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Taking a comprehensive view, including a full range of boundary conditions, we reexamine QCD axion
star solutions based on the relativistic Klein-Gordon equation (using the Ruffini-Bonazzola approach) and
its nonrelativistic limit, the Gross-Pitaevskii equation. A single free parameter, conveniently chosen as the
central value of the wave function of the axion star, or alternatively the chemical potential with range
−m < μ < 0 (where m is the axion mass), uniquely determines a spherically symmetric ground state
solution, the axion condensate. We clarify how the interplay of various terms of the Klein-Gordon equation
determines the properties of solutions in three separate regions: the structurally stable (corresponding to a
local energy minimum) dilute and dense regions, and the intermediate, structurally unstable transition
region. From the Klein-Gordon equation, one can derive alternative equations of motion including the
Gross-Pitaevskii and Sine-Gordon equations, which have been used previously to describe axion stars in
the dense region. In this work, we clarify precisely how and why such methods break down as the binding
energy increases, emphasizing the necessity of using the full relativistic Klein-Gordon approach. Finally,
we point out that, even after including perturbative axion number violating corrections, solutions to the
equations of motion, which assume approximate conservation of axion number, break down completely
in the regime with strong binding energy, where the magnitude of the chemical potential approaches the
axion mass.
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I. INTRODUCTION

Gravitationally bound states of scalar excitations, termed
boson stars, have been studied extensively over the past half
century. Investigation of scalar boson stars started with the
analysis of theworks of Kaup [1] and Ruffini and Bonazzola
(RB) [2] (and more recently using the same method [3]).
They identified a maximum mass for boson stars consisting
of noninteracting bosons, above which they become
structurally unstable.1 Later, Colpi et al. [5] derived a
maximum mass for boson stars with repulsive interactions.
Various aspects of self-gravitating objects in astrophysics
and cosmology have also been investigated [6–13].

A recent surge in studies of boson stars [14–29] stems, in
part, from the renewed interest in determining whether dark
matter (DM) could consist of condensates of axions or
other axionlike particles. A particularly well-motivated
scalar DM candidate is the QCD axion, parametrized by
a decay constant f ¼ 6 × 1011 GeV and particle mass
m ¼ 10−5 eV; as a result, bound states of QCD axions
(which we will call QCD axion stars) have received special
attention.2 Axion stars were analyzed by Barranco and
Bernal (BB) [15] using the formalism employed by RB,
and in doing so these authors derived the relevant Einstein-
Klein-Gordon (EKG) equations describing axion stars. In
this study, we will refer to this formalism as the EKG
formalism. This was a unique enterprise because of the
leading-order attractive interactions of axions, which were
not previously taken into account [1,2]. They looked for
solutions in two regions of parameter space: first, where the
axion decay constant is very large, approaching the Planck
mass MP ¼ 1=

ffiffiffiffi
G

p
where G is the gravitational constant,

and second, where the mass and decay constant are those of
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1We adopt the terminology of “structural” (in)stability, as
opposed to the more typical “gravitational” (in)stability, in order
to emphasize that this is driven by self-interactions as much as by
gravitational interactions. Structural stability is the requirement
that the solution is at a minimum of the energy functional, as
explained in [4].

2Both m and f can shift by a few orders of magnitude without
violating any experimental constraint; however, for QCD axions
the product mf is fixed. We use the values quoted above as a
benchmark for parameter estimation.
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QCD axions. In the former range (f close to MP), they
identified a maximum mass for axion stars. In the second
parameter range (for QCD axions), they found a handful of
solutions where the masses and radii of the axion stars are
in the range of 1014 kg and a few meters (respectively),
which were the first known QCD axion star solutions.
However, the scaling relations used in [15], whichworked

wellwhen fwas nearMP, made solutions to the equations of
motion difficult to find for QCD axion parameters. As a
result, BB did not find dilute structurally stable QCD axion
stars or their maximum mass. Nearly a decade later,
Chavanis and Delfini [30,31] analyzed boson star configu-
rations with self-interactions in the nonrelativistic limit
using the Gross-Pitaevskii (GP) equation, and derived a
general bound on the mass of attractively interacting boson
condensates as a function of the four-point coupling λ.
To investigate dilute axion star solutions using the EKG
formalism, the key is the rescaling of the relativistic field
and the radial coordinate using the scaling parameter
Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
, where mϵ is the energy eigenvalue of the

axion, related to the chemical potential via μ ¼ mðϵ − 1Þ.
For QCD axions, the EKG formalism was applied with
appropriate scaling relations to determine the maximum
mass, Mmax ¼ 10MPf=m ≈ 1019 kg [16]. In this dilute
branch of solutions the radius scales inversely as the mass
[16,17,29–31].3
The BB solutions for QCD axion stars had masses

much lower than the maximum. It is now understood that
in this mass range, there are as many as three solutions to
the equations of motion: a dilute solution with radius
Oð107Þ km, a transition solution with radius Oð10Þ m,
and a dense solution with radius as small as Oð10Þ cm.
The solutions found by BB for QCD axion stars fall in the
range of transition axion star solutions which, as it turns out,
are structurally unstable to collapse, as they correspond to a
maximum rather than a minimum of the energy functional.
Collapsing axion stars evaporate a large fraction of theirmass
through rapid emission of relativistic axions [21,23,32–34].
Dense axions stars were proposed by Braaten at al. [19],

who used the nonrelativistic GP formalism. However, on
the dense branch of solutions, it is now understood that
relativistic corrections become large [4,24]. In this work,
we will clarify the range of applicability of the GP
formalism both by analysis of its derivation and by direct
comparison to the KG equation. Several other methods
have been proposed to describe axion stars in this regime,
including the Sine-Gordon (SG) equation, and we will
clarify the applicability of these methods as well.
At the crossover from transition to dense solutions, there

is in fact a minimum mass which is about an order of

magnitude smaller than the mass of the lightest BB
solution, which is calculable using the EKG equations as
well. We will also point out that the EKG equations in fact
break down at extremely large Δ ∼Oð1Þ, corresponding to
increasingly massive states on the dense branch. This
suggests a gap in the current understanding of the dense
branch of axion stars, as all known methods break down in
the regime of large relativistic corrections.
This paper is organized as follows: In Sec. II, we

describe in detail the calculation of axion star properties
using the EKG equations, comparing the contributions of
different terms in the calculation of the total mass and
analyzing where this method becomes inadequate; in
Sec. III, we show how alternative methods used in the
literature can be derived from the EKG equations, and
compare the results to see where they break down. We
conclude in Sec. IV.
We will use natural units throughout, where ℏ ¼ c ¼ 1.

II. RELATIVISTIC THEORY

A. Einstein-Klein-Gordon equations of motion

In this section we review the basic equations of motion
describing axion stars. The focus of this work is an axion
theory defined by a scalar field ϕ with potential

VðϕÞ ¼ m2f2
�
1 − cos

�
ϕ

f

��
: ð2:1Þ

We focus on this potential because it is relevant for QCD
axions as well as many classes of axionlike particles arising
from broken global symmetries in the early Universe. A
more general analysis might allow the coefficients of the
self-interaction terms to vary in sign or magnitude, an
interesting case that deserves separate treatment.
The field is also coupled to gravity, so the resulting

equations of motion are the EKG equations with the
gravitational metric

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dΩ2; ð2:2Þ

where we have assumed spherical symmetry. For a scalar
field condensate, one can evaluate the EKG equations as an
expectation value in N-particle states (as described by [2]),
expanding ϕ in ground state creation and annihilation
operators a†0 and a0 as

ϕðt; rÞ ¼ RðrÞ½a0e−iϵmt þ a†0e
iϵmt�; ð2:3Þ

where the wave function RðrÞ has a ground state eigene-
nergy ϵm < m [the quantity μ ¼ mðϵ − 1Þ is the chemical
potential of axions in the condensate]. The limitations of
this method, pioneered by RB, will be described in more
detail in Sec. III A 2. The resulting EKG equations of
motion are

3In [16], though the numerical solutions were correct, the
structurally stable/unstable branches of solutions were misiden-
tified; in fact, the more dilute solutions whereM ∝ R−1 are stable,
whereas the other branch with M ∝ R are unstable.
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A0ðyÞ
AðyÞ ¼ 1 − AðyÞ

y
þ 2πδyAðyÞ

�
ϵ2ZðyÞ2
BðyÞ þ Z0ðyÞ2

AðyÞ þ 4½1 − J0ðZðyÞÞ�
�
;

B0ðyÞ
BðyÞ ¼ AðyÞ − 1

y
þ 2πδyAðyÞ

�
ϵ2ZðyÞ2
BðyÞ þ Z0ðyÞ2

AðyÞ − 4½1 − J0ðZðyÞÞ�
�
;

Z00ðyÞ ¼ −
�
2

y
þ B0ðyÞ
2BðyÞ −

A0ðyÞ
2AðyÞ

�
Z0ðyÞ − AðyÞ

�
ϵ2ZðyÞ
BðyÞ − 2J1ðZðyÞÞ

�
; ð2:4Þ

where we have introduced the rescaled variables ZðyÞ ¼
2
ffiffiffiffi
N

p
RðrÞ=f, y ¼ mr, and δ ¼ f2=M2

P. Equations (2.4)
have also been referred to as the RB equations in the
literature [15,16]. Whenever numerical values of physical
parameters are presented in this paper we will use the value
δ ¼ 2.5 × 10−15, a typical value for QCD axions. Note for
future reference that the original cosðϕ=fÞ potential trans-
forms to a Bessel function J0ðZÞ when expectation values
of the equations of motion are taken [16].
We solved Eqs. (2.4) by imposing the following set of

conditions on AðyÞ, BðyÞ, and ZðyÞ:
(1) Að0Þ ¼ 1;
(2) ZðyÞ is regular and finite at y ¼ 0;
(3) ZðyÞ approaches zero at some ymax with arbitrary

precision;
(4) AðymaxÞBðymaxÞ ¼ 1, implying that the metric turns

Schwarzschild “outside” the star.
The point at which the wave function approaches zero
determines the radiusR99 of the star (insidewhich 0.99 of the
mass of the star is contained), which is a single free
parameter characterizing the family of solutions. The radius
has a one-to-one relationship with the central density Zð0Þ2,
which (following the usual convention) we take to be the
input parameter to our numerical calculations. Alternatively,
the system could be solved by first fixing ϵ, which also has a
one-to-one monotonic relationship with Zð0Þ.
At every value of Zð0Þ we find a unique, spherically

symmetric, nodeless solution for the wave function ZðyÞ.
Solutions can be divided into three branches based on the
central field value:

(i) Dilute: Zð0Þ < Zdilute ≈ 6
ffiffiffi
δ

p
;

(ii) Transition: Zdilute < Zð0Þ < Zdense;
(iii) Dense: Zð0Þ > Zdense ≃ 3.5

which we describe below.
The energy eigenvalue ϵm has a one-to-one correspon-

dence with Zð0Þ as well. When 1 − ϵ ≪ 1, the field is very
nonrelativistic, but as we shall see, in the crossover region
and on the dense branch of solutions this condition is no
longer satisfied. To quantify the breakdown of the non-
relativistic approximation, we define the following approxi-
mate regions of parameter space:

(i) Nonrelativistic: ϵ≳ 0.9;
(ii) Quasirelativistic: 0.5≲ ϵ≲ 0.9;
(iii) Ultrarelativistic: ϵ≲ 0.5.

We will discuss these conditions in what follows.

B. Solutions

Starting at the lowest values of Zð0Þ, solutions for
Zð0Þ ≤ Zdilute ≈ 6

ffiffiffi
δ

p
belong to the structurally stable dilute

branch of solutions [16,30]. On this branch, gravity is
Newtonian and it is sufficient to take only the leading-order
self-interaction term, which is attractive and proportional
to ϕ4 ∝ Z4. In this regime, direct numerical solutions
of the system (2.4) become more and more difficult,
as the magnitude of the chemical potential approaches
zero (mj1 − ϵj ≪ m), the radius of the star becomes large
(R99 ≫ 1=m), and the field becomes weak (ϕ ≪ f).
The most efficient method to find numerical solutions on

the dilute branch is to rescale all physical variables using
the scale parameter Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
, by introducing the new

radial coordinate and field

x ¼ Δy; ZðyÞ ¼ ΔYðxÞ: ð2:5Þ

Then, a systematic expansion of Eqs. (2.4) as a power series
in both δ and Δ gives rise to a much simpler set of coupled
equations which are appropriate in the dilute region [16],

a0ðxÞ ¼ x
2
YðxÞ2 − aðxÞ

x
; b0ðxÞ ¼ aðxÞ

x
;

Y 00ðxÞ ¼ −
2

x
Y 0ðxÞ − 1

8
YðxÞ3 þ ½1þ κbðxÞ�YðxÞ; ð2:6Þ

where the metric functions have been expanded using
AðrÞ ¼ 1þ δaðxÞ and BðrÞ ¼ 1þ δbðxÞ. The effective
coupling of the field YðxÞ to gravity is given by
κ ≡ 8πδ=Δ2. These equations are exactly equivalent [29]
to the nonrelativistic Gross-Pitaevskii-Poisson (GPP) equa-
tions, which we will discuss in Sec. III B 1, and the
solutions have been discussed many times in the literature
[16,24,25,30,31].
For completeness, we reproduce the well-known mass-

radius relation for axion stars in the dilute region in the top
panel of Fig. 1 for different decay constants, f. We choose
decay constants in the allowed range for QCD axions where
the dashed line approximately corresponds to the value we
use in this study, f ¼ 6 × 1011 GeV. The top panel of
Fig. 1 illustrates clearly the existence of a maximum
mass Mmax ≃ 10MPf=m, which occurs at Zð0Þ ¼ Zdilute.
The large-radius curves away from the maximum mass
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constitute the dilute axion stars; the smaller-radius curves
constitute the transition branch which will be discussed
later in this section. Note that axion stars with extremely
small central density Zð0Þ, corresponding to the ultra-dilute
region near the top of the upper panel of Fig. 1, are very
well described by a non-interacting approximation; self-
interactions become important only near Mmax and at
larger Zð0Þ.
Dilute axion stars are fully stable, both against decay

[35–38] and under perturbations (what we call “structural

stability”) [30,39–41]. As such, their phenomenological
effects can be searched for in the dark matter halo. Searches
for effects of dilute axion stars include collisions with
neutron stars giving rise to high-intensity radio photon
emission [42,43], microlensing [44], transient effects from
rare encounters of an axion star with Earth [22,45], or
possible capture in the Solar System leading to high-
density subhalos [46]. This field continues to attract
increasing interest and new ideas for how to probe dilute
axion stars in the halo. In this work, however, we will
concentrate on the region of larger Zð0Þ, since our goal is to
clarify the status of more dense configurations, and there is
little controversy about the properties of dilute axion stars
in the recent literature.
The results of our numerical calculations away from the

dilute region, Zð0Þ ≥ 0.01, using the EKG formalism of
Eq. (2.4) are tabulated in Table I and depicted as the dark
blue line in the bottom panel of Fig. 1 and all panels of
Fig. 2. The different methods depicted in the bottom panel
of Fig. 1 and all panels of Fig. 2 will be discussed in more
detail in Sec. III. Solutions with Zdilute < Zð0Þ < Zdense
correspond to the transition branch and are structurally
unstable (gray entries in the table). Note in particular that,
for 0.1≲ Zð0Þ ≲ 1, we reproduce roughly the original BB
solutions [15]; the slight deviations in the numerical results
are due to the fact that BB truncated the self-interaction
potential atOðZ6Þ, whereas we used the full potential. Thus
the BB solutions lie on the transition, not dilute, branch of
axion star solutions.
At larger values of Zð0Þ, the transition branch crosses

over to a dense branch. From the bottom panel of Fig. 1,
one can see that at the crossover point Zdense ≃ 3.5, there
is a minimum value of the axion star mass Mmin ≃
39

ffiffiffi
δ

p
Mmax ≃ 390f2=m; for our benchmark QCD parame-

ters, this gives Mmin ≈ 2 × 1013 kg. Solutions at Zð0Þ >
Zdense along the dense branch and at Zð0Þ < Zdilute on the
dilute branch are structurally stable, while solutions on the
transition branch, Zdense > Zð0Þ > Zdilute are structurally
unstable.
At very large Zð0Þ ≳ 100, the solutions become increas-

ingly sensitive to the input boundary conditions, and as a
result they become extremely hard to calculate. We
represent the cutoff of our numerical solutions at Zð0Þ ≃
400 by the blue dot in the lower panel of Fig. 1. However,
solutions with extremely large Zð0Þ ≳ 10 are unphysical,
because they exist in an ultrarelativistic domain where
ϵ ≪ 1, as illustrated in the middle panel of Fig. 2. In this
region, the binding energy per particle exceeds m=2,
giving rise to a large negative chemical potential (bottom
panel of Fig. 2); this implies that a large number of
axions can easily pop in and out of the condensate
from the vacuum, a phenomenon which in a field theory
usually necessitates the introduction of relativistic loop
corrections. We refer to Sec. III for further details of these
calculations.

FIG. 1. Top: Mass M and radius R99 of axion stars in the
dilute region for different choices of axion decay constant f
using the EKG method [Eq. (2.6)]. The maximum mass at
Mmax ¼ 10MPf=m marks the crossover from the dilute
(upper, downward-sloping) to transition (lower, upward-sloping)
branches of solutions. Bottom: The masses and radii of axion
stars in the vicinity of the dense crossover for the different
methods analyzed in this study; the inset shows the crossover
from transition to dense branches of solutions. The blue, black,
and red dots mark the end point for solutions of the EKG, GRB,
and CEKG methods (respectively), as described in the text.
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Such unphysical solutions are surely an artifact of the
breakdown of the equations of motion describing the
system. Indeed, the formalism we use is based on an
approximation which assumes the conservation of axion
number. Even if we add the contribution of higher
harmonics [4] (described in Sec. III A 2) which violate
axion number conservation, it only provides a perturbative
improvement of the axion number conserving theory. It
is likely that by including higher harmonic corrections,
we merely include tree diagrams in a yet-unknown field
theory of relativistic axion condensates. In Sec. III, we will
describe alternative methods for describing axion stars in
this regime, emphasizing how and why each method breaks
down.
Finally, though states above the dense minimum,

Zdense ≃ 3.5, are structurally stable, it is important to
remember that all condensates with central field value
Zð0Þ≳ 0.5 (or equivalently Δ ≃ 0.05), produced after the
big bang would have decayed completely by the present
time and cannot form even a fraction of dark matter [35,38].

C. Relative magnitudes of energy terms

Here, we discuss the contributions of the kinetic and
gravitational energy terms to the total mass of the con-
densate, which is defined by the volume integral over the tt
component of the stress-energy tensor,

M ¼
Z

d3r
ffiffiffiffiffiffi
−g

p
T00

¼ f2

4m

Z
d3y

ffiffiffiffiffiffiffi
AB

p �
ϵ2Z2

B
þ Z02

A
þ 4ð1 − J0ðZÞÞ

�
: ð2:7Þ

In this work, we forgo comparison of the contribution from
the self-interaction energy term, for reasons that will be
discussed below.
In the extremely nonrelativistic region where Zð0Þ≲0.01,

the expansion of the Bessel function in powers of Z
converges fast and the potential 4ð1 − J0ðZÞÞ can be written
as Z2 þ VðZÞ, where the magnitude of the self-interaction,
jVðZÞj ≪ Z2. In this case, the expression of the total mass is
dominated by the term

M ≃
Z

d3rT00 ≃
f2

2m

Z
d3yZ2: ð2:8Þ

While that term provides the normalization of the wave
function, it plays no direct role in finding the numerical
solution. More precisely, only the other terms (kinetic,
gravitational, and self-interaction) are relevant for the deter-
mination of the properties of the solution. Therefore it is
meaningful to calculate the relative contribution of those
three terms to either Eq. (2.8) or to the total energy density,
as was done in [47].
In the dense region, where Zð0Þ ¼ Oð1Þ or larger, the

term Z2 no longer dominates the potential and the total
mass must be calculated using the full energy-momentum
tensor, Eq. (2.7). Attempting to separate the self-interaction
energy from the third term in Eq. (2.7) no longer adds
anything to the description of the system and the contri-
bution of the self-interaction energy to the total mass is not
as apparent as in the nonrelativistic region where the
dominant quartic interaction term also scales with Δ2.
Therefore, in this work we focus only on the contributions
from the gravitational and kinetic terms by taking ratios of

TABLE I. Numerical results for central field value Zð0Þ, total mass (in scaled and physical units), radius (in scaled
and physical units), binding energy parameter Δ, scaled energy eigenvalue ϵ, and relative contributions K=M and
Mg=M to the kinetic and gravitational energies, respectively. All were obtained by solving the EKG equations (2.4) in
the dense region, including the dense minimal mass. Entries below bottom line signify structurally unstable solutions,
while entries above the top line signify unphysical solutions in the ultra-relativistic region, where the chemical potential
μ ≈ 0. Entries in between the lines correspond to structurally stable but present-day unviable configurations.

Zð0Þ Mm=f2 M ðkgÞ m R99 R99 (m) Δ ϵ K/M Mg=M

100 2.18 × 106 2.29 × 1018 50.32 8.3 0.998 0.0612 0.367 −5.3 × 10−12

50 2.68 × 105 1.71 × 1016 25.5 4.2 0.9926 0.1213 0.364 −1.1 × 10−12

10 2972 1.9 × 1014 6.96 0.136 0.8666 0.499 0.317 5 × 10−14

8 1272 6.14 × 1013 5.88 0.115 0.7774 0.6289 0.311 3.8 × 10−14

7 779 5 × 1013 5.66 0.112 0.6876 0.7261 0.287 5 × 10−14

6 540.5 3.46 × 1013 5.96 0.116 0.5816 0.8135 0.245 6.6 × 10−14

5 429.1 2.75 × 1013 6.685 0.13 0.4705 0.8824 0.192 7.9 × 10−14

4 390.1 2.5 × 1013 8.22 0.16 0.3623 0.9321 0.135 8.9 × 10−14

3 417 2.67 × 1013 10.96 0.214 0.2611 0.9611 0.082 1 × 10−14

2 525.1 3.36 × 1013 19.55 0.38 0.1682 0.98575 0.038 1.02 × 10−13

1 956.5 6.12 × 1013 33.78 0.66 0.0822 0.9966 0.0099 1.02 × 10−13

0.3 3109 1.99 × 1014 116.1 2.2 0.0245 0.997 10−3 1.02 × 10−13

0.1 9276 5.94 × 1014 338.2 6.6 0.00815 ∼1 10−4 1.02 × 10−13

0.01 92797 5.94 × 1015 3401 66 0.000815 ∼1 10−6 1.12 × 10−13
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these terms to Eq. (2.7), where the gravitational contribu-
tion is scaled by δ and the kinetic contribution by Δ2.
Table I shows the contribution of the kinetic and

gravitational energies to the total mass, K=M and
Mg=M. The relative contribution of the kinetic energy to
the total mass is defined as

K
M

¼ 1

M

�
f2

4m

Z
d3y

ffiffiffiffiffiffiffiffiffiffi
BðyÞ
AðyÞ

s
Z0ðyÞ2

�
: ð2:9Þ

It may seem, after a cursory look at Table I, that the
importance of the kinetic term is decreasing with decreas-
ing Zð0Þ. In fact, it is easy to see that the kinetic term scales
with Δ2, and so K=ðMΔ2Þ hardly changes through the full
range of solutions (see the blue line of Fig. 3). In other
words, K=ðMΔ2Þ is essentially constant in the interval
0.01 ≤ Zð0Þ ≤ 10. It only varies somewhat faster in the
unphysical region Zð0Þ > 10. On the transition branch,
where the quadratic term of the self-interaction potential
can be cleanly separated from the rest of the axion potential
but the contribution of gravity remains small, the self-
interaction term is also of OðΔ2MÞ, and so the kinetic term
and the self-interaction term are equally important for
solving the EKG equations.
Let us consider now the gravity term. The gravity term

is weak, of OðδMÞ, throughout the dense and dilute
regions. However, near the dilute maximum and along
the dilute branch, where Δ2 ≲OðδÞ, the gravitational
energy becomes of similar magnitude with the kinetic
and self-interaction energies; gravity thus plays an

FIG. 2. Total axion star mass as a function of Δ (top), as well as
the binding energy parameter Δ (middle) and chemical potential
per unit mass μ=m (bottom) as a function of central field value
Zð0Þ for different methods. In all panels, the light purple (dark
purple) shaded region represents the quasirelativistic (ultrarela-
tivistic) region defined in Sec. II A.

FIG. 3. Plot of K=ðMΔ2Þ (blue) and Mg=ðMδÞ (red) as a
function of Z(0).
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important part in determining the dilute maximum of mass
and other properties of dilute solutions. In fact, there would
not be a dilute maximum of the mass spectrum without the
contribution from gravity.
In the dense region and in part of the transition branch,

where δ ≪ Δ2, gravity plays a negligible role in solving the
EKG equations. Calculating the contribution of this term to
the total mass of dense axion stars is more difficult than for
other terms, because it contributes by a minuscule amount.
Though we performed all numerical integrations using the
full set of equations, (2.4), it is very difficult to use those
calculations to give a direct estimate of the gravitational
contribution for QCD parameters, since δ ≃ 2.5 × 10−15.
The easiest way to estimate the contribution is by

expansion in the parameter δ ≪ 1. One can expand
Eqs. (2.4) in a power series by defining A ¼ 1þ δa
and B ¼ 1þ δb. In leading order of δ, the EKG equations
take the form

a0ðyÞ ¼ −
aðyÞ
y

þ 2πyfϵ2ZðyÞ2 þ Z0ðyÞ2 þ 4½1 − J0ðZÞ�g;

b0ðyÞ ¼ aðyÞ
y

þ 2πyfϵ2ZðyÞ2 þ Z0ðyÞ2 − 4½1 − J0ðZÞ�g;

Z00ðyÞ þ 2

y
Z0ðyÞ þ ϵ2ZðyÞ − 2J1½ZðyÞ� ¼ 0: ð2:10Þ

The resulting mass can be written in the form

M ¼ M0 þMg; ð2:11Þ

where

M0≡ f2

4m

Z
d3yfϵ2ZðyÞ2þZ0ðyÞ2þ4½1−J0ðZÞ�g;

Mg≡δf2

8m

Z
d3yfaðyÞ½ϵ2ZðyÞ2−Z0ðyÞ2þ4½1−J0ðZÞ��

þbðyÞ½−ϵ2ZðyÞ2þZ0ðyÞ2þ4½1−J0ðZÞ��g: ð2:12Þ

We have defined Mg as the total gravitational contribution
to the mass at leading order in δ. Since there are no small
parameters in the expansion besides δ, the equations
of motion imply that aðyÞ ¼ Oð1Þ and bðyÞ ¼ Oð1Þ.
Consequently, the relative corrections to the mass func-
tional are of OðδÞ and scale with δ. The red line of Fig. 3
shows that Mg=ðMδÞ is slowly varying in the interval
0.01≲ Zð0Þ ≲ 10. For Zð0Þ≳ 10, the EKG formalism
becomes unreliable due to the assumption of particle
number conservation.
An axion star can decay due to particle number non-

conserving processes. The axion is described by a
Hermitian scalar field, and therefore particle number is
not a conserved quantity. The leading decay amplitude has
the behavior exp½−fðΔÞ=Δ�where fðΔÞ is a slowly varying

function of Δ, with a finite limit as Δ → 0 [35]; a similar
result is also well known in the literature on oscillons
[36,48–51]. If Δ≲ 0.05, the axion star is stable against
decay during the lifetime of the Universe; dilute QCD axion
stars belong to this category. We observe in the top panel of
Fig. 2 that the mass spectrum has a dense minimum at
Δc ≃ 0.35. Near the dense minimum there are two possible
axion star configurations for a given particle number: one
with Δ < Δc which is structurally unstable due to the fact
that it is at a local energy maximum, and the other with
Δ > Δc which has a large enough binding energy such that
it is short lived due to decay. Therefore QCD axion stars in
the dense branch cannot survive until the current epoch.

III. OTHER METHODS

We emphasize that the EKG equations constitute a very
accurate description of axion stars along the dilute, tran-
sition, and dense branches of solutions up to roughly
Zð0Þ≳ 10. Nonetheless, alternative descriptions prolifer-
ate, and in this section we will point out the relevant
differences in order to determine where various descriptions
are applicable. Importantly, the definition of the total mass
as the volume integral of T00 is modified across each
method, as explained below. The other important param-
eters describing each solution are the radius R99, the
binding energy parameter Δ, the chemical potential μ,
and the central field value Zð0Þ; we illustrate the relation-
ships between these parameters in the bottom panel of
Fig. 1 and all panels of Fig. 2. In brief, the methods we
consider in this work are shown in Table II, and described
in detail below.

A. Direct extension of EKG equations

1. Klein-Gordon

As we have already pointed out (and as shown in
Table I), on the dense branch and along most of the
transition branch of solutions, gravity effectively decou-
ples. In that case, we can set the metric functions
A ¼ B ¼ 1, so that the EKG system (2.4) reduces to

Z00ðyÞ þ 2

y
Z0ðyÞ þ ϵ2ZðyÞ − 2J1ðZðyÞÞ ¼ 0: ð3:1Þ

Indeed, we also used Eq. (3.1) to calculate the physical
parameters at the same values listed in Table I and found
results which were essentially identical to those of Table I.
In this limit the total mass is given by Eq. (2.7) with
A ¼ B ¼ 1. In the bottom panel of Fig. 1 and all panels of
Fig. 2, the cyan lines are direct calculations in the non-
gravitating limit, and it is very clear that in the parameter
space we consider, the results are exactly equivalent to
those of the full EKG system.
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2. Generalized Ruffini-Bonazzola

The derivation of the EKG equations (2.4) used the
expansion of the field operator proposed by RB, given in
Eq. (2.3). In this formalism, the field is linear in creation
and annihilation operators of the ground state, a para-
metrization that is exact in the limit of zero self-interactions
for an appropriately chosen wave function RðrÞ of eige-
nenergy mϵ. However, when the binding energy becomes
large, self-interactions can excite higher-order modes of
energy kmϵ (where k is a positive integer) whose wave
functions RkðrÞ do not satisfy the same equations of
motion. It is possible to calculate the backreaction of the
higher-order excitations Rk>1ðrÞ on the leading mode R1ðrÞ
and thereby determine the effective axion star wave
function. Doing so requires the extension of the RB
operator of Eq. (2.3), and so we have referred to this
procedure as a generalized RB (GRB) formalism.
The critical input for the GRB calculation is the

extension of the RB field operator to include higher-order
modes coupled to higher powers of creation and annihi-
lation operators:

ϕðt; rÞ ¼
X∞
k¼1

RkðrÞ½ða0Þke−ikϵmt þ ða†0Þkeikϵmt�; ð3:2Þ

which we refer to as the GRB field operator. In this
framework, R1ðrÞ ¼ RðrÞ is the leading approximation,
and higher-order contributions from Rk>1 can be organized
as a perturbative expansion in the small parameter Δ. This
is possible because given the rescaling of the leading wave
function component given in Eq. (2.6), the equations of
motion naturally require that the higher-order wave func-
tions be suppressed by higher powers of Δ as

RkðrÞ ¼
f

2Nk=2 ZkðyÞ ¼
f

2Nk=2Δ
kYkðxÞ: ð3:3Þ

The equations of motion for Z1, Z3, etc. can thus be solved
perturbatively to obtain the total wave function.
The equation of motion for Z1 is given, at OðΔ5Þ in the

GRB expansion, by [4]

Δ2Z1 ¼ ∇2
yZ1 þ

Z3
1

8
Z3
1 −

3Z5
1

512
: ð3:4Þ

In [4], this equation was solved numerically for Z1; the total
mass can be calculated at this order in Δ using

M ¼ f2

4m

Z
d3y

�
ð2 − Δ2ÞZ2

1 þ Z0
1
2 −

Z4
1

16
þ Z6

1

512

�
: ð3:5Þ

Note that the central field value Zð0Þ is not precisely equal
to Z1ð0Þ in GRB, because of higher-order corrections to the
total wave function. In what follows, we merely take
Zð0Þ ¼ Z1ð0Þ for easy comparison to the other methods;
as explained in [4], the corrections from e.g., Z3ð0Þ are
suppressed by Δ2 < 1 and are negligible for our purposes.
The resulting masses and radii as determined in GRB are

represented by the black curves in the bottom panel of
Fig. 1. We observe perfect agreement with the EKG results
at small Zð0Þ ≲ 1, but deviations appear near the dense
crossover and along the dense branch. In particular, the
dense minimum mass is found atMmin ≈ 463f2=m in GRB
[4], whereas in Sec. II we foundMmin ≈ 390f2=m. Because
GRB takes into account leading corrections from higher
harmonics, we believe it to be the more accurate method in
this regime.
At large Zð0Þ (which is also large Δ), the GRB equation

[4] no longer has solutions, just as we observed for EKG in
Sec. II. The cutoff for GRB is represented by the black dots
in Figs. 1 and 2. It is interesting that the large-Δ cutoff on
the dense branch occurs at a smaller value Δ ¼ 0.69 in
GRB compared to Δ ≈ 1 in EKG (see the top panel of
Fig. 2); nonetheless, such large values of Δ remain
unphysical for the reasons outlined in Sec. II. It would
be interesting to see how the large-Δ cutoff changes at even
higher order in the GRB expansion, though this topic is
beyond the scope of the present work.
A potential downside of the GRB formalism is that

gravity has not been included. Other methods for determin-
ing relativistic corrections in real scalar field theory suffer
from a similar limitation [36,52,53] (though see [54] for
some preliminary steps in this direction). Indeed, for the
purposes of this section (describing the crossover from
transition to dense branches of solutions), this does not

TABLE II. Brief description of the calculation methods analyzed in this work. We emphasize that the TF approximation is invalid for
any branch of axion star solutions if the leading self-interaction is attractive.

Method Abbreviation Brief description

Einstein-Klein-Gordon EKG Equations of motion for scalar field coupled to gravity
Klein-Gordon KG No-gravity limit of EKG
Generalized Ruffini-Bonazzola GRB KG equation including leading higher-harmonic corrections
Gross-Pitaevskii-Poisson GPP Nonrelativistic and weak-gravity limit of EKG
Thomas-Fermi TF No-kinetic energy limit of GPP
Classical EKG CEKG EKG equations with original cosine potential
Sine-Gordon SG No-gravity limit of CEKG
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constitute a serious limitation, as gravity is completely
negligible over that range of solutions. However, for scalar
fields without self-interactions, or whose self-interactions
are strong and repulsive, it is possible to form bound states
with large gravitational potentials. In those cases, a full
description of relativistic corrections to axion stars would
need to include post-Newtonian corrections to the gravi-
tational potential.

B. Nonrelativistic limit

1. Gross-Pitaevskii-Poisson

At leading order in weak gravity, the EKG system (2.4)
reduces to

Z00ðyÞþ2

y
Z0ðyÞþϵ2ZðyÞ−2J1ðZðyÞÞþ

2VgðyÞ
m

ZðyÞ¼0;

ð3:6Þ

where

� ∂2

∂y2 þ
2

y
∂
∂y
�
VgðyÞ
m

¼ 2πδZðyÞ2 ð3:7Þ

with δ ¼ f2=M2
P. Therefore Vg satisfies the Poisson

equation sourced by the scalar wave function Z. We have
already pointed out that when Zð0Þ ¼ Oð1Þ, gravity
becomes extremely negligible in the KG equation; this
fact is now made transparent by the suppression of the rhs
of Eq. (3.7) by the factor of δ.
We note that, in analogy to the other formalisms

discussed, a no-gravity limit of the GPP formalism, namely
the Gross-Pitaevskii (GP) formalism, would be exactly
equivalent to the GPP formalism in the dense and transition
regions since gravity is effectively decoupled along these
branches. However, we emphasize that for the dilute branch
of solutions, gravity plays an important role in the stability
of the condensate. Along this branch, the GPP formalism
well describes and the GP formalism fails to accurately
describe the condensate.
To obtain the nonrelativistic limit of Eq. (3.6), one must

assume 1 − ϵ ≪ 1, i.e., that the chemical potential is small
mð1 − ϵÞ≡ −μ ≪ m. In that case, ϵ2 ≈ 1þ 2μ=m, and we
obtain

Z00 þ 2

y
Z0 ¼ −

2

m

�
μ −m

�
J1ðZÞ
Z

−
1

2

�
þ Vg

�
Z: ð3:8Þ

The system (3.7) and (3.8) is the Gross-Pitaevskii equation
coupled to Poisson gravity, here abbreviated as GPP, which
is the most prominent approximation to the EKG equations.
For clarity, we note that Eq. (3.8) is equivalent to the
standard GP equation used to analyze axion stars [21,30].
This is made transparent by identifying, as in [29], the

relationship between ZðyÞ and the standard Schrödinger
wave function ψ :

Z ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ψ�ψ
mf2

s
: ð3:9Þ

Then, using ψðtÞ ∝ e−iμt in the single-harmonic limit [55],
we can rewrite (3.8) as

i _ψ ¼
(
−
∇2

2m
þ Vg þ

∂
∂ðψ�ψÞ

"
m2f2

 
1 − J0

 ffiffiffiffiffiffiffiffiffiffiffi
2ψ�ψ
mf2

s !!

−
m
2
ψ�ψ

#)
ψ : ð3:10Þ

It was shown in [29] that at leading order in the self-
interaction, the GPP equations are exactly equivalent to the
infrared (Δ ≪ 1) limit of the EKG equations (2.4) which
we have reproduced in Eq. (2.6); either way, these
equations are appropriate for dilute axion stars, but con-
stitute a very bad approximation beyond the crossover to
the dense branch of axion stars due to a breakdown of the
nonrelativistic criterion.
The GPP system was used in [19] to analyze the dense

branch of axion star solutions. To calculate the total mass in
this method, one must first determine the binding energy in
the condensate, given by

E ¼ f2

4m

Z
d3y

�
Z0ðyÞ2 þ VgðyÞZðyÞ2

þ 4

�
1 −

1

4
ZðyÞ2 − J0ðZðyÞÞ

��
: ð3:11Þ

Then the total mass is

M ¼
�
1þ E

mN

�
mN ð3:12Þ

with

N ≡ f2

2m2

Z
d3yZðyÞ2: ð3:13Þ

We illustrate the total mass M with the physical radius R99

(bottom panel of Fig. 1) and binding energy parameter Δ
(top panel of Fig. 2), where the GPP results are given by the
black dotted lines. In the very nonrelativistic region where
Zð0Þ ≪ 1, the results of GPP are equivalent to that of the
EKG method. Near the dense crossover at Zð0Þ ¼ Oð1Þ,
GPP starts to deviate and along the dense branch, shows
very different behavior, due to a breakdown of the non-
relativistic criterion we have described. In Fig. 2, we show
Δ (middle panel) and the chemical potential μ (bottom
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panel) as functions of the central field value Zð0Þ; clearly,
as Zð0Þ grows, the nonrelativistic GPP approach becomes
increasingly suspect, and once Zð0Þ≳ 10, one expects
extremely large relativistic corrections. A recent work
has formulated a perturbative method to take relativistic
corrections into account using a GPP-like formalism [52];
for a ϕ4 potential, the results are equivalent to those of the
GRB method described in Sec. III A 2.
The nonrelativistic criterion 1 − ϵ ≪ 1, or equivalently

Δ ≪ 1, gives rise to several important simplifications: the
quantity N in Eq. (3.13) is easily identified by the
(approximately conserved) total number of particles;
jE=mNj ≪ 1 is a small binding energy correction to the
total mass; and the chemical potential is similarly small,
jμ=mj ≪ 1. However, near the crossover to the dense
branch of solutions, corrections from special relativity
become large, leading to a breakdown of this criterion.
In particular,Δ ¼ Oð1Þ implies a large decay rate, violating
the approximate N-conservation [35,36,38,54]. Further,
comparing Eqs. (3.11) and (3.13), it is clear that the
binding energy per particle can be Oð1Þ at large
Zð0Þ≳ 1. Finally, μ ¼ −mð1 − ϵÞ ¼ Oð−mÞ implies a
very small amount of energy is required to create new
particles in the condensate, violating number conservation
in yet another way. This ultrarelativistic fluid is very
different from the standard cold, nonrelativistic condensate
assumed in the derivation of the GPP equations. There is no
reason to believe that the GPP equations constitute a
reasonable approximation in this regime.

2. Thomas-Fermi approximation

A related limit analyzed in [19] is the Thomas-Fermi
(TF) approximation, where the kinetic energy is neglected
compared to the gravitational and self-interaction poten-
tials. The TF limit of Eq. (3.8) is

Vg ¼ μ −m

�
J1ðZÞ
Z

−
1

2

�
: ð3:14Þ

Then, using Eq. (3.7), one obtains a single equation for Z of
the form

� ∂2

∂y2 þ
2

y
∂
∂y
��

J1ðZÞ
Z

�
¼ 2πδZ2: ð3:15Þ

Though this was used to analyze the dense branch of axion
stars originally, it is now understood that (as we pointed out
in Sec. II) the kinetic energy is a crucial contribution to the
equations of motion at any value of Zð0Þ yet considered,
and so the TF approximation fails as a description of
axion stars on any branch of solutions if attractive self-
interactions are assumed [24,47]. However, this approxi-
mation is valid for appropriate boundary conditions if
repulsive attractions are assumed [5]. We have included
it here for completeness, but do not analyze it further.

C. Classical equations of motion

1. Classical EKG

The scalar field ϕ represents an operator in the original
axion field theory. To derive the EKG equations (2.4), we
have taken expectation values of the stress-energy tensor
and KG equation, a procedure that modifies the structure of
the self-interaction potential. In particular, the original
cosine potential of Eq. (2.1) is changed to a Bessel function
J0 in the Einstein equations, and V 0ðϕÞ ∝ sin ðϕ=fÞ in the
Klein-Gordon equation changes to J1. One can in principle
use the original trigonometric functions directly and solve
the EKG system.
Taking Z ¼ ffiffiffi

2
p

ϕ=f, the equations of motions are

A0ðyÞ
AðyÞ ¼ 1 − AðyÞ

y
þ 2πδyAðyÞ

�
ϵ2ZðyÞ2
BðyÞ þ Z0ðyÞ2

AðyÞ þ 4½1 − cosðZ=
ffiffiffi
2

p
Þ�
�
;

B0ðyÞ
BðyÞ ¼ AðyÞ − 1

y
þ 2πδyAðyÞ

�
ϵ2ZðyÞ2
BðyÞ þ Z0ðyÞ2

AðyÞ − 4½1 − cosðZ=
ffiffiffi
2

p
Þ�
�
;

Z00ðyÞ ¼ −
�
2

y
þ B0ðyÞ
2BðyÞ −

A0ðyÞ
2AðyÞ

�
Z0ðyÞ − AðyÞ

�
ϵ2ZðyÞ
BðyÞ −

ffiffiffi
2

p
sinðZ=

ffiffiffi
2

p
Þ
�
: ð3:16Þ

The normalization of the field Z must be chosen such
that if the self-interactions decouple [for example, at
extremely small Zð0Þ], the total mass

M ¼ f2

4m

Z
d3y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðyÞBðyÞ

p �
ϵ2Z2

BðyÞ þ
Z0ðyÞ2
AðyÞ

þ 4ð1 − cosðZ=
ffiffiffi
2

p
ÞÞ
�

ð3:17Þ

reduces to Eq. (2.7). We refer to this set of equations as the
classical EKG (CEKG) system; it is classical in the sense
that it is obtained by neglecting the fact that the field ϕ is a
quantum operator. Importantly, solutions to the CEKG

system must be limited to the range 0 < ðZð0Þ= ffiffiffi
2

p Þ < 2π,
because the interaction potential has a shift symmetry that
must be maintained. This cutoff defines the red dots in
Figs. 1 and 2.
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The resulting CEKGmass vs radius curve is given by the
red solid line in the bottom panel of Fig. 1; because the
results are identical to the nongravitating limit, we postpone
the discussion to the next section.

2. Sine-Gordon (SG)

The CEKG equations are interesting, in part, because the
nongravitating limit of the system is the sine-Gordon (SG)
equation:

Z00ðyÞþ2

y
Z0ðyÞþϵ2ZðyÞ−

ffiffiffi
2

p
sinðZðyÞ=

ffiffiffi
2

p
Þ¼0: ð3:18Þ

(The nonstandard factors of
ffiffiffi
2

p
in the equation arise only

due to our normalization conventions.) This fully classical
equation of motion has been analyzed extensively in
oscillon literature [48–50], and more recently in the context
of dense axion stars in [25]. As before, the shift symmetry
enforces Zð0Þ < 2

ffiffiffi
2

p
π. The total mass is given by

Eq. (3.17) with A ¼ B ¼ 1.
The mass M, radius R99, binding energy parameter Δ,

and chemical potential per unit mass μ=m, as determined in
the SG formalism, are illustrated by the yellow dashed lines
in the bottom panel of Fig. 1 and all panels of Fig. 2, which
are identical to the CEKG results (red lines). As pointed out
in [25], the dense branch as defined by the SG equation
does not extend far beyond the crossover point, due to the
shift symmetry requirement. However, we emphasize that
the use of the SG equation does not capture the underlying
axion field theory. The field ϕ is an operator and must be
interpreted as acting on some state of the system, which for
an axion star is usually taken as anN-particle condensate or
as a coherent state; if this is not taken into account, it leads
to the discrepancy in interpreting the dense branch of
axion stars.
It is also important that even in the nonrelativistic region,

there is a difference between the CEKG and EKG results.
The reason can be seen by comparing the leading-order
self-interaction term in Eqs. (2.4) and (3.16), which is
relevant on the transition branch. The numerical factor on
the ϕ4 interaction term is different due to the expansion of
sinðZ= ffiffiffi

2
p Þ as compared to J1ðZÞ. Such a small difference

is difficult to notice unless one is directly comparing
methods, as we have done here. Of course, in the limit
of very dilute axion stars (away from the dilute maximum
mass), either method will return comparable results because
the self-interaction becomes less important compared to the
gravitational force.

IV. CONCLUSIONS

In this work, we have taken a global view of QCD axion
stars, analyzing the full range of input parameters for
calculation and comparing results of different methods
found in the literature. Axion stars have macroscopic

properties that can be described by three branches of
solutions: a dilute branch, which is stable both structurally
and against decay; a transition branch, which is structurally
unstable; and a dense branch, which is structurally stable
but unstable to fast decay to relativistic axions. These three
branches can be described by the Einstein-Klein-Gordon
(EKG) equations using a single input parameter, often
taken either as the central value of the wave function
0 < Zð0Þ < ∞ or the chemical potential −m < μ < 0.
The EKG equations describe axion stars extremely well

along the dilute and transition branches of solutions;
between these two branches, there is a well-known maxi-
mummass ofMmax ¼ 10MPf=m. Near the crossover to the
dense branch, corrections to the scalar wave function
coming from the backreaction of higher-energy modes
become important, but can be taken into account using
perturbative corrections to the EKG equations [4]. The size
of relativistic corrections is controlled by a parameter
Δ < 1, and at OðΔ5Þ the crossover point from transition
to dense branches takes place at a minimum mass Mmin ¼
390f2=m. At very large central field values Zð0Þ≳ 10, the
EKG equations (and even its known extensions) break
down completely due to extremely large binding energy
and rapid violation of number conservation. We emphasize
that no known method is adequate to describe dense axion
stars at large mass.
We have pointed out throughout this work that on the

dense branch and along most of the transition branch of
solutions, gravity is completely negligible. We verify this
by analyzing both the relative contributions of different
terms in the EKG equations of motion, and by comparing
directly the nongravitating limit of the equations of motion
to the original. If the dense branch extends to very large
masses (a claim which we reiterate is not well understood),
then at some point gravity may reappear as a relevant
binding force. A verification of this claim would require
calculations on the dense branch at very large masses,
which is at present not possible. With our current knowl-
edge, then, we note that for QCD axion stars, and in fact for
boson stars composed of axionlike particles with f ≪ MP,
there is no need for any general relativistic corrections in
modeling these condensates along the full dilute and
transition branches of solutions as well as along the dense
branch of solutions for Zð0Þ≲ 10 where the formalism
used in this study begins to break down.
Aside from the EKG approach and its higher-harmonic

extensions, various alternative approaches have been pro-
posed in the literature to describe axion stars on the dense
branch. We point out that these approaches fail as well at
the largest values of Zð0Þ, due to the breakdown of the
assumptions on which they are based. In particular, the
GPP equations are based on a nonrelativistic approximation
of the EKG equations and give spurious results for
Zð0Þ≳ 4; we have denoted this region as quasirelativistic,
as the chemical potential μ ≲ −0.1m there. At even larger
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Zð0Þ, corresponding to even smaller (negative) μ≲ −m=2,
the system is ultrarelativistic and the GPP equations are not
applicable at all.
Another approach we have analyzed is the classical

approach, which ignores the expectation values of the axion
field ϕ and uses the original cosðϕ=fÞ potential in the
calculations. We point out that this approach gives spurious
results even on the transition branch of solutions, due to a
mismatch in the coefficient of the leading self-interaction
term; this mismatch is exacerbated when higher-order self-
interactions become relevant, as on the dense branch. The
classical EKG equations, in the nongravitating limit, reduce
to the sine-Gordon equation often used in classical field
analyses of oscillons. Such solutions must be truncated at
small masses on the dense branch in order to enforce the
periodicity of the potential; for this reason, the classical
equations also fail as a description of dense axion stars.
Dense axion stars, if they were not highly unstable due to

relativistic particle emission, could have extremely inter-
esting phenomenological consequences due to their
extremely large densities. In a theory of a complex scalar
field, rather than a Hermitian field (like the QCD axion),
there can exist a dense branch which is not unstable

because the particle number can be conserved. Such a
theory is interesting and may warrant further study.
In addition to the numerical methods used throughout

this paper, one may also utilize the variational method in
describing solutions along the transition and dense
branches. This method, although less precise than numeri-
cal methods, can be used to gain a qualitative understanding
and analytic control of the solutions along these branches,
and it can easily be used to analyze dynamic systems. A
paper on this subject is currently in preparation.
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