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Starting with the general stress-tensor commutation relations consistent with the Poincaré algebra in
local quantum field theory, we impose the tracelessness condition and focus on the dominating
contributions in the lightcone limit. It is shown that, under a certain assumption on the Schwinger term,
a Virasoro-algebra-like structure emerges near the lightcone in d > 2 conformal field theories.
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I. INTRODUCTION

As the universal central extension of the Witt algebra, the
existence of the Virasoro algebra [1] plays a crucial role in
mathematics and theoretical physics, particularly of deep
importance in conformal field theory (CFT). It is, however,
a special luxury one has in two-dimensional spacetime.
In higher dimensions, where the conformal group is finite
dimensional, Virasoro-algebra related techniques employed
in understanding d ¼ 2 CFT become generally invalid.
Nevertheless, one may still ask the following question: does
an effective similar structure exist in higher-dimensional
CFTs that can be used to control the CFT data within a
certain subspace (i.e., a subsector of the full parameter
space)?
As the form of two commuting copies, the Virasoro

algebra can be expressed as the stress-tensor commutation
relation

− i½Tþþðx−Þ; Tþþðx0−Þ�
¼ 4ðTþþðx−Þ þ Tþþðx0−ÞÞ∂−δðx− − x0−Þ

−
2c
3π

∂3
−δðx− − x0−Þ; ð1Þ

with a similar expression for ½T−−ðxþÞ; T−−ðx0þÞ�. We
denote ðxþ; x−Þ ¼ ðtþ y; t − yÞ with ðx0; x1Þ ¼ ðt; yÞ,
and ðTþþðx−Þ; T−−ðxþÞÞ ¼ −2ðT0

0 − T0
1; T

0
0 þ T0

1Þ in
Minkowski metric ημν ¼ diagð−1; 1Þ. The central-exten-
sion part containing the central charge c arises from the
quantum anomaly. While the tracelessness condition in
d ¼ 2 allows one to replace the purely spatial-component
of the stress tensor, T11, with T00, independent spatial-
components appear in d > 2, and, in general, there is no

stress-tensor algebra in higher dimensions. In this work, we
make an initial attempt, starting from the most general
stress-tensor commutation relations in Lorentz invariant,
local quantum field theory (QFT) [2–4], to search for a
possible Virasoro-like structure in higher-dimensional
CFTs. In particular, while the tracelessness constraint must
be imposed, we would like to see under what additional
conditions an effective Virasoro-like algebra may emerge.
What clue do we have? The AdS=CFT correspondence

[5–7] provides an interesting hint toward this direction. In a
recent work [8], it was found that the operator product
expansion (OPE) coefficients of the multi stress-tensor
conformal blocks of a scalar four-point function in a large
class of d > 2 CFTs are universal in the lowest-twist
subspace. (The twist of an operator is its dimension minus
its spin.) These isolated OPE coefficients are universally
fixed by the dimensions of the light and heavy scalar
operators, and the central charge CT , the coefficient of the
stress-tensor two-point function. In d ¼ 2, the Virasoro
algebra dictates all the related structures. While additional
assumptions were made in the gravitational computation
considered in [8], such as having a large CT and ignoring
additional bulk matters, it is tempting to ask if the lowest-
twist limit is essentially sufficient in a more general
analysis in d > 2 CFTs. As the lowest-twist limit corre-
sponds to the lightcone limit, where operators in a
correlator approach each other’s lightcone, we are therefore
motivated to consider the CFT stress-tensor commutators
near the lightcone.
In the next section, we first review the general stress-

tensor equal-time commutation relations in QFT, based on
earlier works [2–4]. The tracelessness condition and the
lightcone limit shall be imposed in a later section. The main
result is to obtain an effective lightcone stress-tensor
commutator in CFT. By effective, we mean that the
lightcone limit is taken when stress tensors are inserted
in a correlation function. In this case, the purely lightcone
component of the stress tensor, denoted as T̃þþ below,
dominates the contributions. A crucial point is that, in such
an effective lightcone limit, one avoids the commutator
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with purely spatial components, i.e., ½TijðxÞ; Tmnðx0Þ�,
whose form cannot be determined by Poincaré symmetry
or conformal invariance and thus is generally model
dependent in d > 2. (The central charge CT is also model
dependent, but we say a quantity has a universal meaning if
all the model-dependent data can be absorbed into CT .)
The resulting effective lightcone commutator will have a
nonextension part and also a Schwinger term. The non-
extension part formally looks the same as that in the d ¼ 2
Virasoro algebra. The Schwinger term in general dimen-
sions can be related to the central charge CT . Some
subtleties of the Schwinger term will also be discussed.

II. STRES-TENSOR COMMUTATION
RELATIONS IN QFT

Here we first review the stress-tensor commutators in
Lorentz invariant, local QFT (see [4] and [2,3] for more
discussions). Denote a classical action S embedded in
a curved background and write the curved-space stress
tensor as

CμνðxÞ ¼ 2
δS

δgμνðxÞ
: ð2Þ

A factor
ffiffiffiffiffiffi−gp

is normally factored out from Cμν as the
conventional stress tensor, but we adopt the above notation
for later convenience. Eventually, we will be interested in
the commutation relations of the flat-space stress tensor,
denoted as TμνðxÞ, in metric ds2 ¼ −dt2 þ δijdxidxj.
Below, we denote hCμνðxÞi ¼ −2i δZ

δgμνðxÞ, where Z is the

partition function. The starting point is to consider the
variation of the conservation equation,

0 ¼ hCμν
;νðxÞi ¼ hCμν

;νðxÞi þ hΓμ
αβðxÞCαβðxÞi; ð3Þ

with respect to an external metric. Varying the first term on
the right-hand side of (3) yields

2∂ν
δhCμνðxÞi
δgλρðx0Þ

¼ ∂ν

�
ihCμνðxÞCλρðx0Þiþ þ 2

�
δCμνðxÞ
δgλρðx0Þ

��
;

where hCμνðxÞCλρðx0Þiþ is the time-ordered Lorentzian
stress-tensor two-point correlator, while varying the second
term on the right-hand side of (3) gives

2
δhΓμ

αβðxÞCαβðxÞi
δgλρðx0Þ

¼ ðgμλhCραðxÞi þ gμρhCλαðxÞi

− gμαhCλρðxÞiÞ∂αδðx − x0Þ þOðΓÞ;
ð4Þ

where δΓμ
αβ¼−gμγδgγσΓσ

αβþgμγ

2
ð∂αδgγβþ∂βδgγα−∂γδgαβÞ.

The OðΓÞ part vanishes in the flat-space limit. The above
expressions lead to

i½Tμ0ðxÞ; Tλρðx0Þ�δðx0 − x00Þ

¼ −2∂ν
δCμνðxÞ
δgλρðx0Þ

����
flat

− ðημλTραðxÞ þ ημρTλαðxÞ

− ημαTλρðxÞÞ∂αδðx − x0Þ: ð5Þ

We have used ∂νCμνðxÞ ¼ OðΓÞ, hTμνðxÞTλρðx0Þiþ ¼
hTμνðxÞTλρðx0Þi θðx0 − x00Þ þ hTλρðx0ÞTμνðxÞi θðx00 − x0Þ,
and ∂νθðx0 − x00Þ ¼ δ0νδðx0 − x00Þ. Note the equal-time
commutator should not have an explicit time derivative
of δðx0 − x00Þ, but the right-hand side of (5) presently looks
like it has such a dependence. Consistency requires that the

object ∂ν
δCμνðxÞ
δgλρðx0Þ provides a cancellation.

It can be instructive to derive explicitly the commutator
involving only temporal components; other components
can be obtained in a similar manner. From (5),

i½T00ðxÞ; T00ðx0Þ�δðx0 − x00Þ

¼ −2∂ν
δC0νðxÞ
δg00ðx0Þ

����
flat

þ ð2T0iðxÞ∂i þ T00ðxÞ∂0Þδðx − x0Þ:

ð6Þ

Defining a parametrization function tðx; x0Þ via

2
δC0νðxÞ
δg00ðx0Þ

����
flat

¼ t0ν;00ðx; x0Þ − ην0T00ðxÞδðx − x0Þ; ð7Þ

the right-hand side of (6) can be written as

−∂νt0ν;00ðx; x0Þ − ∂0T00ðxÞδðx − x0Þ þ 2T0iðxÞ∂iδðx − x0Þ;

with no time-derivative on δðx0 − x00Þ left. A direct manipu-
lation using T0iðx0Þ∂iδðx − x0Þ ¼ −∂0T00ðxÞδðx − x0Þ þ
T0iðxÞ∂iδðx − x0Þ gives

i½T00ðxÞ; T00ðx0Þ�δðx0 − x00Þ
¼ ðT0iðxÞ þ T0iðx0ÞÞ∂iδðx − x0Þ − ∂νt0ν;00ðx; x0Þ: ð8Þ

Similarly, using (5), it is straightforward to consider other
components. We now tabulate the various commutators as
follows:

i½T00ðxÞ; T00ðx0Þ�δt ¼ ðT0iðxÞ þ T0iðx0ÞÞ∂iδðx − x0Þ
− s0;00ðx; x0Þ; ð9Þ

i½T00ðxÞ; T0iðx0Þ�δt ¼ ðTijðxÞ þ T00ðx0ÞδijÞ∂jδðx − x0Þ
− s0;0iðx; x0Þ; ð10Þ

i½T00ðxÞ; Tijðx0Þ�δt ¼ ðT0iðx0Þ∂j þ T0jðx0Þ∂i

− ∂0TijðxÞÞδðx − x0Þ − s0;ijðx; x0Þ; ð11Þ
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i½T0iðxÞ; T0jðx0Þ�δt ¼ ðT0jðxÞ∂i þ T0iðx0Þ∂jÞδðx − x0Þ
− si;0jðx; x0Þ; ð12Þ

i½T0iðxÞ;Tjkðx0Þ�δt¼ðδimTjkðxÞ−δijTkmðx0Þ
−δikTjmðx0ÞÞ∂mδðx−x0Þ− si;jkðx;x0Þ;

ð13Þ

where δt ≡ δðx0 − x00Þ and the Schwinger term is sμ;λρ ≡
∂νtμν;λρ with

t0ν;00 ¼ 2
δC0νðxÞ
δg00ðx0Þ

����
flat

þ ην0T00ðxÞδðx − x0Þ; ð14Þ

t0ν;0i ¼ 2
δC0νðxÞ
δg0iðx0Þ

����
flat

þ ηνiT00ðxÞδðx − x0Þ; ð15Þ

t0ν;ij ¼ 2
δC0νðxÞ
δgijðx0Þ

����
flat

þ ðηνjT0iðxÞ

þ ηνiT0jðxÞ − η0νTijðxÞÞδðx − x0Þ; ð16Þ

tiν;0j ¼ 2
δCiνðxÞ
δg0jðx0Þ

����
flat

þ ðT0iðxÞηνj þ T0νðxÞδijÞδðx − x0Þ;

ð17Þ

tiν;jk ¼ 2
δCiνðxÞ
δgjkðx0Þ

����
flat

− ðδijην0Tk0ðxÞ þ δikην0Tj0ðxÞÞδðx − x0Þ: ð18Þ

The commutation relation involving purely spatial compo-
nents does not admit a model-independent form.
Some constraints on the Schwinger term must be

imposed so that the above commutators remain consistent
with the Poincaré relations

i½TμνðxÞ; Pλ� ¼ ∂λTμνðxÞ; ð19Þ

i½TμνðxÞ;Jλσ�¼ðxλ∂σ−xσ∂λÞTμνðxÞþημλTσνðxÞþηνλTσμðxÞ
−ημσTλνðxÞ−ηνσTλμðxÞ; ð20Þ

where Pλ¼R
dx⃗ T0μ, Jλσ ¼ R

dx⃗ðxλT0σ − xσT0λÞ. One thus
requires

R
dx⃗s0;00 ¼ R

dx⃗xis0;00 ¼ 0. On the other hand,
one may adopt T̄μν ¼ Tμν − hTμνi, with hTμνi ∼ ημν, and
check that the above structures remain formally the same.
Below, we shall focus on flat-space CFT with a traceless
stress tensor. As the expectation value of a CFT stress
tensor in flat-space limit is zero, we avoid additional
notation T̄μν.

III. EFFECTIVE LIGHTCONE
COMMUTATOR IN CFT

We now discuss in what sense a lightcone limit is taken
and what the dominating structure is. The tracelessness
condition will be imposed. Let

ds2 ¼ −dxþdx− þ δabdxadxb; ð21Þ

where ðxþ; x−Þ ¼ ðtþ y; t − yÞ. One has

T�� ¼ −2ðT0
0 ∓ T0

1Þ − Ta
a; T−þ ¼ Ta

a: ð22Þ

In d ¼ 2, Tþþ=T−− is independent of xþ=x−, respectively,
and Ta

a ¼ 0. Going beyond d ¼ 2, we consider the follow-
ing lightcone limit:

x− → 0 with xþ fixed ð23Þ

(One can also consider xþ → 0 with x− fixed.) and focus on
the effective commutation relation, where stress tensors are in
a correlation function. The reason to adopt such a scenario is
that, for many purposes, such as in the conformal block
decomposition, stress tensors always appear in a correlator
and thus having an effective commutatorwould be sufficient.
We shall focus on stress tensors with indices uncon-

tracted, corresponding to the lowest-twist or largest-spin
limit. Intuitively, the lightcone-component Tþþ should
dominate near the lightcone. However, in d > 2, the
existence of Ta

a in (22) causes trouble: since purely spatial
components of the stress-tensor commutator do not have a
model-independent expression, there is no universal way to
compute ½TþþðxÞ; Tþþðx0Þ� in d > 2. This obstacle may be
circumvented by adopting an effective lightcone commu-
tator. Let us here demonstrate via an example. Consider the
following CFT correlator [9]:

hTμνðx1Þϕðx2Þϕð0Þi ∼ a
Iλμðx1ÞIσνðx1ÞAλσðx2Þ

x2d1 x
2Δϕþ2−d
2

; ð24Þ

IλμðsÞ ¼ δλμ −
2sλsμ
s2

; AλσðsÞ ¼ sλsσ −
s2

d
ηλσ; ð25Þ

where we focus on the short-distance (small x2) behavior; a
is a constant and Δϕ the dimension of ϕ. We will put scalar
fields on a xþ − x− plane and consider the lightcone limit
x− → 0. The stress tensors generally allow the transverse-
coordinate dependence, and we consider that stress tensors
also approach to the lightcone. One finds the following
limiting behavior under (23):

x2d1 x
2Δϕþ2−d
2 hðT0

0 − T0
1Þðx1Þϕðx2Þϕð0Þi ∼ ðxþ2 Þ2; ð26Þ

while having T0
0 þ T0

1, T
a
a, Tþa, or T−a in the correlator

does not contribute in the same limit. Although this
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example involves only a stress tensor, one may consider
more stress tensors and verify that the contributions near
the lightcone are dominated by ðT0

0 − T0
1Þn with n stress

tensors. We thus focus on the commutator involving
T0
0 − T0

1 as the effective lightcone description. In what
follows, we let

T̃þþ ¼ −2ðT0
0 − T0

1Þ: ð27Þ

Let us also remark that the operator ∂þT̃þþ does not
contribute in the same lightcone limit either.
We next compute the commutator of T̃þþ using (9), (10),

and (12), together with the tracelessness condition. We find,
before imposing the lightcone limit, the following inter-
mediate expression:

− i½T̃þþðxÞ; T̃þþðx0Þ�
¼ −4ðT̃þþðxÞ þ T̃þþðx0ÞÞð∂þ − ∂−Þδd−1
þ 4ðTa

aðxÞ þ Ta
aðx0ÞÞð∂þ − ∂−Þδd−1

− 4ðTþaðxÞ þ Tþaðx0ÞÞ∂aδ
d−1 þ s̃ðx; x0Þ; ð28Þ

where δd−1 ¼ δðy − y0Þδd−2ðxa − x0aÞ and

s̃ðx; x0Þ ¼ 4ð∂νt0ν;00ðx; x0Þ þ ∂νt0ν;01ðx; x0Þ
− ∂ 0

νt0ν;01ðx0; xÞ þ ∂νt1ν;01ðx; x0ÞÞ ð29Þ

is the corresponding Schwinger term. At equal time, one
may write the difference (y − y0) as either (xþ − x0þ) or
−ðx− − x0−Þ. We have here explicitly indicated the dimen-
sionality of the delta function.
As a check on (28), let us take d ¼ 2, where

Ta
a ¼ Tþa ¼ ∂þT̃þþ ¼ 0. We have

− i½T̃þþðx−Þ; T̃þþðx0−Þ�
¼ 4ðT̃þþðx−Þ þ T̃þþðx0−ÞÞ∂−δðx− − x0−Þ þ s̃jd¼2; ð30Þ

which is precisely the Virasoro algebra (1), as it must be,
provided that the Schwinger term is related to the central
charge via

s̃jd¼2 ¼ −
2c
3π

∂3
−δðx− − x0−Þ: ð31Þ

We leave the discussion on the Schwinger term to the next
section.
In d > 2, we shall focus on the lightcone limit where

the additional Ta
a, Tþa pieces in (28) are suppressed.

The effective lightcone commutator may be written as

− i½T̃þþðxþ; xaÞ; T̃þþðx0þ; x0aÞ�
¼ −4ðT̃þþðxþ; xaÞ þ T̃þþðx0þ; x0aÞÞ∂þδd−1

þ s̃ðxþ; xa; x0þ; x0aÞ; ð32Þ

where δd−1 ¼ δðxþ − x0þÞδd−2ðxa − x0aÞ. We have dropped
the x−, x0− dependence in the stress tensors and the
Schwinger term to indicate that these contributions are
localized on the lightcone. The lightcone limit is imposed
after computing the commutation relation. In d ¼ 2, it is
not necessary to impose a lightcone limit.

IV. REMARKS ON THE SCHWINGER TERM

The connection between the Schwinger term and CT can
be deduced from the spectral representation [10,11]. First,
consider the Källen-Lehmann spectral form of the stress-
tensor two-point function in unitary QFT (in Euclidean
signature),

hTμνðxÞTλρð0Þi

¼ Nd

Z
∞

0

dμðρð0ÞðμÞΠð0Þ
μν;λρ þ ρð2ÞðμÞΠð2Þ

μν;λρÞGðx; μÞ; ð33Þ

where

Nd ¼
2πd=2

ðd − 1Þ2ðdþ 1Þ2d−1Γðd=2Þ ; ð34Þ

Πð0Þ
μν;λρ ¼

1

ΓðdÞ SμνSλρ; Sμν ¼ ∂μ∂ν − δμν∂2; ð35Þ

Πð2Þ
μν;λρ ¼

d − 1

2Γðd − 1Þ
�
SμλSνρ þ SμρSνλ −

2SμνSλρ
d − 1

�
; ð36Þ

G ¼
Z

ddp
ð2πÞd

eipx

p2 þ μ2
¼

�
μ

2πjxj
�d

2
−1Kd

2
−1ðμjxjÞ
2π

: ð37Þ

The spectral functions ρð0ÞðμÞ, ρð2ÞðμÞ represent spin-0
and spin-2 intermediate states, respectively. Restricting to
CFT, scale invariance implies

ρð0ÞðμÞ ¼ ρð0Þμd−2δðμÞ; ρð2ÞðμÞ ¼ ρð2Þμd−3: ð38Þ

These functions do not lead to an infrared singularity.

ρð0ÞðμÞ does not contribute in d > 2 while Πð2Þ
μν;λρ vanishes

in d ¼ 2. With (38), one can compute (33) and match
with [12]

hTμνðxÞTλρð0Þi¼CT
Iμν;λρðxÞ

x2d
;

Iμν;λρðxÞ¼
1

2
ðIμλðxÞIνρðxÞþ IμρðxÞIνλðxÞÞ−

1

d
δμνδλρ;

ð39Þ

and find, in CFTs,
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ρð0Þ ¼ CT

2
; ρð2Þ ¼ d − 1

d
CT: ð40Þ

It is more involved to obtain the delta-function distri-
bution from the Schwinger term, but it has been worked out
a long time ago for unitary QFT [13,14]. As a concrete
example in higher dimensions, we focus on d ¼ 4 in the
following. The relevant results in d ¼ 4 Lorentzian CFT,
where ρð0Þ does not contribute and ρð2Þ ¼ 3CT

4
, are

Fμν;λρðx − x0Þ≡ h½TμνðxÞ; Tλρðx0Þ�i;
F00;00 ¼ F0i;0j ¼ F00;ij ¼ 0;

F00;0i ¼ −iN4

Z
Λ

0

dμρð2ÞðμÞ∂iΔδ3ðx − x0Þ

− i
N4

2
ρð2Þ∂iΔ2δ3ðx − x0Þ

¼ −i
CTπ

2

480
ðΛ2 þ ΔÞ∂iΔδ3ðx − x0Þ; ð41Þ

where Δ is a Laplacian. Only the equal-time commutators
with an odd number of temporal indices are nonzero since
the causal propagator is odd in time; F0i;jk can be nonzero,
but these components are irrelevant in the lightcone limit.
Note that the fifth-derivative “boundary” term generally
exists in d ¼ 4, unless one has restricted to field theories
with ρð2Þðμ → ∞Þ ¼ 0, which is however not a CFT.
In d ¼ 2, a similar analysis gives the following nonzero

contribution:

F00;01 ¼ −i
πCT

6
∂3
1δðx1 − x01Þ; ð42Þ

where we have recalled (38) and (40), and this gives

hs̃ijd¼2 ¼ −
4πCT

3
∂3
−δðx− − x0−Þ; ð43Þ

which reproduces the required identification (31) in d ¼ 2
CFT, with CT ¼ c

2π2
where c ¼ 1 for a free boson.

We remark that, a prior, the Schwinger term could be a
q-number in general QFT. From the Virasoro algebra,
one knows the corresponding Schwinger term must be a
c-number in d ¼ 2 CFT with s̃jd¼2 ¼ hs̃ijd¼2. For d > 2,
we shall here assume that we are restricted in the class of
CFTs where the Schwinger term is a c-number, at least in
the lightcone limit. A more general question whether the
Schwinger term might always be a c-number goes beyond
the scope of the present work and will not be addressed
here. Note the Schwinger term must have a consistent
dimension and the requirement that the d → 2 limit of (28)
reproduces the Virasoro algebra implies the Schwinger

term in general d should not touch the coefficient of the
existing T̃þþ piece. (One may adopt additional limits, such
as a large CT , to suppress possible unwanted contributions,
but we do not consider such a limit here.)
On the other hand, a direct canonical computation shows

that the Schwinger terms (14)–(17) in d > 2 free theories
simply vanish, as first pointed out in [4], while (18), which
is however irrelevant in the lightcone limit, can be nonzero
but its expression is model dependent. (Related computa-
tion details can be found in [15].) The authors of [4,15] then
argued that quantum effects are responsible for producing
the anomalous c-number delta-function distribution pre-
dicted from the spectral forms. While their results suggest
that the free theories belong to the class of theories we are
interested in, it would be interesting to revisit the free-
theory calculations and derive the c-number contribution in
view of the results presented here.
In the class of d ¼ 4 CFTs, for instance, where the

Schwinger term is effectively a c-number near the light-
cone, we may write the lightcone effective algebra as

− i½T̃þþðxþ; xaÞ; T̃þþðx0þ; x0aÞ�
¼ −4ðT̃þþðxþ; xaÞ þ T̃þþðx0þ; x0aÞÞ∂þδ3

þ CTπ
2

60
ðΛ2 þ ΔÞ∂þΔδ3; ð44Þ

where δ3 ¼ δðxþ − x0þÞδ2ðxa − x0aÞ. The appearance of
the UV divergence in the Schwinger term is expected to
be a general figure in d > 2 CFTs, based on essentially
dimensional analysis. The coefficient of the power-law
divergence has no universal meaning and thus we shall
focus on the universal finite piece (the coefficient of the
highest-order derivative of the delta function) in the
Schwinger term and subtract the divergence off when
computing a correlator.
We hope to discuss the applications of the lightcone

stress-tensor commutation relation elsewhere. In particular,
it would be interesting to realize the lightcone algebra in a
holographic framework and explore potential connections
with the lowest-twist universality [8] and also some recent
works [16–21].
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