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The relativistic Feynman-Metropolis-Teller treatment of compressed atoms is extended to treat
magnetized matter. Each atomic configuration is confined by a Wigner-Seitz cell and is characterized
by a positive electron Fermi energy which varies insignificantly with the magnetic field. In the relativistic
treatment, the limiting configuration is reached when the Wigner-Seitz cell radius equals the radius of the
nucleus with a maximum value of the electron Fermi energy which cannot be attained in the presence of
magnetic field due to the effect of Landau quantization of electrons within the Wigner-Seitz cell. This
treatment is implemented to develop the equation of state for magnetized white dwarf stars in the presence
of Coulomb screening. The mass-radius relations for magnetized white dwarfs are obtained by solving the
general relativistic hydrostatic equilibrium equations using Schwarzschild metric description suitable for
nonrotating and slowly rotating stars. The explicit effects of the magnetic energy density and pressure
contributed by a density-dependent magnetic field are included to find the stable configurations of
magnetized super-Chandrasekhar white dwarfs.
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I. INTRODUCTION

Compact stars are home to the strongest magnetic fields
in the Universe. Anomalous x-ray pulsars and soft gamma
repeaters, which are certain classes of neutron stars called
magnetars, are observed to have surface magnetic fields
∼1015 gauss. Moreover, a strong magnetic field of similar
magnitude has been observed at the jet base of a super-
massive black hole PKS 1830-211 [1]. Several magnetized
white dwarfs have also been observed with surface field
strengths ranging from ∼106–109 gauss [2–4]. Such strong
magnetic fields can drastically modify the equation of state
(EoS) of a compact star, its structure, and stability.
A stellar magnetic field is a magnetic field generated by

the motion of conductive plasma inside a star. This motion
is created through convection, which is a form of energy
transport involving the physical movement of material. A
localized magnetic field exerts a force on the plasma,
effectively increasing the pressure without a comparable
gain in density. As a result, the magnetized region rises
relative to the remainder of the plasma, until it reaches the
star’s photosphere. This creates star spots on the surface
and the related phenomenon of coronal loops. Stellar
magnetic fields, according to solar dynamo theory, are

caused within the convective zone of the star. The con-
vective circulation of the conducting plasma functions like
a dynamo. This activity destroys the star’s primordial
magnetic field and then generates a dipolar magnetic field.
As the star undergoes differential rotation rotating at
different rates for various latitudes, the magnetism is
wound into a toroidal field of “flux ropes” that become
wrapped around the star. The fields can become highly
concentrated, producing activity when they emerge on the
surface.
The magnetic fields of all celestial bodies are often

aligned with the direction of rotation, with notable excep-
tions such as certain pulsars. Another feature of this
dynamo model is that the currents are ac rather than dc.
Their direction, and thus the direction of the magnetic field
they generate, alternates more or less periodically, changing
amplitude and reversing direction, although still more or
less aligned with the axis of rotation. Such magnetized stars
when collapse the magnetic fields of the progenitors are
trapped within new compact stars. The origin of high
magnetic field of the collapsed stars is due to the flux
conservation in the new configuration.
Recent studies [5–8] have shown the existence of

magnetized white dwarfs with masses significantly greater
than the traditional Chandrasekhar’s limit [9], also known
as super-Chandrasekhar white dwarfs to account for the
exceptionally high luminosities of the Type Ia supernovae,
e.g., SN2006gz, SN2007if, SN2009dc, SN2003fg [10–14].
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In these studies, the electron gas in the EoS is taken to be
free, relativistic, and Landau quantized in a strong magnetic
field. Hence, the masses and radii are independent of the
composition of the white dwarf. Coulomb corrections to the
EoS within the relativistic Feynman-Metropolis-Teller
(FMT) formalism of compressed atoms at zero [15] and
finite temperature [16] in the absence of magnetic field
have been explored previously.
The motive of the present work is to extend the

relativistic FMT treatment to study magnetized matter.
We included the effects of Landau quantization of the
electrons [17–20] which explicitly take care of the term
coming from the magnetic field interaction with the
electron magnetic moment. Thus, we obtain the changes
in pressure and energy density distribution which now
depend on the chosen atomic configuration contrary to the
studies in Refs. [10–14]. Finally, we applied this treatment
for helium, carbon, oxygen, and iron to obtain the EoS for
magnetized white dwarf matter up to the limit of inverse-β
decay. We solved the Tolman-Oppenheimer-Volkoff (TOV)
equation, which assumes spherically symmetric configu-
ration and hence an isotropic pressure, in order to obtain the
mass-radius relationship for magnetized white dwarfs. It is
worth mentioning that external magnetic field along a
particular axis creates pressure anisotropy [21] which
affects the mass-radius relation. For the present calculation,
we found that the splitting due to pressure anisotropy is
very small for smaller atomic configurations and increases
with the size of the atom though never exceeding 10% of
matter pressure for moderately high magnetic field even for
the largest atomic configuration. The effect of pressure
anisotropy has not been considered in the present work
which shows that the critical mass limit, subjected to the
stability against inverse-β decay, of magnetized white
dwarfs increases with the magnitude of the central mag-
netic field. However, this increase in critical mass depends
on the composition of the white dwarf as the effect is
minimal for a 4He white dwarf, and critical mass limit for
56Fe white dwarf can be as high as ∼5 M⊙.

II. LANDAU QUANTIZATION FOR
ELECTRONS IN MAGNETIC FIELD

The radius of gyration and cyclotron frequency, of
an electron subjected to a uniform magnetic field B, is
given by

rc ¼
mecv⊥
qB

; ωc ¼
qB
mec

; ð1Þ

where v⊥ is the velocity perpendicular to the magnetic
field. The Hamiltonian of the system is given by

H ¼ 1

2me

�
p⃗ −

qA⃗
c

�
2

; ð2Þ

where B⃗ ¼ ∇ × A⃗ with A⃗ being the electromagnetic vector
potential. To have a magnetic field in z direction with
magnitude B, one can have

A⃗ ¼

0
B@

0

Bx

0

1
CA; ð3Þ

and therefore

H ¼ 1

2me

�
p2
x þ

�
py −

qBx
c

�
2

þ p2
z

�
: ð4Þ

Using cyclotron frequency ωc ¼ qB
mec

; one obtains

H ¼ p2
x

2me
þ 1

2
meω

2
c

�
x −

ℏky
meωc

�
2

þ p2
z

2me
; ð5Þ

the first two terms represent a harmonic oscillator shifted

at x0 ¼ ℏky
meωc

with ℏky being p̂y eigenvalues. Hence, the
energy eigenvalues are

Eν;pz
¼ νℏωc þ

p2
z

2me
; ν ¼ nþ 1

2
þ sz; ð6Þ

where n ¼ 0; 1; 2… is the harmonic oscillator quantum
number and ν is called the Landau quantum number.
Zeeman effect [22] gets included through sz term. The
dynamically generated anomalous magnetic moment in
massless QED [23] is insignificant [24] for charged
fermions for EoS of a magnetized dense medium since
Lande’s g-factor ≅ 2ð1þ α

2πÞ is negligibly different from 2
for electrons, where α is the fine structure constant. Hence,
for the lowest Landau level (ν ¼ 0), the spin degeneracy
gν ¼ 1 (since only n ¼ 0, sz ¼ − 1

2
is allowed) and for

higher Landau levels (ν ≠ 0), gν ¼ 2 (as sz ¼ � 1
2
both are

allowed). Relativistically, Eν;pz
is given by [25]

Eν;pz
¼ ½p2

zc2 þm2
ec4ð1þ 2νBDÞ�12; ð7Þ

where BD ¼ B=Bc with Bc given by ℏωc ¼ ℏ eBc
mec

¼
mec2 ⇒ Bc ¼ m2

ec3

eℏ ¼ 4.414× 1013 gauss. The Fermi energy
EF is given by

E2
F ¼ p2

FðνÞc2 þm2
ec4ð1þ 2νBDÞ; ð8Þ

where pFðνÞ is the Fermi momentum. The upper limit of
Landau level νm can be found from

ν ≤
ϵ2F − 1

2BD
⇒ νm ¼ ϵ2Fmax − 1

2BD
; ð9Þ
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where ϵF ¼ EF=mec2. At zero temperature, the number
density of electrons is given by

ne ¼
2BD

ð2πÞ2λ3e
Xνm
ν¼0

gνxFðνÞ; ð10Þ

where λe ¼ ℏ
mec

is the Compton wavelength for electron,

xFðνÞ ¼ pFðνÞ
mec

and

ϵF ¼ ½x2FðνÞ þ 1þ 2νBD�12 ð11Þ

⇒ xFðνÞ ¼ ½ϵ2F − ð1þ 2νBDÞ�12: ð12Þ

The electron energy density is given by

εe ¼
2BD

ð2πÞ2λ3e
Xνm
ν¼0

gν

Z
xFðνÞ

0

Eν;pz
d

�
pz

mec

�

¼ BD

2π2
mec2

λ3e

Xνm
ν¼0

gνð1þ 2νBDÞψ
�

xFðνÞ
ð1þ 2νBDÞ1=2

�
;

ð13Þ

where

ψðzÞ ¼
Z

z

0

ð1þ y2Þ1=2dy

¼ 1

2

h
z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ ln

�
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p �i
: ð14Þ

The pressure of the electron gas is given by

Pe ¼ n2e
d
dne

�
εe
ne

�
¼ neEF − εe

¼ BD

2π2
mec2

λ3e

Xνm
ν¼0

gνð1þ 2νBDÞη
�

xFðνÞ
ð1þ 2νBDÞ1=2

�
;

ð15Þ

where

ηðzÞ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
− ψðzÞ

¼ 1

2

h
z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
− ln

�
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p �i
: ð16Þ

III. THE RELATIVISTIC FEYNMAN-
METROPOLIS-TELLER TREATMENT
IN PRESENCE OF MAGNETIC FIELD

For the extension of FMT formalism in the presence of
magnetic field, a compressed atom as a Wigner-Seitz cell
consisting of a finite size nucleus with mass number A and
atomic number Z at the center of the cell and completely
degenerate relativistic electron gas embedded in a strong

magnetic field is considered. As described in the preceding
section, electrons being charged particles occupy Landau
quantized states in a magnetic field B and the maximum
number of particles per Landau level per unit area is
eBð2sþ1Þ

hc . The Fermi energy EF of the νth Landau level in
the external magnetic field B in z direction and under the
influence of Coulomb potential VðrÞ can now be given by

EF ¼ ½p2
FðνÞc2 þm2

ec4ð1þ 2νBDÞ�12 −mec2 − eVðrÞ;
ð17Þ

where the Fermi energy is constant over a compressed
Wigner-Seitz cell. A constant number density distribution
of protons npðrÞ is assumed which is confined within

nuclear radius Rc ¼ r0A
1
3 ¼ ΔλπZ

1
3, with λπ ¼ ℏ

mπc
being

the Compton wavelength for pion of rest mass mπ

and hence can be given by npðrÞ ¼ Z
4π
3
R3
c
θðRc − rÞ.

Defining V̂ðrÞ ¼ eVðrÞ þ EF, from Eq. (17), pFðνÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂2 þ 2V̂mec2 − 2νBDm2

ec4
p

and from the condition
p2
F ≥ 0, the upper limit of Landau level νm can be obtained

as νm ¼ V̂2þ2V̂mec2

2BDm2
ec4

.

Using Landau quantization, the number density of
electrons under the influence of Coulomb screening is,
therefore, given by

neðrÞ ¼
2BD

ð2πÞ2λ3e
Xνm
ν¼0

gνxFðνÞ

where pFðνÞc ¼
�
ðV̂2 þ 2mec2V̂Þ

�
1 −

ν

νm

��1
2

; ð18Þ

with xFðνÞ ¼ pFðνÞc
mec2

as before. The overall Coulomb poten-
tial VðrÞ can be obtained by solving the Poisson equation

∇2VðrÞ ¼ −4πe½npðrÞ − neðrÞ�
⇒ ∇2V̂ðrÞ ¼ −4πe2½npðrÞ − neðrÞ�: ð19Þ

Introducing the dimensionless quantities x ¼ r
λπ

and

χðxÞ ¼ r V̂ðrÞ
ℏc ¼ x V̂ðxÞ

mπc2
, Eq. (19) can be rewritten as

1

x
d2χðxÞ
dx2

¼ −
3αθðxc − xÞ

Δ3
þ 2e2BD

πℏc

�
mπ

me

��
λπ
λe

�
3

×
Xνm
ν¼0

gν

��
1−

ν

νm

�	�
χ

x

�
2

þ 2

�
me

mπ

��
χ

x

�
�1
2

:

ð20Þ

The electrostatic potential and the number density distri-
bution of electrons can be obtained by solving Eq. (20)
with the boundary conditions χð0Þ ¼ 0 and χ0ðxWSÞ ¼
χðxWSÞ=xWS, where xWS is the dimensionless radius of
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the Wigner-Seitz cell. The first boundary condition follows
from the fact that potential cannot become infinite at the
center of the cell, while the second boundary condition
implies the charge neutrality which must ensure charge
number conservation Z ¼ R rWS

0 4πneðrÞr2dr as well as
χðxWSÞ ≥ 0 that preserves the basic assumption of FMT
approach that a compressed Wigner-Seitz cell is charac-
terized by a positive Fermi energy.

IV. THE EQUATION OF STATE

Once the relativistic FMT is solved for a compressed
atom in the presence of magnetic field, the EoS can be
constructed. The kinetic energy density including the
electronic rest mass within the Wigner-Seitz cell is given by

εkðxÞ ¼
BDmec2

2π2λ3e

Xνm
ν¼0

gνð1þ 2νBDÞψ
�

xFðνÞ
ð1þ 2νBDÞ1=2

�

ð21Þ

at radius (dimensionless) rðxÞ from the center of the cell.
The dependence on x, unlike the previous case (Sec. II), is
due to inclusion of Coulomb screening in Eq. (18). The
total kinetic energy Ek of the cell excluding the electronic
rest mass can be calculated as

Ek ¼ 4πλ3π

Z
xWS

xc

x2½εkðxÞ − neðxÞmec2�dx; ð22Þ

where xc ¼ Rc
λπ

is the dimensionless radius of the nucleus
resting at the center of the cell. As the calculations will be
performed up to the onset of inverse-β decay, the electrons
are absent inside the nucleus and the integration is
performed from xc.
The total potential energy Ec of the cell can be evaluated

using

Ec ¼ 4πλ3π

Z
xWS

0

x2½npðxÞ − neðxÞ�eVðxÞdx

⇒ Ec ¼ −4πλ3π
Z

xWS

xc

x2neðxÞeVðxÞdx

¼ −4πλ3πmπc2
Z

xWS

xc

xneðxÞχðxÞdxþ EFZ; ð23Þ

where the lower limit of the integration is changed to xc
since in the forthcoming calculations, while calculating
energy density, measured atomic masses will be used
implying that electronic rest mass and Coulomb energy
contribution due to nucleus will be accounted and the term
np is dropped since protons are not present beyond xc. It is,
therefore, obvious that in Eq. (22) electronic rest mass is
subtracted to avoid double counting.

The energy density ε can now be given by

ε ¼ Ek þ Ec þMðA; ZÞc2
4π
3
r3WS

þ B2

8π
; ð24Þ

where MðA; ZÞ is atomic mass of the uncompressed atom,
and the last term accounts for the magnetic contribution to
the energy density. The pressure P is simply given by

P ¼ BDmec2

2π2λ3e

Xνm
ν¼0

gνð1þ 2νBDÞη
�

xFðνÞ
ð1þ 2νBDÞ1=2

�
þ B2

24π
;

ð25Þ

but it should be evaluated at the cell boundary, and the
last term accounts for the magnetic contribution to the
pressure.

V. RESULTS AND DISCUSSION

Recently, there have been some important calculations
for masses and radii of magnetized white dwarfs using
nonrelativistic Lane-Emden equation and assuming a con-
stant magnetic field throughout the star. These calculations
yield masses up to 2.3–2.6 M⊙ [5] which are significantly
greater than the Chandrasekhar limit. However, because of
the structure of the Lane-Emden equation, pressure arising
due to a constant magnetic field does not contribute to
masses or radii whereas in the general relativistic TOV
[26,27] equation, it is not the case. Moreover, the EoS
needed to be fitted to a polytropic form. In order to derive a
mass limit for magnetized white dwarfs (similar to the mass
limit of ∼1.4 M⊙ obtained by Chandrasekhar [9] for
nonmagnetic white dwarfs), the same authors, under certain
approximations, have been able to reduce the EoS to a
polytropic form with index 1þ 1=n ¼ 2 for which analytic
solution of Lane-Emden equation exists [θðξÞ ¼ sin ξ=ξ
where ρ ¼ ρcθ

n with ρ and ρc being density and central
density, respectively], and avoiding the energy density
εB ¼ B2

8π and pressure PB ¼ 1
3
εB arising due to magnetic

field by assuming it to be constant throughout, they were
able to set a mass limit of 2.58 M⊙ [6,28]. The masses and
radii of white dwarfs have been calculated by solving the
general relativistic TOVequation both for nonmagnetic and
magnetized white dwarfs using the exact EoS without
resorting to fit it to a polytropic form [8].
In this present work, to find out the critical mass limit for

magnetized white dwarfs the general relativistic hydrostatic
equilibrium equation (TOV) has been solved for the EoS
obtained up to the density for onset of inverse-β decay. The
critical density ρβ;unifcrit for the onset of inverse-β decay
within the approximation of uniform electron density
distribution is given by
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ρβ;unifcrit ¼ Ar

Z
Mu

3π2ðℏcÞ3 ½ðϵβðZÞÞ
2 þ 2mec2ϵβðZÞ�3=2; ð26Þ

where Ar is the measured mass in atomic mass unit, Mu is
the atomic mass unit expressed in MeV, and ϵβðZÞ is the
energy to ignite the inverse-β decay. The experimental
energies for inverse-β decay are listed in Table I. The values
of the critical densities ρβ;unifcrit have been calculated using
Eq. (26) for the decays given in Table I. The Ar values used
for 4He, 12C, 16O, and 56Fe are 4.003, 12.01, 16.00, and
55.84, respectively. The EoS calculations for magnetic field
BD have been performed up to maximum (critical) densities
restricted by the condition that EF given by Eq. (17)
reaches asymptotically the inverse-β decay threshold
energy ϵβðZÞ. The critical densities ρβ;relFMT

crit for BD ¼
5Bc have also been provided in Table I. The inverse-β
decay threshold energies have been assumed to be inde-
pendent of magnetic field. Under this assumption, the
values of ρβ;relFMT

crit do not differ much from zero magnetic
field since the change in Fermi energy EF has a weak
dependence on magnetic field.
If a charged particle having charge qmoves with velocity

v perpendicular to an external magnetic field B, the
equilibrium is established through mv2

r ¼ qvB, i.e., the
magnetic field B ¼ mv

qr implies higher the magnetic field
lower the radius of the trajectory of the particle. This simple
logic applies to the atomic configuration subjected to
magnetic field as well. Hence, it is expected in the light
of the above logic that the radius of a particular cell
decreases with the magnetic field. As described earlier in
Sec. III in the presence of magnetic field, the relativistic
FMT treatment has been applied to study the changes in the
Wigner-Seitz cell and it has been found that the density
increases with magnetic field, though the variation of
density with magnetic field is not as fast as ρ ∝ B3 which
can be accounted for the Coulomb screening considered

under FMT treatment as well as the three-dimensional
configuration of Wigner-Seitz cell. On the other hand, in
the presence of magnetic field, the Landau quantization in
the perpendicular plane becomes effective as described
in Sec. II.
From Eq. (9), it is clear that νm depends on EF and BD.

As Fermi energy increases with density, νm is expected
to increase with density and decrease with the magnetic
field. Both Figs. 9 and 10 show that νmax decreases with
increasing magnetic field, implying the fact that under high
magnetic field the gap between successive Landau levels
increases. Again, an atomic configuration subjected to
higher compression will be of higher density and hence
will be characterized by higher Fermi energy. So, the νmax
of higher density configuration will be larger than νmax of
lower density as can be understood from the comparison of
Figs. 9 and 10. In FMT treatment, each compressed atomic
configuration is characterized by a constant Fermi energy.
However, an electron closer and tightly bound to the
nucleus carries more kinetic energy it implies that for a
particular magnetic field, the Landau-level quantum num-
ber should be greater near the nucleus. The dilute and
distant electrons are more vulnerable to the effects of a
magnetic field. Hence, higher the quantization effect and
lower the νmax toward the surface of the cell. These are
depicted in each of the curves in Figs. 9 and 10.
Considering all these facts, it can be inferred that the
atoms which are most compressed are least affected by the
magnetic field, as can be seen from the comparisons of the
Figs. 1–8 that the differences in the distributions are
reduced in the higher density domain. As the compact
stars are believed to be formed from the stellar collapse, an
atom subjected to higher compression (corresponding to
higher density) is supposed to have a higher magnetic field
and this can be connected with the simple formula
B1

B2
¼ ðρ1ρ2Þ

2
3, where B1ðB2Þ and ρ1ðρ2Þ are the atomic con-

figuration’s magnetic field and density, respectively. 1.53 ×
107 gm cm−3 density is used for the calculations in
Fig. 9, and 4.96 × 108 gm cm−3 density is used for
calculations in Fig. 10 for the same kind of atom.

As ð4.96×108
1.53×107Þ

2
3 ∼ 10, it is expected that the νmax values for

1Bc in Fig. 9 will be replicated in the νmax values for 10Bc
in Fig. 10.
The higher the value of νm in Eq. (9) and lower the gap

between two successive Landau levels ℏ eB
mec

, lesser will be
the quantization effect on the system. In the presence of
magnetic field B → 0, the gap between two successive
Landau levels vanishes and the energy spectrum becomes
continuum. Hence, the lowest magnetic field electron
distribution function will closely resemble the no magnetic
field electron distribution. This can be seen from Figs. 7
and 8 where it is found that the 1Bc magnetic field curve
almost overlaps with the 0Bc curve. However, as we
increase the magnetic field, the quanta ℏ eB

mec
increases

TABLE I. The onset of inverse beta decay instability for 4He,
12C, 16O, and 56Fe. The experimental inverse-β decay energies
ϵβðZÞ have been taken from Table 1 of [29]. The corresponding

critical density for the uniform electron density model ρβ;unifcrit is
calculated using Eq. (26), while the critical density ρβ;relFMT

crit under
the magnetic field for the relativistic FMT case is calculated by
the condition that EF given by Eq. (17) reaches asymptotically
the inverse-β decay threshold energy ϵβðZÞ whose numerical
values are taken from [30]; see also [31].

ϵβðZÞ ρβ;relFMT
crit ð5BcÞ ρβ;unifcrit

Decay channel (MeV) (g cm−3) (g cm−3)
4He → 3Hþ n → 4n 20.596 1.368 × 1011 1.37 × 1011

12C → 12B → 12Be 13.370 3.812 × 1010 3.88 × 1010

16O → 16N → 16C 10.419 1.785 × 1010 1.89 × 1010

56Fe → 56Mn → 56Cr 3.695 1.139 × 109 1.14 × 109
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and hence more is the effect of quantization on the electron
density distribution. However, with increasing the density,
the Fermi energy EF of the atomic configuration increases
which in turn increases the νm, thereby reducing the
quantization effect, and hence the deviation in the elec-
tronic distribution from no magnetic field case gets reduced
with higher density and this can be confirmed from the
comparison between Figs. 7 and 8. Figures 1 and 2 show
the electronic distributions of 4He under different magnetic
field strengths, and Figs. 3–6 represent the same for 12C

and 16O, respectively. As it has been observed that νm is a
function of the radial coordinate (Figs. 9 and 10), we can
expect a small hump in the electronic distributions when
calculated in the presence of magnetic field. In Figs. 1–6,
the electronic distributions have been plotted for different
atoms and their different densities. A close look at these
figures enables one to observe the small humps unlike the
no magnetic field case where the electronic distribution is
totally smooth. This factor is further confirmed by calcu-
lating the first derivative of the density distribution function
where the effects of these humps are more severe.

0 100 200 300 400
0

1

2

3

n
e
(x

)/
n

0

x

1Bc
5Bc

10Bc

FIG. 1. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 1.53 × 107 gm cm−3 for 4He.

0 100
0

1

2

3

n e
(x

)/
n 0

x

1Bc

5Bc

10Bc

FIG. 2. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 4.96 × 108 gm cm−3 for 4He.
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FIG. 3. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 1.53 × 107 gm cm−3 for 12C.
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FIG. 4. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 4.96 × 108 gm cm−3 for 12C.
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In Figs. 1–8, plots for neðxÞ=n0 as functions of dimen-
sionless radial coordinate x of Wigner-Seitz cell have been
shown for 4He, 12C, 16O, and 56Fe under the influence of
three different magnetic fields and for two different
densities where n0 is number density assuming uniform
distribution inside. In Figs. 9 and 10, plots for maximum
Landau levels νmax as functions of dimensionless radial
coordinate x of Wigner-Seitz cell have been shown for 56Fe
under the influence of three different magnetic fields and
for two different densities.

Compact stars are believed to be formed from the stellar
collapse of main sequence heavy stars. At the end of their
stellar evolution when the thermal pressure becomes
incapable of balancing the gravitational pull, it collapses
down till the Fermi degeneracy pressure of electrons grows
so much that it halts the collapse. This provides the star a
stable configuration, when the outward degeneracy pres-
sure balances the inward gravitational pull, which can be
yielded from the equation of hydrostatic equilibrium, i.e.,
TOVequation [26,27]. The pressure gradient dPdr from TOV
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FIG. 5. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 1.53 × 107 gm cm−3 for 16O.
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FIG. 6. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 4.96 × 108 gm cm−3 for 16O.
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FIG. 7. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 1.53 × 107 gm cm−3 for 56Fe.
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FIG. 8. Plots for neðxÞ=n0 as functions of dimensionless radial
coordinate x at density 4.96 × 108 gm cm−3 for 56Fe.
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can be intuitive to understand the configuration of such
a collapsed star. As relativistically or nonrelativistically,
the electron Fermi degeneracy pressure contributed from
the constituting matter of the star can be expressed as
PðrÞ ¼ constant × ρðrÞγ. Hence, the ρ ¼ constant cannot
be a possible solution for the interior of such a star made up
of highly compressed degenerate matter. On the other hand,
as every term in the right-hand side of the pressure gradient
equation is positive, dPdr must be ≤0. The equality holds for
the matter at infinity, i.e., on the surface of the star as is

obvious from the equation. Hence, the TOV equation
governs a configuration with pressure, maximum at the
center of the star, which gradually approaches 0 on the
surface implying a similar density distribution. But when
the star collapses, it is supposed that the magnetic field of
the progenitor is trapped into it. So, the magnetic field of
the collapsed star is nothing but how the flux is getting
conserved in the new configuration. Hence, to preserve
the flux conservation, the magnetic field of the new
configuration can be connected with the progenitor’s
one by the relation B

Bprog
¼ ð ρ

ρprog
Þ23, where BðBprogÞ and

ρðρprogÞ are the white dwarf’s magnetic field (progenitor
star) and density (progenitor star), respectively. If for
simplicity we assume a constant distribution of magnetic
field over the progenitor star, the surface magnetic field
gets fixed in the range of 106–109 gauss confirmed from
observations [2–4]. As the density at the center of the
white dwarf can be as high as ∼109–1010 times, the
density near the surface, central magnetic field can go as
high as ∼1012–1015 gauss.
However, if we take a magnetic field profile depending

on the density through the equation BD
Bs

¼ ð ρρsÞ
2
3, where BD

(in units of Bc) is the magnetic field at density ρ, Bs (in
units of Bc) is the surface magnetic field, it would provide a
steep magnetic field. But in the presence of magnetic field,
since in general relativity every source of energy is a source
of gravitation, the gravitational pull must be balanced by
the combined effects of magnetic field and electron
degeneracy pressure. Then at the center of the star such
magnetic field (∼1015–1016 gauss) would provide a huge
magnetic pressure which may lead to local instabilities. If
the magnetic pressure at center turns out to be really high to
dominate the gravitational field, then the magnetic pressure
may drive the collapsed matter to exhibit unstable con-
vection flow; therefore, one can expect expulsion of such
huge central magnetic field in a stable configuration.
Second, the huge magnetic field can lead to production
of particles in the system and the corresponding energy
extraction can reduce the central magnetic field. Ultimately,
we infer that such a magnetic field profile cannot be
sustained rather a magnetic field profile having flatness
near the center and the surface is preferred over such a
configuration.
On the basis of the above discussion, the actual calcu-

lations have been performed with varying magnetic field
including the effects of energy density and pressure arising
due to magnetic field in a general relativistic framework.
The variation of magnetic field [32] inside the white dwarf
is taken to be of the form

BD ¼ Bs þ B0½1 − expf−βðρ=ρ0Þγg�; ð27Þ

where ρ0 is taken as ρðr ¼ 0Þ=10 and β, γ are constants.
Once central magnetic field is fixed, B0 can be determined
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FIG. 9. Plots for νmax as functions of dimensionless radial
coordinate x at density 1.53 × 107 gm cm−3 for 56Fe.
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FIG. 10. Plots for νmax as functions of dimensionless radial
coordinate x at density 4.96 × 108 gm cm−3 for 56Fe.
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from the above equation. We choose constants β ¼ 0.8 and
γ ¼ 0.9 to ensure flatness of the field near the surface and
the center. Nevertheless, the magnetic field profile could
have been taken with different parameter values as far as no
local instability incurs. It would not alter the gross result by
much unless the central magnetic field varies significantly
and can be applied safely subjected to the virial condition
of stability that the magnetic energy never exceeds the
gravitational binding energy [33]. The maximum limit of
central magnetic field strength of the configuration given
by Eq. (27), therefore, must be chosen carefully owing to
all these stability criteria and for the present calculations it
is kept 10Bc, which is 4.414 × 1014 gauss, near to the lower
of the maximum limit, as suggested by N. Chamel et al.
[33,34]. The surface magnetic field Bs ∼ 109 gauss is
estimated by observations.
The configurations having predominantly high nuclear

binding energy are 4He, 12C, 16O, and 56Fe with 7.08, 7.68,
7.73, and 8.80 MeV per nucleon, respectively. In the
binding energy per nucleon versus mass number curve,
56Fe is at the maximum whereas the other three nuclides
occupy three peaks in the curve. Therefore, in the present
calculation, these four types of configurations have been
considered. We assumed that a progenitor star after
running out of its nuclear fuel collapses to finally form
a white dwarf from either of these abovementioned
materials. If the collapse can ignite further nuclear fission,
the white dwarf can again act as a living star and go under
the same process of stellar evolution till the configuration
of 56Fe is reached as no further evolution is possible
beyond this because this is the most stable nuclide having
the maximum binding energy per nucleon.
For different types of atoms of same density, the

Wigner-Seitz cell radius is RWS ∝ A
1
3
r. Hence, more the

atomic number, more is the trapped magnetic flux for
the same magnetic field profile. For simplicity, if one
assumes a constant magnetic field distribution which after
a gravitational collapse forms a magnetic field profile as
used in Eq. (27), then it is quite obvious that to form an
iron white dwarf, which is able to encompass a huge
number of flux compared to 4He, 12C, or 16O, a larger
amount of mass of progenitor star is to be collapsed than
the other configurations. On the other hand, it may as well
be formed that after many stellar evolution cycles, it may
be able to hold such kind of a magnetic field profile
consistent with a large amount of magnetic flux encom-
passing for iron cell. This factor in turn reflects a
possibility of getting considerably higher critical masses
for iron white dwarf than that for helium, carbon, or
oxygen white dwarfs. It can be envisaged that higher the
central magnetic field, higher the trapped magnetic flux
implying a larger collapse of the progenitor. Hence, white
dwarfs can be predicted by larger critical masses with the
increasing magnetic field. These factors can be confirmed
from the figures. In Figs. 11 and 12, masses and radii of

magnetized white dwarfs are shown as functions of the
central magnetic field. The present calculation estimates
that the effect is minimal for a 4He white dwarf and
exceeds slightly the Chandrasekhar’s limit for 12C and 16O
white dwarfs while for 56Fe the maximum mass can be
as high as ∼5 M⊙. These results are quite useful in
explaining the peculiar, overluminous type Ia supernovae
that do not conform to the traditional Chandrasekhar
mass limit.
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VI. SUMMARY AND CONCLUSION

In summary, we have considered each compressed atom
to be confined within a Wigner-Seitz cell with nucleus at
its center surrounded by relativistic degenerate electrons.
The effect of strong magnetic field is incorporated by
modifying the density of states of electrons due to Landau
quantization. The Coulomb screening substantially alters
the number density of electrons from the uniform one
which reduces the effective degeneracy pressure at the cell
boundary causing modification of EoS of the white dwarf
matter. Any source of energy gravitates according to
general relativity. Hence, the presence of magnetic field
contributes additively to energy density and pressure. The
masses and radii of magnetized white dwarfs, with a
density dependent magnetic field profile which is high at
the center, have been calculated by solving the TOV
equations. We find that the critical mass limit, subjected
to the stability against inverse-β decay, of such white
dwarfs increase with the magnitude of the central magnetic
field. However, this increase in critical mass depends on
the mass number of atoms. The effect is minimal for a

4He white dwarf and exceeds largely the Chandrasekhar’s
limit for 56Fe white dwarfs which can be as high as ∼5 M⊙.
To date there are about ∼250 magnetized white dwarfs

with well-determined fields [4] and over∼600 if objects with
no or uncertain field determination [2,3] are also included.
Surveys such as the sloan digital sky survey, hamburg quasar
survey, and the cape survey have discovered these magnet-
ized white dwarfs. The complete samples show that the field
distribution of magnetized white dwarfs is in the range
103–109 gauss, which basically provides the surface mag-
netic fields. However, the central magnetic field strength,
which is presumably unobserved by the above observations,
could be several orders of magnitude higher than the surface
field. In fact, it is the central magnetic field which is
crucial for super-Chandrasekhar magnetized white dwarfs.
However, the softening of the EoS accompanying the onset
of electron captures and pycnonuclear reactions in the
core of these stars can lead to local instabilities which set
an upper limit to the magnetic field strength at the center
of the star, ranging from 1014 to 1016 gauss depending on the
core [33] composition.
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