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Critical probes of dark matter come from tests of its elastic scattering with nuclei. The results are typically
assumed to be model independent, meaning that the form of the potential need not be specified and that the
cross sections on different nuclear targets can be simply related to the cross section on nucleons. For pointlike
spin-independent scattering, the assumed scaling relation is σχA ∝ A2μ2AσχN ∝ A4σχN , where the A2 comes
from coherence and the μ2A ≃ A2m2

N from kinematics for mχ ≫ mA. Here we calculate where model
independence ends, i.e., where the cross section becomes so large that it violates its defining assumptions.We
show that the assumed scaling relations generically fail for dark matter-nucleus cross sections
σχA ∼ 10−32–10−27 cm2, significantly below the geometric sizes of nuclei and well within the regime
probed by underground detectors. Last, we showon theoretical grounds, and in light of existing limits on light
mediators, that pointlike dark matter cannot have σχN ≳ 10−25 cm2, above which many claimed constraints
originate from cosmology and astrophysics. The most viable way to have such large cross sections is
composite darkmatter, which introduces significant additionalmodel dependence through the choice of form
factor. All prior limits on dark matter with cross sections σχN > 10−32 cm2 withmχ ≳ 1 GeVmust therefore
be reevaluated and reinterpreted.
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I. INTRODUCTION

The nature of dark matter is one of the most pressing
problems in both fundamental physics and cosmology.
Decades of observations indicate that dark matter makes up
the vast majority of matter in our Universe, yet increasingly
advanced experiments have yet to determine its physical
nature. Once discovered, the particle properties of dark
matter will be a guidepost to physics beyond the Standard
Model as well as to an improved understanding of galaxies
and cosmic structure [1–7].
Progress depends on accurately assessing the regions of

dark matter parameter space that remain viable. One of the
best motivated dark-matter candidates is a single weakly
interacting massive particle (WIMP). There are several
ways to search for WIMPs: first, through missing trans-
verse momentum searches at colliders [8–15]; second,
through searches for WIMP self-annihilation products

FIG. 1. Claimed constraints on the spin-independent dark
matter-nucleon cross section [56,66–69]. Those from cosmology
directly probe scattering with protons, but all others here are
based on scattering with nuclei and thus require the use of
“model-independent” scaling relations. Below, we show that
assumptions used to derive these results are invalid over most of
the plane.
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and decay [16–28]; third, by energy transfer through elastic
scattering with nuclei and electrons. Laboratory direct-
detection experiments [29–39] provide the tightest bounds
on dark matter-nucleus elastic scattering cross sections,
with other constraints provided by cosmology and astro-
physics [40–58]. While there are no robust signals yet,
progress is rapid.
For these searches, the two most common benchmarks

for the performance of dark matter detection experiments
are the dark matter self-annihilation cross section and the
spin-independent dark matter-nucleon elastic scattering
cross section, the simplest case (for more general treat-
ments, see, e.g., Refs. [59–65]). These benchmarks allow
constraints set by different experiments to be scaled to each
other. Here, we focus on spin-independent elastic dark
matter-nucleus scattering for dark matter with mχ≳1GeV.
For generality, we do not require that dark matter be a
thermal relic.
Most direct-detection searches focus on pushing sensi-

tivity to small cross sections, but it is also important to
consider constraints on large cross sections [66–79]. Direct-
detection experiments are typically located beneath the
atmosphere, rock, and detector shielding, such that dark
matter with too large of a cross section loses too much
energy above the detector. Energy loss in the detector
overburden may open a window where strongly interacting
dark matter is allowed [70].
Figure 1 summarizes prior claimed constraints. The

“IMPþ IMAXþ SKYLAB” region is based on atmos-
pheric and space-based detectors and is dashed because the
results are commonly cited but are not based on detailed
analyses in peer-reviewed papers [66]. The X-ray Quantum
Calorimeter (XQC) experiment is rocket based [80]. There
are several similar proposed XQC regions [66,67,69]; we
adopt that of Ref. [69]. The “Underground Detectors”
region is taken directly from the summary plot in Ref. [68].
For the “Cosmology” region, we plot the strongest con-
straint that depends only on dark matter-proton scattering
[56] (including helium would make the constraints some-
what stronger [48]). The details of which constraints are
plotted do not affect our conclusions.
Direct-detection searches for spin-independent inter-

actions benefit from an essentially model-independent A2

coherent enhancement, as well as a kinematic factor
of μ2A, such that σχA is related to the dark matter-nucleon
elastic scattering cross section σχN by σχA ∝ A2μ2AσχN.
For mχ ≫ mA, the dark matter-nucleus reduced mass
μA ≃ AmN , such that the scaling becomes σχA ∝ A4σχN .
This straightforward scaling allows constraints on dark
matter-nucleus scattering to be related to each other and to
the cross section on nucleons. This scaling is model
independent in the sense that it is independent of the
detailed shape of the potential. In Fig. 1, all constraints
except the one labeled “Cosmology” deal with nuclear
targets with A > 1 and hence assume this scaling relation.

How large of cross sections are allowed before the
defining assumptions are violated? Here we systematically
calculate the theoretical upper limits on dark matter-
nucleon cross sections. We show that most of the parameter
space of Fig. 1 is beyond the point where the simple scaling
relations above are valid, or where pointlike dark matter is
even allowed. Our results are based first on generic
considerations of theoretically allowed cross sections
for short-range interactions with nuclei, and second on
classes of models where we consider light mediators as a
mechanism to obtain large cross sections. As far as we are
aware, this is the first systematic exploration of these issues
for dark matter-nucleus scattering (for related considera-
tions in strongly self-interacting dark matter sectors,
see, e.g., Ref. [81]). Our results will require the reinter-
pretation of a large and varied body of work, e.g.,
Refs. [43,46,48,49,66–79,82–92].
In Sec. II, we review the nonrelativistic scattering

theory used to obtain the model-independent scaling
relations. In Sec. III, we examine the various ways that
scaling relations can break down for contact interactions.
In Sec. IV, we examine the possibility of achieving a larger
cross section with a light mediator in light of present
constraints on light mediators. In Sec. V, we briefly
discuss the possibility that dark matter itself could have
a nonzero physical extent. In Sec. VI, we discuss the
implications for existing constraints and future experi-
ments. Finally, we summarize our results and the outlook
for future work in Sec. VII.

II. DARK MATTER SCATTERING THEORY

We briefly review the basic nonrelativistic scattering
theory required to derive the model-independent scaling
relation for the spin-independent elastic scattering cross
section. We also discuss how some of the key assumptions
may break down. Throughout, we set ℏ ¼ c ¼ 1.

A. Overview of basic assumptions

(1) Single particle: Dark matter is primarily a single
unknown particle. The number density of dark
matter is then determined only by its mass and
the local dark matter density.

(2) Pointlike: Dark matter is a pointlike particle with no
excitation spectrum.

(3) Electrically neutral: It is typically assumed that dark
matter is electrically neutral. Millicharged dark
matter has different dynamics and is too strongly
constrained to produce large cross sections.

(4) Equal coupling to all nucleons: For simplicity, we
assume that dark matter has equal coupling to both
protons and neutrons, although this assumption is
not essential to any of our conclusions.

(5) Local: The interaction is assumed to be local,
hx0jV̂jxi ¼ Vðx0Þδ3ðx0 − xÞ.
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(6) Energy-independent potential: The potential for
the interaction is assumed to be energy independent,
such that the cross section for the interaction is
also energy independent up to a form factor.
For a spin-independent interaction, the potential
must also be independent of the incident angular
momentum l.

(7) Elastic: For laboratory experiments, dark matter-
nucleus scattering is assumed to occur at typical
Milky Way virial velocities, v ∼ 10−3c. Typical
recoil energies of Oð1 keVÞ are not sufficient to
produce Standard-Model particles or to excite in-
ternal degrees of freedom of nuclei. Therefore,
elastic scattering is the dominant interaction chan-
nel. In any case, all physical scattering processes
have at least some elastic component [93].

(8) Coherence: Closely related to the assumption of
purely elastic scattering is the assumption of coher-
ence. For coherence to hold, it must be a good
approximation to treat the dark matter as interacting
with the nucleus as a whole, rather than with
individual nucleons. Coherence is typically a good
approximation provided the momentum transfer q is
insufficient to excite internal degrees of freedom in a
nucleus, which is true provided 1=q is large com-
pared to the characteristic nuclear radius rA, qrA≪1
[94]. The breakdown of coherence can be para-
metrized by including a momentum-dependent form
factor in the differential cross section.

(9) No bulk effects: The scattering should be well
approximated as being with a single nucleus, such
that initial and final state effects in the bulk medium
can be ignored. This approximation is good as long
as the characteristic momentum transfer q is large
compared to the characteristic interatomic spacing,
which is typical.

The rest of this paper deals with the failure of the following
additional assumptions:
(10) S-wave scattering: For s-wave (l ¼ 0) scattering, the

scattering is isotropic in the center-of-momentum
frame. As shown in Sec. II C 2, assuming l ¼ 0 is
required to derive the model-independent A2μ2A
scaling relation. However, real interactions may
deviate significantly from isotropic scattering, and
we do not require l ¼ 0 in this analysis.

(11) Weak interaction: For A2μ2A scaling to hold, the
interaction must be weak enough for the Born
approximation to hold. We discuss this assumption
in Sec. II C 1.

B. Basic scattering theory

Here we provide a brief review of the scattering theory
formalism [93–100] used in later sections.
To be detectable, dark matter must have some kind of

interaction with ordinary matter in a detector, written here

as a potential VðrÞ. We specialize to spin-independent
interactions and restrict our analysis to spherically sym-
metric potentials VðrÞ ¼ VðrÞ that fall off faster than r−1 as
r → ∞. In the center-of-momentum frame, the time-
independent Schrödinger equation giving the evolution
of a nonrelativistic two-particle system with wave function
ψðrÞ and reduced mass μ is given as

�
−

1

2μ
∇2

r þ VðrÞ
�
ψðrÞ ¼ EψðrÞ: ð1Þ

As shown in the Appendix A, far from the potential the
solution of Eq. (1) may be written as

ψðrÞ⟶r→∞
ψ0ðrÞ −

μeikr

2πr

Z
Vðr0Þψðr0Þe−ikf ·r0d3r0

¼ ψ0ðrÞ þ ð2πÞ−3=2 e
ikr

r
fðki;kfÞ; ð2Þ

where fðki;kfÞ ¼ fðk; θÞ is the scattering amplitude,
ψ0ðrÞ≡ ð2πÞ−3=2eiki·r, and ki ≡ kẑ and kf are the initial
and final dark matter momenta, respectively. From the
scattering amplitude, we obtain the differential cross section

dσ
dΩ

¼ jfðk; θÞj2 ð3Þ

and the total elastic scattering cross section

σχA ¼
Z

dσ
dΩ

dΩ: ð4Þ

If the scattering is isotropic, fðk; θÞ ¼ fðkÞ, Eq. (4) is
proportional to the rate of detectable scattering events in a
detector. However, to be detectable, a collision must deposit
sufficient energy into the detector. If the scattering angle is
peaked close to θ ¼ 0, very little momentum is transferred,
and hence insufficient energy is deposited in the detector.
Therefore, it is sometimes more useful to weight the
integral in Eq. (4) by the momentum transfer to obtain
the momentum-transfer cross section,

σmt
χA ¼

Z
dσ
dΩ

ð1 − cos θÞdΩ: ð5Þ

For isotropic scattering, σmt
χA ¼ σχA. For a potential with

characteristic radius rA, isotropic scattering is generically a
good approximation at low energies, krA ≪ 1, as discussed
further in Sec. II C 2. Forward scattering is a major concern
for light mediators (Sec. IV); in the Coulomb scattering
limit where the mediator mass mϕ → 0, then σχA → ∞,
while σmt

χA remains finite.
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C. Derivation of model-independent scaling

Now we discuss approximation methods for fðk; θÞ. The
two approaches we consider here are the Born approxi-
mation and the partial wave expansion. Both approaches
allow us to derive the σχA ¼ A2ðμ2A=μ2NÞσχN scaling with
nuclear mass number A. The reduced masses are defined as
μA ≡mAmχ=ðmA þmχÞ, μN ≡mNmχ=ðmN þmχÞ, where
the mass of a nucleus with mass number A is related to the
mass of a single nucleon mN using mA ¼ AmN . We begin
with the Born approximation because it is the simple and
familiar derivation. Because the partial wave expansion is
valid even when the Born approximation fails, it allows us
to more concretely show the behavior at large scattering
cross sections.

1. Born approximation

Inspecting Eq. (2), a natural first approach to obtaining
fðk; θÞ is to solve for ψðrÞ by iteration, which is the Born
approximation, as demonstrated in Appendix B. The first
Born approximation to fðk; θÞ is simply the Fourier trans-
form of the potential:

fð1Þðk; θÞ ¼ fð1ÞðqÞ ¼ −
2μA
q

Z
∞

0

Vðr0Þ sinðqr0Þr0dr0; ð6Þ

where q ¼ jqj ¼ 2k sin θ=2 is the momentum transfer.
Now, assume that the potential has some maximum

radius rA, and we have low energy scattering, krA ≪ 1.
Then we can approximate sinðqr0Þ ≈ qr0 and integrate only
up to the maximum radius rA:

fð1Þðk; θÞ ≈ −2μA
Z

rA

0

Vðr0Þr02dr0: ð7Þ

Equation (7) is a remarkable result. Provided the required
approximations are valid, fð1Þðk; θÞ depends only on the
volume integral of the potential; it contains no information
at all about the shape. If the volume integral of the potential
is proportional to the nuclear mass number A, we have the
scaling

fð1Þðk; θÞ ∝ AμA: ð8Þ

Plugging into Eq. (4),

σð1ÞχA ∝ A2μ2A; ð9Þ

which can be recast more precisely in terms of the
dark matter-nucleon reduced mass μN and scattering cross

section σð1ÞχN :

σð1ÞχA ¼ A2
μ2A
μ2N

σð1ÞχN: ð10Þ

Equation (10) is the famous model-independent scaling
relation for the spin-independent elastic scattering cross
section. Provided the potential falls off faster than 1=r, this
scaling relation is generally a good approximation at
sufficiently low energies, so long as the first Born approxi-
mation reasonably approximates fðk; θÞ. However, we
must examine when the first Born approximation fails.
We discuss the validity of the Born approximation in

Appendix B. A useful condition for the validity of the first
Born approximation is [99]

μA
k

����
Z

∞

0

Vðr0Þðe2ikr0 − 1Þdr0
���� ≪ 1: ð11Þ

We can simplify Eq. (11) using our assumption of a
maximum range rA and krA ≪ 1:

2μA

����
Z

rA

0

Vðr0Þr0dr0
���� ≪ 1: ð12Þ

Equation (12) is equivalent to the statement that the
potential is much too weak to form a bound state even
if VðrÞ was purely attractive [101]. While Eq. (7) is a
volume integral, Eq. (12) is an area integral of the potential.
Therefore, the first Born approximation is valid when some
potential-weighted effective area is small. The effective
area in question is, in fact, the elastic scattering cross
section, as shown for a contact interaction in Sec. III.

2. Partial wave expansion

To investigate what happens when the Born approxima-
tion fails, the first step is to expand the scattered wave
function in terms of Legendre polynomials and calculate
the phase shift of each contribution. The phase shifts may
be found by numerically integrating the Schrödinger
equation, as described in Appendix C. The elastic scatter-
ing cross section may be written in terms of the phase
shifts δlðkÞ:

σχA ¼ 4π

k2
X∞
l¼0

ð2lþ 1Þsin2ðδlÞ: ð13Þ

The momentum-transfer cross section in Eq. (5) may
also be written in terms of partial wave phase shifts:

σmt
χA ¼ 4π

k2
X
l

ðlþ 1Þsin2ðδlþ1 − δlÞ: ð14Þ

The mathematical decomposition in terms of partial waves
is valid even beyond interactions that can be described in
nonrelativistic potential scattering theory. However, when
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the number of partial waves becomes too large, it may be
impractical to compute the phase shifts individually, and
semiclassical approximations become useful [93,98].
Physically, the sum over partial waves in Eq. (13) is

equivalent to the classical operation of averaging over
all possible impact factors b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp
=k [93,100].

Classically, for a potential with maximum range rA, there
would be no collisions for b > rA. Therefore, a useful
approximate upper limit on the highest partial wave that can
meaningfully contribute to the sum in nonrelativistic
quantum scattering is lmax ≈ krA, and contributions from
higher l > lmax fall off quickly [93]. Our derivation of the
model-independent scaling of Eq. (10) in the Born approxi-
mation assumes krA ≪ 1, which is equivalent to saying
only the l ¼ 0 (s-wave) term contributes a nonvanishing
phase shift.
Using the same iterative procedure as for the Born

approximation, we can obtain the model-independent form
of the s-wave phase shift [100]:

δ0ðkÞ ≈ −2μAk
Z

rA

0

Vðr0Þr02dr0; ð15Þ

where the required approximation is δ0ðkÞ ≪ 1. Plugging
Eq. (15) into Eq. (13) and again using δ0ðkÞ ≪ 1, we obtain
precisely the same expression for the scattering amplitude
we obtained for the Born approximation in Eq. (7), as
expected. Again, the requirement δ0ðkÞ ≪ 1 places an
upper bound on the maximum σχA where the relation
can apply.
If the cross section were instead the maximum allowed

by unitarity, δ0ðkÞ ¼ π=2, we would obtain

σχA ¼ 4π

k2
; ð16Þ

which decreases as 1=A2 with increasing A, assuming
k ∝ A, rather than increasing as A4.
Higher partial waves necessarily scale differently with k

[93], δlðkÞ ∝ k2lþ1 for krA ≪ 1. Higher δlðkÞ also contain
information about the shape of the potential. Therefore, we
do not expect any special model-independent scaling when
higher partial waves contribute.

III. CONTACT INTERACTIONS

In this section, we consider the limits on cross sections
that can be obtained through a contact interaction and
how the scaling relations break down. A contact interaction
is useful as an illustrative case because we do not need
to consider the specific mechanism that produces the
interaction.

A. Contact interaction with Born approximation

As a simple case, we consider a contact interaction with a
nucleus, as could be produced by a heavy mediator.

We roughly approximate the nuclear charge density as
having a top-hat shape with radius rA:

VðrÞ ¼
�
V0 r < rA
0 otherwise:

ð17Þ

We assume the maximum charge density is roughly inde-
pendent of atomic mass number A, such that rA ≈ A1=3rN ,
where rN ≃ 1.2 fm.
We use this toy model with a sharp cutoff because both

the Born approximation and the partial wave phase shift
δlðkÞ can be found analytically. The effect of using a more
realistic charge distribution is discussed in Sec. III C 1.
Fourier transforming Eq. (17) using Eq. (6) gives

fð1ÞðqÞ ¼ 2μAV0

q3
½qrA cosðqrAÞ − sinðqrAÞ�: ð18Þ

The total elastic scattering cross section in the first Born
approximation is then

σð1ÞχA ¼ πμ2AV
2
0

16k6
½4krA sinð4krAÞ þ cosð4krAÞ

þ 32k4r4A − 8k2r2A − 1�: ð19Þ

In the limit krA ≪ 1, Eq. (19) becomes

σð1ÞχA ≈
16π

9
μ2Ar

6
AV

2
0: ð20Þ

For scattering with a nucleon, Eq. (20) would become

σð1ÞχN ≈ 16π
9
μ2Nr

6
NV

2
0. Substituting rA ≈ A1=3rN , we recover

the required scaling relation of Eq. (10):

σð1ÞχA ≈ A2
μ2A
μ2N

σð1ÞχN: ð21Þ

In the krA ≪ 1 limit, the condition for validity of the first
Born approximation in Eq. (12) is simply

μAr2AV0 ≪ 1: ð22Þ

Comparing to Eq. (20), we can rewrite the condition
Eq. (22) as

σð1ÞχA ≪
16

9
πr2A: ð23Þ

Equation (23) has a simple physical interpretation. The first
Born approximation is only applicable for elastic scattering
cross sections much smaller than the geometric cross section
of the nucleus. Using rN ≈ 1.2 fm in Eq. (23), the Born

approximation result only applies for σð1ÞχN ≪ 10−25 cm2.
Going to higher orders in the Born approximation does

not unlock cross sections significantly exceeding the
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geometric limit of the potential. For σð1ÞχA > 16
9
πr2A, the

Born series is not even guaranteed to converge for all
energies [93].
However, it may still be possible to obtain a meaningful

cross section in regimes where the Born approximation
fails using partial wave analysis. We explore this tech-
nique below.

B. Contact interaction with partial waves

For r < rA in Eq. (17), the radial wave function
decomposed in partial waves has an analytic solution in
terms of partial waves, ulðrÞ ¼ Clrjlðk0rÞ, where k0 ≡
ðk2 − 2μAV0Þ1=2 could be either pure real or pure imaginary.
First, we consider the s-wave cross section, with l ¼ 0.

Expanding in the limitwhereV0 and k are small, ðkrAÞ2 ≪ 1,
jV0j ≪ 1=ð2μAr2AÞ, we recover (see Appendix C)

δ0ðkÞ ≈ −
2μAkr3AV0

3
þ 8μ2Akr

5
AV

2
0

15
þOðjV0j3Þ: ð24Þ

The corresponding s-wave cross section is

σl¼0
χA ≈

16π

9
μ2Ar

6
AV

2
0 −

128π

45
μ3Ar

8
AV

3
0 þOðjV0j4Þ; ð25Þ

which is identical to Eq. (20) to lowest order in jV0j, as
anticipated in Sec. II C 2.
Now we can see how the model-independent A scaling

fails as the coupling strength gets stronger. The second-
order term in Eq. (25) scales ∝ μ3A=μ

3
NA

8=3, and either
reduces the cross section for a repulsive potential V0 > 0 or
increases it for an attractive one. For V0 large enough for
the second-order and higher corrections to matter, there is,

FIG. 2. Top: Scaling with A for the contact interaction in Sec. III
with jV0j¼1.18×10−5GeV, computed using k ¼ 0.005A fm−1,
RA ¼ 1.2A1=3 fm. We include partial waves up to lmax ¼ 8, which
is sufficient to converge σχA to ∼10−16 precision. Attractive and
repulsive interactions scale similarly, although the scaling deviates
from A4 at high A due to form-factor suppression, accounted for
here by including the contributions from higher partial waves.
Bottom: Same as above, but with jV0j ¼ 1.18 × 10−3 GeV, which
corresponds to the “scaling relations unreliable forA > 12” line in
Fig. 6. Repulsive and attractive interactions no longer scale the
sameway, and both saturate close to 4πR2

A. The attractive potential
shows resonanceswithA, which are sensitive to the specific choice
of potential. For cross sections approaching the geometric cross
section, any scaling with A is highly model dependent.

FIG. 3. Top: Scaling of cross section with jV0j for A ¼ 4
(helium), calculated using the contact interaction in Sec. III. The
cross sections are computed using the analytic partial wave
results. For attractive potentials, once jV0j becomes large enough
to support quasibound states, resonances can increase the cross
section by several orders of magnitude but only in a narrow range.
Bottom: Same as above, but with A ¼ 131 (xenon). A larger
number of partial waves contribute due to the larger k ∝ A. There
are many resonances, but they are not large enough to mean-
ingfully increase the cross section above the geometric limit.
Additionally, the resonances are not at the same values of jV0j,
which prevents resonances from achieving a large cross section
which scales predictably with A, as shown in Fig. 2.
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therefore, no model-independent scaling with A because
σl¼0
χA depends on the details of the potential. The breakdown

of the scaling as a function of A is shown in Fig. 2. Once
details of the potential begin to matter, corrections from a
more realistic charge distribution would also become
important, as discussed in Sec. III C 1.
To illustrate further, if we instead considered the strong

coupling limit, jV0j ≫ 1=2μAr2A, for V0 > 0 we would
obtain

δ0ðkÞ ¼ −krA; ð26Þ

and

σl¼0
χA ¼ 4π

k2
sin2ð−krAÞ ð27Þ

¼ 4πr2A; ð28Þ

so the repulsive cross section completely saturates at 4
times the geometric cross section. The saturation is plotted
as a function of jV0j in Fig. 3. Physically, the well has
simply become an impenetrable hard sphere with a fixed
radius. Therefore, we have obtained a physical maximum
cross section for the repulsive contact interaction at small k
which is only 9=4 times larger than the maximum we
obtained using the first Born approximation.

1. Higher partial waves

While the s-wave cross section is limited to the geo-
metric cross section, it is natural to wonder if the con-
tributions from higher partial waves could allow a larger
total cross section. For krA ≫ 1, we can approximate
semiclassically lmax ≈ krA, as described in Sec. II C 2. Of
course, in the quantum case, it is possible for higher partial
waves to contribute, but their contributions fall off rapidly
for l > lmax. Assuming a sharp cutoff is adequate for
deriving an approximate maximum physically achievable
cross section. The maximum possible cross section is
achieved by saturating partial wave unitarity, i.e., taking
δl≤lmax

ðkÞ ¼ π=2:

σχA ¼ 4π

k2
Xlmax

l¼0

ð2lþ 1Þ ð29Þ

¼ 4π

k2
ð1þ lmaxÞ2 ð30Þ

≈ 4πr2A: ð31Þ

Now, we see that the saturation at approximately the
geometric cross section, found for krA ≪ 1 in Eq. (28),
also holds for krA ≫ 1.
In fact, for a very strong repulsive contact interaction, the

phase shifts for l ≤ lmax approach δl≤lmax
ðkÞ ≈ lπ=2 − krA

[93], such that σχA ≈ 2πr2A. Therefore, a repulsive hard
sphere almost saturates the unitarity limit of Eq. (31).
Including higher partial waves is therefore not a useful

way of increasing the cross section because the potential
remains limited by the characteristic radius rA.
Figure 4 shows the breakdown of the A4 scaling for

several example nuclei, fully taking into account contribu-
tions from higher partial waves. Direct-detection constraints
for underground detectors are affected by the breakdown of
scaling at the Oð1Þ level for σχN ≃ 10−32 cm2.

C. Attractive resonances

A final possible approach would be to saturate unitarity
at δl ¼ π=2 while krA ≪ 1, such that

σmax
χA ¼ 4π

k2
ð2lþ 1Þ ð32Þ

can become large. The limit δl ¼ π=2 at krA ≲ 1 can be
achieved through resonances, which occur when an attrac-
tive potential becomes strong enough to support a bound
state.
In reality, the resonant scattering cross section would

achieve large values only for a narrow range of k relative to
the incident dark matter velocity distribution [93,102].

FIG. 4. Scaling of the nuclear cross section with the nucleon
cross section for the repulsive contact interaction of Sec. III at
fixed kN ¼ 0.005 fm−1. The contact interaction cannot achieve
nucleon cross sections larger than the geometric cross section,
denoted by the vertical red line. The cross section visibly deviates
from A4 scaling at the Oð1Þ level for heavy nuclei even for
σχN ≃ 10−32 cm2, and by the time scaling fails at the Oð1Þ level
for 4He at σχN ≃ 4 × 10−28 cm2, the cross sections for heavy
nuclei have completely saturated. The scaling could break down
in different ways in other models.
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Because k ¼ μAv, the resonances are generically at differ-
ent incident dark matter velocities for different elements,
which guarantees that there are not any useful model-
independent scaling relations relating the observed cross
sections for strongly attractive potentials between different
target materials.
In Fig. 2, we show the behavior as a function of A for two

different values of V0. When resonances are possible, the
scaling withA need not bemonotonic. The behavior is fairly
complex for even the simple rectangular well of Eq. (17).
Realistic scaling is likely to be even more complicated
because the nuclear charge distribution changes as a
function of A. Even two different nuclei with the same A
but different atomic numbers could have different charge
distributions and hence different resonant cross sections.
Scaling with A for strong attractive couplings is therefore
highlymodel dependent. In Fig. 3, we show the saturation of
the s-wave cross section as a function of the coupling
strength, as well as the resonant behavior which occurs once
the potential becomes strong enough to support a quasi-
bound state. The resonances for A ¼ 4 are fairly narrow, as
for a nucleon the scattering is still well approximated in the
low-k limit. However, for A ¼ 131, the low-k limit is no
longer a good approximation, and resonances are broadened
to the point that they do not significantly increase the
scattering cross section. Additionally, there are many more
resonances, from multiple partial waves. Note we have not
implemented any velocity dispersion for this plot; the
spreading of resonances is entirely due to broadening of
peaks and overlapping contributions from multiple partial
waves at finite k. Applying a realistic dark matter velocity
distribution would smooth the peaks. For heavy nuclei with
multiple naturally occurring isotopes (e.g., xenon), averag-
ing over a distribution of isotopes would smooth the peaks
even further.
Overall, even if a carefully tuned resonance could achieve

a large cross section for a single light nucleus, other nuclei
would not necessarily have correspondingly large cross
sections. Scaling relations between specific nuclear cross
sections would also be highly model dependent, such that
constraints from different types of nuclei would be difficult
to compare because the full resonance structurewould not be
known. For example, using more realistic charge distribu-
tions, such as an exponential potential for A ¼ 4 and a
Woods-Saxon potential for A ¼ 131 [103], would shift the
positions of the resonances somewhat.

1. More realistic charge distributions

The rectangular barrier potential in Eq. (17) is a toy
model. Realistic nuclear charge distributions have a smooth
cutoff and an exponential tail to larger radii [103], as in a
Woods-Saxon potential. Because there is not a sharp
cutoff, allowing the interaction strength to be arbitrarily
large would cause the potential to grow logarithmically
with jV0j. However, there are limits to how strong jV0j can

be. For jV0j≳ 10−1 GeV, QCD corrections break the
simple nonrelativistic contact interaction picture. For
jV0j≳ 2 GeV, the interaction may be strong enough to
pull proton-antiproton pairs out of the vacuum.
We have verified by numerically computing partial wave

amplitudes that, for jV0j ≲ 10−1 GeV, using a Woods-
Saxon potential increases the maximum σχA by a factor
of ≲10. By definition, an increase in the computed cross
section due to a different potential can only appear for jV0j
strong enough that the model-independent form of the cross
section has already significantly broken down. Therefore,
using a more realistic charge distribution cannot signifi-
cantly change our conclusion that the cross section for a
contact interaction cannot be much larger than the geo-
metric cross section of the nucleus.
Realistic potentials are also not perfectly spherically

symmetric; however, the same basic picture of geometrical
limitations still applies, and resonances are still possible.

D. Beyond contact interactions

We have established that a contact interaction with a
nucleus cannot achieve cross sections much larger than the
geometrical cross section of the nucleus. The case where
large cross sections might be achieved, a strongly attractive
potential, produces resonances that are sensitive to the
detailed structure of the potential and is far too model
dependent to possess any simple scaling relation relating
the cross sections at different A. To circumvent these
problems, we need an interaction with a larger character-
istic range. One possible way to achieve a larger character-
istic range is to insert a light mediator for the interaction, as
discussed in Sec. IV. Another possibility is composite dark
matter with an intrinsic radius, discussed in Sec. V.

IV. LIGHT MEDIATOR

A simple approach to achieving a larger characteristic
radius is to insert a light mediator, of mass mϕ ¼ 1=rϕ,
which generically results in a potential of the form

VðrÞ ¼ λAλχ
4π

e−r=rϕ

r
; ð33Þ

where λχ and λA ¼ AλN are the coupling strengths of the
particle ϕ to the dark matter and nucleus, respectively. To
achieve cross sections much larger than a nucleus, we
should have rϕ ≫ 1 fm. The dark matter and target nucleus
are distinguishable particles, so the Yukawa potential can
be either attractive or repulsive. We assume the mediator is
a scalar, although the general form of the potential would be
similar for other light mediator candidates. The scattering
amplitude of Eq. (33) is easily calculated using Eq. (6):

fð1ÞðqÞ ¼ −
μAλχλA

2πðq2 þ 1=r2ϕÞ
; ð34Þ
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which gives the total elastic scattering cross section:

σð1ÞχA ¼ μ2Aλ
2
χλ

2
Ar

4
ϕ

πð1þ 4k2r2ϕÞ
: ð35Þ

Because the characteristic radius is larger than the geo-
metric radius of a nucleon, Eq. (35) can, in principle,
achieve larger cross sections within the domain of
validity of the Born approximation than a contact inter-
action could. Because k ∝ μA, the scaling with A is now
more complicated due to the k2r2ϕ term in the denominator.
Assuming mχ ≫ mA such that μA ≈ AmN , we have two
limits:

σð1ÞχA ≈

(
A4σð1ÞχN kArϕ ≪ 1

A2σð1ÞχN kArϕ ≫ 1
: ð36Þ

For direct detection, kN ∼ 0.005 fm−1 is set by
Milky Way halo velocities v ≃ 10−3c and the mass of a
single nucleon, kA ≃ AkN . For 131Xe, kA ≈ 0.7 fm−1, such
that kArϕ > 1 occurs for rϕ ≳ 1.4 fm. Therefore, A4 scaling
is, at best, marginal for heavy nuclei for any rϕ that could
conceivably produce a cross section σχA ≳ 10−25 cm2.
Additionally, as established for a general potential with a
characteristic radius rϕ in Sec. II C 1, increasing the
coupling strengths λχ or λN at fixed rϕ causes the Born
approximation, and therefore the A4 scaling, to fail before
cross sections larger than the geometric cross section are
achieved. Therefore, for a light mediator, the A4 scaling is

only possible if σð1ÞχA ≪ 10−25 cm2. The failure of A4 scaling
occurs without even considering the constraints on the
existence of light mediators discussed in Sec. IV B. The A4

scaling is preserved to somewhat larger cross sections than
for the contact interaction shown in Fig. 2.

A. Momentum-transfer cross section

In fact, even the A2 scaling is too optimistic for the
detectable momentum transfer in a detector with high A.
Inspection of Eq. (34) shows that for krϕ ≫ 1, the scatter-
ing becomes strongly peaked at θ ¼ 0. Therefore, it is more
useful to consider the momentum-transfer cross section,
Eq. (5). Using the Born approximation, we can calculate
Eq. (5) analytically for the Yukawa potential:

σmt;ð1Þ
χA ¼ μ2Aλ

2
χλ

2
A

8πk4ð1þ 4k2r2ϕÞ
× ½ð1þ 4k2r2ϕÞ logð1þ 4k2r2ϕÞ − 4k2r2ϕ�: ð37Þ

For krϕ ≪ 1, Eq. (37) simplifies to σmt;ð1Þ
χA ≈ σð1ÞχA as

expected for isotropic scattering. However, for krϕ ≫ 1,
we have

σmt;ð1Þ
χA ≈

μ2Aλ
2
χλ

2
A

8πk4
ðlogð4k2r2ϕÞ − 1Þ: ð38Þ

Equation (38) grows only ∝ logðAÞ, such that, for a fixed
total detector mass, the total energy deposited in the
detector would be larger for nuclei with smaller A.
Direct-detection experiments that focus on protons and
other light nuclei, such as Refs. [32,104–106], may there-
fore be effective ways of constraining the landscape for
model-dependent direct detection.

B. Existing limits on light mediators

If there were no other constraints on rϕ or λA, Eq. (38)

would allow σmt;ð1Þ
χA ≫ 10−25 cm2, albeit with a less useful

scaling relation between different nuclei. However, because
the light mediator couples to the Standard Model directly,
other experiments already place constraints on such a

FIG. 5. Top: Elastic scattering cross-section contours as a
function of mediator mass and coupling strength for the repulsive
Yukawa potential in Eq. (33). We also show various constraints on
the existence of such mediators from Ref. [107]. The largest cross
sections achieved in unconstrained regions are σχN ≲ 10−27 cm2.
For mϕ < 10−9 GeV, fifth-force constraints become many orders
of magnitude stronger and dominate other constraints [108].
Bottom: Same as above but for the momentum-transfer cross
section. The largest cross sections achieved in unconstrained
regions are σmt

χN ≲ 10−32 cm2.
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particle. Figure 5 shows the maximum achievable σχN
and σmt

χN for a repulsive Yukawa potential, conservatively
using the perturbativity limit λχ ¼ 4π, μN ≈mp, and
k ¼ 0.005 fm−1. When Eq. (12) is >10−4, Fig. 5 uses
the results from a numerical partial wave expansion with
adaptive lmax, rather than the Born approximation. In
practice, the Born approximation is adequate in the entire
unconstrained region.
Including all such constraints, we have σχN ≲ 10−27 cm2

and σmt
χN ≲ 10−32 cm2. Constraints that rely on lower relative

velocities, such as the cosmological constraints discussed in
Sec. VI C, could achieve larger cross sections, but their
constraints would need to be scaled correctly to compare
them to direct-detection constraints. Themomentum-transfer
cross section is restricted to be σmt

χN ≲ 10−25 cm2 even for
velocities as low as 10−6c.
It is also possible to produce the light mediator in a

collision [109]. Particle production is an inelastic scattering
process and beyond the scope of this paper, but it could be
another avenue to transfer momentum between dark matter
and a detector.
The detailed constraints in Fig. 5 could be different for

different types of mediators. For example, for a vector
mediator, the BBN constraints would be stronger [107].
Other constraintsmight beweaker.However,σχN≲10−27cm2

is already smaller than the geometric cross section of the
nucleus, and circumventing individual constraints is unlikely
to drastically change the overall conclusion that light medi-
ators do not appear to be a promising approach to achieving
large cross sections.

V. COMPOSITE DARK MATTER

Another mechanism for achieving a larger characteristic
interaction radius is dark matter that is not a point particle
but instead has a finite physical extent [90,110–124]. Such
dark matter could take the form of a composite particle.
Because such dark matter would likely require an entire
dark sector, any conclusions about the largest possible cross
section with composite dark matter would be intrinsically
model dependent. Because the largest physical scale in the
problem is no longer related to a property of the target
nucleus, the cross section need not scale with A at all.
The actual scaling with A could only be determined by

examining the particular model of composite dark matter.
Additionally, achieving cross sections significantly larger
than a nucleus with composite dark matter will always
require krdm ≳ 1 for typical Milky Way virial velocities, so
constraints on composite dark matter will need to be
computed with a specific dark matter form factor in mind.
See Sec. VI C for a discussion of limits at the lower
velocities relevant to cosmological limits. Analyses setting
constraints on specific form factors at large cross sections
should consider whether their specific choice of form factor

can be achieved at the cross sections they are constraining
in a physically realistic model.
Therefore, limits on composite dark matter need to be

calculated in specific models. Calculation of constraints
on specific models of composite dark matter is left to
future work.

VI. IMPLICATIONS FOR
EXISTING CONSTRAINTS

Figure 6 summarizes the approximate limits for the
repulsive contact-interaction cross sections discussed in
Sec. III. In the colored regions, the Born approximation
begins to break down when the proton cross section is
scaled to heavier nuclei, ultimately failing even for light
nuclei. For pointlike dark matter with a contact interaction,
cross sections much larger than the geometric cross section
are completely forbidden. As discussed in Sec. IV, the
limits for a light mediator are similarly below the geometric
cross section. For mχ ≳ 1016 GeV, the entire (small)
exclusion region for underground detectors is affected by
the failure of scaling relations. Future improvements to
constraints could change the region where the entire
exclusion region would fail. Additionally, all detectors’
computed ceilings are affected by the breakdown of scaling
relations.

A. Scaling constraints

In the regime where scaling relations are unreliable, it
becomes more difficult to compare constraints between
experiments. When the scaling relations fail, scaling con-
straints from different nuclei to the dark matter-nucleon
cross section using the A4 scaling is no longer meaningful.
For both contact interactions and light mediators, as the

cross section begins to saturate, the momentum-transfer
cross section scales less than linearly with A. Therefore, at
fixed total detector mass, there is more detectable momen-
tum transfer into the detector for lighter target nuclei. The
failure of the scaling relations also occurs at larger cross
sections for smaller A. For example, for a 12C-based
detector, one would be able to use the Born approximation,
and therefore the scaling relations, up to about 3000 times
larger dark matter-nucleon cross section than a 131Xe-based
detector. Therefore, robustly covering the large cross-
section regime may be best accomplished by detectors
using light nuclei (e.g., [32,104–106]).
One option is to simply not scale constraints at large

cross sections. While with resonances it could be possible
for heavy nuclei to have smaller cross sections than a single
nucleon, broadening by the dark matter velocity dispersion
may limit the effect of narrow resonances on the overall
detectable signature. Therefore, a relatively conservative
approach could be to plot the actual momentum-transfer
cross-section constraints obtained from different nuclei
on the same scale. In fact, if composite dark matter as
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discussed in Sec. V is indeed the most plausible strongly
interacting dark matter candidate, disregarding scaling with
A may be the most correct way of plotting constraints.

B. Detection ceilings

Nowwe briefly consider if the detection ceilings (i.e., the
largest cross sections that can be probed by a given detector
based on the detector’s overburden) shown in Fig. 1 are
preserved. In our simple model in Sec. III, cross sections
simply saturate at 4 times the geometric cross section for
heavier nuclei. Even if all nuclei in the detector overburden
have an elastic scattering cross section equal to their
geometric cross section, dark matter cannot be stopped
by the overburden above some mχ [82].
Because all currently computed detector ceilings exist at

cross sections where the breakdown of the A4 scaling is
severe, correctly calculated detector ceilings must be spe-
cialized to a specific model. For basic energy-independent
cross-section scaling, the weakened ceilings likely lead to
stronger direct-detection constraints formχ ≲ 1016 GeV. For
such models, direct detection may even have exhausted the
parameter space for cross sections up to the largest cross

sections achievablewith pointlike dark matter. For other dark
matter form factors, the behavior around the ceiling could be
more complicated.
Further work is required to make detailed adjustments

to existing constraint contours to determine what dark
matter parameter space has been constrained at large cross
sections.

C. Dark matter-proton scattering constraints

Constraints that rely only on dark matter scattering
directly with protons are not directly affected by the
breakdown of scaling relations with A. These are primarily
constraints from cosmology and astrophysics, although at
least one laboratory experiment uses proton targets [106].
Astrophysics constraints (e.g., disk stability, stars, cosmic
ray interactions, gas clouds, etc.) are typically assumed to
occur at galactic virial velocities, as for direct detection.
Cosmology constraints, such as CMB and structure for-
mation constraints, typically assume that collisions occur at
smaller relative velocities.
As shown in Fig. 6, the cross sections of interest for

cosmological or astrophysical constraints are too large to be
pointlike dark matter. Therefore, they should be reinter-
preted as constraints on specific models of composite dark
matter with a specified form factor, as discussed in Sec. V.
For cosmology constraints set at lower relative velocities,

the suppression of the cross section by the form factor of
dark matter is not as severe. One consequence is that it is
possible to achieve somewhat larger cross sections for

FIG. 6. Summary of theoretically allowed regions for darkmatter
candidates. For a contact interaction, A4 scaling breaks down for
heavy nuclei for σχN ≳ 10−32 cm2, and by σχN ≳ 4 × 10−28 any
scaling between different nuclei is model dependent. Here we
define the failure of scaling as setting the lhs of Eq. (11) equal to
0.5. This choice approximately agrees with where scaling obvi-
ously fails in Fig. 4. The breakdown is purely on theoretical
grounds. Also shown is themaximum allowedmomentum-transfer
cross section for a mϕ ¼ 10−4 GeV light mediator using the
constraints shown in Fig. 5, coincidentally at a comparable scale.
Formχ ≲ 104 GeVwe have applied a conservative self-interaction
constraint σχχ=mχ < 10 cm2=g [125]. For σχN ≳ 10−25 cm2, no
viable pointlike dark matter candidates exist.

FIG. 7. Claimed constraints from Fig. 1, with the problematic
regions identified in Fig. 6 highlighted. All existing detector
ceiling calculations are deeply in the model-dependent regime or
entirely excluded for pointlike dark matter. To the right of the
dashed vertical line, the entire (small) direct-detection region
must be reanalyzed.
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pointlike dark matter with a light mediator than those
shown in Fig. 5, although even for velocities as low as
v ≃ 0.3 km=s, existing constraints would still require
σmt
χN ≲ 10−25 cm2. However, invoking such a model would

require additional caution, as direct-detection constraints
would not be scaled correctly relative to the cosmology
constraints, such that it would no longer be appropriate to
plot cosmology and direct-detection constraints on the
same axes, as done in Fig. 1.
Cosmological and astrophysical constraints set at masses

mχ < 1 GeV, discussed in Sec. VI D, are at lower cross
sections and may still be meaningful constraints on point-
like dark matter. However, analyses at lower masses should
either directly investigate how high their limits can be
extrapolated or make it much clearer that there are caveats
in extrapolating their results to much larger masses.

D. Low-mass dark matter

Because for mχ ≪ 1 GeV, μA ≃mχ , low-mass dark
matter constraints benefit only from a single factor of A2

from coherence. Therefore, the loss of the A2 scaling at
large cross sections will be orders of magnitude less
severe than the impact from the loss of A4 scaling at
larger masses. The momentum transfer is also smaller, so
the loss of coherence due to an assumed form factor for the
dark matter would be less severe. Contact interactions are
still limited by the geometric size of the nucleus, but
constraints on light mediators will become a function of
mχ [107].
We leave a detailed assessment of the impact of our

considerations at low mass to future work. However, we
reiterate our caution that constraints set at low masses
should carefully state the limitations on extrapolating their
constraints to mχ ≳ 1 GeV.

VII. CONCLUSIONS

How do dark matter particles interact with matter? One
of the most commonly considered cases to probe is the
spin-independent interactions of mχ > 1 GeV pointlike
dark matter with nuclei. In the literature, a vast array of
constraints—based on astrophysical and cosmological
tests, as well as direct-detection searches with a wide
range of nuclei and overburdens—are all compared to each
other in simple plots of the dark matter-nucleon cross
section and dark matter mass. Comparing searches in this
way requires the assumption of scaling relations, e.g.,
σχA ∝ A4σχN for mχ ≫ mA, that are widely assumed to
be model independent.
We systematically examine the validity of the assump-

tions used to derive these relations, calculating where
model independence ends. Figure 7 summarizes our results.
We find the following:
(1) For small cross sections, σχN ≪ 10−32 cm2, the

usual scaling relations are valid, and multiple

reasonable models can produce the same scaling
relation.

(2) For 10−32 cm2 ≲ σχN ≲ 10−25 cm2, the assumed A4

scaling for a contact interaction progressively fails
for all nuclear targets as cross sections for heavier
nuclei begin to saturate at their geometric cross
sections. Experimental constraints on the existence
of light mediators prevent simple light mediator
models from achieving cross sections in this range at
all, such that constraints set in this range of cross
sections should be specialized to a model.

(3) For σχN > 10−25 cm2, dark matter cannot be
pointlike. Contact interactions cannot achieve cross
sections larger than the geometric cross section
σχA ≃ 4πr2A, and simple light mediators are strongly
ruled out. Dark matter with cross sections in this
range must be composite.

The failure of the scaling relations should influence the
design of future dark matter searches. For interactions with
cross sections that scale less than linearly with A, such as
some models of composite dark matter, dark matter
detectors with lighter nuclei are more efficient per unit
detector mass. As a result, future direct-detection searches
for strongly interacting dark matter may benefit from
constructing detectors with light nuclei.
Constraints on dark matter parameter space are most

useful if they can be compared between different experi-
ments. Where the A4 scaling is not reliable, results need to
be recast in terms of specific models. A comprehensive
analysis should include clear statements about the
mass ranges their results can reasonably be extrapolated
to. Because constraints will not be the same for different
models, plots including cross sections σχN ≳ 10−32 cm2

must specify a model, whether it involves a contact
interaction, light mediator, composite dark matter, or
something else.
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APPENDIX A: LIPPMANN-SCHWINGER
EQUATION

It is useful to write E ¼ k2
2μ,UðrÞ≡ 2μVðrÞ and rearrange

Eq. (1),
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ð∇2
r þ k2ÞψðrÞ ¼ UðrÞψðrÞ: ðA1Þ

Recognizing Eq. (A1) as an inhomogeneous Helmholtz
equation, we can write the general solution in integral
form [100,126]:

ψðrÞ ¼ ψ0ðrÞ þ
Z

G0ðr; r0ÞUðr0Þψðr0Þd3r0; ðA2Þ

where G0ðr; r0Þ is the Green’s function for an outgoing
wave in the Helmholtz equation:

ð∇2
r þ k2ÞG0ðr; r0Þ ¼ δðr − r0Þ ðA3Þ

and ð∇2
r þ k2Þψ0ðrÞ ¼ 0 is a homogeneous solution. The

Green’s function is given [126] by

G0ðr; r0Þ ¼ −
1

4πjr − r0j e
ikjr−r0j: ðA4Þ

Plugging in an incident plane wave for the homogeneous
solution, ψ0ðrÞ ¼ ð2πÞ−3=2eiki·r, where ki ≡ kẑ, we arrive
at the Lippmann-Schwinger equation,

ψðrÞ¼ ð2πÞ−3=2eiki·r−
Z

Uðr0Þψðr0Þ eikjr−r0j

4πjr− r0jd
3r0: ðA5Þ

Now, the goal here is to discover what measurable effect
the potential has on the scattered wave. Physically, any
measurement we make of the scattered wave must occur
long after the particle has finished interacting with the
potential. Therefore, we may safely assume jrj ≫ jr0j, such
that jr − r0j→r→∞

r − r̂ · r0 þOðr−1Þ, and defining kf ≡ kr̂,
Eq. (A5) becomes

ψðrÞ⟶r→∞
ψ0ðrÞ −

eikr

4πr

Z
Uðr0Þψðr0Þe−ikf ·r0d3r0

≡ ψ0ðrÞ þ ð2πÞ−3=2 e
ikr

r
fðki;kfÞ: ðA6Þ

Physically, this equation represents an incoming plane
wave and a radially outgoing spherical wave with scattering
amplitude fðki;kfÞ ¼ fðk; θÞ.

APPENDIX B: BORN APPROXIMATION

Now we want to calculate an approximation to the
scattering amplitude for a given potential. If we assume
the potential is a perturbation to the incident wave function,
we can attempt to solve Eq. (A6) by iteration:

ψðrÞ⟶r→∞
ψ0ðrÞ −

eikr

4πr

Z
Uðr0Þψðr0Þe−ikf ·r0d3r0

¼ ψ0ðrÞ −
eikr

4πr

Z
Uðr0Þ½ψ0ðr0Þ − � � ��e−ikf ·r0d3r0

¼ ψ0ðrÞ þ ð2πÞ−3=2 e
ikr

r
ðfð1Þðki;kfÞ þ � � �Þ; ðB1Þ

where we have assumed the correction is small, such that
higher-order corrections can be ignored. Then we can read
off our approximation to fðki;kfÞ from Eq. (A5):

fð1Þðki;kfÞ ¼ −
1

4π

Z
Uðr0Þeiðki−kfÞ·r0d3r0: ðB2Þ

Here, fð1Þðki;kfÞ is the first Born approximation to
fðki;kfÞ.
Inspecting Eq. (B2), we recognize that the first Born

approximation of fðki;kfÞ is nothing more than the
Fourier transform of the potential. Defining q≡ ki − kf

such that q ¼ jqj ¼ 2k sinðθ
2
Þ, and assuming the potential to

be spherically symmetric Uðr0Þ ¼ Uðr0Þ, we can perform
the angular integration to obtain

fð1Þðki;kfÞ ¼ fðqÞ ¼ −
1

q

Z
∞

0

Uðr0Þ sinðqr0Þr0dr0: ðB3Þ

Equation (B3) is a useful starting point for analysis.
However, before we begin using the result, we should
clarify when the approximation breaks down. It can be
shown robustly [93] that a sufficient condition for the Born
series to converge for all k is that the magnitude of the
potential would not be strong enough to support a bound
state if it were purely attractive [101], which is to sayZ

∞

0

rjUðrÞjdr < 1: ðB4Þ

A useful heuristic condition for the validity of the first Born
approximation at a given k can be obtained by simply
assuming the first-order correction term in Eq. (A5) must
be small in the scattering region, such that ψðrÞ ≈ ψ0ðrÞ
near r ¼ 0 [98,99]. Therefore, we require

1

4π

����
Z

Uðr0Þeiki·r0
eikjr−r0j

jr − r0j d
3r0

���� ≪ 1: ðB5Þ

Taking r ¼ 0, replacing ki · r0 ¼ kr0 cos θ0, and performing
the angular integration, we have

1

2k

����
Z

∞

0

Uðr0Þðe2ikr0 − 1Þdr0
���� ≪ 1: ðB6Þ

Once we have the scattering amplitude, we can calculate
the total cross section as in Eq. (4).
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APPENDIX C: PARTIAL WAVE ANALYSIS

The general scattering amplitude for a spherically
symmetric potential in Eq. (A6) can be written as an
arbitrary expansion of Legendre polynomials Plðcos θÞ
[93,98,100]:

fðk; θÞ ¼ 1

k

X∞
l¼0

ð2lþ 1Þeiδl sinðδlÞPlðcos θÞ: ðC1Þ

Given the phase shifts δlðkÞ, the total elastic scattering cross
section can be readily evaluated:

σtot ¼ 4π

k2
X∞
l¼0

ð2lþ 1Þ sin2ðδlÞ: ðC2Þ

A spherically symmetric wave function can be written as
a linear combination of Bessel functions of the first and
second kind, jlðkrÞ and nlðkrÞ. The scattered part of the
wave function for r > R, where R is some arbitrarily large
cutoff radius for the potential, can then also be expanded in
terms of Legendre polynomials:

ψ scatteredðr; θÞ ¼
X∞
l¼0

AlðrÞPlðcos θÞ; ðC3Þ

where

AlðrÞ ¼ eiδl ½cosðδlÞjlðkrÞ − sinðδlÞnlðkrÞ� ðC4Þ

is the radial wave function for the lth partial wave. We can
obtain δlðkÞ by enforcing continuity of the logarithmic
derivative of the wave function,

βl ¼
r
Al

dAl

dr
; ðC5Þ

at r ¼ R. We can obtain the wave function for r < R
by directly integrating the one-dimensional Schrödinger
equation,

d2ul
dr2

þ
�
k2 − 2μVðrÞ − lðlþ 1Þ

r2

�
ulðrÞ ¼ 0; ðC6Þ

where we have defined ulðrÞ≡ rAlðrÞ. Note that because
we are matching the phase shift with the logarithmic
derivative of the wave function, the overall normalization
of AlðrÞ is irrelevant for our purposes and can be chosen
arbitrarily. We can then obtain AlðRÞ for any arbitrary
potential VðrÞ by analytically or numerically evaluating
Eq. (C6) from r ¼ 0 to r ¼ R.
Once we have AlðRÞ, we can obtain δl using

tanðδlÞ ¼
kRAlj0lðkRÞ − ðdAl=d ln rÞjr¼RjlðkRÞ
kRAln0lðkRÞ − ðdAl=d ln rÞjr¼RnlðkRÞ

: ðC7Þ

We have avoided canceling AlðrÞ in order to preserve signs,
to ensure we obtain the correct quadrant for δlðkÞ.
The boundary condition at r ¼ 0 should properly be

ulð0Þ ¼ 0, but for numerical solutions, taking the boundary
to be at r ¼ 0 is inconvenient because of the 1=r2

centrifugal term. Instead, we can take advantage of the
arbitrary normalization of AlðrÞ and fix the boundary
conditions ulðrminÞ ¼ 1, dul=drðrminÞ ¼ ðlþ 1Þ=rmin,
where rmin is some small minimum radius.
As k → 0, it can be shown [93] that generically

δlðkÞ ∝ k2lþ1, except in special cases where it is possible
to achieve δlðkÞ ∝ k2l−1 for a specific value of l. Inspecting
Eq. (C2), we can see the contributions from l ¼ 0 and l ¼ 1
are the only values of l which can be nonvanishing as
k → 0. The l ¼ 0 cross section is called the s-wave cross
section.
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