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We study supersymmetric Yang-Mills theories on the three-sphere, with massive matter and Fayet-
Iliopoulos parameter, showing second order phase transitions for the non-Abelian theory, extending
a previous result for the Abelian theory. We study both partition functions and Wilson loops and also
discuss the case of different R-charges. Two interpretations of the partition function as eigenfunctions of
the A; and free Ay_; hyperbolic Calogero-Moser integrable model are given as well.
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The study of supersymmetric gauge theories in curved
space-times has been pushed forward considerably in the
last decade due to the extension of the localization method
of path integrals [1,2]. By using localization, a much
simpler integral representation of the observables of the
gauge theories is achieved. In turn, these seemingly simple
representations, in general of the matrix model type,
contain a wealth of information of different type. First,
they are very useful for asymptotic analysis and, in suitable
large N double scaling limits, have predicted phase
transitions in the theory [3-6]. Secondly, in many cases,
especially for three dimensional theories, they are amenable
to exact analytical solutions, even for finite N [4,7]. Such
exact evaluation, or the procedure leading to it, oftentimes
may point towards a connection between the gauge theory
and, for example, integrable systems [8].

All these aspects of the localization integral formulas
will be exposed in what follows, as we will not only study
finite and large N properties, together with phase transi-
tions in double scaling limits, but also give an integrable
systems view of the gauge theory, by showing a connection
with the hyperbolic Calogero-Moser system.

In what follows, we will consider N = 4 theory on the
3d sphere S3, with gauge group U(n) and an even number
Ny = 2N of massive chiral multiplets in the fundamental,
N of them with mass m and N with mass —m, arranged into
N hypermultiplets. We also insert a Fayet-Iliopoulos (FI)
term. Localization [2,9,10] gives the integral representation
of the partition function:
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where we set the radius of S® to 1/2z and 7 is the FI
parameter. We will eventually be interested in the limit in
which the number of flavours N = 2N is large, while the
number of colors 7 is kept finite. Therefore, we consider
Ny =2N >2n, so that the integral (1) in convergent,
besides the theory is “good” (or “ugly,” if N = n) according
to the classification [11].

The Abelian case n = 1 was studied in detail in Ref. [5].
In what follows, we will extend the results of Ref. [5],
including 1/N corrections and the analysis of Wilson
loops, as well as carrying over the study to non-Abelian
theories, n > 1. In the simplest non-Abelian case n = 2 we
will also compute 1/N corrections to the large N limit.

Abelian theory at finite N.—The partition function of the
Abelian theory reads

+oo .
200 _p-N / dxe™[cosh(x) +2]™,  (2)

(5]

where z = cosh(m). The expression is significantly simpler
than any non-Abelian case, since the one-loop determinant
of the vector multiplet is trivial for n = 1. The partition
function (2) can be computed exactly in terms of a
hypergeometric function [5], as
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Using an Euler transformation for the hypergeometric [12]
(Chap. 2), we can rewrite (3) when n > 1, m > 1 as

_ e (N —in)l(in)
~ 2N(sinh(m))¥ [(N)
X ,F{(1=N,N, 1 —in,—(e2m —1)7")

Z%(l)

+ (replace in <> —in). (4)

This latter form is illustrative: since the first coefficient,
a=1—N, is a nonpositive integer, the hypergeometric
series terminates and gives a polynomial of degree N — 1 in
the variable y = —(e?" — 1)~!. Moreover, in our case the
second coefficient b = N = 1 — a, thus the hypergeometric
function is actually an associated Legendre function of
imaginary order [13]:

The partition function reads

u(1) me 3T (N — in) in
- P th
oN; sinh(7n) sinh(m)NF(N) v (coth(m))

+ (replace in < —in),

where we used the property I'(1 — in)I'(in) = =/ sin(izn).
We can represent the function (3) in yet another form, in
terms of a conical function [5,14]
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where P*, +m(z) is an associated Legendre function of
2

negative order and complex degree. This latter form is the
most suitable to study the asymptotics for large mass.
Indeed, when m — oo, z = cosh(m) — oo as well and we
can use the approximation of [15]

PN (@) ~ |2z sin (nlog(2z) 4+ 0, + 6,)
—y+in z sinh(zn)|T(1 4 in)T(N + in)]

2 sin (nlog(2z) + 6, + 6,)

7 RS VE+7

where 6, = argI'(1 + in) and 8, = argI'(N — i), and in
the second line we used elementary identities for the I
function. Altogether, and approximating the hyperbolic
functions for m — oo, we have

e [[E VE + 0

2V
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This approximation is in agreement with the large
mass approximation found in Ref. [5] [Eq. (8) therein]
applying a different Euler transformation to Eq. (3), which
led to

—mN

2re e
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See Fig. 1 for the match of expressions (5) and (6).

The exact evaluation (3) of the partition function, or its
equivalent representation as a conical function, relies on
the hypothesis cosh(m) > 1, thus on reality of the mass.

However, the dependence of Z%m on m should be
holomorphic [9,16]. For arbitrary complex masses the
integral (2) can be evaluated by residue theorem [17],
and we checked for many values of N that the results
coincide with the prolongation of (3) to complex masses.

Integrability.—The partition function satisfies the second-
order differential equation [5]

d*Zy

dZy
2N coth(m) —= 2L NHYZy =0, (7
m=10, N=2
e™ z
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m=10, N=5
e™z
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FIG. 1. Approximation of ™V Z%(l) at large m =10 as a
function of A = 5/N, using Egs. (5) (red) and (6) (black, dashed),
for N = 2 (above) and N = 5 (below).
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which becomes the Schrodinger equation with a hyper-
bolic Poschl-Teller potential, for the function Z(m) =
sinh(m)NZy [5]. This quantum mechanical model has a
discrete energy spectrum [18], and Z(m) represents the wave
function of a state with positive energy proportional to 7.
Furthermore, the fact that the potential appears with integer
coefficient N implies that the wave function propagates
without reflection.

The appearance of the quantum mechanical interpreta-
tion with a solvable Poschl-Teller potential immediately
suggests a possible role of the hyperbolic Calogero-Moser
model, the celebrated integrable system, which can be seen
as the many-body generalization of the quantum mechani-
cal problem above. The Hamiltonian of the Ag_, hyper-
bolic Calogero-Moser model is [19,20]

He Y

1<j<k<N

glg = )y’
4sinh®(u(x; — x;)/2)] ®)

[—fﬂaxjaxk +

and there exists N —1 additional independent partial
differential operators H; of order /, such that the PDOs
form a commutative family. The simplest is the momentum
operator

N
Hy=—ih) 0. (9)
j=1

whereas the others are made of correspondingly higher
derivatives (and lower order terms as well). Here,
N = n+ 1. Consider the two-particle case, the family is
then the Hamiltonian and the momentum operator, (8)
and (9).

The result in what follows appears to have some
similitudes with the work [21] (further extended in
Refs. [22,23]) where conformal blocks of scalar 4-point
functions in d-dimensional conformal field theory are
mapped to eigenfunctions of the two particle hyperbolic
Calogero-Moser system. The relevant model there corre-
sponds to the BC, case rather than the A; or Ag;_, here (see
below), due to the orthogonal symmetry there.

Using recent work on the construction, by a recursive
method, of the joint eigenfunctions of this integrable
system [20], we show now that the Abelian theory
above can be identified with this two-particle A; hyper-
bolic Calogero-Moser, where the coupling constant g in
Eq. (8) will be identified with the half-number of flavors N.
In particular, this two-particle interpretation follows from
considering the function

Yy (g;x,y) = eiy2(x‘+x2)/ e 2K, (g x, 2)dz,

—00

where the kernel, with ¢ > 0, x,y € R?, is

[4sinh?(x; — x,)]9/?
1 [2cosh (x; = 2)]¢”

Ky(g:x.2) =

and is central in the recursion, taking the N — 1 eigen-
function to the N eigenfunction. The connection with
the function Z(m) defined above follows immediately
from the identifications ¢ =N, x; =m/2 = —x,, and
(y1 —¥2)/2 = n. Tt is shown in Ref. [20] that

H\¥,(x,y) = (y1 + y2)P2(x.y).
HY¥,(x,y) = (37 + 3)¥2(x, ).

A different type of connection also exists relating the
non-Abelian theory, with N= N, with the free case of
the integrable system, given by g = £ in Eq. (8). Using the
customary adimensional coupling A= g/h =1, (8) is then
the free N-body Hamiltonian. Thus, there is no identifica-
tion here between g and number of flavors and is a very
different relationship compared to the two-particle one.
The integral representation given for Wy (;x,y) [20] is
then evaluated exactly for 2 = 1 and the explicit expression
[[20] Theorem 3.1.] is the one for the partition function of
the T[SU(N)] linear quiver [17,24,25].

The relationship between the integral expressions in
Ref. [20] and the well-known Heckman-Opdam hyper-
geometric functions [26], which are also relevant in
Refs. [21,22], is explained in Ref. [20]. By factorizing
WYy in two pieces, one describing the center of mass, it is
shown in Ref. [20] that the remaining piece is the Ay_;
Heckman-Opdam hypergeometric function. In terms of two
sets of N variables (m;,{ j);\’:], this hypergeometric sati-
sfies the condition ) ;m; =0=)_,{;, with {; € R and
complex m; such that |I(m; —my)| <z, cf. Ref. [20]
(Theorem 7.1). On the gauge theory side, those are exactly
the constraints on the 7[SU(N)] theory [17], the first being
the SU(N) flavor symmetry and the latter arising from
the redundancy of the N number of {; variables, defined
from the original N — 1 FI parameters as {; =n; — 14
[27]. We underline that the partition function of the
T[SU(N)] quiver is evaluated for real masses and FI
parameters, but can, by holomorphicity, hold on the stripes
|3(m; — my)| < x, hence the identification is exact.

Abelian theory at large N.—Sending N — oo in the
double scaling limit with A =#5/N fixed, the leading
contribution to the partition function (2) comes from the
saddle points of the action

, (10)

which are given by the set S = {xF + i27k, k € Z}, with
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where A = /1 —1?sinh(m)> and we recall that z =
cosh(m). The curve Asinh(m) =1 determines a critical
line in parameter space, along which the free energy
F=- ﬁlog Z has a discontinuity in its second derivative.
In the subcritical phase Asinh(m) < 1, the leading con-
tribution comes from x! and k = 0, while in the super-
critical phase Asinh(m) > 1 both xI contribute, being
complex conjugate and S;(x;) = S;(x;)*.

Close to the saddle points X € S, we can change
variables x = ¥ + t/+/N and expand

#84) (x)

£SY(E) | P87 (E)
24N?

510 = 513 + S+ 0

+ ...

We now plug this expansion into Eq. (2) and keep the
Gaussian part in ¢ exponentiated, while expanding the
rest of the exponential function. Elementary integration
provides

NG VSIE L 24N \(S1(%)°

g’( §>)> row).

The relevant expressions for the derivatives of the action $;
are reported in the Appendix A [28]. When Asinh(m) < 1,
only x7 contributes, and we get

) _ pen 2;1 eV { 1 <55”’(-)

U0 _ oy 2 e (5) 1 /587 (x})
sub \/S//i 24N S//(x;r))3

38U (3
)| R

while in the supercritical phase A sinh(m) > 1 both xi must
be taken into account, leading to

Zoper = 20(Z00)) + O(N2).

Dropping subleading corrections, one can evaluate F in
both phases:

FU) FLk =N(S(x5).  (12)

sub

_ +
=S 1 (xs )’
with discontinuous second derivative:

82 F gl([)Qr Z

1+ 2)A°

aZy: (1)

sub

or or

Therefore, not only the susceptibility 2 0/12 is discontinuous,

but it is divergent as (4 — 4,.) "¢, and we identify the critical

exponent y, = % The free energy yields analogous dis-
continuity with respect to the mass:

PFL PFe Ak

om? om*>  sinh(m)®2 A’

hence the critical exponent for the mass is again 6, = %
In Fig. 2 we present the convergence of the exact solution
(3) and the large N expression (12) as N is increased.
Wilson loops.—Iireducible complex representations
of U(1) are labeled by r € Z, thus Wilson loops can be
written as W, = Tr,e* = ¢* (recall that the radius of the
three-sphere is 1/2x), and their expectation value is

1 +oo e(ir/+r)x
W) =z [
(N +r+in)l(N —r—in)
T(N + in)T(N — in)
XZFI(; in,;+r+in,N+%,%)
JFi(3—ind+in, N+ 4,559 '

(13)

where we stress that the insertion of a Wilson loop is
analogous to the complexification of the FI coupling. The
integral representation (13) is well defined as 7 — O only
for representations of size |r| < N: this is reflected in the
poles of the I' function at negative integers.

The quantum mechanical interpretation carries over
for the Wilson loop without the FI term, 7 = 0. In this
case, w, = [sinh(m)" Zy (W,)],_, satisfies the Schrodinger
equation with Poschl-Teller potential

[dz NW—U] )

dm®  sinh(m)? W =

Abelian free energy, m=1

Fuy@A)

1 1 1 1 A
0.2 0.4 0.6 0.8 1.0

FIG. 2. Exact solution of FU(1) as a function of A =#5/N at
m =1, for N =4, 7, 20 (in green, blue, red, respectively) and
large N expression (black, dashed).
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The latter equation describes the wave function of a bound
state with energy proportional to 72, for integer |r| < N,
which is indeed the case at hand [18].

For n # 0, however, the resulting potential acquires an
imaginary part, seemingly spoiling unitarity of the evolu-
tion operator and producing a dissipationlike term in the
probability conservation.

At large N with the size r of the representation fixed,
the Wilson loop can be approximated by the value of the
integrand in Eq. (13) at the saddle points. Nevertheless, we
can also consider the case of large representations, in which
r scales with N, i.e., f =r/N is kept fixed as N — 0.
Let us turn off the FI term for simplicity, # = 0, the saddle
points of the action are given by

% = log (fcosh<m> & _1f+ 7 smh<m>2> \ i2nk.

with k € Z, that are real for every —1 < f <1 [29].
Therefore, the Wilson loops without the FI term do not
experience phase transition. The limit with both # and r
scaling with N is commented on in Appendix B [28].

J3 correlators.— We can also consider other families of
operators, besides Wilson loops. Higgs branch operators in
3d N' = 4 can be analyzed through localization techniques
[30], and therefore represent a suitable choice for the
present setting. In particular, we focus our attention on
the gauge invariant, quadratic operator

1 - . - .
J3 = N [0,,;0) —0_;01],

where Q. ;, j = 1,..., N, are the hypermultiplets of mass
+m. The expectation value of this operator is [5]

1 dZ
(J3) = —,
2NZN dm

and correlation functions of J; are generated by higher
derivatives.

The differential equation (7) satisfied by Zy can be
translated into a recursion relation for correlators of J5:

(J3J3) = —coth(m)(J5) — % (1 + %) .

Taking the first derivative of Eq. (7) gives d;j}N as a function
of the first and second derivative of Z,, but the second

order term can be eliminated using Eq. (7). Hence, we
immediately obtain

1 r]2
-1+
+4< +N2)

One can take further derivatives and systematically plug
Eq. (7) in the resulting expression. This allows one to
recursively compute k-point correlation functions of Jj:
exploiting Eq. (7), the final result will be an expression
only in terms of (J3), hyperbolic functions of m and
polynomials in (1 4 5?/N?).

Non-Abelian theory: SU(2).—The simplest non-Abelian
theory corresponds to the gauge group SU(2). The partition
function is again a single integral, but now the one-loop
determinant of the vector multiplet contributes. Also, the
SU(2) vector multiplet cannot be coupled to an FI back-
ground, therefore # = 0. The partition function is

+o0
Z3V = / dx

Writing sinh(x) in terms of exponentials, we can see the
SU(2) partition function as a combination of expectation
values of Wilson loops in the Abelian theory:

sinh(x)?
2N[cosh(x) + z]V~

v [2x"
2 = [P w2+ v

with the expectation value (W,) given in Eq. (13).
Because of the absence of the FI term, the unique saddle
point is x, = 0, and the phase structure at large N is trivial.
Non-Abelian theory: U(2).—We now apply the same
procedure to the U(2) theory, i.e., two colors. Specialization
of Eq. (1) for n = 2 gives

LU0 _ / eM1+22) (2 sinh X522 x| dx,
N Je2 22V (cosh(x; ) 4 z)(cosh(xy) + 2)]V

(14)

where, as above, z = cosh(m). Through the equivalent
representation of Eq. (14) as a determinant, one could write
an exact solution

U2) _ 9 .
23 =21 det (7).

with Z ;. entries of a 2 x 2 matrix formally given by Eq. (3)
up to a shift in the FI coupling in+— in+ j+ k-2,
J.k € {1,2}. This equals the determinant of a matrix whose
entry (J, k) is the expectation value, in the Abelian matrix
model, of a Wilson loop in the irreducible representation
labeled by j + k —2:
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2% =222 (W) = (W))2).

To study Eq. (14) in the limit in which the number of
flavors N is large, we notice that the interaction between
eigenvalues is subleading in 1/N, thus the saddle points of
the U(2) theory are those of the action S;(x;) + S;(x;):

82 = {(X?E + Zﬂkl,xf + 27Tk2), kl,Z (S Z}

We proceed as in the Abelian case: we change variables
Xip=Xip+ 1,/ v/N and expand both the action and the
hyperbolic interaction around the saddle point (x;,X,).
Expanding up to O(N~!) and integrating we obtain, for the
subcritical phase:

sV _ e 2NSI(x) 1+L 1
T R2N-ON2 (ST L 2N \ST()
1787 (x))* 387" (x)

6(ST(x))®  2(S{(x)2) )

while the expression in the supercritical phase
Asinh(m) > 1 is a sum of four pieces, and is reported in
Appendix C [28].

Dropping 1/N corrections, the free energy is simply
FUC) = 2FU(1) in particular the phase transition is second
order with the same critical exponent y,. = % In Fig. 3 we
show how the exact solution approaches the large N
expression as N is increased.

We study the most general non-Abelian case in
Appendix D [28], and only report here the main result.
The free energy at large N of the U(n) theory is n times the
free energy of the Abelian theory:

FUM) —  FU),

Other R-charges.—To conclude, we show how the
features of the N' =4 theory with 2N chiral multiplets
with R-charge g = % can be extended to the N' = 2 theory
with 2N chiral multiplets with more general assignment of
R-charge g. The expressions for the partition function and
the saddle point equation for arbitrary ¢, together with
comments on the case of the squashed sphere [31], are
reported in Appendix E [28]. Here we comment on how the
theory at half-integer g € 1Z can be obtained by simple
modification of the results in Ref. [5].

g = 1. In this case the action is pure imaginary, already
at finite NV, and admits no saddle point.

Non-Abelian free energy, m=1

Fu@)()

" 1 " " " 1 " " " 1 " " " " " " A
0.2 0.4 0.6 0.8 1.0

FIG. 3. Exact solution from determinants of FY(?) as a function
of l=n/N at m =1, for N =4, 7, 100 (in green, blue, red,
respectively) and large N expression (black, dashed).

q € % + Z. The saddle point equation reduces to

sinh(x) il

cosh(x) +z 2(1—¢q)°

and the large N behavior is identical to the case ¢ = § upon
. A
scaling 1 — =g
g € Z\{1}. For integer nonunit ¢ the saddle point
equation simplifies into

sinh(x) ik
cosh(x)—z 2(1—-¢q)°

and the phase structure at large N is identical to the case
q= %, up to scaling 4 — ﬁ and replace in the formulas
z > —z. The critical line is Asinh(m) = 2|1 — ¢|.

As a future direction, it would be interesting to study
the large N free energy for more general R-charges and
determine the R-symmetry in the IR by F-extremization
[9,16]. A crucial question then would be whether there
exists more than one solution g, and analyze the corre-
sponding theories as a function of A, along the lines of
Refs. [32,33].
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