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We study supersymmetric Yang-Mills theories on the three-sphere, with massive matter and Fayet-
Iliopoulos parameter, showing second order phase transitions for the non-Abelian theory, extending
a previous result for the Abelian theory. We study both partition functions and Wilson loops and also
discuss the case of different R-charges. Two interpretations of the partition function as eigenfunctions of
the A1 and free AN−1 hyperbolic Calogero-Moser integrable model are given as well.
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The study of supersymmetric gauge theories in curved
space-times has been pushed forward considerably in the
last decade due to the extension of the localization method
of path integrals [1,2]. By using localization, a much
simpler integral representation of the observables of the
gauge theories is achieved. In turn, these seemingly simple
representations, in general of the matrix model type,
contain a wealth of information of different type. First,
they are very useful for asymptotic analysis and, in suitable
large N double scaling limits, have predicted phase
transitions in the theory [3–6]. Secondly, in many cases,
especially for three dimensional theories, they are amenable
to exact analytical solutions, even for finite N [4,7]. Such
exact evaluation, or the procedure leading to it, oftentimes
may point towards a connection between the gauge theory
and, for example, integrable systems [8].
All these aspects of the localization integral formulas

will be exposed in what follows, as we will not only study
finite and large N properties, together with phase transi-
tions in double scaling limits, but also give an integrable
systems view of the gauge theory, by showing a connection
with the hyperbolic Calogero-Moser system.
In what follows, we will consider N ¼ 4 theory on the

3d sphere S3, with gauge group UðnÞ and an even number
Nf ¼ 2N of massive chiral multiplets in the fundamental,
N of them with massm and N with mass −m, arranged into
N hypermultiplets. We also insert a Fayet-Iliopoulos (FI)
term. Localization [2,9,10] gives the integral representation
of the partition function:

ZUðnÞ
N ¼

Z
Rn

dnx
Y

1≤j<k≤n

�
2 sinh

xj − xk
2

�
2

×
Yn
j¼1

eiηxj

2N ½coshðxjÞ þ coshðmÞ�N ; ð1Þ

where we set the radius of S3 to 1=2π and η is the FI
parameter. We will eventually be interested in the limit in
which the number of flavours Nf ¼ 2N is large, while the
number of colors n is kept finite. Therefore, we consider
Nf ¼ 2N ≥ 2n, so that the integral (1) in convergent,
besides the theory is “good” (or “ugly,” ifN ¼ n) according
to the classification [11].
The Abelian case n ¼ 1 was studied in detail in Ref. [5].

In what follows, we will extend the results of Ref. [5],
including 1=N corrections and the analysis of Wilson
loops, as well as carrying over the study to non-Abelian
theories, n > 1. In the simplest non-Abelian case n ¼ 2 we
will also compute 1=N corrections to the large N limit.
Abelian theory at finite N.—The partition function of the

Abelian theory reads

ZUð1Þ
N ¼ 2−N

Z þ∞

−∞
dxeiηx½coshðxÞ þ z�−N; ð2Þ

where z≡ coshðmÞ. The expression is significantly simpler
than any non-Abelian case, since the one-loop determinant
of the vector multiplet is trivial for n ¼ 1. The partition
function (2) can be computed exactly in terms of a
hypergeometric function [5], as

ZUð1Þ
N ¼

ffiffiffiffiffiffi
2π

p

2Nð1þ zÞN−1
2

ΓðN þ iηÞΓðN − iηÞ
ΓðNÞΓðN þ 1

2
Þ

× 2F1

�
1

2
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1

2
þ iη; N þ 1

2
;
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2

�
: ð3Þ
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Using an Euler transformation for the hypergeometric [12]
(Chap. 2), we can rewrite (3) when η ≥ 1, m ≥ 1 as

ZUð1Þ
N ¼ eiηm

2NðsinhðmÞÞN
ΓðN − iηÞΓðiηÞ

ΓðNÞ
× 2F1ð1 − N;N; 1 − iη;−ðe2m − 1Þ−1Þ
þ ðreplace iη ↔ −iηÞ: ð4Þ

This latter form is illustrative: since the first coefficient,
a ¼ 1 − N, is a nonpositive integer, the hypergeometric
series terminates and gives a polynomial of degree N − 1 in
the variable y≡ −ðe2m − 1Þ−1. Moreover, in our case the
second coefficient b ¼ N ¼ 1 − a, thus the hypergeometric
function is actually an associated Legendre function of
imaginary order [13]:

2F1ð1 − N;N; 1 − iη; yÞ

¼ Γð1 − iηÞ
�

y
1 − y

�iη
2

Piη
N−1ð1 − 2yÞ:

The partition function reads

ZUð1Þ
N ¼ πe−

πη
2 ΓðN − iηÞ

2Ni sinhðπηÞ sinhðmÞNΓðNÞP
iη
N−1ðcothðmÞÞ

þ ðreplace iη ↔ −iηÞ;

where we used the property Γð1 − iηÞΓðiηÞ ¼ π= sinðiπηÞ.
We can represent the function (3) in yet another form, in

terms of a conical function [5,14]

ZUð1Þ
N ¼

ffiffiffiffiffiffi
2π

p

2NðsinhðmÞÞN−1
2

ΓðN þ iηÞΓðN − iηÞ
ΓðNÞ P

1
2
−N
−1
2
þiη

ðzÞ;

where P
1
2
−N
−1
2
þiη

ðzÞ is an associated Legendre function of

negative order and complex degree. This latter form is the
most suitable to study the asymptotics for large mass.
Indeed, when m → ∞, z ¼ coshðmÞ → ∞ as well and we
can use the approximation of [15]

P
1
2
−N
−1
2
þiη

ðzÞ ≈
ffiffiffiffiffiffi
2π

z

r
sin ðη logð2zÞ þ θ1 þ θ2Þ

sinhðπηÞjΓð1þ iηÞΓðN þ iηÞj

¼
ffiffiffiffiffi
2

πz

r
sin ðη logð2zÞ þ θ1 þ θ2ÞQ

N−1
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ η2

p ;

where θ1 ¼ argΓð1þ iηÞ and θ2 ¼ argΓðN − iηÞ, and in
the second line we used elementary identities for the Γ
function. Altogether, and approximating the hyperbolic
functions for m → ∞, we have

ZUð1Þ
N ≈

e−mNπ
Q

N−1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ η2

p
2N−1ΓðNÞ sinhðπηÞ sin ðηmþ θ1 þ θ2Þ: ð5Þ

This approximation is in agreement with the large
mass approximation found in Ref. [5] [Eq. (8) therein]
applying a different Euler transformation to Eq. (3), which
led to

ZUð1Þ
N ≈

2πe−mN

ΓðNÞ sinhðπηÞℑ
�
eimη

YN−1

k¼1

ðk − iηÞ
�
: ð6Þ

See Fig. 1 for the match of expressions (5) and (6).
The exact evaluation (3) of the partition function, or its

equivalent representation as a conical function, relies on
the hypothesis coshðmÞ ≥ 1, thus on reality of the mass.

However, the dependence of ZUð1Þ
N on m should be

holomorphic [9,16]. For arbitrary complex masses the
integral (2) can be evaluated by residue theorem [17],
and we checked for many values of N that the results
coincide with the prolongation of (3) to complex masses.
Integrability.—The partition function satisfies the second-

order differential equation [5]

d2ZN

dm2
þ 2N cothðmÞ dZN

dm
þ ðη2 þ N2ÞZN ¼ 0; ð7Þ

FIG. 1. Approximation of emNZUð1Þ
N at large m ¼ 10 as a

function of λ ¼ η=N, using Eqs. (5) (red) and (6) (black, dashed),
for N ¼ 2 (above) and N ¼ 5 (below).
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which becomes the Schrödinger equation with a hyper-
bolic Pöschl-Teller potential, for the function ZðmÞ ¼
sinhðmÞNZN [5]. This quantum mechanical model has a
discrete energy spectrum [18], and ZðmÞ represents the wave
function of a state with positive energy proportional to η2.
Furthermore, the fact that the potential appears with integer
coefficient N implies that the wave function propagates
without reflection.
The appearance of the quantum mechanical interpreta-

tion with a solvable Pöschl-Teller potential immediately
suggests a possible role of the hyperbolic Calogero-Moser
model, the celebrated integrable system, which can be seen
as the many-body generalization of the quantum mechani-
cal problem above. The Hamiltonian of the AN̂−1 hyper-
bolic Calogero-Moser model is [19,20]

H ¼
X

1≤j<k≤N̂

�
−ℏ2∂xj∂xk þ

gðg − ℏÞμ2
4sinh2ðμðxj − xkÞ=2Þ

�
; ð8Þ

and there exists N̂ − 1 additional independent partial
differential operators Hl of order l, such that the PDOs
form a commutative family. The simplest is the momentum
operator

H1 ¼ −iℏ
X̂N
j¼1

∂xj ; ð9Þ

whereas the others are made of correspondingly higher
derivatives (and lower order terms as well). Here,
N̂ ¼ nþ 1. Consider the two-particle case, the family is
then the Hamiltonian and the momentum operator, (8)
and (9).
The result in what follows appears to have some

similitudes with the work [21] (further extended in
Refs. [22,23]) where conformal blocks of scalar 4-point
functions in d-dimensional conformal field theory are
mapped to eigenfunctions of the two particle hyperbolic
Calogero-Moser system. The relevant model there corre-
sponds to the BC2 case rather than the A1 or AN̂−1 here (see
below), due to the orthogonal symmetry there.
Using recent work on the construction, by a recursive

method, of the joint eigenfunctions of this integrable
system [20], we show now that the Abelian theory
above can be identified with this two-particle A1 hyper-
bolic Calogero-Moser, where the coupling constant g in
Eq. (8) will be identified with the half-number of flavors N.
In particular, this two-particle interpretation follows from
considering the function

Ψ2ðg; x; yÞ≡ eiy2ðx1þx2Þ
Z

∞

−∞
eiðy1−y2ÞzK2ðg; x; zÞdz;

where the kernel, with g > 0, x; y ∈ R2, is

K2ðg; x; zÞ ¼
½4sinh2ðx1 − x2Þ�g=2Q
2
j¼1 ½2 cosh ðxj − zÞ�g ;

and is central in the recursion, taking the N̂ − 1 eigen-
function to the N̂ eigenfunction. The connection with
the function ZðmÞ defined above follows immediately
from the identifications g ¼ N, x1 ¼ m=2 ¼ −x2, and
ðy1 − y2Þ=2 ¼ η. It is shown in Ref. [20] that

H1Ψ2ðx; yÞ ¼ ðy1 þ y2ÞΨ2ðx; yÞ;
HΨ2ðx; yÞ ¼ ðy21 þ y22ÞΨ2ðx; yÞ:

A different type of connection also exists relating the
non-Abelian theory, with N̂ ¼ N, with the free case of
the integrable system, given by g ¼ ℏ in Eq. (8). Using the
customary adimensional coupling λ̂≡ g=ℏ ¼ 1, (8) is then
the free N-body Hamiltonian. Thus, there is no identifica-
tion here between g and number of flavors and is a very
different relationship compared to the two-particle one.
The integral representation given for ΨNðλ̂; x; yÞ [20] is
then evaluated exactly for λ̂ ¼ 1 and the explicit expression
[[20] Theorem 3.1.] is the one for the partition function of
the T½SUðNÞ� linear quiver [17,24,25].
The relationship between the integral expressions in

Ref. [20] and the well-known Heckman-Opdam hyper-
geometric functions [26], which are also relevant in
Refs. [21,22], is explained in Ref. [20]. By factorizing
ΨN in two pieces, one describing the center of mass, it is
shown in Ref. [20] that the remaining piece is the AN−1
Heckman-Opdam hypergeometric function. In terms of two
sets of N variables ðmj; ζjÞNj¼1

, this hypergeometric sati-
sfies the condition

P
j mj ¼ 0 ¼Pj ζj, with ζj ∈ R and

complex mj such that jℑðmj −mkÞj < π, cf. Ref. [20]
(Theorem 7.1). On the gauge theory side, those are exactly
the constraints on the T½SUðNÞ� theory [17], the first being
the SUðNÞ flavor symmetry and the latter arising from
the redundancy of the N number of ζj variables, defined
from the original N − 1 FI parameters as ζj ¼ ηj − ηjþ1

[27]. We underline that the partition function of the
T½SUðNÞ� quiver is evaluated for real masses and FI
parameters, but can, by holomorphicity, hold on the stripes
jℑðmj −mkÞj < π, hence the identification is exact.
Abelian theory at large N.—Sending N → ∞ in the

double scaling limit with λ≡ η=N fixed, the leading
contribution to the partition function (2) comes from the
saddle points of the action

S1ðxÞ ¼ −iλxþ sinhðxÞ
coshðxÞ þ z

; ð10Þ

which are given by the set S ¼ fx�s þ i2πk; k ∈ Zg, with

SQED3 AND SQCD3: PHASE TRANSITIONS AND … PHYS. REV. D 100, 061702 (2019)

061702-3



x�s ¼ log

�
−λz� iΔ
iþ λ

�
; ð11Þ

where Δ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2 sinhðmÞ2

p
and we recall that z≡

coshðmÞ. The curve λ sinhðmÞ ¼ 1 determines a critical
line in parameter space, along which the free energy
F ¼ − 1

N logZ has a discontinuity in its second derivative.
In the subcritical phase λ sinhðmÞ < 1, the leading con-
tribution comes from xþs and k ¼ 0, while in the super-
critical phase λ sinhðmÞ > 1 both x�s contribute, being
complex conjugate and S1ðx−s Þ ¼ S1ðxþs Þ�.
Close to the saddle points x̄ ∈ S, we can change

variables x ¼ x̄þ t=
ffiffiffiffi
N

p
and expand

S1ðxÞ ¼ S1ðx̄Þ þ
t2S001ðx̄Þ
2N

þ t3S0001 ðx̄Þ
6N

3
2

þ t4SðivÞ1 ðx̄Þ
24N2

þ…

We now plug this expansion into Eq. (2) and keep the
Gaussian part in t exponentiated, while expanding the
rest of the exponential function. Elementary integration
provides

ZUð1Þ ¼ 2−N

ffiffiffiffiffiffi
2π

N

r X
x̄∈S

e−NS1ðx̄Þffiffiffiffiffiffiffiffiffiffiffi
S001ðx̄Þ

p �
1þ 1

24N

�
5S0001 ðx̄Þ
ðS001ðx̄ÞÞ3

−
3SðivÞ1 ðx̄Þ
ðS001ðx̄ÞÞ2

�
þOðN−2Þ

�
:

The relevant expressions for the derivatives of the action S1
are reported in the Appendix A [28]. When λ sinhðmÞ < 1,
only xþs contributes, and we get

ZUð1Þ
sub ¼ 2−N

ffiffiffiffiffiffi
2π

N

r
e−NS1ðxþs Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S001ðxþs Þ

p �
1þ 1

24N

�
5S0001 ðxþs Þ
ðS001ðxþs ÞÞ3

−
3SðivÞ1 ðxþs Þ
ðS001ðxþs ÞÞ2

��
þOðN−2Þ;

while in the supercritical phase λ sinhðmÞ > 1 both x�s must
be taken into account, leading to

ZUð1Þ
super ¼ 2ℜðZUð1Þ

sub Þ þOðN−2Þ:

Dropping subleading corrections, one can evaluate F in
both phases:

FUð1Þ
sub ¼ S1ðxþs Þ; FUð1Þ

super ¼ ℜðS1ðxþs ÞÞ; ð12Þ

with discontinuous second derivative:

∂2FUð1Þ
sub

∂λ2 −
∂2FUð1Þ

super

∂λ2 ¼ z
ð1þ λ2ÞΔ :

Therefore, not only the susceptibility ∂2F
∂λ2 is discontinuous,

but it is divergent as ðλ − λcÞ−γc , and we identify the critical
exponent γc ¼ 1

2
. The free energy yields analogous dis-

continuity with respect to the mass:

∂2FUð1Þ
sub

∂m2
−
∂2FUð1Þ

super

∂m2
¼ zΔ

sinhðmÞ2 −
λz
Δ
;

hence the critical exponent for the mass is again δc ¼ 1
2
.

In Fig. 2 we present the convergence of the exact solution
(3) and the large N expression (12) as N is increased.
Wilson loops.—Irreducible complex representations

of Uð1Þ are labeled by r ∈ Z, thus Wilson loops can be
written as Wr ¼ Trrex ¼ erx (recall that the radius of the
three-sphere is 1=2π), and their expectation value is

hWri ¼
1

2NZUð1Þ
N

Z þ∞

−∞
dx

eðiηþrÞx

½coshðxÞ þ z�N

¼ ΓðN þ rþ iηÞΓðN − r − iηÞ
ΓðN þ iηÞΓðN − iηÞ

× 2F1ð12 − r − iη; 1
2
þ rþ iη; N þ 1

2
; 1−z

2
Þ

2F1ð12 − iη; 1
2
þ iη; N þ 1

2
; 1−z

2
Þ ; ð13Þ

where we stress that the insertion of a Wilson loop is
analogous to the complexification of the FI coupling. The
integral representation (13) is well defined as η → 0 only
for representations of size jrj < N: this is reflected in the
poles of the Γ function at negative integers.
The quantum mechanical interpretation carries over

for the Wilson loop without the FI term, η ¼ 0. In this
case, wr ≡ ½sinhðmÞNZNhWri�η¼0 satisfies the Schrödinger
equation with Pöschl-Teller potential

�
d2

dm2
−
NðN − 1Þ
sinhðmÞ2

�
wr ¼ r2wr:

0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

FU 1

Abelian free energy, m 1

FIG. 2. Exact solution of FUð1Þ as a function of λ ¼ η=N at
m ¼ 1, for N ¼ 4, 7, 20 (in green, blue, red, respectively) and
large N expression (black, dashed).
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The latter equation describes the wave function of a bound
state with energy proportional to r2, for integer jrj < N,
which is indeed the case at hand [18].
For η ≠ 0, however, the resulting potential acquires an

imaginary part, seemingly spoiling unitarity of the evolu-
tion operator and producing a dissipationlike term in the
probability conservation.
At large N with the size r of the representation fixed,

the Wilson loop can be approximated by the value of the
integrand in Eq. (13) at the saddle points. Nevertheless, we
can also consider the case of large representations, in which
r scales with N, i.e., f ≡ r=N is kept fixed as N → ∞.
Let us turn off the FI term for simplicity, η ¼ 0, the saddle
points of the action are given by

x̄ ¼ log

 
f coshðmÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2 sinhðmÞ2

p
1 − f

!
þ i2πk;

with k ∈ Z, that are real for every −1 < f < 1 [29].
Therefore, the Wilson loops without the FI term do not
experience phase transition. The limit with both η and r
scaling with N is commented on in Appendix B [28].
J3 correlators.— We can also consider other families of

operators, besides Wilson loops. Higgs branch operators in
3d N ¼ 4 can be analyzed through localization techniques
[30], and therefore represent a suitable choice for the
present setting. In particular, we focus our attention on
the gauge invariant, quadratic operator

J3 ¼
1

N
½Q̃þ;jQ

j
þ − Q̃−;jQj

−�;

where Q�;j, j ¼ 1;…; N, are the hypermultiplets of mass
�m. The expectation value of this operator is [5]

hJ3i ¼
1

2NZN

dZN

dm
;

and correlation functions of J3 are generated by higher
derivatives.
The differential equation (7) satisfied by ZN can be

translated into a recursion relation for correlators of J3:

hJ3J3i ¼ − cothðmÞhJ3i −
1

4N

�
1þ η2

N2

�
:

Taking the first derivative of Eq. (7) gives d3ZN
dm3 as a function

of the first and second derivative of ZN , but the second
order term can be eliminated using Eq. (7). Hence, we
immediately obtain

hJ3J3J3i ¼ hJ3i
�
2N coshðmÞ2 þ 1

2N sinhðmÞ2 −
1

4

�
1þ η2

N2

��

þ 1

4

�
1þ η2

N2

�
:

One can take further derivatives and systematically plug
Eq. (7) in the resulting expression. This allows one to
recursively compute k-point correlation functions of J3:
exploiting Eq. (7), the final result will be an expression
only in terms of hJ3i, hyperbolic functions of m and
polynomials in ð1þ η2=N2Þ.
Non-Abelian theory: SUð2Þ.—The simplest non-Abelian

theory corresponds to the gauge group SUð2Þ. The partition
function is again a single integral, but now the one-loop
determinant of the vector multiplet contributes. Also, the
SUð2Þ vector multiplet cannot be coupled to an FI back-
ground, therefore η ¼ 0. The partition function is

ZSUð2Þ
N ¼

Z þ∞

−∞
dx

sinhðxÞ2
2N ½coshðxÞ þ z�N :

Writing sinhðxÞ in terms of exponentials, we can see the
SUð2Þ partition function as a combination of expectation
values of Wilson loops in the Abelian theory:

ZSUð2Þ
N ¼

�
ZUð1Þ

N

2
ðhW2i − 2þ hW−2iÞ

�
η¼0

;

with the expectation value hWri given in Eq. (13).
Because of the absence of the FI term, the unique saddle

point is xs ¼ 0, and the phase structure at large N is trivial.
Non-Abelian theory: Uð2Þ.—We now apply the same

procedure to the Uð2Þ theory, i.e., two colors. Specialization
of Eq. (1) for n ¼ 2 gives

ZUð2Þ
N ¼

Z
R2

eiηðx1þx2Þð2 sinh x1−x2
2

Þ2dx1dx2
22N ½ðcoshðx1Þ þ zÞðcoshðx2Þ þ zÞ�N ; ð14Þ

where, as above, z≡ coshðmÞ. Through the equivalent
representation of Eq. (14) as a determinant, one could write
an exact solution

ZUð2Þ
N ¼ 2! det

1≤j;k≤2
½Zjk�;

with Zjk entries of a 2 × 2 matrix formally given by Eq. (3)
up to a shift in the FI coupling iη ↦ iηþ jþ k − 2,
j; k ∈ f1; 2g. This equals the determinant of a matrix whose
entry ðj; kÞ is the expectation value, in the Abelian matrix
model, of a Wilson loop in the irreducible representation
labeled by jþ k − 2:
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ZUð2Þ
N ¼ 2ðZUð2Þ

N Þ2ðhW2i − hW1i2Þ:

To study Eq. (14) in the limit in which the number of
flavors N is large, we notice that the interaction between
eigenvalues is subleading in 1=N, thus the saddle points of
the Uð2Þ theory are those of the action S1ðx1Þ þ S1ðx2Þ:

S2 ¼ fðx�s þ 2πk1; x�s þ 2πk2Þ; k1;2 ∈ Zg:

We proceed as in the Abelian case: we change variables
x1;2 ¼ x̄1;2 þ t1;2=

ffiffiffiffi
N

p
and expand both the action and the

hyperbolic interaction around the saddle point ðx̄1; x̄2Þ.
Expanding up to OðN−1Þ and integrating we obtain, for the
subcritical phase:

ZUð2Þ
sub ¼ π

22ðN−1ÞN2

e−2NS1ðxþs Þ

ðS001ðxþs ÞÞ2
�
1þ 1

2N

�
1

S001ðxþs Þ

þ 17ðS0001 ðxþs ÞÞ2
6ðS001ðxþs ÞÞ3

−
3SðivÞ1 ðxþs Þ
2ðS001ðxþs ÞÞ2

��
;

while the expression in the supercritical phase
λ sinhðmÞ > 1 is a sum of four pieces, and is reported in
Appendix C [28].
Dropping 1=N corrections, the free energy is simply

FUð2Þ ¼ 2FUð1Þ, in particular the phase transition is second
order with the same critical exponent γc ¼ 1

2
. In Fig. 3 we

show how the exact solution approaches the large N
expression as N is increased.
We study the most general non-Abelian case in

Appendix D [28], and only report here the main result.
The free energy at large N of the UðnÞ theory is n times the
free energy of the Abelian theory:

FUðnÞ ¼ nFUð1Þ:

Other R-charges.—To conclude, we show how the
features of the N ¼ 4 theory with 2N chiral multiplets
with R-charge q ¼ 1

2
can be extended to the N ¼ 2 theory

with 2N chiral multiplets with more general assignment of
R-charge q. The expressions for the partition function and
the saddle point equation for arbitrary q, together with
comments on the case of the squashed sphere [31], are
reported in Appendix E [28]. Here we comment on how the
theory at half-integer q ∈ 1

2
Z can be obtained by simple

modification of the results in Ref. [5].
q ¼ 1. In this case the action is pure imaginary, already

at finite N, and admits no saddle point.

q ∈ 1
2
þ Z. The saddle point equation reduces to

sinhðxÞ
coshðxÞ þ z

¼ iλ
2ð1 − qÞ ;

and the large N behavior is identical to the case q ¼ 1
2
upon

scaling λ ↦ λ
2ð1−qÞ.

q ∈ Znf1g. For integer nonunit q the saddle point
equation simplifies into

sinhðxÞ
coshðxÞ − z

¼ iλ
2ð1 − qÞ ;

and the phase structure at large N is identical to the case
q ¼ 1

2
, up to scaling λ ↦ λ

2ð1−qÞ and replace in the formulas

z ↦ −z. The critical line is λ sinhðmÞ ¼ 2j1 − qj.
As a future direction, it would be interesting to study

the large N free energy for more general R-charges and
determine the R-symmetry in the IR by F -extremization
[9,16]. A crucial question then would be whether there
exists more than one solution qIR, and analyze the corre-
sponding theories as a function of λ, along the lines of
Refs. [32,33].
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FIG. 3. Exact solution from determinants of FUð2Þ as a function
of λ ¼ η=N at m ¼ 1, for N ¼ 4, 7, 100 (in green, blue, red,
respectively) and large N expression (black, dashed).
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