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Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached
such a level of maturity that further improvement necessitates quantum-noise-evading techniques.
Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent
squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter.
Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via
entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in
GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require
modifications to the highly refined core optics of the present GWD design and, when compared to
previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we
refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-
the-art implementations. This is accomplished by matching the effective (rather than intrinsic) suscep-
tibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of
implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.
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I. INTRODUCTION

The sensitivity of the contemporary state-of-art optical
interferometers is to a large degree limited by quantum
fluctuations of the probing light. In particular, in the
modern laser interferometric gravitational wave detectors
(GWDs), like Advanced LIGO [1] and Advanced VIRGO
[2], the dominating noise source in the mid- and high-
frequency parts of their sensitivity band (above ∼100 Hz)
is the shot noise, which originates from the quantum
fluctuations of the light phase [3]. In the more general
context of the theory of linear quantum measurements
[4–6], it is known as the measurement imprecision noise.
In the lower frequencies band, the technical (that is,
nonquantum) noise sources dominate for now.
The resulting sensitivity has proved to be sufficient for

direct observation of gravitational waves from astrophysi-
cal sources [3] with an event rate which exceeded one per
week during the current (as of June 2019) O3 observing run
of the Advanced LIGO and Advanced VIRGO interfer-
ometers [7]. At the same time, almost all GW signals
detected to date came from only one class of cosmic events,

namely, binary black hole coalescences. In order to
regularly detect gravitational waves from less powerful
events, like neutron star coalescences and supernova
explosions, the next major step in increasing the sensitivity
of the GWDs is required.
The shot noise can be suppressed either by the brute-force

increase of the optical power circulating in the interferom-
eter or by injecting squeezed light into the interferometer
dark port, as was proposed in Ref. [8]. Squeezed light is used
in the smaller GW detector GEO-600 since 2011 [9,10].
Starting from the beginning of the O3 observing run, it is
used in the Advanced LIGO and Advanced VIRGO as well.
Because of the Heisenberg uncertainty relation, suppres-

sion of the shot noise leads to the proportional increase of
another kind of quantum noise, namely, the radiation
pressure noise, also known as the quantum backaction noise
[5]. It originates from the quantum fluctuations of the light
power in the interferometer, which create a random force
perturbing the positions of the interferometer mirrors. Within
the sensitivity band of the laser GW detectors (≳10 Hz), the
suspended mirrors of the GW detectors can be treated as free
masses. Correspondingly, the massless susceptibility func-
tion of the signal mechanical degree of freedom of the
interferometer can be approximated as

χIðΩÞ ¼ −1=Ω2; ð1Þ
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where Ω is the observation frequency. Therefore, the
radiation pressure noise is most important in the low-
frequency part of the GW detectors’ sensitivity band.
When the Advanced LIGO reaches its design sensitivity,
the radiation pressure noise will be the dominating one at
low frequencies, i.e., below ∼100 Hz.
At any given frequencyΩ, an optimal value of the optical

power exists which provides the minimum of the sum
quantum noise at this frequency. In the case where the
imprecision noise and the backaction noise are uncorre-
lated, this minimum is known as the standard quantum limit
(SQL) [11]. Being expressed in units of spectral density of
the effective position noise, it is equal to [12]

SSQL ¼ ℏ
mΩ2

: ð2Þ

Several methods of overcoming the SQL suitable for laser
interferometers are known; see, e.g., the reviews [5,6]. In
particular, as early as in 1982, Unruh [13] had shown that,
injecting into the interferometer squeezed light with the
optimally tuned frequency-dependent squeeze angle (i.e.,
phase squeezing at higher frequencies and amplitude
squeezing at lower ones), it is possible to suppress the
quantum noise spectral density by the squeeze factor e2r

over the entire band of interest. A practical method for
generating frequency-dependent squeezed light was pro-
posed by Kimble and co-workers in Ref. [14]. They have
shown that the necessary frequency dependence can be
created by reflecting an ordinary frequency-independent
squeezed vacuum from an additional Fabry-Pérot cavity (a
so-called filter cavity).
This scheme is considered now as one of the most

probable candidates for implementation in the next gen-
eration of GW detectors. However, it has a significant
disadvantage, namely, vulnerability to optical losses in the
filter cavity. In order to “dilute” them, long (and therefore
expensive) filter cavities with high-reflectivity mirrors have
to be used. In fact, filter cavities with the same 4 km length
as the main interferometer arms were considered in
Ref. [14]. Currently, a more modest but still long (tens
of meters) cavity is discussed as an option for the future
upgrade of the Advanced LIGO detectors [15,16].
In Ref. [17], a different approach to the preparation of the

necessary quantum state of light was proposed. In this
scheme, two entangled light beams are prepared using an
optical parametric oscillator. One of them (“signal”) probes
the interferometer, and the second one (“idler”) the filter
cavity. The output beams are then measured by two
homodyne detectors. Because of the entanglement, meas-
urement of the idler beam prepares the signal beam in the
required frequency-dependent squeezed quantum state.
Taking into account that the wavelengths of the signal
and the idler beam could be different (the nondegenerate
regime), some additional mode of the interferometer can be

used as the filter cavity; it is this option that was considered
in detail in Ref. [17]. This scheme does not require a
dedicated filter cavity, but it requires instead the additional
squeezed light injection and the additional readout optical
paths which could hinder its practical application.
Instead of the passive filter cavity, a much more compact

active “negative effective mass” atomic spin ensemble
has been shown to cancel quantum backaction noise,
generate entanglement, and perform sensing beyond the
SQL. First experiments were performed with purely atomic
systems [18,19]. Later, the idea was applied to a mechani-
cal system [20] in the spirit of trajectories without quantum
uncertainties based on the establishment of entanglement
between a mechanical oscillator and a spin system [21].
There, it has been shown that an ensemble of spins oriented
(anti)parallel to the axis of the magnetic field behaves as
an effective (positive-) negative-mass oscillator within the
Holstein-Primakoff approximation. Those early papers
utilized the “sequential” layout, where the same light
interacts with the mechanical mode and the spin ensemble.
Recently, suppression of the backaction noise using the
atomic spin ensemble scheme was demonstrated experi-
mentally, with a nanomechanical membrane playing the
role of the mechanical object [22].
This scheme cannot be used directly in the laser GW

detectors, because, in order to interact effectively with the
atomic spin ensemble, the optical wavelength must be close
to that of the atomic transition (λS ≈ 850 nm), while in the
contemporary GW detectors the wavelength is equal to
λI ¼ 1064 nm, and longer wavelengths are planned for
future upgrades. To circumvent this problem, a “parallel”
layout (similar to the one of Ref. [17]) was proposed in
Ref. [23]. It was shown that, using demanding but realistic
parameters of the spin system, it is possible to improve the
sensitivity by 6 dB over the entire frequency band of the
GWD.
In order to effectively suppress the quantum noise, two

conditions have to be satisfied for the interferometer and
the spin system. First, the readout rates (the measurement
strengths) in the subsystems have to match each other.
Second, the susceptibility of the spin system has to match
that of the relevant mechanical degree of freedom in the
interferometer. In Ref. [23], a brute-force approach to
satisfying these conditions was used, which resulted in a
very demanding value of the quantum cooperativity factor
CS of the spin system (denoted as d0 in Ref. [23]), about 102

(see details in Sec. II A). Such a high value of CS requires
that the spin ensemble should be placed inside an optical
cavity, which inevitably increases the optical losses, greatly
hindering the implementation of this scheme.
In the present paper, we introduce an additional mecha-

nism, the virtual optical rigidity effect (see Sec. 4.4 of
Ref. [5]), into the combined GWD and spin system.
We show that this idea dramatically relaxes the requirement
on CS. The new mechanism can be implemented by
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experimentally straightforward phase shifts of the optical
carrier and homodyne detection. In the following, we
provide the general analysis of the parallel spin-system-
based scheme shown in Fig. 1, assuming full freedom in
our choice of the relevant phases, namely, two homodyne
angles and two optical carriers relative to the squeezing
phase. We then show that the virtual rigidity effect can
induce effective frequency shifts in the mechanical and spin
system susceptibilities. Finally, we derive a simple closed
equation (57) for the sensitivity gain provided by our
scheme, which clearly shows the comparative role of the
optical and the spin system losses at different frequencies.
The paper is organized as follows. In Sec. II, we

familiarize the readers with the “brute-force” matching
conditions of Ref. [23], introduce the virtual rigidity con-
cept and use it to derive conditions for quantum noise

suppression under ideal conditions. In Sec. III, we present
the full expression for the sensitivity of our scheme
accounting for various imperfections, including finite
entanglement between the probe fields, optical losses,
the spin system thermal noise, and response mismatch
due to the spin system dissipation. We then evaluate the
sensitivity in Sec. IV using state-of-the-art parameters for
interferometer and spin systems to assess the potential of
our scheme. Finally, we conclude and give an outlook
in Sec. V.
The main parameters used in this paper are listed in

Table I. For the GW interferometer parameters, we use the
values which correspond to the Advanced LIGO design
goal [24]. We would like to note, however, that our results
explicitly depend only on one parameter of the interfer-
ometer, namely, the readout rate

ΩqI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ωoIc
mcLγ

s
; ð3Þ

which is equal to ΩqI ≈ 2π × 60 Hz for the parameters
listed in Table I. Taking into account that for future
interferometers higher optical power but at the same
time heavier test masses and longer arms are planned,
it is reasonable to expect that this parameter will not
change drastically. For the intrinsic spin linewidth we
assume γS;0 ¼ 2π × 1 Hz as has been demonstrated in an
experiment [25].

II. QUANTUM NOISE MATCHING

A. Matching conditions for the interferometer
and spin systems without virtual rigidity

A schematic of the experimental layout is shown in
Fig. 1. To set the stage for this extended scheme, we start by
reviewing the simpler scheme introduced in Ref. [23]. In
essence, it differs from the one considered here and shown
in Fig. 1 only by the specific choice of the homodyne and
the carrier angles:

ϕI ¼ ϕS ¼ 0; ζI ¼ ζS ¼
π

2
: ð4Þ

FIG. 1. The GW interferometer (I) and the spin oscillator (S)
are probed and detected in parallel by laser beams (solid arrows)
with different wavelengths but entangled fluctuations (dashed
arrows). These two-mode-squeezing correlations are achieved by
means of a sum frequency generator in combination with an
optical parametric oscillator. The collective spin of the atomic
ensemble precesses around the magnetic field B⃗, forming a spin
oscillator. With respect to the squeeze angle of this process, we
reference the probe ϕI;S and detection ζI;S phases of the
respective systems. The output fields impinge on detectors
DI;S, and the resulting measurements are suitably combined to
cancel the joint meter noise. A possible practical implementation
of the present conceptual schematic is presented in Ref. [23].

TABLE I. The main parameters and their numerical values used in this paper.

Notation Quantity Value used for estimates

ωo Optical frequency 2πc=ð1064 nmÞ
L Interferometer arm length 4000 m
m Mirror mass 40 kg
γ Interferometer bandwidth (half width at half maximum, HWHM) 2π × 500 Hz
Ic Optical power circulating in each of the arms 840 kW
γS;0 Spin system “dark” damping rate (HWHM) 2π × 1 Hz
ηiI , ηoI Input and output quantum efficiencies of the interferometer 0.95
ηiS, ηoS Input and output quantum efficiencies of the spin system 0.95

GRAVITATIONAL WAVE DETECTION BEYOND THE … PHYS. REV. D 100, 062004 (2019)

062004-3



In this limiting case, relations for the input âI;S and output
b̂I;S light quadratures for the interferometer and spins,
respectively, are [23]

b̂sI ¼ âsI þ χI

�
ΩqIffiffiffiffiffiffiffi
ℏm

p Fs þ Ω2
qIâ

c
I

�
; ð5aÞ

b̂sS ¼ âsS þ χSðΩqSf̂T þ Ω2
qSâ

c
SÞ; ð5bÞ

where ΩqS and ΩqI are the readout rates, Fs is the signal

(GW) force, f̂T is the normalized thermal noise of the spin
system, χI and χS are the massless susceptibilities, and the
superscripts c and s denote the cosine (amplitude) and sine
(phase) quadratures, respectively.
The analysis of the work [23] was based on two

conditions for the negative-mass spin system parameters,
which allow us to provide the required conditional fre-
quency-dependent squeezing across the entire bandwidth of
interest. The first one is the equality of the readout rates in
the two subsystems:

ΩqS ¼ ΩqI; ð6Þ

where

ΩqS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΓSΩS

p
ð7Þ

is the spin system readout rate, ΩS is the spin system
(Larmor) resonance frequency, and ΓS is the spin-light
coupling factor proportional to the optical power probing
the spin system. Both ΩS and ΓS are typically highly
tunable parameters for a collective spin oscillator [22], the
former by the dc magnetic bias field and the latter by the
optical probe power. However, the readout of the spin
oscillator entails an increase of its bandwidth beyond its
intrinsic value γS;0 due to induced spontaneous emission
(i.e., power broadening)

γS − γS;0 ¼ γS;pb ¼ ΓS=CS; ð8Þ

where the spin oscillator cooperativity CS depends on
factors such as atomic density, the atomic species, optional
cavity enhancement, and probe detuning from atomic
resonance but is independent of probe power. Since it is
desirable to keep the spin decay γS small, due to the noise
and response mismatch it otherwise entails, we are moti-
vated to realize the condition (6) by means of a relatively
small ΓS (so as to keep γS;pb small) and a large ΩS.
However, this strategy raises another problem pertaining
to the second matching condition which must be fulfilled
for broadband noise cancellation:

χIðΩÞ ¼
1

−Ω2
≈ −χSðΩÞ ¼

1

Ω2
S −Ω2 − 2iγSΩ

; ð9Þ

where χS is the spin system (massless) susceptibility. In
addition to showing the need for small γS, this condition
prompts us to employ a smallΩS → 0, contrary to what was
suggested by the first condition [Eq. (6)]. These two
opposing requirements can, in principle, be accommodated
by a compromise involving a small, finite ΩS as in the
original proposal [23], where the value 2π × 3 Hz was
used. But this strategy demands a highly refined spin
system with CS ∼ 102 to avoid an excessively power-
broadened γS (8), thus posing a significant practical
challenge.

B. Virtual rigidity representation

Let us start with a standard optomechanical setup
consisting of a mechanical object (free mass or harmonic
oscillator) whose motion modulates the eigenfrequency of
an optical cavity probed by a pump laser. Using the well-
known analogy between the mechanical system and the
collective spin mode of the atomic ensemble [22,26], our
treatment here can be extended to the latter, as we will
make use of in Sec. II C. For simplicity, we neglect here
the optical and mechanical losses (they will be taken into
account later). Also for simplicity, we assume that our
frequency band of interest is well within the cavity half
bandwidth γ (the bad-cavity approximation):

Ω ≪ γ: ð10Þ

This assumption, which we retain throughout this work,
will be discussed in more detail in Sec. III A.
The input-output relation for this system can be pre-

sented as follows:

b̂ζ ¼ b̂c cos ζ þ b̂s sin ζ

¼ âζ þ χ

�
Ωqffiffiffiffiffiffiffi
ℏm

p Fs þ Ω2
qâϕ

�
sinðζ − ϕÞ; ð11Þ

see, e.g., the review papers [5,27]. Here ζ is the homodyne
angle, ϕ is the optical carrier phase, âc;s are the cosine and
the sine quadratures of input light, respectively, satisfying
the commutation relation ½âc; âs� ¼ i [28], b̂c;s are the
corresponding amplitudes of the output light, and âψ , b̂ψ ,
etc., are the rotated quadratures in terms of an angle ψ , e.g.,

âψ ¼ âc cosψ þ âs sinψ : ð12Þ

It is easy to see that Eqs. (5) correspond to the particular
case of Eq. (11) where ϕ ¼ 0 and ζ ¼ π=2.
From the output field (11), the signal force is

estimated as

F̃s ¼ Fs þ
ffiffiffiffiffiffiffi
ℏm

p
f̂; ð13Þ

where
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f̂ ¼ χ−1

Ωq sinðζ − ϕÞ â
ζ þΩqâϕ ð14Þ

is the normalized sum quantum noise of our system. The
two components of this equation describe the imprecision
noise and the backaction noise, respectively; in general,
these are correlated with each other.
The consequences of the correlations can be elucidated

by introducing the orthonormal quadrature basis defined by
the detection angle ζ:

âc0 ≡ âðζ−π=2Þ ¼ âc sin ζ − âs cos ζ; ð15aÞ

âs0 ≡ âζ ¼ âc cos ζ þ âs sin ζ: ð15bÞ

The resulting form of f̂ (14) is

f̂ ¼ χ−1eff
β

âs0 þ βâc0; ð16Þ

where

β ¼ Ωq sinðζ − ϕÞ ð17Þ

is the effective readout rate and

χ−1eff ≡ χ−1 þ Ω2
q

2
sin 2ðζ − ϕÞ ð18Þ

is the effective susceptibility of the scheme. It follows from
Eq. (16) that the orthonormal basis (15) introduces the
effective, uncorrelated imprecision and backaction noise
terms constructed by absorbing the part of the backaction
correlated with the nominal imprecision noise into an
effective imprecision noise term. A by-product of this
transformation is the modified effective susceptibility
χeff . Since the modification term in Eq. (18) is real and
independent of the Fourier frequency, it corresponds to a
shift in the resonance frequency of χ, whence it is referred
to as virtual rigidity (see Sec. 4.4 of Ref. [5]).
We conclude that, in the absence of optical losses, the

probing of a system characterized by χ and probe param-
eters Ωq, ζ, and ϕ is indistinguishable from the scenario
resulting from using the scheme with effective parameters
χeff , Ωqeff ¼ β, and ζeff − ϕeff ¼ π=2.

C. Quantum noise matching using virtual rigidity
for two systems probed by entangled light

Consider now two systems—the interferometer and the
spin system, denoted by the subscripts I and S, respectively.
Suppose that they are probed by individual optical meters,
described by the four quadratures âc;sI and âc;sS , in the
manner described in Sec. II B. The two systems are not
interacting, but the fluctuations of the two light meters are

assumed to be entangled by a nondegenerate parametric
down-conversion process (see Fig. 1). We will use the
parametric pump phase as the phase reference point (that is,
the squeeze angle defines zero phase). In this case, the noise
spectral densities of all four quadratures are equal to

SacI ¼ SasI ¼ SacS ¼ SasS ¼
cosh 2r

2
; ð19aÞ

and the cosine quadratures of the beams are correlated,
whereas the sine counterparts are anticorrelated:

SacI acS ¼ −SasIasS ¼
sinh 2r

2
; ð19bÞ

where r is the squeeze factor. All other components of the
correlation matrix vanish.
Assume now that we wish to measure a force signal

acting on system I. Because of the meter noise correlations,
the sensitivity to this signal can be improved by exploiting
the additional probing on system S by adding the corre-
sponding additional output signal to the main interferom-
eter signal with some optimal weight function Λ. The
equations for the normalized meter noise (14) for the two
systems are

f̂I ¼
χ−1I

ΩqI sinðζI − ϕIÞ
âζII þ ΩqIâ

ϕI
I ; ð20aÞ

f̂S ¼
χ−1S

ΩqS sinðζS − ϕSÞ
âζSS þ ΩqSâ

ϕS
S ; ð20bÞ

respectively, where ζI;S are the homodyne angles in the
interferometer and the spin system channels, respectively,
and ϕI;S are the corresponding probe phases of the carrier
fields. In Ref. [23], the simplest particular case of meas-
uring the phase quadratures of light while probing with the
(orthogonal) amplitude fluctuations was considered:

ζI ¼ ζS ¼
π

2
; ϕI ¼ ϕS ¼ 0; ð21Þ

which corresponds to

f̂I ¼
χ−1I
ΩqI

âsI þ ΩqIâcI ; ð22aÞ

f̂S ¼
χ−1S
ΩqS

âsS þΩqSâcS: ð22bÞ

Taking into account Eqs. (19), it is easy to see that if

Ω2
qS ¼ Ω2

qI and χS ¼ −χI; ð23Þ

then the simple subtraction of f̂S from f̂I (which corre-
sponds to the choice of the above-mentioned weight
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function Λ ¼ −1) allows us to reduce the resulting noise
spectral density by the factor e2r=2 relative to a standard
interferometer subject to vacuum noise. The optimal weight
functionΛ ¼ − tanh 2r gives the slightly better suppression
factor cosh 2r.
As was discussed in Sec. II A, implementation of the

near antisymmetric susceptibilities (23) could be pro-
blematic due to technological limitations. However, the
virtual rigidity approach can be used to make the effective
susceptibilities (18) match each other. Here we demonstrate
how the complete cancellation of quantum noise at all
Fourier frequencies can be engineered in the limit of a
lossless negative-mass spin system with

χ−1S ¼ −ðΩ2
S −Ω2Þ; ð24aÞ

where the overall sign stems from the negative mass (the
general case is considered in Sec. III). For the interferom-
eter, we suppose that

χ−1I ¼ −Ω2 ð24bÞ

(the ideal free mass).
In general, the phase rotation transformations (15) in

terms of ζI;S alter the cross-correlation entries in the spectral
density matrix of the light quadratures. However, an inter-
esting feature of the two-mode squeezed light generated in a
nondegenerate parametric process is that if the homodyne
angles ζI and ζS are antisymmetric with respect to the phase
of the parametric pump (modulo π),

ζI þ ζS ¼ πn; ð25Þ

where n is an integer, then the matrix remains invariant and,
in particular, Eqs. (19) remain valid. This follows from the
simple geometrical observation that Eq. (19b) implies that
the quadrature pairs ðâcI ; âcSÞ and ðâsI ;−âsSÞ are correlated.
The minus sign in the latter pair effectively inverts the sense
of rotation (15), ζS → −ζS, resulting in the antisymmetric
condition (25) for invariance of the correlation matrix. Let
us, without the loss of generality, take n ¼ 1 in Eq. (25) in
order to provide a smooth transition from the case of
Ref. [23], as stated in Eqs. (21).
Assuming the condition (25), we can rewrite Eqs. (20) in

the virtual rigidity form (16):

f̂I ¼
χ−1effI
βI

âs0I þ βIâc0I ; ð26aÞ

f̂S ¼
χ−1effS
βS

âs0S þ βSâc0S ; ð26bÞ

where

βI;S ¼ ΩqI;S sinðζI;S − ϕI;SÞ ð27Þ

and

χ−1effI ¼ −Ω2 þΩ2
qI

2
sin 2ðζI − ϕIÞ; ð28aÞ

χ−1effS ¼ Ω2 −Ω2
S þ

Ω2
qS

2
sin 2ðζS − ϕSÞ: ð28bÞ

Therefore, the setting

Ω2
qI

2
sin 2ðζI − ϕIÞ ¼ Ω2

S −
Ω2

qS

2
sin 2ðζS − ϕSÞ ð29Þ

provides the effective response functions matching con-
dition χ−1effS ¼ −χ−1effI.
Finally, we have to make the effective coupling factors

equal to each other, which gives the following condition:

β2I ¼ β2S: ð30Þ

In order to simplify the equations, it is convenient to
introduce the following combined angles:

ζ ≡ ζI − ϕI; ϕ≡ ϕI þ ϕS: ð31Þ

In these notations, the conditions (25), (29), and (30) can be
reexpressed and summarized, respectively, as

ζ þ ϕI þ ζS ¼ π; ð32aÞ

Ω2
qS ¼

sin2ζ
sin2ðζ þ ϕÞΩ

2
qI; ð32bÞ

Ω2
S ¼

sin ζ sinϕ
sinðζ þ ϕÞΩ

2
qI: ð32cÞ

These conditions generalize those of the simpler scheme,
Eqs. (6) and (9), which are recovered from Eqs. (32b) and
(32c) as the special case ζ ¼ π=2 and ϕ ¼ 0.

D. Geometrical interpretation of noise
cancellation using virtual rigidity

We now provide a geometrical interpretation of the
conditions for quantum noise cancellation arrived at
above. To this end, we focus on the case ζ ¼ π=2, which
is the natural choice for purposes of broadband sensing
enhancement (as will be discussed below). In view of
Eqs. (31), we may choose ϕI ¼ 0 as a matter of convention,
since this is without consequences for ΩqS and ΩS

[Eqs. (32b) and (32c)]; it follows that ϕ ¼ ϕS and, from
Eq. (32a), ζS ¼ π=2. Conveniently, this implies equality
between the original and primed quadrature bases âc;sI;S and
âc;s0I;S [Eqs. (15)].
In this scenario, the backaction matching condition (32b)

can be written [cf. Eq. (6)]
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Ω2
qI ¼ Ω2

qScos
2ϕ ¼ 4ΩSΓScos2ϕ; ð33Þ

where only the component ΓScos2ϕ of the spin backaction
âϕS overlapping with that of the interferometer âcI contributes
(Fig. 2); the projection factor is cosϕ in terms of amplitude
and, thus, cos2 ϕ in terms of power. However, the power
broadening of γS and associated noise are still proportional
to the full backaction rate ΓS according to Eq. (8).
The virtual rigidity effect results in an effective spin

resonance frequency ΩSeff as found in Eq. (28b):

Ω2
Seff ¼ Ω2

S −
Ω2

qS

2
sin 2ϕ ¼ Ω2

S −Ω2
qI tanϕ; ð34Þ

where the condition (33) was used to obtain the last
expression. This shift can be understood geometrically
from Fig. 2 as follows: The state of S is mapped with
strength Ω2

qS onto the output quadrature b̂ϕþπ=2
S whose

imprecision noise âϕþπ=2
S (orthogonal to the backaction âϕS )

has the projection factor cosϕ onto âsS, the imprecision
noise of the chosen measurement quadrature. Meanwhile,
the part of the backaction âϕS correlated with âsS is the
projection sinϕ. Combining these factors, the resulting
interference is found to be equivalent to a shift in
the resonance frequency squared by −Ω2

qS cosϕ sinϕ ¼
−ðΩ2

qS=2Þ sin 2ϕ [see Eq. (34)], where the minus sign arises
from the negative effective mass; cf. Eq. (24). Matching
requires ΩSeff ¼ 0 as discussed above, thus, according to
Eq. (34), fixing

ΩS ¼ ΩqI

ffiffiffiffiffiffiffiffiffiffi
tanϕ

p
; ð35Þ

which is consistent with Eq. (32c) for ζ ¼ π=2.

E. Optimal ϕ for minimizing spin decay γS
Continuing to focus on the choice ζ ¼ π=2 relevant for

broadband quantum noise evasion, we now finally address
to which extent the virtual rigidity effect can alleviate
the limitation of the original scheme reviewed in Sec. II A.
Our goal is to approach the quantum noise matching con-
ditions while minimizing γS and, hence, ΓS; see Eq. (8).
As is clear from Eq. (35), the virtual rigidity effect allows us
(in principle) to work at an arbitrarily large ΩS for a given
ΩqI by letting ϕ → π=2. But the projection factor cos2 ϕ in
Eq. (33) entails that under the constraint of matching (32)
the minimum of γS occurs at a finite value of ΩS.
Combining Eqs. (33) and (35), we find that

ΓS ¼
ΩqI

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinϕcos3ϕ

p ; ð36Þ

which is minimal at ϕ ¼ π=6, resulting in

ΓS ¼ ΩqI=33=4; ΩS ¼ ΩqI=31=4; ð37Þ

and, hence, in view of Eq. (8), the minimized spin decay γS.
Since this is the main bottleneck parameter, as will be clear
from the full sensitivity calculation below, the parameters
ζ ¼ π=2, ϕ ¼ π=6, and (37) constitute a quasioptimal set
for broadband quantum noise evasion resulting in a much
less stringent requirement for the spin cooperativity CS and/
or the intrinsic decay rate γS;0 compared to the original
proposal [23].

III. CALCULATION OF THE SENSITIVITY

A. Assumptions and approximations

In the analysis above, we arrived at the conditions for
perfect quantum noise cancellation while elucidating the
essential physics of our scheme. However, this was done in
the idealized limit of dissipationless mechanical and spin
degrees of freedom. While the mechanical losses in modern
gravitational wave detectors are very small and can safely
be neglected in our analysis, the imperfections brought
about by finite bandwidth γS of the spin system as well as
by the optical losses must be accounted for in order to
assess the feasibility of the scheme.
A finite γS will impact performance in two ways. First, it

will introduce a nonzero imaginary part to the spin system
susceptibility:

χ−1S ¼ −ðΩ2
S −Ω2 − 2iΩγSÞ; ð38Þ

which cannot be countered by the virtual rigidity effect
and, hence, will render perfect broadband matching of the

FIG. 2. Geometrical representation of the virtual rigidity effect.
The backaction and imprecision noise quadratures for I and S are
depicted with respect to the quadrature bases ðâcI;S; âsI;SÞ, re-
spectively. Homodyne measurement quadratures are chosen to be
b̂sI and b̂sS (i.e., ζI ¼ ζS ¼ π=2) so that the corresponding
imprecision noise quadratures (vertical bold arrow) coincide
with the vertical axes, âsI and âsS. For I, we make the “standard”
choice of probe phase ϕI ¼ 0 such that the orthogonal quadrature
âcI acts as backaction. However, for S, a probe phase ϕ ¼ ϕS
relative to âcS is introduced.
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effective susceptibilities χ−1effI and χ−1effS impossible. Second,
on account of the dissipation-fluctuation theorem, spin
noise uncorrelated with the meter noise will degrade the
sensitivity.
The optical losses can in a natural way be divided into

three parts: the losses in the input paths of the interferom-
eter and the spin system, the light absorption inside these
two subsystems (e.g., the intracavity losses), and the losses
in their output paths. The input losses include, in particular,
the imperfections of the squeezer, whereas the output losses
include, in particular, the finite quantum efficiency of the
detectors. In order to simplify the equations, we neglect the
intracavity losses. In the contemporary GW interferome-
ters, the influence of these losses is small in comparison
with the input and the output counterparts. Concerning the
spin system, the virtual rigidity approach requires only
the modest quantum cooperativity CS ∼ 10, which allows
the use of a small-finesse cavity or even a cavityless path-
through topology, which also makes the internal optical
losses much smaller than those at the input and the output.
In our analysis here and below, we still assume the bad-

cavity approximation (10). This approach is justified by the
following reasoning. The spectral shape of the quantum
noise of interferometers depends on the two characteristic
frequencies Ωq and γ. Below Ωq, the radiation pressure
noise dominates over the imprecision shot noise (if no
backaction cancellation techniques are used). Above γ, the
normalized noise increases due to the signal cutting by
the interferometer bandwidth. In all contemporary and
planned GWDs,Ωq ≪ γ. If frequency-independent squeez-
ing is used, then the effective Ωq scales up as e2r. However,
in frequency-dependent squeezing schemes like the one
considered here, both the backaction noise and the impre-
cision shot noise are suppressed, leaving Ωq unchanged.
Therefore, all nontrivial behavior of the backaction can-
cellation schemes is concentrated in the frequency band
Ω ∼Ωq ≪ γ. In particular, it is easy to show that, at higher
frequencies, the scheme which we consider here provides
only the trivial (but desirable) frequency-independent
suppression of the sum quantum noise, which consists
only of the imprecision shot noise in this frequency band,
by a frequency-independent factor defined by the squeez-
ing rate and the optical losses.

B. Effects of dissipation and losses

With account of optical losses and spin dissipation, the
input-output relations for the interferometer and the spin
system take the following form:

b̂ζII ¼ ffiffiffiffiffiffi
ηoI

p �
âζII þ χI

�
ΩqIffiffiffiffiffiffiffi
ℏm

p Fs þΩ2
qIâ

ϕI
I

�
sinðζI − ϕIÞ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηoI

p
ẑζII ; ð39aÞ

b̂ζSS ¼ ffiffiffiffiffiffiffi
ηoS

p ½âζSS þ χSðΩqSf̂T þ Ω2
qSâ

ϕS
S Þ sinðζS − ϕSÞ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηoS

p
ẑζSS ; ð39bÞ

compare with Eq. (11). Here ẑI;S are the vacuum fields
associated with the output optical losses of the interfer-
ometer and the spin system channels, and f̂T is the nor-
malized thermal force of the spin system with the spectral
density defined by the fluctuation-dissipation theorem:

σT ≥ 2γSΩ: ð40Þ

We assume that this noise is ground-state noise, i.e., with
equality in the above equation. Accounting for the input
optical losses, the spectral densities and correlations (19) of
the incident optical fields generalize to

SacI ¼ SasI ¼ ηiIsinh2rþ 1=2; ð41aÞ

SacS ¼ SasS ¼ ηiSsinh2rþ 1=2; ð41bÞ

SacI acS ¼ −SasIasS ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
ηiIηiS

p
sinh 2r: ð41cÞ

Similar to our treatment in Sec. II C, we introduce the
normalized noise forces

f̂I ¼
χ−1effIâ

s0
I þ χ−1I ϵoIẑ

ζI
I

βI
þ βIâc0I ; ð42aÞ

f̂S ¼
χ−1effSâ

s0
S þ χ−1S ϵoSẑ

ζS
S

βS
þ βSâc0S þ f̂T ; ð42bÞ

where

ϵoI;S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηoI;S
ηoI;S

s
; ð43Þ

compare with Eqs. (26). The spectral densities of f̂I and f̂S
and their cross-spectral density are equal to

σI ¼
ηiIKI

2
ðcosh 2rþ ϰIÞ; ð44aÞ

σS ¼
ηiSKS

2
ðcosh 2rþ ϰSÞ; ð44bÞ

σIS ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
ηiIηiS

p
KIS sinh 2r; ð44cÞ

where we have introduced the factors
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ϰI ¼ ϵ2iI þ
kIϵ2oI
KIηiI

; ð45aÞ

ϰS ¼ ϵ2iS þ
kSϵ2oS þ 2σT

KSηiS
; ð45bÞ

describing the total imperfections in each of the channels,
and the coefficients

KI;S ¼
jχ−1effI;Sj2
β2I;S

þ β2I;S; ð46aÞ

KIS ¼ Kc
IS cosðζI þ ζSÞ þ Ks

IS sinðζI þ ζSÞ; ð46bÞ

kI;S ¼
jχ−1I;Sj2
β2I;S

; ð46cÞ

with

Kc
IS ¼

χ−1effIχ
−1�
effS

βIβS
− βIβS; Ks

IS ¼
βS
βI

χ−1effI þ
βI
βS

χ−1�effS:

ð47Þ

The optimally combined sum noise spectral density of
the two meters is given by

S
ℏm

¼ σI −
jσISj2
σS

¼ ηiI
2KSðcosh 2rþ ϰSÞ

fjKresj2cosh22r

þ jKISj2 þ KIKS½ðϰI þ ϰSÞ cosh 2rþ ϰIϰS�g; ð48Þ

where

jKresj2 ¼ KIKS − jKISj2: ð49Þ

Note that the structure of Eq. (48) suggests that an optimal
value of squeezing providing the minimum of S should
exist. This optimization is done in the following subsection.

C. Squeezing optimization

Here we derive the optimal value of the squeezing
parameter r based on the general expressions given in
Sec. III B. To be precise, we derive the value of r that
minimizes the sensitivity SðΩÞ (48) at a given Fourier
component Ω. Nonzero squeezing (and, hence, introducing
the spin system) can improve the sensitivity only if the
extraneous noise in the spin system uncorrelated with the
interferometer is sufficiently small; from Eq. (48), we find
the following condition on ϰS (45b):

ϰS < 1 − 2
jKresj2
KIKS

: ð50Þ

Recall that these quantities depend on the Fourier fre-
quency Ω. Provided that the condition (50) is fulfilled, the

squeeze parameter roptðΩÞ that minimizes the sensitivity
SðΩÞ is specified by

cosh 2roptðΩÞ ¼
jKISj
jKresj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϰ2S

q
− ϰS: ð51Þ

Note that Eqs. (50) and (51) are both independent of the
extraneous noise in the interferometer due to optical losses,
ηiI ; ηoI < 1. If the source of entangled light is broadband,
as assumed throughout this work, it is characterized by
a squeeze factor r which is independent of the Fourier
frequency; accordingly, the chosen r will not be optimal
for all Fourier frequencies Ω. With this in mind, we may
nonetheless evaluate SðΩÞ (48) at r ¼ roptðΩÞ to achieve an
expression for the optimized sensitivity at each Fourier
frequency:

S
ℏm

����
r¼ropt

¼ ηiI
2KS

½2jKresj2 cosh 2ropt þ KIKSðϰI þ ϰSÞ�;

ð52Þ

with cosh 2ropt given by Eq. (51), suppressing the Ω
dependence of the involved quantities for brevity.

D. Quasioptimal noise cancellation
in the large-squeezing limit

We now optimize the full sensitivity (48) in the large-
squeezing limit e2r ≫ 1. While the parameters which
provide this optimum are not strictly the best ones for
finite squeezing and in the presence of optical and spin
losses and noise, it is still a reasonable working point when
these detrimental effects are relatively small.
In the limit of r → ∞, Eq. (48) simplifies to

S
ℏm

¼ ηiIe2r

4

jKresj2
KS

: ð53Þ

In order to minimize this expression, the cross-correlation
term jKISj has to be maximized. In principle, its rigorous
maximization in ζI þ ζS is possible, but its maximum
corresponds to frequency-dependent homodyne angles.
We assume instead that the condition (25) is fulfilled. In
this case,

jKresj2 ¼
���� βSβI χ

−1
effI þ

βI
βS

χ−1effS

����
2

: ð54Þ

It is easy to see that, in the ideal lossless case of (24), the
conditions (29) and (30) make Kres equal to zero.
Unfortunately, the imaginary part of the realistic spin

system susceptibility (38) does not allow us to cancel Kres
completely. Taking it into account and still assuming the
conditions (25), (29), and (30), we obtain that
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KS ¼ KI þ
4Ω2γ2S
β2I

; ð55aÞ

jKISj2 ¼ K2
I þ

4χ−2effIΩ2γ2S
β4I

; ð55bÞ

jKresj2 ¼ 4Ω2γ2S: ð55cÞ

Note that χeffI depends only on the angle ζ, as is clear
from Eqs. (18) and (31). We thus remark that the optimized
noise spectral density (48) depends on the angle ϕ only via
χ−1S , as this dictates our choice ofΩS according to Eq. (32c).
The only term in Eq. (48) that contains χ−1S represents the
vacuum noise due to optical losses at the output of the spin
system and is minimal at the peak of χSðΩÞ (Ω ∼ ΩS
provided that ΩS ≫ γS). Hence, in the absence of such
losses, ηoS → 1 ⇒ ϵoS → 0, the sensitivity is independent
of both ϕ and ΩS. Crucially, this allows a significant extent
of freedom in choosing the (bare) spin resonance ΩS, since
the appropriate effective (virtual) resonance can achieved
by the proper choice of ϕ; this is a great advantage for
purposes of practical implementation and is a central result
of this work.

IV. DISCUSSION OF THE SENSITIVITY

We now explore this central idea in a case of particular
interest ζ ¼ π=2, so that χeffI ¼ χI, which means that the
standard phase configuration of orthogonal probe and
homodyne quadratures is used for the main interferometer;
this is exactly the scenario discussed in Sec. II D. As for an
interferometer without a spin system, this yields the most
flat shape of the sum quantum noise spectral density, as
well as the best performance in the shot-noise-dominated
high-frequency band. Moreover, in all plots we choose ϕ ¼
π=6 in order to minimize γS for fixed CS according to the
discussion in Sec. II E; hence, the quasioptimal ΩS and ΓS
are given as functions of ΩqI alone; see Eqs. (37).
Prior to plotting the sensitivity resulting from these

parameters, let us discuss the choice of squeezing r in
the presence of imperfections. The optimal degree of two-
mode squeezing ropt depends on the signal Fourier fre-
quency Ω; see Sec. III C. This function is plotted in Fig. 3
for different spin cooperativities CS and exhibits a mini-
mum near Ω ∼ ΩS for the present parameters, as will be
discussed below in this section.
Taking into account that in GWDs the main interest is in

broadband sensing enhancement, we will here choose the

squeezing r ¼ rmin that maximizes the minimal sensitivity
gain within the signal bandwidth. This will tend to flatten
the gain curve and will in some sense represent a
conservative assessment of the scheme in that the chosen
squeezing is optimal only for a single point on the gain
curve.
The degree of two-mode squeezing r, defined in

Eqs. (19) and shown in Fig. 3, corresponds to the pure
state generated by the optical parametric oscillator and
not to what is actually observed given the losses and
imperfections which are taken into account separately.
Therefore, it essentially is limited only by the pumping
power. More specifically, the expression for the degree
of squeezing in a pure state as a function of the ratio of
the pump power to the threshold pump power, P=Pth, is
exp 2r ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

P=Pth

p Þ2=ð1 − ffiffiffiffiffiffiffiffiffiffiffiffi
P=Pth

p Þ2 [29]. It follows
that the degree of squeezing of 15 dB is achieved at half
threshold power, and 20 dB can be achieved at 67% of
threshold power, which is well within the experimental
reach.
In Fig. 4, the normalized quantum noise spectral density

is plotted for the parameters discussed above and for three
realistic values of CS. For comparison, the spectral density
Sstd of the standard interferometer, which corresponds to
r → 0 and ζ ¼ π=2, is also shown in this plot. It can be seen
that a broadband sensing gain is possible relative to a
standard interferometer, surpassing the SQL over a broad
band, as also demonstrated in the original proposal [23].
To further illustrate the sensitivity gain relative to the

standard interferometer, we introduce the gain factor

G ¼ Sstd
S

¼ KIKSð1þ ϰIÞðcosh 2rþ ϰSÞ
jKresj2cosh22rþ jKISj2 þ KIKS½ðϰI þ ϰSÞ cosh 2rþ ϰIϰS�

: ð56Þ

It is plotted in Fig. 5 for the same values of the parameters as in Fig. 4. Note that, since the event rate of GWDs scales as the
volume within which the GWD is sensitive, it is proportional to G3=2.
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FIG. 3. Optimal squeezing as a function of the Fourier
frequency for different values of the spin cooperativity CS. The
bare spin resonance ΩS=ð2πÞ is indicated by the vertical line and
coincides to a good approximation with the minimum of roptðΩÞ.
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Equation (56) is quite cumbersome. However, for the
reasonable values of the parameters which we use for our
estimates, it can be significantly simplified, providing
insight into the comparative influence of the optical losses
and the spin system bandwidth on the sensitivity. Focusing
on the case ζ ¼ π=2 and making the reasonable assump-
tions that ϰI;S ≪ cosh 2r, γS ≪ ΩqI , and ϵ2iS ≪ 1, Eq. (56)
can be approximated as

G≈Gapprox ¼
1þϰI�

1ffiffiffiffiffiffiffiffiffiffi
cosh2r

p þ 2γSΩ
ffiffiffiffiffiffiffiffiffiffi
cosh2r

p
KI

	
2þϰI þϰSopt

; ð57Þ

where

ϰSopt ¼ ϵ2iS þ
kSϵ2oS
KSηiS

ð58Þ

is the part of ϰS imposed by the optical losses (note that it
still depends on γS through the factor kS, but this depend-
ence is relatively weak).
Equation (57) succinctly expresses the impact of spin

decay γS, optical losses ϰI and ϰSopt, and finite squeezing r
on the performance of our scheme. It shows that, at the
price of introducing the additional optical losses ϰSopt, the
essential quantum noise contribution (i.e., in the absence
of losses) is reduced by the factor given by the parenthesis
squared in the denominator of Eq. (57). The squeeze
parameter roptðΩÞ that maximizes Gapprox at a given
Fourier frequency Ω is simply given by cosh 2roptðΩÞ ¼
KI=σT [using Eq. (40) with equality]; this is consistent with
the general result (51) within the regime of validity of G ≈
Gapprox insofar as ϰ2S ≪ 1.
Equation (57) clearly shows also that the characteristic

dip in the frequency dependence ofG (see Fig. 5) is created
by the spin system damping and corresponds, to a good
approximation, to the maximum of the ratio Ω=KI, which
occurs at the frequency

Ωmin ¼ ΩqI=31=4: ð59Þ

It can be seen from Eq. (37) that Ωmin coincides with the
bare spin resonance Ωmin ¼ ΩS when ϕ ¼ π=6, the choice
that minimizes γS. For our values of the parameters, it
evaluates to Ωmin ≈ 2π × 48 Hz. Estimates show that,
around this frequency, the value of G is limited mostly
by the spin system damping. Because of the increase of the
spin system damping influence around Ωmin, a smaller
degree of squeezing (that is, less entangled optical fields in
the interferometer and the spin system channels) becomes
optimal in this frequency band, creating the aforementioned
dip in Fig. 3.
At the same time, for low and high signal frequencies,

KI ≫ 2γSΩ cosh 2r and

G ≈
1þ ϰI

1=cosh 2rþ ϰI þ ϰSopt
; ð60Þ

that is, the sensitivity gain is primarily defined by the
optical losses. Keeping only the lowest-order terms in ϵ2iI;S
and ϵ2oI;S in the numerator and denominator of Eq. (60), we
find for low (backaction-dominated) frequencies Ω ≪ ΩqI

G ≈
1þ ϵ2iI

1=cosh 2rþ ϵ2iI þ ϵ2iS þ ϵ2oStan
2ϕ

; ð61Þ

whereas for high (imprecision-noise-dominated) frequen-
cies Ω ≫ ΩqI

G ≈
1þ ϵ2iI þ ϵ2oI

1=cosh 2rþ ϵ2iI þ ϵ2oI þ ϵ2iS þ ϵ2oS
: ð62Þ
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p
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predicted by simplified expressions for low (61) and high (62)
frequencies are indicated by horizontal line segments. We also
indicate the gain at Ω ¼ ΩS, near the minimum, according to the
approximate formula Eq. (57).
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The approximate Eqs. (61) and (62) are compared to the
exact sensitivity gain in Fig. 5.

V. CONCLUSION AND OUTLOOK

We have discussed a scheme that promises to push
gravitational wave detectors into a new realm of broadband
sub-SQL sensitivity by means of a flexible and unintrusive
extension of existing interferometer topologies by a neg-
ative effective mass spin oscillator. The physical resources
required by this approach are relatively low cost compared
to other candidate techniques for quantum noise evasion
proposed for future GWDs.
We have shown that the addition of the virtual rigidity

technique to the scheme first proposed in Ref. [23] allows
one to achieve a tangible sensitivity gain even for modest
values of the atomic cooperativity, CS ∼ 10, which dramati-
cally facilitates practical implementation of this scheme.
The value of the resulting sensitivity crucially depends

on two factors: optical losses in the scheme and the
dissipation rate in the atomic spin system. For the
reasonably optimistic values of these parameters used

for our estimates, the sensitivity gain (in comparison with
an “ordinary” interferometer) could reach 6–7 dB.
While our modeling and assessment of the scheme is

reasonably detailed, it is beyond the scope of the present
work to exhaustively account for all realistic imperfections
of gravitational wave interferometers. A first step towards
the practical implementation of the scheme would be a
proof-of-principle demonstration of the spin subsystem
subject to a two-mode-squeezed input field. The modular
nature of the setup allows such separate characterization
and optimization of the spin subsystem. Given a spin
system fine-tuned in this manner, work towards integration
with an actual GWD could commence.
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