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The gravitating Julia-Zee dyon is a particle-like solution with both electric and magnetic charge. It is
found in the Einstein-Yang-Mills-Higgs system of SUð2Þ with a scalar field in the adjoint representation
coupled to gravity. Within the magnetic ansatz this system is reduced from describing dyons to describing
the gravitating ’t Hooft–Polyakov magnetic monopole. The stability of the well-known static gravitating
magnetic monopole solutions with respect to perturbations within the magnetic ansatz—so-called magnetic
perturbations—is well studied, but their stability with respect to perturbations outside the magnetic
ansatz—so-called sphaleronic perturbations—is not. I undertake a purely numerical study by adding
sphaleronic perturbations to gravitating magnetic monopole solutions and then dynamically evolving the
system. For large perturbations I find that the system heads toward a dyon configuration, as expected. For
sufficiently small perturbations, however, the system oscillates about the magnetic ansatz in a manner
consistent with oscillations about a stable equilibrium.
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I. INTRODUCTION

SUð2Þ, when spontaneously broken by a real triplet
scalar field, has as a classical solution the Julia-Zee dyon
[1], a spherically symmetric particle-like solution with both
electric and magnetic charge. Within the magnetic ansatz, a
physical constraint which sets the electric charge of the
Uð1Þ subgroup to zero, the theory no longer describes
dyons and has as a classical solution the ’t Hooft–Polyakov
monopole [2,3], a spherically symmetric particle-like
solution with only magnetic charge. When coupled to
gravity, the system has regular and black hole static dyon
solutions [4,5] and, within the magnetic ansatz, regular and
black hole static monopole solutions [6–10].
The magnetic ansatz, which plays a central role in this

work, is self-consistent, in that an evolution that begins
within the magnetic ansatz stays within the magnetic
ansatz. As I explain below, it is implemented by setting
a certain group of fields to zero. Thus, if an evolution
begins with the relevant fields set to zero, these fields stay
zero throughout the evolution.
The stability of the static gravitating magnetic monopole

solutions has been studied in some detail, but only with
respect to magnetic perturbations, which are perturbations
within the magnetic ansatz, where there is little question that
stability exists in a large area of parameter space [11–16].
This means that, in this area of parameter space, a dynamic
evolution that begins with initial data within the magnetic
ansatz will settle down to a static monopole configuration
and not, say, disperse all matter fields to infinity [16].
In addition to magnetic perturbations, there are sphaler-

onic perturbations, which are perturbations to the magnetic

ansatz itself. As far as I am aware, sphaleronic perturba-
tions to the static monopole solutions have not yet been
studied—presumably because it is very difficult to do so
analytically (or semianalytically)—and, consequently, it is
an open question whether gravitating magnetic monopoles
are stable. To avoid the difficulties in a (semi)analytical
stability analysis, I undertake a purely numerical study by
adding a sphaleronic perturbation to gravitating monopole
solutions and then dynamically evolving the system.
Performing the necessary evolutions requires code that
can dynamically evolve the full gravitating dyon system.
As far as I am aware, this is the first time the gravitating
dyon has been dynamically solved.
For relatively large perturbations, the system appears to

relax toward a dyon configuration. As the size of the
perturbation is made smaller, the electric charge in the
system decreases and the end states of the evolutions move
toward the monopole. For sufficiently small perturbations,
the electric charge density oscillates about zero in a manner
suggestive of oscillations about a stable equilibrium.
This in turn is suggestive of the gravitating monopole
being stable with respect to sphaleronic perturbations and,
hence, of the static gravitating monopole solutions being
stable with respect to both magnetic and sphaleronic
perturbations.
The dynamic evolution of systems related to the gravi-

tating dyon system studied here has a rich history. Choptuik
et al. [17,18] dynamically evolved pure SUð2Þ (i.e.,
unbroken and without a scalar field) in their study of black
hole critical phenomena. This was further studied in the
same system by a number of authors [19–21], as were tails
and other topics [19,22–26]. Millward and Hirschmann
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[27] studied critical phenomena in SUð2Þwith a scalar field
in the fundamental representation. Sakai [28] was the first
to dynamically evolve the gravitating monopole and was
interested in what happens when the scalar field vacuum
value is near its upper limit. I recently evolved the
monopole system in a study of type III critical phenomena
and stability with respect to magnetic perturbations [16]
and in a study of type II critical phenomena [29]. Finally,
Gundlach, Baumgarte, and Hilditch made a related type II
study in a system with a scalar field and an SUð2Þ Yang-
Mills field, but with only gravitational interactions [30].
With the important exception of the work of Rinne et al. in
Refs. [21,24], all of these papers worked within the
magnetic ansatz. Thus, there has been limited dynamical
study of SUð2Þ outside the magnetic ansatz.
In the next section, I present the equations that describe

the time-dependent gravitating Julia-Zee dyon, and discuss
gauge choices, the magnetic ansatz, and boundary con-
ditions. In Sec. III I discuss numerics. In Sec. IV I study the
stability of gravitating monopoles with respect to sphaler-
onic perturbations. I conclude in Sec. V.

II. EQUATIONS, GAUGES, THE MAGNETIC
ANSATZ, AND BOUNDARY CONDITIONS

In this Section I give the equations which describe the
gravitating dyon system. I gave many (though not all) of
these equations in Ref. [16], to which I refer the reader
for additional information. After presenting the equations,
I discuss gauge choices for the matter sector, the magnetic
ansatz, and boundary conditions.

A. Metric equations

My study of monopoles and dyons is restricted to
spherical symmetry. The general spherically symmetric
metric in the Arnowitt-Deser-Misner (ADM) formalism
[31,32] is

ds2 ¼ −ðα2 − a2β2Þdt2 þ 2a2βdrdtþ a2dr2

þ Br2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where the metric functions α, β, a, and B are functions of t
and r only and I use units such that c ¼ 1 throughout.
These four functions obey the Einstein field equations,

Gμν ¼ 8πGTμν; ð2Þ

where Tμν is the energy-momentum tensor.
The code I use to dynamically evolve the system uses

radial-polar spacetime gauge. This gauge has the benefit of
simplifying equations by setting B ¼ 1 and β ¼ 0. a and α,
the only metric functions to be solved for then, obey the
constraint equations

a0

a
¼ 4πGra2ρ −

a2 − 1

2r
;

α0

α
¼ 4πGra2Srr þ

a2 − 1

2r
; ð3Þ

which follow from the Einstein field equations. In Eq. (3),
primes denote r derivatives and ρ and Srr come from the
energy-momentum tensor and are given below. Although
the code I use only makes use of the metric functions
a and α, in the following I give the general form of
equations for completeness.

B. Matter equations

The matter content of the ’t Hooft–Polyakov monopole
and the Julia-Zee dyon is an SUð2Þ Yang-Mills-Higgs
theory, with gauge field Aa

μ and real scalar field ϕa in the
adjoint representation, where a ¼ 1; 2; 3 is the gauge index
(which can equivalently be placed up or down). For SUð2Þ
the generators satisfy ½Ta; Tb� ¼ iϵabcTc, where ϵabc is
the completely antisymmetric symbol with ϵ123 ¼ 1. In the
adjoint representation I define the components of the
generator matrices as ðTaÞbc ¼ −iϵabc with normalization
TrðTaTbÞ ¼ 2δab, where Tr here and below indicates a
trace over generator matrices. Defining

ϕ≡ Taϕa; Aμ ≡ TaAa
μ; Fμν ≡ TaFa

μν; ð4Þ

where a sum over repeated gauge indices is implied and
Fa
μν is the field strength, the Yang-Mills-Higgs (YMH)

Lagrangian is

LYMH ¼ −
1

2
Tr½ðDμϕÞðDμϕÞ� − V þ LSUð2Þ; ð5Þ

where

LSUð2Þ ¼ −
1

8g2
TrðFμνFμνÞ; ð6Þ

g is the gauge coupling constant,

Dμϕ ¼ ∇μϕ − i½Aμ;ϕ�;
Fμν ¼ ∇μAν −∇νAμ − i½Aμ; Aν�; ð7Þ

and V is the scalar potential, whose form I give below.
Spherical symmetry constrains the fields. The general

spherically symmetric SUð2Þ gauge field takes the form
[33–35]

At ¼ T3ut;

Ar ¼ T3ur;

Aθ ¼ T1w2 þ T2w1;

Aϕ ¼ ð−T1w1 þ T2w2 þ T3 cot θÞ sin θ; ð8Þ

BEN KAIN PHYS. REV. D 100, 063003 (2019)

063003-2



where ut, ur, w1, and w2 parametrize the gauge field and are
functions of t and r only, and the real triplet scalar field
takes the form

ϕ ¼ φffiffiffi
2

p T3; ð9Þ

where φ is a canonically normalized real scalar field and is
a function of t and r only. The components of the spheri-
cally symmetric field strength can be found, e.g., in
Refs. [16,18].
Witten showed that spherical symmetry breaks SUð2Þ

down to Uð1Þ [33]. This can be shown explicitly by writing
the pure SUð2Þ Lagrangian (6), with gauge field (8), as a
Lagrangian for a complex scalar field gauged under Uð1Þ:

LSUð2Þ ¼ −
2

g2Br2
ðDμwÞðDμwÞ�

−
1

2g2B2r4
ð1 − jwj2Þ2 − 1

4g2
fμνfμν; ð10Þ

where w ¼ w1 þ iw2,

Dμw ¼ ∇μw − iaμw;

aμ ¼ ðut; ur; 0; 0Þ;
fμν ¼ ∇μaν −∇νaμ: ð11Þ

I thus find that w acts as the complex “scalar” field gauged
under Uð1Þ, but with noncanonical kinetic terms and an
atypical “scalar” potential. The SUð2Þ Lagrangian (10) is
clearly invariant under a Uð1Þ gauge transformation,

ui → u0i ¼ ui −∇iτ; w → w0 ¼ we−iτ; ð12Þ

where i ¼ t, r and τ is the gauge parameter. Since the
spherically symmetric kinetic term for the actual scalar
field is

−
1

2
Tr½ðDμϕÞðDμϕÞ� ¼ −∂μφ∂μφ −

2

Br2
jwj2φ2; ð13Þ

we find that with φ invariant under the Uð1Þ transformation
the complete theory has a Uð1Þ symmetry. This symmetry
will be made use of when I fix the gauge below.
The scalar potential for the monopole and dyon is

V ¼ λ

4
ðφ2 − v2Þ2; ð14Þ

where λ is the self-coupling constant and v is the vacuum
value of φ. This scalar potential spontaneously breaks
SUð2Þ down to Uð1Þ, giving rise to massive vector bosons
and a massive scalar field with masses

mV ¼ gv; mS ¼
ffiffiffiffiffi
2λ

p
v: ð15Þ

I gave the equations of motion which follow
from the Einstein-Yang-Mills-Higgs Lagrangian LEYMH ¼ffiffiffiffiffiffi−gp

LYMH in Ref. [16], which I repeat here. For numerical
purposes it is important to have the equations of motion in
first-order form. I thus define

Φ≡ φ0; Π≡ aB
α

ð _φ − βΦÞ;

Q1 ≡ w0
1 þ urw2; P1 ≡ a

α
ð _w1 þ utw2 − βQ1Þ;

Q2 ≡ w0
2 − urw1; P2 ≡ a

α
ð _w2 − utw1 − βQ2Þ;

Y ≡ Br2

2αa
ð _ur − u0tÞ: ð16Þ

I list the equations of motion grouped into families, using a
dot to denote t derivatives. First, φ, Φ, and Π are

_φ ¼ α

aB
Πþ βΦ;

_Φ ¼ ∂r

�
α

aB
Πþ βΦ

�
;

_Π ¼ 1

r2
∂r

�
αBr2

a
Φþ r2βΠ

�
− αaB

∂V
∂φ

−
2αa
r2

ðw2
1 þ w2

2Þφ: ð17Þ

Then, w1, Q1, and P1 are

_w1¼
α

a
P1−utw2þβQ1;

_Q1¼∂r

�
α

a
P1þβQ1

�
−utQ2þur

�
α

a
P2þβQ2

�
þw2

2αa
Br2

Y;

_P1¼∂r

�
α

a
Q1þβP1

�
−P2ðut−βurÞþ

α

a
urQ2

þ αa
Br2

w1ð1−w2
1−w2

2Þ−g2αaw1φ
2: ð18Þ

Next, w2, Q2, and P2 are

_w2¼
α

a
P2þutw1þβQ2;

_Q2¼∂r

�
α

a
P2þβQ2

�
þutQ1−ur

�
α

a
P1þβQ1

�
−w1

2αa
Br2

Y;

_P2¼∂r

�
α

a
Q2þβP2

�
þP1ðut−βurÞ−

α

a
urQ1

þ αa
Br2

w2ð1−w2
1−w2

2Þ−g2αaw2φ
2: ð19Þ

And finally, ur and Y are
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_ur ¼
2αa
Br2

Y þ u0t;

_Y ¼ α

a
ðw1Q2 − w2Q1Þ þ βðw1P2 − w2P1Þ: ð20Þ

Note that I do not have an evolution equation for ut, which I
will handle when fixing the gauge. There exists one final
equation, which is the Gauss constraint:

Y 0 ¼ w1P2 − w2P1: ð21Þ

I shall show below that Y is proportional to the total electric
charge inside a sphere of radius r and thus Y 0 ¼ ∂Y=∂r is
proportional to the radial electric charge density.
In Ref. [16] I gave the energy-momentum tensor that

follows from the Lagrangian in Eq. (5), including each of
its nonvanishing components and a number of commonly
used matter functions which follow from it. Here I repeat
only the matter functions used in Eq. (3):

ρ ¼ 1

2a2

�
Φ2 þ Π2

B2

�
þ ðw2

1 þ w2
2Þφ2

Br2
þ V

þ ð1 − w2
1 − w2

2Þ2
2g2B2r4

þQ2
1 þQ2

2 þ P2
1 þ P2

2

g2a2Br2
þ 2Y2

g2B2r4
;

Srr ¼
1

2a2

�
Φ2 þ Π2

B2

�
−
ðw2

1 þ w2
2Þφ2

Br2
− V

−
ð1 − w2

1 − w2
2Þ2

2g2B2r4
þQ2

1 þQ2
2 þ P2

1 þ P2
2

g2a2Br2
−

2Y2

g2B2r4
:

ð22Þ

C. Electric charge and mass

The electric charge is found with the help of the
conserved electric current jμ, which follows from the
inhomogeneous Maxwell equation,

∇μfμν ¼ gjν; ð23Þ

where the factor of g is included because of my convention
for the Uð1Þ gauge field in Eqs. (10) and (11). That
∇μjμ ¼ 0, and hence that jμ is conserved, follows immedi-
ately from fμν being antisymmetric. The components of the
current work out to be

jt ¼ 2Y 0

gαaBr2
; jr ¼ −

2 _Y
gαaBr2

: ð24Þ

The total charge enclosed in a sphere of radius r is
given by [36]

qðt; rÞ ¼
Z ffiffiffi

γ
p ð−nμjμÞdrdθdϕ ¼ 8π

g

Z
r

0

Y 0dr

¼ 8π

g
Yðt; rÞ; ð25Þ

where nμ ¼ ð−α; 0; 0; 0Þ is the time-like unit vector normal
to the spatial slices,−nμjμ is the electric charge density, and
γ ¼ a2B2r4 sin2 θ is the determinant of the spatial metric. I
explain below that the finiteness of the energy density at the
origin requires Yðt; 0Þ ¼ 0, which allows for the evaluation
of the limits above. The total charge in the system,
q∞ ≡ qðt;∞Þ, is a conserved quantity. As promised, Y is
proportional to the total electric charge inside a sphere of
radius r. I note that q is related to the radial component of the
electric field, Er ¼ −frμnμ=g ¼ q=ð4πaBr2Þ, where the
factor of g in the definition for Er again follows from my
convention for the Uð1Þ gauge field in Eqs. (10) and (11).
A convenient form for the mass function can be

motivated by looking at the static solution in the large-r
limit. Defining for convenience the function M as

1

grr
¼ 1

a2
≡ 1 −

2GM
r

; ð26Þ

from which GM ¼ ðr=2Þð1 − 1=a2Þ, I have

M0 ¼ 4πr2ρ; ð27Þ

where I used the a0 equation in Eq. (3). I explain below that
the outer boundary conditions at r ¼ ∞ are φ ¼ �v and
w1 ¼ w2 ¼ 0, for which, in the static limit, the energy
density ρ in Eq. (22) reduces significantly and

M0 ¼ 2π

g2r2
þ q2

8πr2
: ð28Þ

In the large-r limit q → q∞ and is constant, allowing the
above equation to be easily integrated and I have

1

grr
¼ 1

a2
¼ 1 −

2GM
r

þ 4πGð1=gÞ2
r2

þ Gq2∞=4π
r2

; ð29Þ

whereM is the ADMmass. This is the Reissner-Nordström
solution with unit magnetic charge (in units of g) and
electric charge q∞. This solution motivates defining the
mass function as

mðt; rÞ ¼ r
2G

�
1 −

1

a2ðt; rÞ þ
4πG
g2r2

þ Gq2ðt; rÞ
4πr2

�
; ð30Þ

whose asymptotic value gives the ADMmassM¼mðt;∞Þ.
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D. Matter gauges

The matter sector obeys the gauge transformation (12)
and it will be useful to fix this gauge. In this subsection I
comment on a few gauge choices. One choice is temporal
gauge, which fixes ut ¼ 0 and immediately solves the
problem that there is no evolution equation for ut. In some
gauges, static solutions—in which gauge-invariant fields,
such as jwj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2

p
and Y, are time independent—

have gauge-dependent fields, such as ur, w1, and w2, which
retain a time dependence. Temporal gauge is perhaps the
easiest gauge in which to see that this is the case. Y, being
proportional to the total electric charge inside a sphere of
radius r, must be time independent and nonzero for a static
dyon. A look at its definition in Eq. (16) shows that with
ut ¼ 0, _ur must be nonzero.
Another possibility is radial gauge, which fixes ur ¼ 0

and the ur evolution equation in Eq. (20) reduces to an
ordinary differential equation for ut. Rinne et al. used radial
gauge in their dynamical study of pure SUð2Þ [21,24].
Radial gauge is the best choice for finding static solutions
directly, since, for static solutions, all fields are time
independent and one can additionally fix w2 ¼ 0.
The final gauge I mention is Lorenz gauge, which

introduces an evolution equation for ut through the
Lorenz gauge condition, ∇μaμ ¼ 0. As with temporal
gauge, some gauge-dependent fields in Lorenz gauge retain
a time dependence for static solutions. I use Lorenz gauge in
this work because, for the numerical scheme I am using,
I found Lorenz gauge to be the most stable. Introducing the
auxiliary field

Ω≡ aB
α

ðut − βurÞ; ð31Þ

the Lorenz gauge condition can be written as

ut¼
α

aB
Ωþβur; _Ω¼ 1

r2
∂r

�
r2
�
αB
a
urþβΩ

��
: ð32Þ

E. Magnetic ansatz

The magnetic ansatz is a physical constraint on the
theory (and not a gauge choice) which sets the electric
charge of the Abelian subgroup to zero and reduces the
dyon to the monopole. I take its definition to be

Y 0ðt; rÞ ¼ 0; ð33Þ

since Y 0 is proportional to the electric charge density.1 Once
the magnetic ansatz is made, convenient gauge choices

(see, e.g., Refs. [16,18] for details) set ut ¼ ur ¼ w2 ¼ 0
and the only nonvanishing matter fields are φ and w1.
The magnetic ansatz is self-consistent, in that an evo-

lution that begins with initial data within the magnetic
ansatz remains within the magnetic ansatz. That this is so is
a big reason why nearly all dynamical gravitational studies
of SUð2Þ have been done within the magnetic ansatz (the
only exceptions I am aware of are Refs. [21,24]). To be
specific, an evolution with initial data that has Y 0 ¼ ut ¼
ur ¼ w2 ¼ 0 everywhere, keeps Y 0 ¼ ut ¼ ur ¼ w2 ¼ 0
everywhere. An immediate consequence is that an evolu-
tion that begins with the gravitating monopole, stays with
the gravitating monopole.
It is an open question whether the magnetic ansatz is

stable in the gravitating monopole system and hence
whether gravitating monopoles are stable. I study this
issue numerically in Sec. IV.

F. Boundary conditions

To solve the system of equations I need boundary
conditions for many of the variables. Boundary conditions
include both conditions at the boundary of space and the
boundary of the computational domain. I list a number of
boundary conditions in this subsection and discuss the
outer boundary of the computational domain in the next
section.
The inner boundary condition for a is aðt; 0Þ ¼ 1, which

is the flat space value a has when inside a spherically
symmetric matter distribution and follows from finiteness
of the top equation in Eq. (3). As can be seen from the
bottom equation in Eq. (3), any solution for α can be scaled
by a constant and still be a solution. I set αðt; rÞ ¼ 1=aðt; rÞ
at large r, a choice motivated by the spacetime being
asymptotically Reissner-Nördstrom. I take the parity of a
and α to be even near the origin.
Some boundary conditions for matter functions follow

from the energy density ρ in Eq. (22)being finite at the
origin and r2ρ vanishing as r → ∞ so that the total
integrated energy is finite. At the inner boundary I have
φ ¼ OðrÞ, jwj2 ¼ w2

1 þ w2
2 ¼ 1þOðr2Þ, and Y ¼ Oðr2Þ.

Additional inner boundary conditions can be found by
solving the equations of motion after expanding them
around the origin. I find

w1¼ cosθwðtÞþOðr2Þ; w2 ¼ sinθwðtÞþOðr2Þ; ð34Þ

where I have introduced the angle θw as a parametrization
of w2

1 þ w2
2 ¼ 1þOðr2Þ, and

ut ¼ _θwðtÞ þOðr2Þ; ur ¼ OðrÞ: ð35Þ

I note in particular that the equation for ut is the solution to
the Gauss constraint in Eq. (21). It is easy to see that the
equation for ut may also be written as ut¼− _w1=w2þOðr2Þ
and ut ¼ _w2=w1 þOðr2Þ. These two forms are precisely

1It is easy to see that if Y 0ðt; rÞ ¼ 0, then physically it must also
be that Yðt; rÞ ¼ 0, since Yðt; rÞ is proportional to the total
electric charge inside a sphere of radius r. Yðt; rÞ ¼ 0 is a
common way of expressing the magnetic ansatz.
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what is needed for the ðP2
1 þ P2

2Þ=r2 term in the energy
density to be finite at the origin. At r ¼ ∞ I have φ ¼ �v
and w1 ¼ w2 ¼ 0. I take the parity of the matter fields to be
Φ, w1, w2, P1, P2, ut, and Ω are even and φ, Π, Q1, Q2, ur,
and Y are odd near the origin.

III. NUMERICS

In this section I describe numerical aspects, including the
code I use to dynamically evolve the system of equations
listed in the previous section. As mentioned there, I evolve
the system in radial-polar spacetime gauge, which fixes
B ¼ 1 and β ¼ 0. The constraint equations in Eq. (3)
determine the metric functions a and α on a given time slice
and I solve them using second order Runge-Kutta. The
evolution equations in Eqs. (17)–(20) and the Lorenz gauge
condition equations in Eq. (32) determine the matter fields
φ,Φ,Π, w1,Q1, P1, w2,Q2, P2, ut, ur, Y, andΩ and I solve
them using the method of lines and third-order Runge-
Kutta. I note in particular that I solve for Y using its
evolution equation in Eq. (20) instead of the Gauss
constraint in Eq. (21) because I found this to be more
stable. I use centered sixth-order finite differencing for
spatial derivatives. In solving the evolution equations I
include fourth-order Kreiss-Oliger dissipation [31] to help
with stability. Inner boundary conditions at the origin are as
given in Sec. II F.
Since the outer boundary of the computational

domain does not extend to r ¼ ∞ I need outer boundary
conditions for the matter fields that allow them to exit the
computational domain. I use standard outgoing wave
conditions with φ modeled as a spherical wave and w1

and w2 modeled as one-dimensional waves, just as in
Ref. [16]. Additionally, I model ur and Ω as spherical
waves. ut and Y do not need outer boundary conditions
since ut is given by an algebraic equation in Lorenz gauge
and the evolution equation for Y does not contain spatial
derivatives and can be integrated right up to the outer
boundary.
In any numerical study it is best to use dimensionless

variables. In the literature there exist two common mass
scales used for constructing dimensionless quantities: mP

and v, where mP ¼ 1=
ffiffiffiffi
G

p
is the Planck mass and v is the

vacuum value of the scalar field. As in Ref. [16], I use mP

and define mG ≡mP=
ffiffiffiffiffiffi
4π

p
(where the

ffiffiffiffiffiffi
4π

p
is included for

convenience) and the dimensionless quantities

r̄≡ ðgmGÞr; t̄≡ ðgmGÞt;
v̄≡ v=mG; λ̄≡ λ=g2;

φ̄≡ φ=mG; ūt ≡ ut=gmG; ūr ≡ ur=gmG; ð36Þ

along with m̄≡ ðgmG=m2
PÞm and Ω̄≡Ω=gmG. I note that

w1, w2, and Y are already dimensionless and v̄ ¼ mV=gmG

and λ̄ ¼ ðmS=
ffiffiffi
2

p
mVÞ2, where mV and mS are the vector

and scalar masses in Eq. (15). The results presented
in the next section will be the radial energy and radial
electric charge densities. For future convenience, then, the
dimensionless quantities in terms of the dimensionful
quantities are

r̄2ρ̄ ¼ 4πr2ρ=m2
P; Y 0 ¼ ∂Y

∂r̄ ¼ 1

4
ffiffiffi
π

p
mP

∂q
∂r ; ð37Þ

where ρ̄≡ ρ=g2m4
G is the dimensionless energy density and

a prime now denotes a derivative with respect to r̄ instead
of r.
The code I use is second-order accurate and I have

confirmed second order convergence. In Lorenz gauge it is
surprisingly stable. I have not found any indications of
instability using a uniform computational grid and a grid-
point spacing of Δr̄ ¼ 0.06, or even larger, and a time step
of Δt̄=Δr̄ ¼ 0.5, including for very long runs. Further,
there is no discernible difference between results usingΔr̄ ¼
0.06 and a smaller grid-point spacing.By using the relatively
large grid-point spacing Δr̄ ¼ 0.06, I can also use a large
value for r̄max, the position of the outer boundary, and still
have run times that are not impractical. Any numerical
scheme that allows fields to exit the computational domain
will have (artificial) reflections due to fields not perfectly
exiting. By pushing the outer boundary far enough out, these
reflections will take so long to return that they cannot
influence what happens near the origin. For the results
presented in the next section I useΔr̄ ¼ 0.06,Δt̄=Δr̄ ¼ 0.5,
r̄max ¼ 5000, and evolve the system to t̄ ¼ 10 000.

IV. SPHALERONIC STABILITY OF
GRAVITATING MONOPOLES

In this section I study the stability of gravitating
monopoles with respect to sphaleronic perturbations, i.e.,
perturbations to the magnetic ansatz. I do so by taking
initial data within the magnetic ansatz, and thus initial data
for a gravitating monopole, and adding to it a magnetic
ansatz-breaking perturbation. I then dynamically evolve the
system. My focus will primarily be on the quantity Y 0. This
is because Y 0 is gauge invariant and Y 0 ¼ 0 defines the
magnetic ansatz.2

The parameters of the system are v̄ and λ̄. In the
following I restrict attention to v̄ ¼ 0.2 and λ̄ ¼ 0. For
these values, there exists a unique regular static monopole
solution [9].3 This means that all initial data with v̄ ¼ 0.2,
λ̄ ¼ 0, and without a sphaleronic perturbation evolves to
the same static monopole solution (as long a black hole
does not form) [16]. Further, it means that all sphaleronic

2One can just as easily use Y instead of Y 0 and obtain the same
results found below.

3I am referring to the fundamental solution, in which the
gauge field w1 only equals zero at r ¼ ∞, and not to excited
solutions [9] which are expected to be unstable.

BEN KAIN PHYS. REV. D 100, 063003 (2019)

063003-6



perturbations are perturbing the same static monopole
solution.
I explained in Sec. II E that the magnetic ansatz can be

thought of as Y 0 ¼ 0, along with ut ¼ ur ¼ w2 ¼ 0 (the
latter set of conditions being gauge dependent). Thus, in
constructing initial data, I begin with Y 0¼ut¼ur¼w2¼0
and then add a nonzero value to one of these fields. For
reasons having to do with constructing initial data, I only
consider nonzero values forw2 and ur. I present results for a
w2 perturbation to generic magnetic initial data and a ur
perturbation to the static gravitating monopole solution.
I have studied evolutions for various initial data and found
the results that follow to be typical.
For the w2 perturbation, I use for the magnetic part of the

initial data [16]

φð0; rÞ ¼ v tanh ðr=sφÞ;

w1ð0; rÞ ¼
1

2

�
1þ

�
1þ a1

�
1þ b1r

s1

�
e−2ðr=s1Þ2

�

× tanh

�
r1 − r
s1

��
; ð38Þ

along with _φð0; rÞ ¼ _w1ð0; rÞ ¼ 0. The parameters r1 and
s1 give the center and spread of the w1 pulse and the
parameters a1 and b1 are chosen such that the boundary
conditions for w1 are satisfied at the origin and are given by
a1 ¼ cothðr1=s1Þ − 1 and b1 ¼ cothðr1=s1Þ þ 1. The spha-
leronic w2 perturbation is a Gaussian:

w2ð0; rÞ ¼ f2ðr=r2Þ2e−ðr−r2Þ2=s22 ; ð39Þ
along with _w2ð0; rÞ ¼ 0. The parameters r2 and s2 give the
center and spread of the perturbation and f2 can be thought
of as its strength.

In Fig. 1 I show a typical evolution for a large
perturbation. The main purpose of this figure is to give
an impression of what an evolution looks like. I plot the
radial energy density, r̄2ρ̄ (purple), and Y 0 ¼ ∂Y=∂r̄
(blue), which is proportional to the radial electric charge
density. One can thus see how energy and electric
charge distribute themselves over the course of an
evolution. Both the energy and electric charge appear
to maintain a localized configuration at late times and
thus the system appears to settle toward a gravitating
dyon. The expectation for a large perturbation is that the
system is pushed far from the monopole and stays far
from the monopole. That the evolution in Fig. 1 appears
to maintain a large nonzero electric charge density is
consistent with this.
I show a typical evolution when the perturbation is small

in Fig. 2, where again the purple curve is the radial energy
density and the blue curve is Y 0, which is proportional to the
radial electric charge density. The beginning of the evolu-
tion is similar to Fig. 1 and is not shown. I focus instead on
late times where we can see Y 0 oscillating. Physically, it
would appear that shells of positive and negative charge
trade places as they oscillate closer and then farther from
the center of the system.
As mentioned above, in analyzing stability with respect

to sphaleronic perturbations I focus on Y 0. I show an
alternative view of the evolutions of Y 0 in Fig. 3. The top
curve in Fig. 3(a) is for the same evolution shown in Figs. 1,
and 3(g) is for the same evolution shown in Fig. 2. The
plots in Fig. 3 are all for the specific value r̄ ¼ 5.01 and the
first two rows show a series of evolutions with decreasing
perturbation strengths. One can see that as the size of the
perturbation decreases, the oscillations of Y 0 move toward
being around zero.

FIG. 1. A time evolution of the radial energy density, r̄2ρ̄ (purple), and Y 0 ¼ ∂Y=∂r̄ (blue), which is proportional to the radial electric
charge density, as a function of r̄ for v̄ ¼ 0.2, λ ¼ 0, initial data (38) with s̄φ ¼ 10, r̄1 ¼ 2, and s̄1 ¼ 5, and sphaleronic perturbation (39)
with r̄2 ¼ 15, s̄2 ¼ 4, and f2 ¼ 1. Although only plotted out to r̄ ¼ 100, the outer boundary of the computational domain extends to
r̄ ¼ 5000. The perturbation is large and the evolution appears to head toward a dyon configuration and maintain a large nonzero value
for Y 0, which breaks the magnetic ansatz. Starting in the bottom row, I change the vertical scale to better see the solutions. The value of t̄
is given in the corner of each frame.
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Figure 2 and the middle row of Fig. 3 are suggestive of
oscillations about a stable equilibrium. If this is the case,
the stable equilibrium appears to be Y 0 ¼ 0, which is the
magnetic ansatz. To further analyze this possibility I take a
closer look at the individual oscillations. The bottom row of

Fig. 3 shows the same evolutions as the middle row except
zoomed in so that individual oscillations can be seen. If
these oscillations do actually contain harmonic oscillations
about a stable equilibrium, we would expect a number of
things about the period of the oscillations. One would

FIG. 2. A time evolution of the radial energy density, r̄2ρ̄ (purple), and Y 0 ¼ ∂Y=∂r̄ (blue), which is proportional to the radial electric
charge density, as a function of r̄ with the same initial data given in the caption of Fig. 1, except with the sphaleronic perturbation
strength f2 ¼ 0.02, making this a small perturbation. The value of t̄ is given in the corner of each frame. I do not show the beginning of
the evolution because it looks similar to that shown in Fig. 1. I show instead late times where we can see Y 0 oscillating.

FIG. 3. Each plot is a time evolution of Y 0 ¼ ∂Y=∂r̄, which is proportional to the radial electric charge density, for the specific
value r̄ ¼ 5.01 and the same initial data given in the caption of Fig. 1, except with the perturbation strength f2 equal to (a) (from top to
bottom) 1, 0.5 (b) 0.1, (c) 0.08, (d) 0.05, (e) 0.04, (f) 0.03, (g) 0.02, (h) 0.01, (i) 0.008, and (j) 0.005. (a) is the same evolution shown in
Fig. 1 and (g) is the same evolution shown in Fig. 2. The bottom row is the same as the middle row except zoomed in so that individual
oscillations can be seen.
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expect the period to be both t̄ and r̄ independent as well as
independent of the strength of the perturbation (as long as
the perturbation is sufficiently small). A precise determi-
nation of the periods of the oscillations can be made from
the Fourier transform, which I will label F ðY 0Þ. My interest
is in the most rapid oscillations and I show in Fig. 4 the
Fourier transform of the data given in the first two rows of
Fig. 3. The Fourier transform presented is for data with
t̄ > 2000, so as to ignore initial transient effects which
precede the steady-state oscillations. I find two narrow
spikes with periods τ̄1 ¼ 33.3� 0.1 and τ̄2 ¼ 36.0� 0.1.
As the strength of the perturbation decreases, the locations
of the spikes do not change and thus the periods of the
oscillations are independent of the strength of the pertur-
bation (as long as the perturbation is sufficiently small).
Further, I have Fourier transformed the data at different
values of r̄ and for different ranges of t̄ and found the
locations of the two spikes to be both t̄ and r̄ independent.
That there are two spikes whose periods are very close is
expected after seeing beats in Fig. 3.
I now perturb the well-known static gravitating

monopole solutions. These solutions were first studied
in Refs. [6–9], with a comprehensive analysis given in
Refs. [9,10]. I gave a limited review, using the same
notation used here, of constructing the solutions in
Ref. [16]. In terms of matter fields, the static monopole
solutions have nonzero values for φ, Φ, w1, and Q1. After
constructing a static solution for the initial data, I add
a ur-sphaleronic perturbation, which is again a Gaussian:

urð0; rÞ ¼ frðr=rrÞe−ðr−rrÞ2=s2r ; ð40Þ

along with _urð0; rÞ ¼ 0. The parameters rr and sr give the
center and spread of the perturbation and fr can be thought

of as its strength. I note that this perturbation gives a
nonzero value for Q2, as can be seen from Eq. (16).
I show the evolution of Y 0 for a series of perturbations of

decreasing size in Fig. 5, again for r̄ ¼ 5.01. In the top row
we see that as the perturbation strength decreases the
oscillations of Y 0 move toward being around zero. The
middle row of Fig. 5 presents the same evolutions as the top
row except zoomed in so that individual oscillations can be
seen. The bottom row shows the Fourier transform of the
top row for t̄ > 2000. I find spikes in the Fourier transform
at the exact same locations that we did in Fig. 4: τ̄1 ¼
33.3� 0.1 and τ̄2 ¼ 36.0� 0.1. I have Fourier transformed
this data at different values of r̄ and for different ranges of t̄
and found the locations of the two spikes to be both t̄ and r̄
independent.
The results in this section are evidence for the stability

of gravitating magnetic monopoles with respect to spha-
leronic perturbations. As the sphaleronic perturbation
decreases in size, the system is found to oscillate about
the magnetic ansatz. For sufficiently small perturbations
the periods of the oscillations are both t̄ and r̄ independent
and independent of the strength of the perturbation.
Indeed, the periods are independent of the initial data
entirely. Two distinct and narrow spikes in the Fourier
transform were found with periods τ̄1 ¼ 33.3� 0.1 and
τ̄2 ¼ 36.0� 0.1.
In this section I displayed results only for v̄ ¼ 0.2 and

λ̄ ¼ 0. I have looked at other values of v̄ (but kept λ̄ ¼ 0)
and found that the oscillation periods depend on v̄, but are
otherwise independent of initial data (for sufficiently small
perturbations). Indications are that there exists a branch of
static monopole solutions (parametrized by v̄) that are
stable with respect to sphaleronic perturbations. Mapping
this out is beyond the scope of this work, but it would be
interesting to look at this more closely.

FIG. 4. Each plot gives the Fourier transform of the data (for t̄ > 2000) shown in the corresponding plot in the first two rows of Fig. 3.
(The vertical scale is arbitrary, but consistent across the plots.) Once the perturbation size is sufficiently small, there are always two
narrow spikes with periods τ̄1 ¼ 33.3� 0.1 and τ̄2 ¼ 36.0� 0.1, which are independent of the perturbation size.
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V. CONCLUSION

SUð2Þ with a scalar field in the adjoint representation
coupled to gravity has as a classical solution the gravitating
Julia-Zee dyon [1,4,5]. Within the magnetic ansatz this
system no longer contains dyons and instead has as a
classical solution the gravitating ’t Hooft–Polyakov mag-
netic monopole [2,3,6–10]. I developed a second-order
code to dynamically solve the full gravitating dyon system.
As far as I am aware, this is the fist time the gravitating
dyon has been dynamically solved and is one of the only
times (aside from the important papers of Rinne et al.
[21,24]) that SUð2Þ has been dynamically solved outside
the magnetic ansatz.
In pure SUð2Þ (i.e., unbroken and without the scalar

field), regular static gravitational solutions are known as
Bartnik-McKinnon solutions [34], which are well known to
be unstable with respect to both magnetic [37] and
sphaleronic [38–40] perturbations. The stability of regular
static gravitating monopoles with respect to magnetic
perturbations was studied by Hollmann [15], who found
that they are always stable for values of v̄ not too large.

Other studies corroborated this [13,14,16], leaving little
question as to their stability with respect to magnetic
perturbations. As far as I am aware, the stability of
gravitating monopoles with respect to sphaleronic pertur-
bations has not been studied and thus it is an open question
whether gravitating monopoles are stable. That it has not
been studied is presumably because it is very challenging to
do so. Indeed, Refs. [12–15] indicated that a standard
harmonic stability analysis of magnetic perturbations (let
alone sphaleronic perturbations) is very difficult to perform
(semi)analytically.
I chose to avoid these difficulties by making a purely

numerical study of sphaleronic stability. I did this by
adding a sphaleronic perturbation to both generic magnetic
initial data and the static gravitating monopole solutions
[6–10] and then evolving the system. For large perturba-
tions the system heads away from the gravitating monopole
and toward a dyon configuration. As the perturbation
decreases in size, the system begins oscillating about the
magnetic ansatz. I found that the periods of the oscillations
are independent of time, position, and initial data (as long
as the perturbation is sufficiently small), exactly what one

(a)

(f)

(g) (h) (i) (j)

(k) (l) (m) (n) (o)

(b) (c) (d) (e)

FIG. 5. Each plot in the top row is a time evolution of Y 0 ¼ ∂Y=∂r̄, which is proportional to the radial electric charge density, for the
specific value r̄ ¼ 5.01. The initial data for the evolutions is the regular static monopole solution with v̄ ¼ 0.2, λ ¼ 0, and sphaleronic
perturbation (40) with r̄r ¼ 25, s̄r ¼ 10, and perturbation strengths f̄r equal to (a) (from bottom to top) 1, 0.5, 0.3, (b) 0.2, (c) 0.1,
(d) 0.08, and (e) 0.05. The middle row is the same as the top row except zoomed in so that individual oscillations can be seen. The
bottom row is the Fourier transform of the top row for t̄ > 2000. [The vertical scale for jF ðY 0Þj is arbitrary, but consistent across the
plots.] As in Fig. 4, once the perturbation size is sufficiently small there are always two narrow spikes with periods τ̄1 ¼ 33.3� 0.1 and
τ̄2 ¼ 36.0� 0.1, which are independent of the perturbation size.
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would expect for oscillations about a stable equilibrium.
I thus found numerical evidence for gravitating monopoles
being stable with respect to sphaleronic perturbations.
A numerical stability analysis can rarely replace an

analytical one and the results presented here do not prove
that gravitating monopoles are stable. Nevertheless, the
results are, as far as I am aware, the first piece of evidence
discovered for the possible stability of gravitating monop-
oles with respect to sphaleronic perturbations.
In this work I did not consider black holes. There exist

static gravitating black hole monopole solutions [7,9,10]
and it is an important question whether they too are stable

with respect to sphaleronic perturbations. There are a few
reasons why I did not consider them. Some of the reasons
are numerical: the code I used is less stable when a black
hole forms and it looks to be very difficult to construct
initial data that is a perturbation of a static black hole
monopole solution. It is not difficult to construct initial data
that is a sphaleronic perturbation of generic regular
magnetic data which forms a black hole during the
evolution. However, the static black hole monopole sol-
utions are not unique (there exists a continuum of solutions
with the same v̄ and λ̄ [9]) and it is therefore not clear which
solution is being perturbed in a given evolution.
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