=2

>0: ð3:5Þ

The timescale τGW associated with damping (or growth)
due to GWs is [46]

τGW ¼ 2E
_EGW

; ð3:6Þ

where the energy of the ðl; mÞ harmonic of the equilibrium
tide can be obtained by replacing the eigenfunctions of
Sec. II C in Eq. (2.14), which gives

E¼ 1

2
½mðΩ−ωorbÞ�2

Z
R

0

��
δΦþU

g

�
2

þ 1

lðlþ 1Þ

×

�
−
r
g

�
dδΦ
dr

þ lU
r

�
þ δΦþU

g

�
d lng
d ln r

− 2

��
2
�
ρr2dr

−
1

8πG

Z
∞

0

��
r
dδΦ
dr

�
2

þ lðlþ 1ÞðδΦÞ2
�
dr

þ 1

2

Z
R

0

�
δΦþU

g

�
2 d lnρ

dr
dp
dr

r2dr: ð3:7Þ

Assuming that the star is described by a polytrope with
index n ¼ 1, we can now evaluate the instability timescale
τGW for the l ¼ 2 components of the equilibrium tide,
the eigenfunctions of which can be obtained analytically

(as shown in the Appendix). For a neutron star with M ¼
1.4 M⊙ (where M⊙ is the solar mass) and R ¼ 10 km, the
instability growth time is given by

τGW ¼
�
8.5 × 10−4

�
D
R

�
9

F−1ðΩ; D;M0Þ

þ 2.3 × 10−3
�
D
R

�
6

FðΩ; D;M0Þ
��

1þM0

M

�
−5=2

:

ð3:8Þ

In this model, νK ¼ ΩK=2π ≈ 2.2 kHz. Equation (3.8) is
plotted in Fig. 1 for FðΩ; D;M0Þ > 0 (i.e., where the
instability is active) and M0 ¼ M. For reasonable values
of the mass ratio M0=M, the timescale is not significantly
affected.

B. Inspiral

The orbital motion of two stars generates GWs, gradu-
ally shrinking the binary’s orbit and eventually leading to
its coalesence. For two pointlike stars in a quasicircular
orbit the orbital separation changes due to quadrupole
emission of GWs as (e.g., Ref. [54])

dD
dt

¼ −
64G3

5c5
MM0ðM þM0Þ

D3
; ð3:9Þ

whereas the orbital phase Ψ evolves according to

FIG. 1. Instability growth time τGW (in sec) as a function of
the angular velocity Ω of the primary (normalized to the Kepler
limit ΩK ; x axis) and the orbital distance D (normalized to
the primary’s radius R; y axis). The primary is a neutron star
described by an n ¼ 1 polytropic equation of state, with M ¼
1.4 M⊙ and R ¼ 10 km, orbited by an equal mass companion
ðM0 ¼ MÞ. The inspiral timescale τins is also shown, as a function
of the orbital distance, for comparison.

6A more accurate approximation of the Kepler limit in New-
tonian stars can be obtained by using the Roche model and is
given by ΩK ¼ ð2=3Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
[53].
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dΨ
dt

¼ ωorb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þM0Þ

D3

r
; ð3:10Þ

from which we also get

dωorb

dt
¼ −

3

2

_D
D
ωorb: ð3:11Þ

The orbit is quasicircular in the sense that the inspiral rate
j _Dj=D is much smaller than ωorb.
The energy of the tidal perturbation changes due to the

orbital shrinking according to Eq. (2.15) which, evaluated
for a certain harmonic of the equilibrium tide, gives

�
dE
dt

�
ins

¼ −ðlþ 1Þ
_D
D
GM0Wm

l

Dlþ1

Z
R

0

dρ
dr

δΦþ U
g

rlþ2dr

ð3:12Þ

[note that the tidal potential U and the perturbations are
now functions not only of r, but also ofDðtÞ, which will be
henceforth implied]. Using the relation between the mass
multipole moments and the tidal Love number kl (e.g.,
Ref. [55]), Eq. (3.12) can also be written as

�
dE
dt

�
ins

¼ −2klR2lþ1
ð2lþ 1Þðlþ 1Þ

4πG

_D
D

�
GM0Wm

l

Dlþ1

�
2

:

ð3:13Þ

In a similar manner, the energy rate of the tidal
perturbation due to GW emission is obtained from
Eq. (2.16) as

�
dE
dt

�
GW

¼ ð−1Þlþ1Nl

�Z
R

0

dρ
dr

δΦþU
g

rlþ2dr

�
2

× Re

�
ðf� − imΩÞ

�
f þ d

dt

�
2l
f

�
; ð3:14Þ

where fðtÞ ¼ −ðlþ 1Þ _D=D − imωorb. For l ∼m ≠ 0 we
have jReðfÞj ≪ jImðfÞj. From Eq. (3.11) we also see that
_ωorb ≪ ω2

orb, which implies that derivatives of ImðfÞ can be
neglected. Then, we recover Eqs. (3.3) and (3.4), albeit
with a time dependence on ωorb and the perturbation
variables. This can also be expressed in terms of the
Love number as

�
dE
dt

�
GW

¼ −NlðmωorbÞ2lþ2

�
1 −

Ω
ωorb

�

×

�
2klR2lþ1

2lþ 1

4πG
GM0Wm

l

Dlþ1

�
2

: ð3:15Þ

The significance of the instability can be assessed by
comparing the growth time τGW to the inspiral timescale,
given by

τins ¼
D

j _Dj ¼
5c5

64G3

D4

MM0ðM þM0Þ ; ð3:16Þ

which, for M ¼ 1.4 M⊙ and R ¼ 10 km, evaluates as

τins ¼ 2.95 × 10−4
�
D
R

�
4
�
M0

M

�
1þM0

M

��
−1
: ð3:17Þ

This is also plotted in Fig. 1, alongside the instability
growth time. Both from Fig. 1 and from a direct comparison
between Eqs. (3.8) and (3.17) it becomes evident that the
inspiral timescale is shorter than the time required for the
instability to develop for all values of D and Ω.

IV. IMPLICATIONS

Using some simple arguments, we will present the
implications of this instability of the equilibrium tide on
the orbital and spin evolution, restricting ourselves to the
quadrupole components (l ¼ 2). The energy rate of the
tidal perturbation, denoted below as _Etide, is given by
Eqs. (3.13) and (3.15) and can be written as

_Etide ¼ ϵ _Eð1Þ
tide þ ϵ2 _Eð2Þ

tide; ð4:1Þ

where

ϵ ¼ 2k2

�
1þM0

M

��
R
D

�
5

ð4:2Þ

and _Eð1Þ
tide; _E

ð2Þ
tide, which will be given below, contain the

contributions of the inspiral and of GW emission to the
energy rate of the tidal perturbation.
For a binary system in a quasicircular orbit, where the

tidal deformation of the primary (but not of the companion)
is taken into account, the GW power emitted from the
system is [56,57]

_EGW ¼ _Eð0Þ
GW þ ϵ _Eð1Þ

GW þ ϵ2 _Eð2Þ
GW; ð4:3Þ

where

_Eð1Þ
GW ¼ 2 _Eð0Þ

GW; ð4:4Þ

_Eð2Þ
GW ¼ _Eð0Þ

GW; ð4:5Þ

and

_Eð0Þ
GW ¼ −

32G4ðMM0Þ2ðM þM0Þ
5c5D5

; ð4:6Þ

which is the point-mass limit [58]. Note that _EGW is not to
be confused with the contribution of GW emission to the
energy rate of the tidal perturbation [Eqs. (2.16), (3.3),
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(3.14), and (3.15)], which is here contained in _Etide
(see below).
Expanding the orbital energy losses in a similar way, we

have

_Eorb ¼ _Eð0Þ
orb þ ϵ _Eð1Þ

orb þ ϵ2 _Eð2Þ
orb: ð4:7Þ

At zeroth order in ϵ, we simply get

_Eð0Þ
orb ¼ _Eð0Þ

GW; ð4:8Þ

from which we obtain the orbital decay in the point-mass
limit, given by Eq. (3.9). Then, using this in Eq. (3.13), we
get

_Eð1Þ
tide ¼ −

6M0

M þM0 _E
ð0Þ
GW: ð4:9Þ

Hence, the first-order correction to the orbital energy rate is

_Eð1Þ
orb ¼ _Eð1Þ

GW − _Eð1Þ
tide ð4:10Þ

or, replacing Eqs. (4.4) and (4.9),

_Eð1Þ
orb ¼

�
2þ 6M0

M þM0

�
_Eð0Þ
GW: ð4:11Þ

This can be used to calculate the first-order correction to the
inspiral rate due to the tidal deformation of the primary. If
_D ¼ _Dð0Þ þ ϵ _Dð1Þ (where _Dð0Þ is the point-mass result), we
find that

_Dð1Þ ¼
�
2þ 6M0

M þM0

�
_Dð0Þ; ð4:12Þ

namely, the inspiral is accelerated, as expected [1].
At second order, both the inspiral and GW emission

contribute to the tidal perturbation energy rate. The con-
tribution of GW emission, obtained from Eq. (3.15), is

_Eð2Þ
tide;GW ¼

�
1 −

Ω
ωorb

�
_Eð0Þ
GW: ð4:13Þ

The contribution of the inspiral is found by replacing the
first-order correction to the inspiral rate [Eq. (4.12)] back to
Eq. (3.13), which gives

_Eð2Þ
tide;ins ¼ −

6M0

M þM0

�
2þ 6M0

M þM0

�
_Eð0Þ
GW: ð4:14Þ

Thus, the second-order correction to the orbital energy
rate is

_Eð2Þ
orb ¼ _Eð2Þ

GW − _Eð2Þ
tide − _Eð2Þ

bg ; ð4:15Þ

where we also added possible changes in the energy of the

background (unperturbed) star, _Eð2Þ
bg . Replacing Eqs. (4.5),

(4.13), and (4.14), we get

_Eð2Þ
orb þ _Eð2Þ

bg ¼
�
Ω
ωorb

þ 6M0

M þM0

�
2þ 6M0

M þM0

��
_Eð0Þ
GW:

ð4:16Þ

In order to proceed with Eq. (4.16), we need to also
consider the emission of angular momentum from the
binary system. For GW emission from the tidal bulge,
for which the second order term in Eq. (4.3) is responsible,

angular momentum is emitted at a rate ϵ2 _Jð2ÞGW, given by
[47,59]

_Jð2ÞGW ¼
_Eð2Þ
GW

ωorb
: ð4:17Þ

Likewise, for the orbit we have

_Jorb ¼
_Eorb

ωorb
: ð4:18Þ

The angular momentum rate associated with the tidal
perturbation can be obtained by computing the torque
applied on the star by the tidal force, as well as by the
gravitational radiation reaction force, namely, the force that
accounts for GWs (see Ref. [46]). The total torque (along
the z axis) is given by [60]

T ¼
Z

δρez · ðr × F�Þd3r; ð4:19Þ

where F is the corresponding force (e.g., the tidal force
is F ¼ −∇U). Evaluation of Eq. (4.19) shows that
_Jð2Þtide;ins ¼ 0, which is expected, since we are only consid-
ering the equilibrium tide where the tidal bulge is always
aligned with the companion.7 In addition, we get

_Jð2Þtide;GW ¼
_Eð2Þ
tide;GW

ωorb −Ω
: ð4:20Þ

Hence, for the angular momentum emission from the
system we have

_Eð2Þ
GW

ωorb
¼

_Eð2Þ
orb

ωorb
þ

_Eð2Þ
tide;GW

ωorb −Ω
þ

_Eð2Þ
bg

Ω
; ð4:21Þ

where we also replaced _Eð2Þ
bg ¼ Ω _Jð2Þbg . Using Eqs. (4.5) and

(4.13), we finally obtain

7Thus, in this case, there is no dynamical tidal lag due to the
inspiral (see Ref. [60]). Also, since we ignore viscosity, there is
no viscosity-induced tidal lag either [1,2,60].
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_Eð2Þ
orb

ωorb
¼ −

_Eð2Þ
bg

Ω
; ð4:22Þ

which, replaced in Eq. (4.16), gives

_Eð2Þ
orb ¼

Ω
ωorb

þ 6M0

M þM0
	
2þ 6M0

M þM0



1 −
Ω
ωorb

_Eð0Þ
GW ð4:23Þ

and

_Eð2Þ
bg ¼

Ω
ωorb

þ 6M0

M þM0
	
2þ 6M0

M þM0



1 −
ωorb

Ω

_Eð0Þ
GW: ð4:24Þ

From Eqs. (4.23) and (4.24) we may now obtain the
second-order correction to the inspiral rate ϵ2 _Dð2Þ and
the background star’s spin derivative, respectively, as

_Dð2Þ ¼ −
FðΩ; D;M0Þ þ

	
1þM0

M


1=2
þ T ðM0Þ

FðΩ; D;M0Þ
_Dð0Þ

ð4:25Þ

and

_Ω
ΩK

¼ −
FðΩ; D;M0Þ þ

	
1þM0

M


1=2
þ T ðM0Þ

F2ðΩ; D;M0Þ

×
2ẼtideðΩ; D;M0Þ
τGWðΩ; D;M0Þ

�
D
R

�
3=2

; ð4:26Þ

where

T ðM0Þ ¼ 12
M0

M

�
1þ 4

M0

M

��
1þM0

M

�
−3=2

ð4:27Þ

and

Ẽtide ¼
Etide

IΩ2
K
; ð4:28Þ

with Etide being the energy of the quadrupole components
of the equilibrium tide [see Eq. (3.7)] and I being the
background star’s moment of inertia. For a polytrope with
n ¼ 1, M ¼ 1.4 M⊙, and R ¼ 10 km, we have

Ẽtide ¼ 2.03

�
M0

M

�
2
�
D
R

�
−9
F2ðΩ; D;M0Þ

þ 0.75

�
M0

M

�
2
�
D
R

�
−6
; ð4:29Þ

whereas τGW is given by Eq. (3.8).
Equation (4.25) predicts that, when the instability is

active [FðΩ; D;M0Þ > 0], the inspiral is decelerated, which
has also been shown to occur during the resonant excitation
of CFS-unstable normal modes by the tide [40]. On the
other hand, according to Eq. (4.26), the spin of the
(unperturbed) primary is decreasing when the instability
occurs (τGW > 0), in accordance with Ref. [59], where the
spin evolution equation is derived for unstable r modes.
Solving the equations for _Ω and _D ¼ _Dð0Þ þ ϵ _Dð1Þþ

ϵ2 _Dð2Þ, for the same model used above, we find that the
change in the spin of the primary is negligible, as shown in
Fig. 2. In the same figure, we also plot the second-order

contribution to the number of orbital cycles, ΔNð2Þ
orb, defined

as [60]

Norb¼
Z

ωorb

2π

dD
_D
¼
Z

ωorb

2π

dD
_Dð0Þ þϵ _Dð1Þ þΔNð2Þ

orb; ð4:30Þ

FIG. 2. Change in the primary’s spin Ω, relative to its initial value Ωin (left), and second-order contribution to the number of orbital

cycles ΔNð2Þ
orb (right), plotted against the orbital separation D (normalized to the primary’s radius R). The primary is a neutron star

described by an n ¼ 1 polytropic equation of state, withM ¼ 1.4 M⊙ and R ¼ 10 km, orbited by an equal mass companion ðM0 ¼ MÞ.
The evolution is started at an orbital separation Din ¼ 100R and the angular velocity of the primary is set to Ωin ¼ 0.3ΩK , where ΩK is
the Kepler limit (for spherical stars). The binary merger is taken to occur at 3R.
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with Norb being the total number of orbits at second order.
We see that the correction is positive, as expected from the
discussion above, and accumulates very close to merger, as
is the correction for the spin. However, this too is unim-
portant, at least for the parameters and the model consid-
ered here.

V. SUMMARY AND DISCUSSION

We have shown that the equilibrium tide, namely, the
instantaneous hydrostatic response of a star to the tidal field
of its companion, is unstable to the emission of gravita-
tional radiation if the spin of the star exceeds the orbital
angular velocity of the companion [Eqs. (3.4) and (3.5)].
When this condition is fulfilled, the tidal perturbation,
which is always prograde in the inertial frame, becomes
retrograde in the frame rotating with the star. Then, the
emission of GWs from the tidal bulge tends to increase the
energy of the tidal perturbation on a secular timescale. This
mechanism shares the same principles with the classic
Chandrasekhar-Friedman-Schutz instability for normal
modes in rotating stars.
The instability growth time was calculated for a neutron

star with M ¼ 1.4 M⊙ and R ¼ 10 km, described by a
polytropic equation of state with a polytropic index n ¼ 1
[Eq. (3.8)]. For this model, the eigenfunctions of the
equilibrium tide can be derived analytically. As seen in
Fig. 1, the instability is active in a very large part of the
parameter space and the growth time varies by many orders
of magnitude throughout the inspiral, depending mainly on
the orbital separation and less on the spin of the star. Even
though it can become as low as a few seconds very close to
coalesence, the instability growth is always slower than the
inspiral—at least for the chosen model.
Finally, the implications of the instability for orbital and

spin evolution are explored, making use of some basic
energy arguments. The corrections to the inspiral rate due
to the tidal deformation and the emission of GWs from the
tide are found [Eqs. (4.12) and (4.25)], along with the
change in the stellar spin [Eq. (4.26)]. It is demonstrated
that, when the instability is active, the emission of GWs
from the tide slows down the inspiral, which has also been
shown to be a consequence of the resonant excitation of
CFS-unstable normal modes by the tide [40]. Meanwhile,
the angular velocity of the star decreases, evolving in a
similar fashion as when under the influence of the classic
CFS instability of normal modes [59]. In Fig. 2 it is shown
that, for the same model used above, the effects of the
instability on orbital and spin evolution start becoming
relevant—but still negligible—only very close to merger.
It should be noted that the rotation rates required for the

instability to develop are unlikely to occur during the last
stages of the binary evolution. However, near coalesence, the
inspiral rate becomes too fast (plunge phase) for the quasi-
circular orbit approximation to be accurate. Moreover, at this
stage, the equilibrium tide approximation may also not be

valid. If the tidal frequency is larger than the frequency of
convective motions in the star (Brunt-Väisälä frequency8),
then the star responds effectively like a barotrope, in which
case the equilibrium tide approximation fails [49,61,62].
Furthermore, an important element which, for simplicity,

has been neglected here is viscosity. Even though it makes the
orbital evolution more dynamical, by introducing a lag
between theorbitalmotionof the companion and theprimary’s
response, it has been shown not to significantly affect the
orbital and spin evolution [1,2]. Nevertheless, it is expected to
supress the instability and shrink the parameter spacewhere it
is active, as in the case of CFS-unstable modes [46].
From the above, it seems that the instability is purely of

conceptual interest. Even so, there are some cases which
might be worth considering in the future, like neutron stars
described by stiffer equations of state, corresponding to
larger deformabilities [3], or systems in which the neutron
star has a much more massive companion.
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APPENDIX: EQUILIBRIUM TIDE
IN AN n = 1 POLYTROPE

The primary is described by a polytropic equation of state
with polytropic index n ¼ 1, namely, p ¼ Kρ2, where K is
the polytropic constant. For a star with mass M and radius
R, the Lane-Emden equations (e.g., see Ref. [53]) give

K ¼ 2GR2

π
; ðA1Þ

ρc ¼
πM
4R3

; ðA2Þ

ρ ¼ ρc
sinðαrÞ
αr

; ðA3Þ

g ¼ 4πGρc
α3r2

½sinðαrÞ − αr cosðαrÞ�; ðA4Þ

where α ¼ π=R.
Replacing in Eq. (2.26) and combining with Eq. (2.4) we

get

d
dr

�
r2
dðδΦþUÞ

dr

�
þ½ðαrÞ2− lðlþ1Þ�ðδΦþUÞ¼0 ðA5Þ

(the tidal potential U and the perturbations include only
their radial dependence), the solutions to which are the

8The Brunt-Väisälä frequency N is given by N2 ¼ −gA, where
g is the local gravitational acceleration and A is the Schwarzschild
discriminant [Eq. (2.10)].
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spherical Bessel functions jlðαrÞ and ylðαrÞ (e.g.,
Ref. [63]). Retaining the solution that is regular at the
origin and matching at the surface with the external solution
for δΦ, we obtain

δΦ ¼

8>><
>>:

h
2lþ 1
πjl−1ðπÞ jlðαrÞ −

	r
R



l
i
UðRÞ; r ≤ R;

jlþ1ðπÞ
jl−1ðπÞ

	R
r


lþ1

UðRÞ; r > R;
ðA6Þ

with jl given by

jlðzÞ ¼ zl
�
−
1

z
d
dz

�
l sin z

z
: ðA7Þ

The equations above, together with Eq. (2.24) for the tidal
potential, can now be used to obtain the eigenfunctions of
the equilibrium tide, as presented in Sec. II C.
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