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We consider top quark decay in the standard model effective field theory (SMEFT). We present a
calculation of the total decay width and the W-boson helicity fractions at next-to-leading order (NLO) in
SMEFT. Our result includes the complete set of contributing four-fermion operators in addition to QCD
dipole operators and bottom-mass suppressed effects. We show that operators that first appear at NLO in
the SMEFT can be bounded by the current data as well as future data from both a high-luminosity LHC and
a potential eþe− collider, demonstrating the importance of going beyond leading order when studying the
SMEFT.We discuss technical aspects of our calculation that we believewill be useful in future higher-order
studies of the SMEFT, in particular, the treatment of γ5 in loop diagrams.
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I. INTRODUCTION

The standard model (SM) has so far been remarkably
successful in describing all data coming from the LHC. In
some channels, percent-level comparisons between theory
and data are now possible. Understanding how indirect
signatures of new physics are constrained by these
exquisite data is becoming of central importance in
extracting the most possible information from the LHC,
especially given the lack of new states beyond the SM so
far. This will become part of the legacy of the LHCprogram,
similar to how the global electroweak fit became a legacy
of the LEP collider. The appropriate theoretical framework
for investigating these constraints is the SM effective field
theory (SMEFT) containing higher-dimensional operators
formed from SM fields. The leading dimension-6 operators
characterizing deviations from the SM have been classified
[1,2] (there is a dimension-5 operator that violates lepton
number which we do not consider). There has been
considerable effort in performing global analyses of the
available data within the framework of SMEFT [3–9].
Given the precision of the available data, it is critical

to address whether the theoretical predictions entering
SMEFT analysis are sufficiently precise. There are two
primary considerations to address: whether higher-
order corrections containing dimension-6 operators in the

SMEFT are necessary, and whether dimension-8 operators
should be considered. We consider the first of these issues
in this manuscript. Within the standard model, theoretical
corrections to next-to-next-to-leading order in the QCD
coupling constant and next-to-leading order (NLO) in the
electroweak coupling constant are known for a host of
interesting processes. The situation is less advanced in the
SMEFT. NLO results assuming a subset of contributing
SMEFT operators are known for a host of Higgs decays
[10–17] and Z-boson decays [18–20], as well as certain
Higgs production processes [21,22]. Especially given the
data precision, going beyond leading order (LO) is neces-
sary to properly understand bounds on the SMEFT
operators, as has been argued in the literature (see, e.g.,
Refs. [23,24]).
In this manuscript we study NLO corrections in the

SMEFT to top quark decay. We focus on the total
width and W-boson helicity fraction observables. There
have been several analyses of constraints on the SMEFT
arising from top quark data [25–30]. NLO QCD cor-
rections to top quark decay in the SMEFT, augmented by
the one-loop contribution from the top quark chromo-
magnetic operator, have been considered [31]. The pre-
cision of the top quark data coming from the LHC
warrants these detailed investigations of top quark proper-
ties in the SMEFT. Our goals in this manuscript are
summarized below.

(i) We extend the previous calculations of higher-order
corrections to top quark decays in the SMEFT to also
include the bottom-quark chromomagnetic dipole
operator and all contributing four-fermion operators,
both four-quark and semileptonic types. This is a
further step toward a complete next-to-leading order
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calculation of top quark decay within the SMEFT,
which we believe will eventually be warranted by
the high-luminosity LHC program. It is also of
phenomenological interest to determine whether
third-generation four-quark operators can be con-
strained by this measurement. Previously sug-
gested probes of these operators have focused on
production of four external heavy-flavor states [32].

(ii) We emphasize the role of chiral Ward identities as an
important calculational check, in particular, in the
treatment of γ5 in loops containing four-fermion
operators. We consider several different schemes for
the treatment of γ5 in dimensional regularization and
demonstrate how imposing chiral Ward identities
renders them consistent. We believe that this dis-
cussion will be useful in the future as higher-order
effects in the SMEFT are further studied.

(iii) We study the effect of bottom-quark mass-suppressed
contributions in the SMEFT. Interestingly, such
effects go like mb=mt in the SMEFT at LO due to
the chiral structure of the contributing dimension-6
operators, unlike in the SM where they go as
ðmb=mtÞ2. This leads to significant constraints on
these operators from current data.

(iv) We consider the constraints on all operators using
the currently available data on the total width and
W-helicity fractions. We also derive simple pro-
jections for a high-luminosity LHC and a possible
future eþe− machine. Our primary goal is to
determine how well loop-induced operators can be
probed given both current and future experimental
measurements. As we consider only a subset of the
available data rather than perform a global fit as in
[27,29,30], our numerical results should only be
considered representative of the potential bounds.

Our paper is organized as follows. In Sec. II we provide a
brief overview of the SMEFT operators relevant for our
calculation of top quark decay. We present the leading-
order calculation of our observables in Sec. III, establishing
our calculational framework. We present our NLO calcu-
lation in Sec. IV. We discuss in detail the technical aspects
of the calculation particular to the SMEFT such as the
treatment of γ5 and the ultraviolet (UV) renormalization.
Our numerical results are shown in Sec. V. Finally, we
conclude in Sec. VI.

II. OVERVIEW OF TOP QUARK
DECAY IN SMEFT

We begin by discussing the features of the dimension-6
SMEFT relevant to our calculation of top quark decay,
t → Wb. At leading order this process proceeds through the
single Feynman diagram shown in Fig. 1. To determine the
SMEFT contributions to this process we use the Warsaw
basis [1]. Following the notation of Ref. [33] we find the
following operators contributing at leading order:

OuW
pr
¼ q̄pσμνurτIϕ̃WI

μν;

OdW
pr
¼ q̄pσμνdrτIϕWI

μν;

Oϕud
pr

¼ iðϕ̃†DμϕÞðūpγμdrÞ: ð1Þ

Here, qp denotes the left-handed quark doublet with p
being the generation index, ur and dr are respectively
the up and down right-handed singlet quarks with gen-
eration index r, ϕ is the Higgs doublet, and WI

μν is the
field-strength tensor for the SUð2ÞL gauge bosons with I
denoting the isospin index. σμν is written in terms of
the commutator of γ matrices as σμν ¼ i½γμ; γν�=2. These
operators are written in the flavor eigenstate basis. Rotating
to the mass basis introduces mixing matrices into the
Wilson coefficient matrices multiplying these operators.
In our analysis we restrict ourselves to third-generation
couplings, and study the operators

OtW ¼OuW
33
; ObW ¼OdW

33
; Oϕtb ¼Oϕud

33
: ð2Þ

We label the Wilson coefficients multiplying these oper-
ators as CtW , CbW , and Cϕtb, respectively, and assume for
simplicity that they are real. We factor out the energy scale
1=Λ2 associated with these operators being dimension 6 so
that the Wilson coefficients Ci are dimensionless.
In order to illustrate the sensitivity of top quark decay

properties to NLO effects in SMEFT we consider a subset
of the operators that contribute at NLO. As we show later
explicitly, and as can be seen using the renormalization
group equations of SMEFT, a consistent NLO calculation
using the operators above requires the following QCD
dipole operators:

Oug
pr
¼ q̄pσμνTAurϕ̃GA

μν; ð3Þ

Odg
pr
¼ q̄pσμνTAdrϕGA

μν: ð4Þ

Here, GA
μν is the gluon field-strength tensor and TA are the

color matrices in the fundamental representation. We again

FIG. 1. Leading-order Feynman diagram for the process
t → Wb. Through the shaded vertex the Wilson coefficients
CtW; CbW , and Ctbϕ enter the amplitude.
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restrict our analysis to third-generation couplings and study
the operators

Otg ¼ Oug
33
; Obg ¼ Odg

33
: ð5Þ

We also consider the following four-fermion operators
which potentially contribute to top decay as well. In the
case of four-quark operators we have

Oð1Þ
qq ¼ ðq̄pγμqrÞðq̄sγμqtÞ Oð3Þ

qq ¼ ðq̄pγμτaqrÞðq̄sγμτaqtÞ
Oð1Þ

ud ¼ ðūpγμurÞðd̄sγμdtÞ Oð8Þ
ud ¼ ðūpγμTAurÞðd̄sγμTAdtÞ

Oð1Þ
qu ¼ ðq̄pγμqrÞðūsγμutÞ Oð8Þ

qu ¼ ðq̄pγμTAqrÞðūsγμTAutÞ
Oð1Þ

qd ¼ ðq̄pγμqrÞðd̄sγμdtÞ Oð8Þ
qd ¼ ðq̄pγμTAqrÞðd̄sγμTAdtÞ

Oð1Þ
quqd ¼ ðq̄jpurÞϵjkðq̄ksdtÞ Oð8Þ

quqd ¼ ðq̄jpTAurÞϵjkðq̄ksTAdtÞ;
ð6Þ

where τa are the Pauli matrices and summation over the
SUð2Þ index a is implied. For simplicity we consider
only flavor-diagonal operators in our study; constraints on
flavor-violating operators are generally better obtained
from other observables than those considered here. We
also include the following semileptonic four-fermion oper-
ators in our analysis:

Oð3Þ
lq ¼ ðl̄pγμτalrÞðq̄sγμτaqtÞ

Oð3Þ
lequ ¼ ðl̄jpσμνerÞϵjkðq̄ksσμνutÞ: ð7Þ

It is necessary for the one-loop renormalization of SMEFT
to include the following operator as well:

Oð3Þ
ϕq ¼ iðΦ†D

↔a
μΦÞðq̄pτaγμqrÞ; ð8Þ

which leads to a redefinition of the CKM matrix:

KCKM → KCKM

�
1þ v2

Λ2
Cð3Þ
ϕq

�
: ð9Þ

At leading order this generates a term proportional to the
SM Born-level matrix element. As pointed out in [34–36],
the poles associated with the corrections from four-fermion
operators to the tbW-vertex are removed by renormalizing

Cð3Þ
ϕq . This leads us to the following Lagrangian describing

top decay,

L ¼ LSM þ 1

Λ2

X
i

CiOi; ð10Þ

with i running over all operators previously discussed. All
Feynman rules arising from these operators can be found
in Ref. [33].

We note that electroweak operators that first appear at
NLO are neglected in our analysis. Such contributions are
far better bounded through other data sets such as precision
Z-pole observables. To see this, we consider a represen-
tative example of such an operator, OϕB. Reference [19]
found the following bound on the Wilson coefficient
associated with this operator from precision Z-pole data:
jCϕBj < 0.0018. We see in our numerical results section
that the bounds we obtain on Wilson coefficients that first
appear at NLO are far weaker. For this reason we have
restricted our analysis to NLO operators specific to the top
quark sector of the SMEFT.

III. LEADING-ORDER CALCULATION

We discuss here some basic features of our calculation
and present results for the LO top decay width and helicity
fractions in the SMEFT. The only diagram mediating the
decay at tree level is shown in Fig. 1. It is straightforward to
derive the amplitude for the decay tðptÞ → bðpbÞWðpWÞ
using the operators of Sec. II. We consider four observ-
ables: the total top decay width Γtot, and the decay fractions
into longitudinal, positive, and negativeW-boson helicities.
To obtain these quantities from the decay amplitude it is
convenient to replace the W-boson polarization vectors in
the squared amplitude according to

X
ϵμðpWÞϵ�νðpWÞ ¼ Pμν: ð11Þ

We use the following projection operators [37]:

Pμν
tot ¼ −gμν þ pμ

Wp
ν
W

M2
W

;

Pμν
L ¼ ½M2

Wp
μ
t − pt · pWp

μ
W �½M2

Wp
ν
t − pt · pWpν

W �
M2

Wm
2
t jp⃗W j2

;

Pμν
F ¼ −

i
mtjp⃗W j

ϵμνσρptσpWρ;

Pμν
� ¼ 1

2
fPμν

tot − Pμν
L � Pμν

F g: ð12Þ

p⃗W denotes the three-momentum of the W boson. We use
these projectors in both the LO and NLO calculations.
In our calculation we only include terms linear in the

EFT couplings, as terms proportional to EFT couplings
squared are of the same order as neglected dimension-8
operators. We include finite bottom-mass effects at leading
order. We present below the top decay width and helicity
fractions in the SMEFT. For simplicity of presentation we
have expanded them to linear order in mb=mt (in our
numerical analysis we keep the LO results to all orders in
this ratio):
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Γtot ¼
ḡðx2W − 1Þmt

64πxW
½ðx2W − 1Þðḡð1þ 2x2WÞ þ 12

ffiffiffi
2

p
CtWm2

t xvx2WÞ

þ 6m2
t xbxvx2WðCϕtbḡxv þ 2

ffiffiffi
2

p
CbWð1þ x2WÞÞ� þOðx2bÞ;

FLO
L ¼ ΓL

Γtot
¼ 4

ffiffiffi
2

p
m2

t xvðx2W − 1Þx2Wð2CtW þ ḡð2x2W þ 1ÞÞ
ḡð2x2W þ 1Þ2

þ
4

ffiffiffi
2

p
m2

t xvxbx2Wð2CbWðx2W þ 1Þ þ ḡxvffiffi
2

p Cϕtbðx2W þ 1ÞÞ
ḡð2x2W þ 1Þ2 þOðx2bÞ;

FLO
− ¼ Γ−

Γtot
¼ 2x2Wðḡþ 2ḡx2W þ 4

ffiffiffi
2

p
CtWm2

t xvð1 − x2WÞÞ
ḡð1þ 2x2WÞ2

þ 2m2
t xbxvx2Wð4

ffiffiffi
2

p
CbWx2Wð2þ x2WÞ − Cϕtbḡxvð1 − 4x2WÞÞ
ḡð1þ 3x2W − 4x6WÞ

þOðx2bÞ: ð13Þ

We have abbreviated xi ¼ mi=mt and xv ¼ v=mt, where v
is the Higgs vacuum expectation value. Γi denotes the
partial decay widths for the different W polarizations. ḡ is
the scaled electroweak coupling required to canonically
normalize the gauge fields in SMEFT [33]. We note that the
positive helicity fraction can be obtained using the relation
Fþ ¼ 1 − F− − FL. This relation can be easily seen to hold
using the projectors of Eq. (12). These quantities reduce to
the known SM results [37] when all SMEFT Wilson
coefficients are set to 0.
One interesting feature of these results is their dependence

on the bottom-quark mass fraction xb. In the SM the depen-
dence on the bottom quark mass at Born level begins at
Oðx2bÞ, while in SMEFT it begins at OðxbÞ. This is because
the EFT operators ObW and Oϕtb have a V þ A helicity
structure instead of theV − A structure of the SM.We see the
effect of this parametric difference in our numerical results.

IV. NEXT-TO-LEADING-ORDER CALCULATION

We discuss in this section our calculation of the
NLO corrections to top quark decay properties in the
SMEFT. Higher-order QCD-like corrections involving
gluon exchange are mediated by both SM QCD and the
operators listed in Sec. II giving rise to the diagrams in
Fig. 2. Contributions from the four-fermion operators listed

in Eqs. (6) and (7) give rise to the Feynman diagrams
shown in Fig. 3. Corrections arising from the electroweak
sector in the SM are known to be subdominant [38] and are
neglected in this study. In the NLO corrections we neglect
the bottom mass dependence. Most aspects of this calcu-
lation are completely standard. For the one-loop virtual
corrections we use integration-by-parts identities [39] to
reduce all integrals to master integrals. For this calculation
only the one-loop tadpole and one-loop bubble integral
with a single massive internal line are needed, and are
trivial to obtain. Real radiation corrections required for the
QCD corrections are obtained from the process t → bWg.
These are straightforward to integrate over the final-state
phase space to obtain the total decay width and helicity
fractions. The four-fermion corrections are infrared finite
and only require UV renormalization. We regulate all
ultraviolet and infrared divergences appearing in intermedi-
ate stages using conventional dimensional regularization.
The final analytic results are presented in the Appendix. In
the following subsections we focus on technical aspects of
the calculation specific to the SMEFT.

A. Treatment of γ5 in SMEFT

The appearance of γ5 in the Feynman rules for this
process indicates that a prescription for handling this

FIG. 2. Feynman diagrams for the SMEFT QCD corrections to t → Wb. Through the white vertices the Wilson coefficients Ctg and
Cbg enter the amplitude. The expansion in 1

Λ happens at the squared matrix-element level.
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quantity when the space-time dimension d ¼ 4 − 2ϵ is
needed. Different ways of treating γ5 have been extensively
discussed in the literature; for a review see Ref. [40]. In our
calculation γ5 appears in three places: through the axial-
vector current insertion γμγ5, through the axial-tensor
current σμνγ5, and through the Dirac structure of each
four-fermion operator.

1. An overview of chiral Ward identities

In the massless limit the SM portion of the Lagrangian of
Eq. (10) has the following chiral U(2) symmetry:

qL → e
i
2
αiτiqL

qR → e−
i
2
αiτiqR; ð14Þ

where qL;R ¼ ðtL;R; bL;RÞ denote the left-handed and right-
handed third-generation quark doublet. τi are the generators
of this symmetry; τ0 is the identity matrix while the τi are
the Pauli matrices rescaled by a factor of 1

2
. In the SM this

symmetry is broken by the quark masses (in this study we
consider only a nonzero top quark mass). This leads to
well-known relations between the divergence of the axial-
vector current and the pseudoscalar current as summarized
in [41], and consequently between correlation functions in
the theory. Any prescription for γ5 in dimensional regu-
larization must satisfy these relations.
The situation in the SMEFT is slightly more compli-

cated, as not all of the operators of Sec. II satisfy the
symmetry of Eq. (14). Operators such as Oð1Þ

qq which are
formed from the doublets qL satisfy the symmetry. Those

such asOð1Þ
qu which feature explicit top or bottom quarks, or

those such as Otg which couple left-handed states to right-
handed ones, do not. The standard chiral Ward identities
must be modified in the presence of such operators.
In our calculation we make use of several different

schemes for γ5, and check both their consistency with each
other and that they satisfy the appropriate chiral Ward
identities. This gives us confidence that our treatment of γ5
is correct. We summarize below what schemes are used in

our calculation. More details appear in the following
subsections.

(i) For the QCD-like operators a convenient scheme
due to Larin [42] is available in the literature. We use
this approach together with several internal checks
to ensure correctness of our results.

(ii) For the four-fermion operators we use both a naive
anticommuting scheme, which is expected to lead
to consistent results in this calculation [41], and the
’t Hooft-Veltman-Breitenlohner-Maison (HVBM)
scheme [43]. We demonstrate that both satisfy the
chiral Ward identities after appropriate renormaliza-
tion and lead to identical results.

We note that there are other consistent schemes that
lead to equivalent results, such as Refs. [44,45] which
abandon the cyclicity of the trace. We do not consider these
alternatives here.

2. QCD-like operators: the Larin scheme

The SM and the QCD-like operators of Eq. (3) contain
both the axial-vector current and the axial-tensor current.
The axial-vector current appears in the SM, and its treat-
ment in dimensional regularization has been studied exten-
sively. A convenient way to treat the axial vector current is
due to Larin [42], and involves the following replacement:

γμγ5 →
i
6
ϵμνρσγ

νγργσ: ð15Þ

The indices appearing in the Levi-Civita symbol are treated
as d-dimensional indices. This replacement violates the
chiral Ward identities outlined above, leading to the need
for an additional finite renormalization factor:

Zns
5 ¼ 1 −

αsCF

π
þOðα2sÞ: ð16Þ

It is straightforward to check that γ5 defined by Eq. (15)
no longer anticommutes with γμ when μ extends beyond
four dimensions. In our calculation we encounter Dirac
traces with either two factors of γ5 or a single γ5. In the first
case we can replace the axial-vector current according to

FIG. 3. Feynman diagrams for the four-fermion SMEFT corrections to t → Wb. Through the shaded vertices the Wilson coefficients
enter the amplitude. The vertex involving the W boson receives in principle contributions from SMEFT operators as well, but since the
four-fermion vertex has a vanishing SM limit those would lead to terms of order 1

Λ4 and are therefore neglected.
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Eq. (15) immediately at the level of the Feynman rules, or
assume an anticommuting γ5 in order to remove them
completely from the trace, removing the need for Zns

5 . We
find that both treatments lead to the same final answer,
consistent with the discussion in Ref. [40]. This serves as a
check of our procedure. We also reproduce exactly the
known SM QCD results for the total width and helicity
fractions.
The axial-tensor current does not appear in the standard

model Feynman rules. We note that in d ¼ 4, the Chisholm
identity can be used to rewrite the axial-tensor current
according to

σμνγ5 ¼ −
i
2
ϵμνρσσ

ρσ: ð17Þ

By avoiding the1 introduction of a nonanticommuting γ5 all
Ward identities are preserved, indicating that no additional
finite renormalization is needed for the axial-tensor current,
unlike for the axial-vector current. This observation has
also been made in previous studies in heavy-quark effective
theory [46]. To check this result we have also used the
’t Hooft-Veltman replacement

γ5 →
i
24

ϵμνρσγ
μγνγργσ ð18Þ

and have found the same final result as obtained with the
Chisholm replacement. We note that the Chisholm replace-
ment is computationally more efficient, as it leads to fewer
γ-matrices within Dirac traces.
To have an independent check of the validity of the Larin

scheme in the presence of SMEFT operators we verify the
corresponding chiral Ward identities through explicit cal-
culation. We consider Otg as an example. This operator
violates the chiral U(2) symmetry since it contains a current
coupling a left-handed and right-handed state. A variation
of the Lagrangian under the symmetry transformation
considered leads to the following relation between corre-
lation functions:

h∂μðt̄ðxÞγμγ5tðxÞÞtðx1Þt̄ðx2Þi
¼ 2imtht̄ðxÞγ5tðxÞtðx1Þt̄ðx2Þi
− iγ5htðxÞt̄ðx2Þiδdðx − x1Þ − ihtðx1Þt̄ðxÞiγ5δdðx − x2Þ
−

ffiffiffi
2

p
i
v
Λ2

Ctghðt̄ðxÞσμνγ5TAtðxÞGA
μνÞtðx1Þt̄ðx2Þi: ð19Þ

The derivation implicitly assumes that the functional
measure transforms trivially under the chiral rotation;
i.e., the symmetry is nonanomalous. This assumption is
supported by discussions in [47], which indicate that any
anomalous terms are proportional to the square of the

Wilson coefficients. The left- and right-handed side of the
identity agree with each other in the Larin scheme
described above, giving us confidence in our results for
the decay widths calculated in SMEFT.
Since our top decay calculation does not involve traces

over triple axial vector current insertions that appear in
triangle fermion loops, we can extend the indices of Levi-
Civita symbol safely from 4 to d dimensions. We have
verified through explicit calculation that all differences in
this treatment of the Levi-Civita symbol in combination
with both the Chisholm replacement as well as the
’t Hooft-Veltman replacement appear only at OðϵÞ for
our observables.

3. Four-Fermion operators: naive anticommuting
and HVBM schemes

In the case of diagrams involving four-fermion inter-
actions we follow a two-pronged approach to obtain
consistent results. First we employ the FEYNCALC [48]
internal scheme in which an anticommuting γ5 is assumed
in combination with

Tr½γ5γμγνγργσ� ¼ 4iϵμνρσ; ð20Þ
where the Levi-Civita symbol is treated as a strictly four-
dimensional object. Combining an anticommuting γ5 with a
nonvanishing trace as done here is strictly speaking
inconsistent but is known to lead to correct results in the
case of one-loop corrections [49]. Since there exists no
formal proof for this statement we verify our results again
by confirming that the scheme preserves the Ward identities
between correlation functions associated with Eq. (14),
which in the presence of the four-fermion operators reads

h∂μðt̄ðxÞγμγ5tðxÞÞtðx1Þt̄ðx2Þi ¼ 2imtht̄ðxÞγ5tðxÞtðx1Þt̄ðx2Þi
− iγ5htðxÞt̄ðx2Þiδdðx − x1Þ
− ihtðx1Þt̄ðxÞiγ5δdðx − x2Þ;

ð21Þ
and analogously for the bottom-quark current. We confirm
through explicit calculation that the naive anticommuting
scheme, as implemented in FEYNCALC, preserves the Ward
identity in the presence of four-fermion operators that
conserve the chiral U(2) symmetry. As mentioned previ-

ously some operators (e.g.,Cð1Þ
qu ) explicitly violate the chiral

transformation, and consequently satisfy a more compli-
cated identity. As a second check we employ the self-
consistent HVBM scheme [43], as it is implemented in
TRACER [50]. This involves splitting all d-dimensional
objects into sums of their four-dimensional parts (denoted
by a bar) and d − 4-dimensional (denoted by a hat) parts,

gμν ¼ ḡμν þ ĝμν qμ ¼ q̄μ þ q̂μ; ð22Þ
1The conventions here are such that γ5 ¼ iγ0γ1γ2γ3 and

ϵ0123 ¼ þ1.
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where external momenta and the Levi-Civita symbol are
treated as purely four dimensional. We note that each of the
bared and hatted objects acts as a projector for the 4 and
d − 4-dimensional subspaces, respectively. The results
obtained in this approach violate the chiral Ward identities
which need to be restored through the introduction of finite
corrections stemming from evanescent operators, as
described in [41,51,52]. After the inclusion of these finite
corrections the results obtained with this approach must
agree through Oðϵ0Þ with those obtained using FEYNCALC.
We have checked for several operators under consideration
that this is indeed the case.

B. Ultraviolet renormalization

The UV renormalization of the external states is per-
formed in the on-shell scheme, similar to the renormaliza-
tion usually performed in the standard model. The only
nonvanishing terms stem from the QCD corrections to the
external top quark line. The quark self-energy corrections
from the four-fermion operators are independent of their
respective momenta and therefore do not change the wave
function renormalization. Electric charge, weak mixing
angle and W-wave function do not receive any contribu-
tions, since they exclusively depend on the gauge-boson
self energies.
To calculate the gluonic contribution to the wave func-

tion renormalization we note that the quark self energy can
be decomposed in SMEFT in the same way as in the SM,

Σqðp2Þ ¼ =pPLΣL
q ðp2Þ þ =pPRΣR

q ðp2Þ þmtΣS
qðp2Þ; ð23Þ

with the chirality projection operators PR=L ¼ 1
2
ð1� γ5Þ.

We therefore can calculate the left- and right-handed quark
field renormalizations δZL=R

q from the quark self energy
according to

δZR=L
q ¼ −ΣR=L

q ðm2
t Þ

−m2
q

∂
∂p2

RefΣL
q ðp2Þ þΣR

q ðp2Þ þ 2ΣS
qðp2Þgjp2¼m2

q
:

ð24Þ
Calculating this expression in the SMEFT for the top quark
yields

δZR=L
t ¼ CFgs

32π2
d − 1

d − 3

A0ðm2
t Þ

m2
t

½gsðd − 2Þ − 2
ffiffiffi
2

p
xvm2

t Ctg�:

ð25Þ
Our conventions are such that the tadpole master integral is

A0ðm2Þ ¼ m2

�
1

ϵ
þ 1 − log

�
m2

μ2

��
ð26Þ

with renormalization scale μ, which is in the end set to the
top mass mt in our numerical studies. This also explicitly

confirms that left- and right-handed top quarks still receive
the same contributions in SMEFT QCD. Furthermore, the
corresponding field renormalizations of the bottom quark
vanish identically in the limit mb ¼ 0.
It is necessary to introduce additional counterterms by

renormalizing the SMEFT Wilson coefficients themselves.
This is customarily done in MS [34–36] and can be
achieved in the QCD sector through the replacement

CtW → CtW þ CFg2s
16π2ϵ

CtW −
CFḡgs
16π2ϵ

Ctg

CbW → CbW þ CFg2s
16π2ϵ

CbW −
CFḡgs
16π2ϵ

Cbg; ð27Þ

introducing further operator mixing. In the case of the four-

fermion operators we renormalize the operator Cð3Þ
ϕq by

shifting the CKM matrix as mentioned before. We choose

δCð3Þ
ϕq ¼ ḡ2Cð3Þ

lq

48π2ϵ
; ð28Þ

for a lepton pair l; νl in the loop, as well as

δCð3Þ
ϕq ¼ ḡ2 − 3y2t

48π2ϵ
ðCð1Þ

qq þ ð2NC − 1ÞCð3Þ
qq Þ; ð29Þ

for the t, b loop, where the nonvanishing top mass

in the loop gives rise to the top Yukawa yt ¼
ffiffi
2

p
mt
v .

Correspondingly we find

δCð3Þ
ϕq ¼ ḡ2

48π2ϵ
ðCð1Þ

qq;light þ ð2NC − 1ÞCð3Þ
qq;lightÞ; ð30Þ

for light quarks in the loop. We report the counterterms here
for completeness but omit the light quark loop from our
analysis, since the associated Dirac structure could only be
achieved by integrating out a heavy neutral vector boson
that changes quark flavor from a UV completion. The
counterterms found here are in agreement with the ones
reported in [35,36]. We note that for consistency αs is run
from the Z-scale up to the top mass scale utilizing the two
loop SM-running found in the literature [53].

V. NUMERICAL RESULTS

We present our numerical results in this section. We
assume Λ ¼ 500 GeV throughout this section, which
makes the Wilson coefficients under discussion dimension-
less. The input parameters are summarized in Table I. The
measured values of the top decay width and helicity
fractions we use to constrain the operators are taken from
the PDG [54],
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Γexp
tot ¼ 1.41þ0.19

−0.15 GeV; Fexp
L ¼ 0.687� 0.018;

Fexp
− ¼ 0.320� 0.013: ð31Þ

We study projections for higher integrated luminosities
relevant for a high-luminosity LHC (HL-LHC) and a
potential future eþe− collider later in this section. Since
we perform a fit to only a limited set of observables, rather
than a global fit such as considered in [27,29,30], our
numerical results should only be considered representative
of the achievable bounds on the studied operators.

A. QCD operators

We begin by discussing the contributions from QCD-like
operators, namely CtW;CbW, Cϕtb, Ctg, and Cbg. A similar
analysis of these operators was performed in Ref. [31],2

focusing however only on the constraints derived for CtW
and Ctg. A similar strategy has previously been employed
for single top production and decay [55,56]. We update the
constraints on these operators and discuss constraints on
the remaining ones. At LO, the total width is only a
function of CtW;CbW , and Cϕtb, which enter through the
W-vertex. The NLO corrections induce sensitivity to Ctg

comparable to that of Cϕtb. We note that the total width is
independent of Cbg, due to the operator being helicity
suppressed, as evident from the analytic expression of
Eq. (A2). We find that the total width is significantly more
constraining for CtW than CbW , and that the constraints on
these two operators are both stronger than the bounds on
Cϕtb and Ctg. The Wilson coefficients are also constrained
through the longitudinal, positive transverse and negative
transverse helicity fractions. The longitudinal rate FL is
again independent of Cbg, as seen from Eq. (A3). We note
that the variation of CbW significantly alters the positive
transverse helicity fraction, Fþ.
In order to derive constraints on the Wilson coefficients

from the current experimental measurements of both the
total width and the helicity fractions, we perform a one-
parameter χ2 fit for eachWilson coefficient by keeping only
one of them nonzero at a time. We also report projections
for bounds potentially obtainable at a high luminosity LHC

(HL-LHC) after collecting 3 ab−1 of data. The χ2 function
is defined through

χ2 ¼
X
ij

ðOtheo
i −Oexp

i Þðσ2Þ−1ij ðOtheo
j −Oexp

j Þ; ð32Þ

where Oexp
i are the measured observables (Γtot, FL, and

F−), Otheo
i are their predicted values in the SMEFT and

σ2ij ¼ σiρijσj, where σi are the uncertainties and ρ is the
correlation matrix,

ρ ¼

0
B@

1.0 0 0

0 1.0 −0.87
0 −0.87 1.0

1
CA: ð33Þ

The correlation matrix comes from a CMS measurement of
the helicity fractions [57]. We assume that it is applicable to
the PDG average and that the total width is uncorrelated
with the Fi measurements. We believe that these simple
assumptions capture the features of a more complete
analysis. For the asymmetric errors in Γtot, we combine

them in quadrature; i.e., σΓtot
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσupperΓtot

Þ2 þ ðσlowerΓtot
Þ2

q
.

The results of the one-parameter fits are summarized in
Table II. The first column of Table II shows the results
based on the current LHC data with the luminosity of
20 fb−1. The other columns show projections based on the
HL-LHC with a luminosity of 3 ab−1. For the projections
we reduce the statistical errors as 1=

ffiffiffiffi
N

p
, where the number

of events N scales like the integrated luminosity. We
consider two assumptions for the scaling factor associated
with the systematic error, fsyst.
(1) fsyst ¼ 1=2: this is close to a recommendation

proposed by ATLAS where all the systematic errors
are scaled by a factor of 1=2 [32,58].

TABLE II. Constraints on the Wilson coefficients of the QCD
operators at 90% C.L. The scale Λ is assumed to be 500 GeV. The
first column shows the results based on the current LHC data with
the luminosity of 20 fb−1 and the rest of them the projection
based on the HL-LHC with the luminosity of 3 ab−1. For the
projection of the uncertainties at HL-LHC, the statistical un-
certainties scale like 1ffiffiffi

N
p while the systematic uncertainties are

scaled by a factor of fsyst. For the projections, we assume that the
experimental central values match the SM in order to focus on the
achievable error reduction at the HL-LHC.

Current
HL-LHC

(fsyst ¼ 1=2)
HL-LHC

(fsyst ¼ 1ffiffiffi
N

p )

CtW −0.05 < CtW < 0.17 jCtW j < 0.04 jCtW j < 0.01
Ctg −13.37 < Ctg < 4.88 jCtgj < 3.33 jCtgj < 0.75
CbW −0.47 < CbW < 2.07 jCbW j < 0.45 jCbW j < 0.10
Cbg −32.72 < Cbg < 5.63 jCbgj < 6.87 jCbgj < 1.57
Cϕtb −4.15 < Cϕtb < 12.84 jCϕtbj < 3.06 jCϕtbj < 0.69

TABLE I. Input parameters for the calculation, taken from [54].
The value of the SUð2Þ coupling ḡ is calculated from the Fermi
constant GF and the fine structure constant αem.

MZ 91.1876 GeV MW 80.379 GeV
v 246 GeV mt 173.0 GeV
mb 4.78 GeV GF 1.1664 × 10−5 GeV−2

α−1em 137.036 αsðMZÞ 0.1185

2We find an identical analytic expressions for the total width
Γtot and longitudinal helicity fraction FL to leading order in xb.
We find however a different dependence on Ctg in the case of the
transverse helicity fractions F�.
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(2) fsyst ¼ 1=
ffiffiffiffi
N

p
: this is based on a CMS proposal used

in previous projections [59], where the systematic
error is assumed to scale like the statistical uncer-
tainty. This is the more optimistic of the two
scenarios.

We find that in the second projection the bounds on the
QCD operators can be tightened by at least an order of
magnitude at the HL-LHC, while in the first projection the
uncertainty reduction is less. Both CtW and CbW are already
significantly constrained with the current measurements.
We have also performed a two-dimensional χ2 fit at
95% C.L. for CtW and Ctg as shown in the left panel of
Fig. 4 to study potential correlations between these param-
eters. The dotted contour corresponds to the current
measurement, while the dashed and solid contours corre-
spond to fsyst ¼ 1=2 and fsyst ¼ 1=

ffiffiffiffi
N

p
at the HL-LHC.

Only a weak correlation is observed.
Previous constraints on these EFT operators at leading

order using top quark observables can be found in the
literature [27,60]. We have checked that when our calcu-
lation is truncated at LO the bounds we find agreement with
those previously obtained. An important point learned from
the above table is that at a HL-LHC, the bounds on the
loop-induced Wilson coefficients Ctg and Cbg can approach
unity. This demonstrates that higher-order effects in the
SMEFT can be significantly probed during the future LHC
program.

B. Four-fermion operators

We next present and discuss the bounds on the four-

fermion operators to which we are sensitive: Cð1Þ
qu , C

ð8Þ
qu ,

Cð1Þ
qq , C

ð3Þ
qq , and C

ð3Þ
lq . The sensitivity of the total width to the

different Wilson coefficients is shown in Fig. 5. Since
the observables we consider are only sensitive to the

combination Cqu ¼ Cð1Þ
qu þ 4

3
Cð8Þ
qu we plot only that struc-

ture. The shaded band represents the 1σ region around the
experimentally measured value, while the solid black line is
the NLO result as a function of a single Wilson coefficient.
We find with the current experimental errors that the total
width is only weakly sensitive to these operators, with the

exception of Cð3Þ
qq . We also find that Cð3Þ

lq only appears in the
total width and drops out from the helicity fractions after an

expansion in 1=Λ2. Cð3Þ
lq is however only weakly bounded

by the total width as is evident from Fig. 5.
As before there are additional constraints set by the

helicity fractions, FL and F−. Figure 6 shows the helicity
fractions as functions of Cqu. The shaded band is again the
1σ region around the experimentally measured fractions.
The solid black lines show the functional dependence of the
helicity fractions on each Wilson coefficient at NLO. We
see that the results are quite different than those observed
for the total width. Cqu is now probed by FL, and F−, but
we lose sensitivity to all other four-fermion operators. We

note that no observables are sensitive to Cð1Þ
qq and Cð3Þ

lq .
The global constraints on the Wilson coefficients are

derived through a one-parameter χ2 fit for each Wilson
coefficient. The resulting best fits and corresponding
bounds are summarized in Table III. We again compare
the 68% C.L. bounds derived from current LHC data with

the projected ones for HL-LHC at 3 ab−1. As expected Cð3Þ
qq

is constrained most strongly. This bound is mainly set by
the total width. The bounds on Cqu are around a factor of

2 weaker in comparison, stemming from FL and F−. C
ð1Þ
qq

andCð3Þ
lq are not constrained through any of the observables.

We have also performed a two-dimensional χ2 fit at

95% C.L. for Cð3Þ
qq and Cqu as shown in the right panel

of Fig 4. The dotted contour corresponds to the current
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C
tg
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–100

–50
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Cqq3
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qu

–10
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FIG. 4. Two-dimensional χ2 fit at 90% C.L. for the QCD operators, CtW and Ctg (left), and the four-fermion operators, Cð3Þ
qq and Cqu

(right). We shift the best-fit Ci results to the origin in order to emphasize the improvement of the errors at the HL-LHC. We set
Λ ¼ 500 GeV and show the dimensionless coefficient. The dotted contour corresponds to the current measurement, while the dashed
and solid contours correspond to fsyst ¼ 1=2 and fsyst ¼ 1=

ffiffiffiffi
N

p
at the HL-LHC.
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measurement, while the dashed and solid contours corre-
spond to fsyst ¼ 1=2 and fsyst ¼ 1=

ffiffiffiffi
N

p
at the HL-LHC.

These bounds are complementary to the ones in the
literature derived from direct production of four final-state
heavy flavors [32].
We note that the bounds on all four-fermion Wilson

coefficients are very weak with the current data. In fact, if
we estimate the energy scale probed by each observable as
Λ=

ffiffiffiffiffiffi
CX

p
, we find that the currently accessible energy scales

are less than the top quark mass. This indicates that the EFT
expansion is not compatible with the current experimental
errors. At an HL-LHC, the bounds on all the four-fermion
operators improve significantly. In particular, constraints on

the Wilson coefficients Cð3Þ
qq , C

ð1Þ
qu and Cð8Þ

qu approach unity
and the effective energy scale probed is significantly above
the top quark mass, indicating that these higher-order
effects can be meaningfully probed during the future LHC
program.
Finally, we study as well projected errors for a potential

future FCC-ee eþe− machine. Details of this project are
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FIG. 5. Comparison of the Wilson coefficient sensitivity of the total decay width Γtot for the four-fermion operators. We assume
Λ ¼ 500 GeV and show the dimensionless coefficient. The shaded band shows the 1σ region around the experimental decay width.
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FIG. 6. Comparison of the Wilson coefficient sensitivity of the
longitudinal and negative transversal helicity fractions for the
four-fermion operators. We assume Λ ¼ 500 GeV and show
the dimensionless coefficient. The shaded band shows the 1σ
region around the experimentally measured fractions.
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provided in [61], where it is indicated that the top
quark width can be probed with a precision of 45 MeV.
We use this estimated error together with the more
optimistic HL-LHC systematic error estimate to check
what bounds the total width can provide on several example
operators for each machine. The 68% C.L. uncertainties for

the current measurement and the future colliders for Cð3Þ
qq

and Ctg are shown in Fig. 7, where the blue, green, and red
bars correspond to the uncertainties from the current
measurement, FCC-ee, and HL-LHC (fsyst ¼ 1=

ffiffiffiffi
N

p
),

respectively. We find that the bounds are significantly
improved at both future colliders.

VI. CONCLUSIONS

In this manuscript we have studied the next-to-leading
order corrections to top quark decays within the SMEFT.
Our calculation includes a more complete set of operators
than previously studied, in particularly all contributing
four-fermion operators. We have two primary motivations.
First, this work is a step toward a complete calculation
of NLO effects within SMEFT, which we believe will
eventually be required by the experimental uncertainties.
Second, this work tests the question of whether loop-
induced operators can be probed with either current or
potential future collider data.
We have addressed technical aspects associated with

higher-order calculations in the SMEFT containing γ5.
Chiral Ward identities play an important role in imposing
consistency of γ5 prescriptions at higher order in dimen-
sional regularization, which we demonstrate by checking
the consistency of several different schemes at one-loop
order. Finally, we have presented numerical bounds on the
considered operators given current and projected future
uncertainties. We find that future machines such as the
HL-LHC or a future eþe− collider can provide important
constraints on SMEFT operators that first appear at higher
orders.
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APPENDIX: NLO EXPRESSIONS FOR THE
HELICITY FRACTIONS

We present here the analytic results for the NLO SMEFT
corrected helicity fractions Fi and the total decay width Γtot
of t → Wb. For convenience we split up the different
contributions.

Γtot ¼ ΓBorn þ ΔΓQCD þ ΔΓ4f ;

Fi ¼ FBorn
i þ ΔFQCD

i þ ΔF4f
i ; ðA1Þ

where the first term in the expansion describes the con-
tributions coming from the tree-level diagrams only (with
full xb dependence retained), while the second one contains
all QCD-like corrections expanded up to order g2s and
the last the pieces from the four-Fermi operators. We
consistently expanded all three contributions to leading
order in 1

Λ2.

TABLE III. Constraints on the Wilson coefficients of the four-
fermion operators with their respective errors at 90% C.L. The
scale Λ is assumed to be 500 GeV. The second column shows the
results based on the current LHC data with the luminosity of
20 fb−1 and the rest of them the projection based on the HL-LHC
with the luminosity of 3 ab−1. For the projection of the un-
certainties at HL-LHC, the statistical uncertainties scale like 1ffiffiffi

N
p

while the systematic uncertainties are scaled by a factor of fsyst.
For the projections, we assume that the experimental central
values match the SM in order to focus on the achievable error
reduction at the HL-LHC.

Current
HL-LHC

(fsyst ¼ 1=2)
HL-LHC

(fsyst ¼ 1ffiffiffi
N

p )

Cð1Þ
qq −167.21<Cð1Þ

qq < 254.73 jCð1Þ
qq j< 105.48 jCð1Þ

qq j< 17.23

Cð3Þ
qq −34.73<Cð3Þ

qq < 22.80 jCð3Þ
qq j< 14.38 jCð3Þ

qq j< 2.35
Cqu −181.94<Cqu < 26.91 jCquj< 37.80 jCquj< 8.53

Cð3Þ
lq −151.22<Cð3Þ

lq < 230.36 jCð3Þ
lq j< 95.40 jCð3Þ

lq j< 15.58

Current

FCC–ee

HL–LHC

–5 0 5 10 15 20 25 30

C tg

Cqq3

FIG. 7. 90% C.L. uncertainties for the QCD operator, Ctg, and

four-fermion operator, Cð3Þ
qq . The blue, green, and red bars

correspond to the uncertainties from the current measurement,
FCC-ee, and HL-LHC (fsyst ¼ 1=

ffiffiffiffi
N

p
), respectively.
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1. QCD corrected decay fractions

ΔΓQCD ¼ −
gsḡmt

2304π3x2W

�
ðx2W − 1Þð6

ffiffiffi
2

p
Ctgḡm2

t xvð1þ 11x2W − 20x4WÞ

þ gsð12
ffiffiffi
2

p
CtWm2

t xvx2Wð17 − 21x2W þ 4π2ðx2W − 1ÞÞ þ ḡð3ð5þ 9x2W − 6x4WÞ
þ π2ð8x4W − 4 − 4x2WÞÞÞÞ þ log ð1 − xWÞð6ð−1þ x2WÞ2ð4

ffiffiffi
2

p
Ctgḡm2

t xvðx2W − 1Þ
þ gsðḡð5þ 4x2WÞ þ 4

ffiffiffi
2

p
CtWm2

t xvð2þ 7x2WÞÞÞ þ 24gsðx2W − 1Þ2ðḡð1þ 2x2WÞ
þ 12

ffiffiffi
2

p
CtWm2

t xvx2WÞ logðxWÞÞ þ 6ðx2W − 1Þ2ð4
ffiffiffi
2

p
Ctgḡm2

t xvðx2W − 1Þ
þ gsðḡð5þ 4x2WÞ þ 4

ffiffiffi
2

p
CtWm2

t xvð2þ 7x2WÞÞÞ log ð1þ xWÞ
þ ð24x2Wð

ffiffiffi
2

p
Ctgḡm2

t xvx2Wð3þ x2WÞ þ gsð4
ffiffiffi
2

p
CtWm2

t xvx2Wð3 − 2x2WÞ
− ḡðx2W þ 2x4W − 1ÞÞÞÞ logðxWÞ þ 48gsðx2W − 1Þ2ðḡð1þ 2x2WÞ

þ 12
ffiffiffi
2

p
CtWm2

t xvx2WÞ
�
Li2ðxWÞ þ Li2ð−xWÞ þ

1

2
logðxWÞ log ð1þ xWÞ

��
ðA2Þ

ΔFQCD
L ¼ gs

9ḡπ2ð1 − x2WÞ2ð1þ 2x2WÞ3
½x2Wð−

ffiffiffi
2

p
Ctgḡm2

t xvð1þ 2x2WÞð−6x2Wð9 − 10x2W þ x4WÞ

þ π2ð1þ 5x2W þ 6x4WÞÞ þ gsðḡð1þ 2x2WÞð−π2ð7þ 15x2W þ 2x4WÞ þ 6ð6þ 6x2W

− 13x4W þ x6WÞÞ þ 2
ffiffiffi
2

p
CtWm2

t xvðπ2ð1þ 49x2W þ 106x4W þ 24x6WÞ þ 6ð−2 − 39x2W

− 40x4W þ 79x6W þ 2x8WÞÞÞÞ þ ð3ð1 − x2WÞ3ð
ffiffiffi
2

p
Ctgḡm2

t xvð4x4W − 1Þ
þ gsðḡþ 2ḡx2W þ 2

ffiffiffi
2

p
CtWm2

t xvð1 − 10x2WÞÞÞ þ 3ð1 − xWÞ3xWð1þ 2x2WÞðgsð4
ffiffiffi
2

p
ð1 − 15xW

− x2WÞCtWm2
t xvxW þ ḡð5þ xW þ 10x2W þ 2x3WÞÞ − 2

ffiffiffi
2

p
Ctgḡm2

t xvxWð1þ 2x2WÞÞ logðxWÞÞ log ð1 − xWÞ
− 3ð−1þ x2WÞ3ð

ffiffiffi
2

p
Ctgḡm2

t xvð4x4W − 1Þ þ gsðḡþ 2ḡx2W þ 2
ffiffiffi
2

p
CtWm2

t xvð1 − 10x2WÞÞÞ log ð1þ xWÞ
þ ð6x2Wð

ffiffiffi
2

p
Ctgḡm2

t xvx2Wð7þ 23x2W þ 18x4WÞ − gsð2
ffiffiffi
2

p
CtWm2

t xvx2Wð35þ 101x2W

þ 112x4W þ 4x6WÞ − ḡð5þ 25x2W þ 44x4W þ 28x6WÞÞÞ
− 3xWð1þ xWÞ3ð1þ 2x2WÞð2

ffiffiffi
2

p
Ctgḡm2

t xvxWð1þ 2x2WÞ − gsð4
ffiffiffi
2

p
CtWm2

t xvxWð1
þ 15xW − x2WÞ þ ḡð5 − xW þ 10x2W − 2x3WÞÞÞ log ð1þ xWÞÞ logðxWÞ
þ 3xWð1þ xWÞ3ð1þ 2x2WÞð−2

ffiffiffi
2

p
Ctgḡm2

t xvxWð1þ 2x2WÞ
þ gsð−4

ffiffiffi
2

p
CtWm2

t xvxWð−1 − 15xW þ x2WÞ þ ḡð−5þ xW − 10x2W

þ 2x3WÞÞÞLi2ð−xWÞ þ 3ð1 − xWÞ3xWð1þ 2x2WÞð−2
ffiffiffi
2

p
Ctgḡm2

t xvxWð1þ 2x2WÞ
þ gsð−4

ffiffiffi
2

p
CtWm2

t xvxWð−1þ 15xW þ x2WÞ þ ḡð5þ xW þ 10x2W þ 2x3WÞÞÞLi2ðxWÞ� ðA3Þ

ΔFQCD
− ¼ gs

36ḡπ2ð1 − x2WÞ2ð1þ 2x2WÞ3
½x2Wð6

ffiffiffi
2

p
ḡm2

t xvð1 − xW þ 2x2W − 2x3WÞðð1þ xWÞ2ðxW
− 2x2W þ 2x3W − 1ÞCbg þ 2Ctgð2 − 3xW − 6x2W − 23x3W þ 18x4W þ 4x5WÞÞ
þ gsðḡð1þ 2x2WÞð2π2ð7þ 10x2W − 6x4W þ 4x6WÞ − 3ð23þ 20xW − 6x2W þ 48x3W

− 111x4W þ 16x5W þ 10x6WÞÞ − 4
ffiffiffi
2

p
CtWm2

t xvð3ð−8þ 30xW − 133x2W þ 82x3W

− 206x4W þ 64x5W þ 129x6W þ 40x7W þ 2x8WÞ þ 2π2ð1þ 33x2W þ 64x4W þ 6x6W

þ 4x8WÞÞÞÞ þ ð12ðx2W − 1Þ3ð
ffiffiffi
2

p
Ctgḡm2

t xvð4x4W − 1Þ þ gsðḡþ 2ḡx2W
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þ 2
ffiffiffi
2

p
CtWm2

t xvð1 − 10x2WÞÞÞ þ 6ð−1þ xWÞ2xWð1þ 2x2WÞð2
ffiffiffi
2

p
Ctgḡm2

t xvxWð1
− xW þ 2x2W − 2x3WÞ þ gsð−4

ffiffiffi
2

p
CtWm2

t xvxWð−3 − 24xW þ 14x2W þ 9x3W þ 4x4WÞ
− ḡð5 − 8xW þ x2W − 20x3W − 18x4W − 8x5WÞÞÞ logðxWÞÞ log ð1 − xWÞ
− 12ð1 − x2WÞð−

ffiffiffi
2

p
Ctgḡm2

t xvð1þ x2W þ 10x4W þ 24x6WÞ þ gsðḡð1 − 5x2W − 21x4W

− 10x6W þ 8x8WÞ þ 2
ffiffiffi
2

p
CtWm2

t xvð1 − 25x2W þ 2x4W − 2x6W − 12x8WÞÞÞ log ð1þ xWÞ
− ð12x2Wð

ffiffiffi
2

p
Ctgḡm2

t xvx2Wð7þ 17x2W þ 4x4W − 4x6WÞ þ gsð−2
ffiffiffi
2

p
CtWm2

t xvx2Wð39
þ 93x2W þ 136x4W þ 20x6WÞ þ ḡð5þ 23x2W þ 42x4W þ 36x6W þ 8x8WÞÞÞ
− 6xWð1þ xWÞ2ð1þ 2x2WÞð2

ffiffiffi
2

p
Ctgḡm2

t xvxWð1þ xW þ 2x2W þ 2x3WÞ
þ gsð4

ffiffiffi
2

p
CtWm2

t xvxWð3 − 24xW − 14x2W þ 9x3W − 4x4WÞ þ ḡð5þ 8xW þ x2W

þ 20x3W − 18x4W þ 8x5WÞÞÞ log ð1þ xWÞÞ logðxWÞ
þ 6xWð1þ 2x2WÞð2

ffiffiffi
2

p
Ctgḡm2

t xvðxW − 1Þ3xWð1þ 2x2WÞ þ gsð4
ffiffiffi
2

p
CtWm2

t xvxWð1
− 18xW − 89x2W − 43x3W þ 16x4W þ x5W − 12x6WÞ þ ḡð5þ 18xW þ 22x2W þ 10x3W

þ 23x4W − 40x5W − 2x6W þ 24x7WÞÞÞLi2ð−xWÞ
þ 6ð1 − xWÞ2xWð1þ 2x2WÞð2

ffiffiffi
2

p
Ctgḡm2

t xvxWð1 − xW þ 2x2W − 2x3WÞ
þ gsð4

ffiffiffi
2

p
CtWm2

t xvxWð3þ 24xW − 14x2W − 9x3W − 4x4WÞ − ḡð5 − 8xW

þ x2W − 20x3W − 18x4W − 8x5WÞÞÞLi2ðxWÞ� ðA4Þ

2. Four-fermion corrected decay fractions

Here we report the four-Fermi corrected longitudinal and negative transverse helicity fractions, and the total decay width
of t → Wb. We omit the contributions stemming from the t − b − u − d vertex leading to two massless quarks in the loop.

ΔΓ4f ¼
ḡm3

Tðx2W − 1Þ2
4608π2x6W

½12Cð3Þ
lq x6Wð1þ 2x2WÞ logðx2WÞ − x2Wðx4Wð20Cð3Þ

lq þ 27Cð1Þ
qu þ 36Cð8Þ

qu

þ 40Cð3Þ
lq x

2
WÞ þ 2Cð1Þ

qq ð−3 − 3x2W þ 10x4W þ 8x6WÞ þ 2Cð3Þ
qq ð−15 − 69x2W − 22x4W

þ 112x6WÞÞ þ 6ðCð1Þ
qq þ 5Cð3Þ

qq Þð1þ x2W − 2x4WÞ2 log ð1 − x2WÞ�; ðA5Þ

ΔF4f
L ¼ m2

t x2W
12π2

ðx2W − 1Þ
ð1þ 2x2WÞ2

ð3Cð1Þ
qu þ 4Cð8Þ

qu Þ; ðA6Þ

ΔF4f
− ¼ −

m2
t x2W

12π2
ðx2W − 1Þ
ð1þ 2x2WÞ2

ð3Cð1Þ
qu þ 4Cð8Þ

qu Þ: ðA7Þ

[1] W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621
(1986).

[2] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
J. High Energy Phys. 10 (2010) 085.

[3] Z. Han and W. Skiba, Phys. Rev. D 71, 075009 (2005).

[4] A. Pomarol and F. Riva, J. High Energy Phys. 01 (2014) 151.
[5] C. Y. Chen, S. Dawson, and C. Zhang, Phys. Rev. D 89,

015016 (2014).
[6] J. Ellis, V. Sanz, and T. You, J. High Energy Phys. 07 (2014)

036.

TOP QUARK DECAY AT NEXT-TO-LEADING ORDER IN THE … PHYS. REV. D 100, 056023 (2019)

056023-13

https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1103/PhysRevD.71.075009
https://doi.org/10.1007/JHEP01(2014)151
https://doi.org/10.1103/PhysRevD.89.015016
https://doi.org/10.1103/PhysRevD.89.015016
https://doi.org/10.1007/JHEP07(2014)036
https://doi.org/10.1007/JHEP07(2014)036


[7] J. D. Wells and Z. Zhang, Phys. Rev. D 90, 033006
(2014).

[8] A. Falkowski and F. Riva, J. High Energy Phys. 02 (2015)
039.

[9] J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini,
L. Reina, and L. Silvestrini, J. High Energy Phys. 12 (2016)
135.

[10] C. Hartmann and M. Trott, J. High Energy Phys. 07 (2015)
151.

[11] C. Hartmann and M. Trott, Phys. Rev. Lett. 115, 191801
(2015).

[12] A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho, and L.
Trifyllis, J. High Energy Phys. 08 (2018) 103.

[13] R. Gauld, B. D. Pecjak, and D. J. Scott, J. High Energy
Phys. 05 (2016) 080.

[14] R. Gauld, B. D. Pecjak, and D. J. Scott, Phys. Rev. D 94,
074045 (2016).

[15] J. M. Cullen, B. D. Pecjak, and D. J. Scott, J. High Energy
Phys. 08 (2019) 173.

[16] S. Dawson and P. P. Giardino, Phys. Rev. D 97, 093003
(2018).

[17] S. Dawson and P. P. Giardino, Phys. Rev. D 98, 095005
(2018).

[18] C. Hartmann, W. Shepherd, and M. Trott, J. High Energy
Phys. 03 (2017) 060.

[19] S. Dawson and A. Ismail, Phys. Rev. D 98, 093003 (2018).
[20] S. Dawson, P. P. Giardino, and A. Ismail, Phys. Rev. D 99,

035044 (2019).
[21] C. Degrande, J. M. Gerard, C. Grojean, F. Maltoni, and

G. Servant, J. High Energy Phys. 07 (2012) 036; 03 (2013)
032(E).

[22] E. Vryonidou and C. Zhang, J. High Energy Phys. 08 (2018)
036.

[23] L. Berthier and M. Trott, J. High Energy Phys. 05 (2015)
024.

[24] G. Passarino and M. Trott, arXiv:1610.08356.
[25] N. Greiner, S. Willenbrock, and C. Zhang, Phys. Lett. B

704, 218 (2011).
[26] C. Zhang, N. Greiner, and S. Willenbrock, Phys. Rev. D 86,

014024 (2012).
[27] A. Buckley, C. Englert, J. Ferrando, D. J. Miller, L. Moore,

M. Russell, and C. D. White, J. High Energy Phys. 04
(2016) 015.

[28] V. Cirigliano, W. Dekens, J. de Vries, and E. Mereghetti,
Phys. Rev. D 94, 034031 (2016).

[29] J. A. Aguilar-Saavedra et al., arXiv:1802.07237.
[30] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade,

E. Vryonidou, and C. Zhang, J. High Energy Phys. 04
(2019) 100.

[31] C. Zhang, Phys. Rev. D 90, 014008 (2014).
[32] P. Azzi et al. (HL-LHC Collaboration and HE-LHC

Working Group), arXiv:1902.04070.

[33] A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek, and
K. Suxho, J. High Energy Phys. 06 (2017) 143.

[34] E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy
Phys. 10 (2013) 087.

[35] E. E. Jenkins, A. V. Manohar, and M. Trott, J. High Energy
Phys. 01 (2014) 035.

[36] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott,
J. High Energy Phys. 04 (2014) 159.

[37] M. Fischer, S. Groote, J. G. Korner, and M. C. Mauser,
Phys. Rev. D 63, 031501 (2001).

[38] H. S. Do, S. Groote, J. G. Korner, and M. C. Mauser,
Phys. Rev. D 67, 091501 (2003).

[39] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159
(1981).

[40] F. Jegerlehner, Eur. Phys. J. C 18, 673 (2001).
[41] T. L. Trueman, Z. Phys. C 69, 525 (1996).
[42] S. A. Larin, Phys. Lett. B 303, 113 (1993).
[43] P. Breitenlohner and D. Maison, Commun. Math. Phys. 52,

39 (1977).
[44] J. G. Korner, D. Kreimer, and K. Schilcher, Z. Phys. C 54,

503 (1992).
[45] D. Kreimer, arXiv:hep-ph/9401354.
[46] D. J. Broadhurst and A. G. Grozin, Phys. Rev. D 52, 4082

(1995).
[47] J. F. Donoghue, E. Golowich, and B. R. Holstein,

Cambridge Monogr. Part. Phys., Nucl. Phys., Cosmol. 2,
1 (1992); 35, 82 (2014), Section III-3.

[48] V. Shtabovenko, J. Phys. Conf. Ser. 762, 012064 (2016).
[49] A. V. Bednyakov, A. F. Pikelner, and V. N. Velizhanin,

J. Phys. Conf. Ser. 523, 012045 (2014); Phys. Lett. B
722, 336 (2013); D. Stöckinger, Dimensional regularization
and γ5, Proceedings of the FCCee (2018) [arXiv:1809
.01830].

[50] M. Jamin and M. E. Lautenbacher, Comput. Phys.
Commun. 74, 265 (1993).

[51] K. Adel and Y. P. Yao, Phys. Rev. D 53, 374 (1996).
[52] S. Herrlich and U. Nierste, Nucl. Phys. B455, 39 (1995).
[53] W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974).
[54] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[55] M. de Beurs, E. Laenen, M. Vreeswijk, and E. Vryonidou,

Eur. Phys. J. C 78, 919 (2018).
[56] T. Neumann and Z. E. Sullivan, J. High Energy Phys. 06

(2019) 022.
[57] V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B

762, 512 (2016).
[58] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2019-

005.
[59] CMS Collaboration, Report No. CMS-NOTE-2018-006.
[60] C. Zhang and S. Willenbrock, Phys. Rev. D 83, 034006

(2011).
[61] A. Abada et al. (FCC Collaboration), Report No. CERN-

ACC-2018-0057.

BOUGHEZAL, CHEN, PETRIELLO, and WIEGAND PHYS. REV. D 100, 056023 (2019)

056023-14

https://doi.org/10.1103/PhysRevD.90.033006
https://doi.org/10.1103/PhysRevD.90.033006
https://doi.org/10.1007/JHEP02(2015)039
https://doi.org/10.1007/JHEP02(2015)039
https://doi.org/10.1007/JHEP12(2016)135
https://doi.org/10.1007/JHEP12(2016)135
https://doi.org/10.1007/JHEP07(2015)151
https://doi.org/10.1007/JHEP07(2015)151
https://doi.org/10.1103/PhysRevLett.115.191801
https://doi.org/10.1103/PhysRevLett.115.191801
https://doi.org/10.1007/JHEP08(2018)103
https://doi.org/10.1007/JHEP05(2016)080
https://doi.org/10.1007/JHEP05(2016)080
https://doi.org/10.1103/PhysRevD.94.074045
https://doi.org/10.1103/PhysRevD.94.074045
https://doi.org/10.1007/JHEP08(2019)173
https://doi.org/10.1007/JHEP08(2019)173
https://doi.org/10.1103/PhysRevD.97.093003
https://doi.org/10.1103/PhysRevD.97.093003
https://doi.org/10.1103/PhysRevD.98.095005
https://doi.org/10.1103/PhysRevD.98.095005
https://doi.org/10.1007/JHEP03(2017)060
https://doi.org/10.1007/JHEP03(2017)060
https://doi.org/10.1103/PhysRevD.98.093003
https://doi.org/10.1103/PhysRevD.99.035044
https://doi.org/10.1103/PhysRevD.99.035044
https://doi.org/10.1007/JHEP07(2012)036
https://doi.org/10.1007/JHEP03(2013)032
https://doi.org/10.1007/JHEP03(2013)032
https://doi.org/10.1007/JHEP08(2018)036
https://doi.org/10.1007/JHEP08(2018)036
https://doi.org/10.1007/JHEP05(2015)024
https://doi.org/10.1007/JHEP05(2015)024
http://arXiv.org/abs/1610.08356
https://doi.org/10.1016/j.physletb.2011.09.026
https://doi.org/10.1016/j.physletb.2011.09.026
https://doi.org/10.1103/PhysRevD.86.014024
https://doi.org/10.1103/PhysRevD.86.014024
https://doi.org/10.1007/JHEP04(2016)015
https://doi.org/10.1007/JHEP04(2016)015
https://doi.org/10.1103/PhysRevD.94.034031
http://arXiv.org/abs/1802.07237
https://doi.org/10.1007/JHEP04(2019)100
https://doi.org/10.1007/JHEP04(2019)100
https://doi.org/10.1103/PhysRevD.90.014008
http://arXiv.org/abs/1902.04070
https://doi.org/10.1007/JHEP06(2017)143
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP04(2014)159
https://doi.org/10.1103/PhysRevD.63.031501
https://doi.org/10.1103/PhysRevD.67.091501
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1007/s100520100573
https://doi.org/10.1007/s002880050057
https://doi.org/10.1016/0370-2693(93)90053-K
https://doi.org/10.1007/BF01609070
https://doi.org/10.1007/BF01609070
https://doi.org/10.1007/BF01559471
https://doi.org/10.1007/BF01559471
http://arXiv.org/abs/hep-ph/9401354
https://doi.org/10.1103/PhysRevD.52.4082
https://doi.org/10.1103/PhysRevD.52.4082
https://doi.org/10.1088/1742-6596/762/1/012064
https://doi.org/10.1088/1742-6596/523/1/012045
https://doi.org/10.1016/j.physletb.2013.04.038
https://doi.org/10.1016/j.physletb.2013.04.038
http://arXiv.org/abs/1809.01830
http://arXiv.org/abs/1809.01830
https://doi.org/10.1016/0010-4655(93)90097-V
https://doi.org/10.1016/0010-4655(93)90097-V
https://doi.org/10.1103/PhysRevD.53.374
https://doi.org/10.1016/0550-3213(95)00474-7
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1140/epjc/s10052-018-6399-3
https://doi.org/10.1007/JHEP06(2019)022
https://doi.org/10.1007/JHEP06(2019)022
https://doi.org/10.1016/j.physletb.2016.10.007
https://doi.org/10.1016/j.physletb.2016.10.007
https://doi.org/10.1103/PhysRevD.83.034006
https://doi.org/10.1103/PhysRevD.83.034006

