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By utilizing the AdS=CFT correspondence, we explore the dynamics of strongly coupled superfluid
vortices in a disk with constant angular velocity at a finite temperature. Each vortex in the vortex lattice is
quantized with vorticity n ¼ 1 by the direct inspection of their phases. As the angular velocity of the disk is
greater than a critical value, the first vortex will be excited as expected from theoretical predictions.
Subsequent vortices are also generated by increasing the rotation of the disk, resulting in remarkable step
transitions of the angular velocity which excite each individual vortex. When the vortex number is large
enough, the density of vortices is found to be linearly proportional to the angular velocity, which matches
the Feynman relation very well. We also find that varying the temperature does not alter this Feynman
relation.
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I. INTRODUCTION

Quantized vortices have a profound effect on the behavior
of type-II superconductors and superfluids. Quantized cir-
culation is a macroscopic quantum-mechanical effect, which
is a direct consequence of a single-valued wave function,
where the phase must change by 2πn (where n ∈ Z is
the vorticity) around a vortex core. Theoretical studies of
equilibrium states predicted that the vortex lines would form
a stable triangle lattice minimizing the free energy in both
superconductors [1] and superfluids [2]. In experiments,
vortex lines have been observed in both helium II in rotating
containers [3–5] and Bose-Einstein condensation in cold
atoms [6,7]. Vortex lattice formation and the vortex phase
diagram under the constant rotation of a container can be
simulated by numerically solving the powerful Gross-
Pitaevskii (GP) equation [8–11]. However, the GP equation
is only valid for aweakly coupled system at zero temperature,
and studies of vortex formation in a strongly coupled
superfluid at finite temperature are still lacking.

The AdS=CFT correspondence [12–14] provides a com-
plete description, “valid at all scales,” of a strongly interact-
ing quantum many-body system in terms of a classical
gravitational system at finite temperature [15]. The holo-
graphic study of a superfluid (or superconductor) was
originally introduced in Refs. [16–18], where the Uð1Þ
gauge symmetry was spontaneously broken in an anti–de
Sitter (AdS) planar black hole background. Later, the one-
vortex solution of this holographic model was obtained in
both superfluids and superconductors in Refs. [19–22]. The
triangle lattice solution of the vortex lattice was found from
perturbative calculations near the critical point in Ref. [23].
The holographic superconductor/superfluidmodel also gives
insights into the dynamics of a continuous phase transition
even in far-from-equilibrium dynamics [24–28], the non-
linear response to a strong external field [29,30], and the
critical behavior of a nonequilibrium phase transition [31].
In this paper, we investigate the formation of vortex

lattices in a strongly coupled holographic superfluid in a
constantly rotating disk with angular velocity Ω when the
temperature is away from zero. The quantized vortices are
found by direct inspection of the phases of the scalar field.
We also obtain the step transitions of the critical angular
velocities Ωc, which excite each individual vortex as the
vortex number is relatively small. As the vortex number is
large enough, the density of the vortices is found to be
linearly proportional to the angular velocity, which is
consistent with the Feynman relation [32].
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II. HOLOGRAPHIC MODEL

A simple action for a holographic superfluid consists of a
complex scalar field Ψ with mass m, minimally coupled to
a Uð1Þ gauge field Aμ [16–18],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2 − jDΨj2 −m2jΨj2

�
; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ andDμ ¼ ∂μ − iqAμ, where q is
the charge. The theory can be defined in an AdS4 black hole
background with Eddington-Finkelstein coordinates,

ds2 ¼ l2

z2
ð−fðzÞdt2 − 2dtdzþ dr2 þ r2dθ2Þ; ð2Þ

in which l is the AdS radius, z is the AdS radial coordinate
of the bulk, and fðzÞ ¼ 1 − ðz=zhÞ3. Thus, z ¼ 0 is the AdS
boundary and z ¼ zh is the horizon; r and θ are, respec-
tively, the radial and angular coordinates of the dual 2þ 1
dimensional boundary, which is a disk in our model. The
Hawking temperature is T ¼ 3=ð4πzhÞ. For simplicity,
the probe limit is adopted in this paper by assuming that
the matter fields do not affect the gravitational fields. The
black hole background (2) is static (rather than rotating),
and thus the superfluid is rotating relative to the disk;
equivalently, we can treat the superfluid as a static observer,
and then the disk would appear to be rotating due to the fact
that the superfluid has zero viscosity. Without loss of
generality, we rescale l ¼ zh ¼ 1. Therefore, the equations
of motion (EoMs) can be written as

ð−D2 þm2ÞΨ ¼ 0; ∂μFμν ¼ Jν; ð3Þ

where Jμ ¼ iðΨ�DμΨ −ΨDμΨ�Þ is the bulk current.
Proper boundary conditions should be imposed in order
to solve the EoMs (3). For simplicity, the axial gauge Az¼0
is adopted, as in Ref. [18]. We impose regular boundary
conditions on all of the physical solutions at the horizon of
the black hole. Explicitly, we set At ¼ 0 at the horizon, as in
Ref. [33]. Other fields at the horizon can be determined
from the previous time steps in the time evolution schemes,
rather than calculating them by hand. Near the boundary
z ¼ 0, the general solutions take the asymptotic form

Aνðt; z; r; θÞ ¼ aνðt; r; θÞ þ bνðt; r; θÞzþOðz2Þ; ð4Þ

Ψðt; z; r; θÞ ¼ Ψ1ðt; r; θÞzþ Ψ2ðt; r; θÞz2 þOðz3Þ: ð5Þ

From the AdS=CFT dictionary, the coefficients ar;θ can be
related to the superfluid velocity along the r, θ directions,
while br;θ are the conjugate currents [19]. The coefficients
at and bt are interpreted as the chemical potential and
charge density in the boundary field theory, respectively;
Ψ1 is the source term and Ψ2 is the vacuum expectation

value hOi of the dual scalar operator. In the superfluid
phase we always impose Ψ1 ≡ 0 and at ¼ μ > μc on the
z ¼ 0 boundary. In this paper we choose m2 ¼ −2, and
thus the critical chemical potential is μc ∼ 4.06. In order to
study the formation of a superfluid vortex lattice in a
rotating disk, we impose the angular boundary condition on
the z ¼ 0 boundary as [34]

aθ ¼ Ωr2; ð6Þ
where Ω is the constant angular velocity of the disk. While
in the rotating frame of reference, the field aθ represents the
relative velocity between the superfluid and the reference
frame of the rotating disk. Therefore, aθ is also the velocity
of the superfluid as seen from the rotating disk. Thus, the
most convenient way to introduce rotation to the holo-
graphic superfluid is to assume a static disk on the black
hole boundary, while the superfluid rotates relative to the
disk. Because the superfluid is incompressible the existence
of inertial forces cannot introduce a superfluid velocity
along the radial direction of the disk, and thus the physics
of a rotating superfluid in a static disk is equal to the
physics of a static superfluid in a rotating disk. One should
note that the definition of Ω above has mass dimensionþ2.
Therefore, the physical angular velocity should be scaled
by the chemical potential, which is the energy scale of this
system. By doing this, one can get the correct physical
angular velocity with mass dimension þ1 and avoid the
superluminal problems. We also impose ar ¼ 0 at the
boundary since we assume that no superfluid flows in
the radial direction of the disk. In our model, the radius of
the boundary disk is set as r ¼ R. The Neumann boundary
conditions are adopted both at r ¼ R and r ¼ 0, i.e.,
∂rhi ¼ 0, where hi represents all of the fields except aθ.
Please note that this Neumann boundary condition is
imposed over the whole range of z. The periodic boundary
conditions are used along the θ direction, and thus we use
the Fourier decomposition in the θ direction for all of the
fields. Chebyshev spectral methods are used in the ðz; rÞ
direction. Time evolution is simulated by the fourth-order
Runge-Kutta method. The initial configuration at t ¼ 0 is
chosen to be a homogenous superfluid state without any
rotation at a fixed temperature below Tc.
The free energy F of the system can be computed from

the renormalized on-shell action Sren., i.e., F ¼ TSren:. The
renormalized on-shell action consists of two parts, viz.,
Sren: ¼ So:s: þ Sc:t:, where So:s: is the bare on-shell action
obtained by subtracting the equations of motions from the
action (1) and Sc:t: is the counterterm that removes the
divergence near the z ¼ 0 boundary. Explicitly, Sc:t:¼
−
R
dtdrdθ

ffiffiffiffiffiffi−γp Ψ�Ψjz¼0, which is computed near the z¼0

boundary, and γ is the determinant of the reduced metric
on the boundary surface. Therefore, the final form of the
renormalized on-shell action is (in the numerical computa-
tion we set q ¼ 1)
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Sren: ¼ −
1

2

Z
dtdzdθ

�
1

r
Aθ∂rAθ

�����
r¼R

þ 1

2

Z
dtdrdθ

�
r

�
−atbt þ

1

r2
aθbθ þΨ�

1Ψ2 þΨ�
2Ψ1

������
z¼0

þ iq
2

Z
dtdzdrdθ

�
r
z4
AμðΨ�∂μΨ −Ψ∂μΨ� − 2iqAμjΨj2Þ

�
: ð7Þ

III. QUANTIZED VORTEX LATTICE

According to Landau’s two-fluid model of a superfluid
[35], the normal components behave like ordinary liquids
while the superfluid components move without dissipation.
These two components can have different velocities: vn
for the normal parts and vs for the superfluid parts. If the
container (a two-dimensional disk in our case) rotates at a
constant angular velocity Ω, the normal component rotates
similarly to a rigid body. This implies that the linear
velocity vn ¼ Ω × r and the curl ∇ × vn ¼ 2Ω, in which
r is the position vector with its origin at the vortex core. In
contrast, the superfluid part remains stationary, i.e., vs ¼ 0
at small Ω, which is called the Landau state. However, a
stationary liquid in a rotating container implies a higher free
energy. Thus, as Ω increases to a critical value Ωc1, the
Landau state becomes unstable and prefers to enter a state
with one vortex. As Ω increases to the second critical
velocity Ωc2 two quantized vortices appear, located sym-
metrically in the disk. Consequently, higher angular veloc-
ities will excite subsequent vortices, which will arrange
themselves in the disk according to the minimum of the free
energy.
The top row of Fig. 1 shows the development of vortex

lattices (with six vortices) from t ¼ 0 to the final equilibrium
state at t ¼ 600 for R ¼ 5 and Ω ¼ 0.42, at the temperature

T ¼ 0.82Tc. At time t ∼ 300 the vortices begin to form at the
edge of the disk. This phenomenon is consistent with the
theoretical studies and experiments in the literature [36].
At later times, vortices will rotate into the inner of the disk
from the edge. The middle row of Fig. 1 shows the
corresponding phases of the superfluids in the top row. In
the final stable state, the locations of the vortices can be
directly seen from the singularities or branch points of the
phases. Circling around thevortex core, the phases vary from
−π (blue) to þπ (yellow) with discrepancy 2π, which
demonstrates that each vortex is quantized with vorticity
n ¼ 1. The bottom row of Fig. 1 shows the time evolution of
the corresponding free energy ðF − FnÞ=T, in which Fn is
the free energy in the normal state, i.e., Ψ ¼ 0. One should
note that the free energy formula is well defined in the
equilibrium state, but may not be properly defined in the
dynamical case. However, from Fig. 1 we see that at least at
later times t > 400 the system is in an equilibrium statewith a
relatively lower free energy, and in the regime 50 < t < 250
the system is in a metastable state with higher free energy.
Interestingly, we found a similar profile for the time-
dependent free energy in Ref. [37], where a superconductor
under an inhomogeneous magnetic field was studied.

IV. CRITICAL ANGULAR VELOCITIES

In Fig. 2, we show the typical stepwise relation between
the number of vortices N and angular velocity Ω, from
N ¼ 1 to N ¼ 6 for the case of R ¼ 5. The corresponding
critical angular velocities Ωc1;Ωc2… can be read from the

FIG. 1. Superfluid vortex lattice formation at separate times
(top row), their corresponding phases (middle row), and the time
evolution of the rescaled free energy (bottom row) for R ¼ 5 and
Ω ¼ 0.42. The temperature is chosen to be T ¼ 0.82Tc.

FIG. 2. Vortex number N vs angular velocity Ω of the disk in
the final stable state with R ¼ 5. The stepwise transitions signal
the appearance of an additional vortex. The insets are the
configurations of the stable vortices from N ¼ 1 to N ¼ 6.
The temperature is T ¼ 0.82Tc.
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jump of N. As the angular velocity increases from zero to
Ωc1 ∼ 0.345, the first vortex is excited by the rotation of
the disk [35]. Subsequent vortices can also be generated
at larger critical velocities. One possible reason for the
unequal spacings is that the appearance of a vortex will
in some sense break the superfluidity of the superfluid.
The normal components of the superfluid will scatter at the
vortices, leading to friction between the normal and super-
fluid components inside the disk [35]. This friction will also
cost some energy, which may result in the unequal spacings
of the critical angular velocities. Studies in condensed
matter physics [3,36,38] also showed the unequal spacings
of the critical angular velocity as the vortex number is small.

V. FEYNMAN RELATIONS

For large vortex numbers, the rotation of the superfluid
can be regarded as the rotation of a rigid body [35].
Therefore, from the path integral of the velocity along the
disk circumference (enclosing all of the vortices) and the
single-valued phase of the scalar field, one can readily get
the Feynman relation [32] as

N ¼ MΩ
π

πR2 ¼ nA; ð8Þ

where n≡ MΩ
π is the vortex number density,M is the atomic

mass of the superfluid, and A≡ πR2 is the area of the disk.
In Fig. 3 we show the configurations of vortex lattices

with large vortex numbers for various values of R, Ω,
and temperature. From the Feynman relation (8), we can
estimate the values of M from the six panels in Fig. 3. We
obtain MðAÞ ∼ 0.6122, MðBÞ ∼ 0.8021, MðCÞ ∼ 0.8390,
MðDÞ ∼ 0.8533, MðEÞ ∼ 0.8637, and MðFÞ ∼ 0.7978,
respectively. The values of M in panels B, C, D, and E
with more vortices are close since Eq. (8) is valid for a large
number of vortices. In contrast, in panel A the vortex number

N ¼ 20 seems to be not large enough to satisfy the Feynman
relation (8). For this reason, we plot a large number of
vortices with respect toΩ for various temperatures in the left
panel of Fig. 4 by fixing R ¼ 11. One can readily see that
because the vortex number is relatively large, the relations
between N and Ω for various temperatures are almost the
same, which indicates that temperature does not alter the
Feynman relation. For large vortex number, the linear
relation between N and Ω is fitted as N ∼ 103.2634Ω.
Thus, comparing this fitting line with Eq. (8), we can readily
get that M ∼ 0.8534. Therefore, the relation (8) becomes

N ∼ 0.8534ΩR2: ð9Þ

In the right panel of Fig. 4, we show the relation between the
number of vortices and the radius R for various temperatures
by fixing the angular velocity Ω ¼ 0.17. We can also see
that different temperatures do not change this relation.
The direct fitting of the curve in the right panel of Fig. 4
is N ∼ 0.1472R2. By comparison, by using Ω ¼ 0.17 in
Eq. (9) we get N ∼ 0.1451R2, which perfectly matches
the fitting (within 1.43%) from the right panel of Fig. 4.
Therefore, this in turn numerically confirms the Feynman
relation (8)!

VI. STATIC SINGLE-VORTEX SOLUTION

We have investigated the dynamical evolution of the
vortex lattices in the preceding sections. For completeness,
in this section we study the static single-vortex solution
in order to compare the first critical angular velocity Ωc1
to that obtained from dynamics. Analytically, Ωc1 can be
obtained as [35]

Ωc1 ¼
1

MR2
ln

�
R
a

�
; ð10Þ

where a denotes the vortex core size. At the temperature
T ¼ 0.82Tc and R ¼ 11, we find that a ∼ 0.6257 by
fitting the single-vortex order parameter as hOðrÞi ¼
hOðRÞi tanh ðr=ð ffiffiffi

2
p

aÞÞ [39], which is shown in the top

FIG. 3. Configurations of a large number of vortex lattices, with
vortex number N ¼ 20ðAÞ; 33ðBÞ; 37ðCÞ; 82ðDÞ; 83ðEÞ; 23ðFÞ,
corresponding to ðR;Ω; T=TcÞ ¼ ð11; 0.27; 0.82Þ, (11,0.34,
0.82), (21,0.1,0.82),(31,0.1,0.82),(31,0.1,0.95),(31,0.03,0.98),
respectively.
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FIG. 4. Left: Vortex numberN vs angular velocityΩ for various
temperatures with R ¼ 11. The black line N ∼ 103.2634 Ω is the
linear fitting curve as N is large. Right: Vortex number N vs the
radius R for various temperatures with Ω ¼ 0.17. The black
fitting curve is N ∼ 0.1472R2.
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left panel of Fig. 5. Substituting M ∼ 0.8534 from the
above fitting (9) into Eq. (10), we get Ωc1 ∼ 0.0278. By
contrast, in the top right panel of Fig. 5 we show the free
energies of the static n ¼ 0 and n ¼ 1 vortex solutions. The
intersecting point Ωc1 ∼ 0.03 is the first critical angular
velocity, which is comparable to Ωc1 ∼ 0.0278 (within
7.34%) obtained from the analytical derivation (10). In
the bottom panels of Fig. 5 we also show the temperature
dependence of the vortex size a and the first critical angular
velocity Ωc1. The time dependence of a can also be vividly
seen in panels D, E, and F in Fig. 3, where individual vortex

grows as the temperature increases. The fitted curve of this
relation is aðTÞ ∼ 0.2655 × ð1 − T=TcÞ−1=2, as shown in
the bottom left panel of Fig. 5. In the bottom right panel of
Fig. 5 we show the relation between Ωc1 and temperature.
The red curve and circles are from the intersections of
the n ¼ 0 and n ¼ 1 free energies of static single-vortex
solutions. The blue curve and triangles are obtained by
substituting each aðTÞ into Eq. (10). We see that the critical
angular velocities obtained from these two different
approaches are consistent with each other in the sense that
as the temperature grows they will decrease, and their
values are close to each other.

VII. SUMMARY

Vortex lattices were found in a holographic superfluid at
different temperatures for the first time. We also confirmed
that the Feynman linear relation is always satisfied for
different temperatures. This was the advantage of holog-
raphy over the GP equation, which cannot deal with finite-
temperature problems. The critical angular velocity from
the analysis of the free energy also matched the theoretical
predictions very well [Eq. (10)]. We expect that this
holographic study may shed light on the properties of a
rotating strongly coupled superfluid.
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