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The present calculations in perturbative QCD reach the order α4s for several correlators calculated to five
loops, and the huge computational difficulties make unlikely the full six-loop calculation in the near future.
This situation has practical consequences; in particular the treatment of the higher orders of the perturbation
series for the current-current correlator of light quarks is one of the main sources of errors in the extraction
of the strong coupling from hadronic τ decays. Several approximate estimates of the next coefficients of the
corresponding Adler function have been proposed, using various arguments. In the present paper we
exploit the analytic structure of the Adler function in the Borel plane, which allows the definition of an
improved perturbative expansion in powers of a conformal variable which maps the cut Borel plane onto
the unit disk. The new expansions converge in a larger domain of the Borel plane and, when reexpanded in
powers of the strong coupling, yield definite values for the higher perturbative coefficients. We apply the
method to the Adler function in the MS scheme and to a suitable weighted integral of this function in the
complex s plane, chosen such as to avoid model-dependent assumptions on analyticity. Our results
c5;1 ¼ 287� 40, c6;1 ¼ 2948� 208 and c7;1 ¼ ð1.89� 0.75Þ × 104, for the six-, seven- and eight-loop
coefficients, respectively, agree with a recent determination from Padé approximants applied to the
perturbative expansion of the hadronic τ decay rate.
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I. INTRODUCTION

The perturbative QCD expansion of the Adler function in
the chiral limit is known to five loops [1], the same order to
which the renormalization-group β function has been
calculated [2]. The increased precision of perturbative
calculations is important for the extraction of the strong
coupling αs from hadronic τ decays. However, having in
view the computational difficulties, a six-loop result is not
foreseen in the near future. In the absence of exact
calculations, approximate values for the next coefficients
have been proposed, based on various arguments. Such
predictions have been made also for the coefficient of the α4s
term in Refs. [3–5], before the exact five-loop calculation
was available. However, they have not been confirmed in
general by the exact result reported in [1]. After the
appearance of this result, estimates of the six-loop coef-
ficient have been made in Ref. [1] from the principle of
fastest apparent convergence (FAC) [6]; in Ref. [7] from the

convergence of the expansion of the τ hadronic decay rate;
and more recently, in Ref. [8] from Padé approximants
applied to the perturbative expansion of the hadronic τ
decay rate.
The prediction of the higher unknown terms in a series

expansion from the knowledge of the first few terms may
look like a miracle. Actually, this prediction would be
impossible without the knowledge of some theoretical
properties of the expanded function, available a priori,
independent of the series expansion. In the present paper
we exploit the analytic structure of the Adler function in the
Borel plane, which encodes the large-order behavior of the
perturbative expansion. We then apply a procedure of series
acceleration by conformal mappings, proposed in [9]
and investigated further in Refs. [10–16]. Instead of the
standard Taylor expansion of the Borel transform, we
define new expansions, in powers of a conformal variable
which maps the cut Borel plane onto the unit disk. These
expansions converge in a larger domain of the Borel plane
and have a better convergence rate. Moreover, when
reexpanded in powers of the strong coupling, they yield
definite values for the higher-order perturbative coeffi-
cients. A prediction for the six-loop coefficient by this
method was already reported in [12]. In the present work
we perform a more systematic investigation of this
problem.
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The paper is organized as follows. In the next section we
briefly review the calculation of the Adler function and the
hadronic width of the τ lepton in perturbative QCD. In
Sec. III we introduce the modified perturbative expansions
based on the conformal mapping of the Borel plane. The
prediction of the first three unknown coefficients from the
expansion of the Adler function in the MS scheme is
investigated in Sec. IV. We consider here also the prediction
of the coefficients at large orders, using as a framework two
renormalon-based models for the Adler function, reviewed
for completeness in the Appendix. In Sec. V we briefly
discuss the prediction of the six-loop coefficient in an
alternative renormalization scheme, known as the C
scheme. In Sec. VI we explore the possibility of extracting
the next coefficients using the perturbative expansion of the
hadronic decay width of the τ lepton, which is expressed as
a weighted integral of the Adler function along a contour in
the complex energy plane. In Sec. VII we discuss other
weighted integrals and define a criterion for the choice of
an optimal weight, which avoids model-dependent assump-
tions on the properties in the Borel plane. A suitable weight
meeting this criterion is considered in Sec. VIII for the
extraction of the unknown perturbative coefficients of
interest. In Sec. IX we present the final results, obtained
by averaging the results independent of ad hoc assumptions
obtained in our analysis. The last section contains a
summary and our conclusions.

II. ADLER FUNCTION AND τ HADRONIC
WIDTH IN PERTURBATIVE QCD

We recall that the Adler function is the logarithmic
derivative of the invariant amplitude of the two-current
correlation tensor, DðsÞ ¼ −sdΠðsÞ=ds, where s is the
momentum squared. We shall consider the reduced func-
tion D̂ðsÞ defined as

D̂ðsÞ≡ 4π2DðsÞ − 1: ð1Þ

From general principles of field theory, it is known that
D̂ðsÞ is an analytic function of real type [i.e., it satisfies the
Schwarz reflection property D̂ðs�Þ ¼ D̂�ðsÞ] in the com-
plex s plane cut along the timelike axis for s ≥ 4m2

π.
At large spacelike momenta s < 0, this function is given

by the QCD perturbative expansion

D̂ðsÞ ¼
X
n≥1

anμ
Xn
k¼1

kcn;kðlnð−s=μ2ÞÞk−1; ð2Þ

where aμ ≡ αsðμ2Þ=π is the renormalized strong coupling
in a certain renormalization scheme (RS) at an arbitrary
scale μ. The coefficients cn;1 are obtained from the
calculation of Feynman diagrams, while cn;k with k > 1

are obtained in terms of cm;1 with m < n and the

coefficients βn of the β function, which governs the
variation of the QCD coupling with the scale in each RS:

−μ
daμ
dμ

≡ βðaμÞ ¼
X
n≥1

βnanþ1
μ : ð3Þ

We recall that in mass-independent renormalization
schemes the first two coefficients β1 and β2 are scheme
invariant, depending only on the number nf of active
flavors, while βn for n ≥ 3 depend on the renormalization
scheme. In the MS scheme, the known coefficients for
nf ¼ 3 are (cf. [2] and references therein)

β1 ¼
9

2
; β2 ¼ 8; β3 ¼ 20.12;

β4 ¼ 54.46; β5 ¼ 268.16: ð4Þ

By choosing in (2) the scale μ2 ¼ −s, one obtains the
renormalization-group improved expansion

D̂ðsÞ ¼
X
n≥1

cn;1½að−sÞ�n; ð5Þ

where að−sÞ≡ αsð−sÞ=π is the running coupling.
The Adler function was calculated in MS to order α4s (see

[1] and references therein). For nf ¼ 3, the leading coef-
ficients cn;1 have the values

c1;1¼ 1; c2;1¼ 1.640; c3;1¼ 6.371; c4;1¼ 49.076:

ð6Þ

On the other hand, at large orders n the coefficients cn;1 are
known to increase like n! [17–20]. Thus, the series (2) has
a zero radius of convergence and is interpreted as an
asymptotic expansion of D̂ðsÞ for aμ → 0. As it is known,
in some definite cases the expanded functions can be
recovered from their divergent expansions through Borel
summation. In the case of the Adler function, the Borel
transform is defined by the power series

BDðuÞ ¼
X∞
n¼0

bnun; ð7Þ

where the coefficients bn are related to the perturbative
coefficients cn;1 by

bn ¼
cnþ1;1

βn0n!
: ð8Þ

Here we used the standard notation β0 ¼ β1=2.
The large-order increase of the coefficients of the

perturbation series is encoded in the singularities of the
Borel transform in the complex u plane. In the particular
case of the Adler function, BDðuÞ has singularities on the
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semiaxis u ≥ 2, denoted as infrared (IR) renormalons, and
for u ≤ −1, denoted as ultraviolet (UV) renormalons (see
Fig. 1, left panel). The names indicate the regions in the
Feynman integrals responsible for the appearance of
the corresponding singularities. Moreover, the nature of
the first branch points is known: near u ¼ −1 and u ¼ 2,
BDðuÞ behaves like

BDðuÞ ∼
r1

ð1þ uÞγ1 and BDðuÞ ∼
r2

ð1 − u=2Þγ2 ; ð9Þ

respectively, where the residues r1 and r2 are not known,
but the exponents γ1 and γ2 have been calculated in
[7,18,19,21]. They are expressed in terms of the first
coefficients β1 and β2 of the β function, and for nf ¼ 3

their values are

γ1 ¼ 1.21; γ2 ¼ 2.58: ð10Þ

Apart from the two cuts along the lines u ≥ 2 and u ≤ −1,
it is assumed that no other singularities are present in the
complex u plane [18].
From the definition (7), it follows that the function D̂ðsÞ

defined by (5) can be recovered formally from the Borel
transform by the Laplace-Borel integral representation

D̂ðsÞ ¼ 1

β0

Z
∞

0

exp

�
−u

β0að−sÞ
�
BDðuÞdu: ð11Þ

Actually, due to the singularities of BDðuÞ for u ≥ 2, the
integral (11) is not defined and requires a regularization.
However, this ambiguity will not affect our analysis, which
will be restricted to the expansions of the Borel transform.
We shall consider also the perturbative expansion of the τ

hadronic width. The ratio Rτ of the total τ hadronic
branching fraction to the electron branching fraction can
be expressed as [7]

Rτ ¼ 3SEWðjVudj2 þ jVusj2Þð1þ δð0Þ þ…Þ; ð12Þ

where SEW is an electroweak correction, Vud and Vus are
Cabibbo-Kobayashi-Maskawa matrix elements, and δð0Þ is
the perturbative QCD contribution. As shown in [22–25],
δð0Þ can be expressed, using analyticity, by a weighted
integral of the Adler function along a contour in the
complex s plane. In our normalization, this relation is [7]

δð0Þ ¼ 1

2πi

I
jsj¼m2

τ

ds
s

�
1 −

s
m2

τ

�
3
�
1þ s

m2
τ

�
D̂ðsÞ: ð13Þ

By inserting in the integral (13) the expansion (2) at the
fixed scale μ ¼ mτ and performing the integration with
respect to s of the coefficients, one obtains the fixed-order
(FO) perturbative expansion1 of δð0Þ:

δð0ÞFO ¼
X
n≥1

dnanμ; μ ¼ mτ: ð14Þ

The first coefficients of this expansion read

d1 ¼ 1; d2 ¼ 5.20; d3 ¼ 26.37; d4 ¼ 127.08;

d5 ¼ 307.8þ c5;1; d6 ¼ −5848.2þ 17.81c5;1 þ c6;1;

d7 ¼ −97769.1þ 61.33c5;1 þ 21.38c6;1 þ c7;1; ð15Þ

where we have used the values given in (6) and left free the
next coefficients cn;1.
In analogy with the expansion (7), we define the Borel

transform BδðuÞ associated to the series (14) by the Taylor
expansion

BδðuÞ ¼
X∞
n¼0

b0nun; ð16Þ

FIG. 1. Left: Borel plane of the Adler function. The circle indicates the convergence domain of the series (7). Middle: The w plane
obtained by the conformal mapping (25). The IR and UV renormalons are mapped on the boundary of the unit disk. Right: The v plane
obtained by the conformal mapping (30). The cut u ≤ −1 is mapped onto the unit circle. The cut u ≥ 2 is mapped on a real segment
inside the circle.

1In the alternative prescription known as “contour improved”
(CI), one inserts in (13) the renormalization-group improved
expansion (5), the running coupling að−sÞ being calculated by
the numerical integration of the renormalization-group equa-
tion (3) along the circle jsj ¼ m2

τ .
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where the coefficients are defined as

b0n ¼
dnþ1

βn0n!
: ð17Þ

Then δð0ÞFO can be recovered by the formal Laplace-Borel
integral

δð0ÞFO ¼ 1

β0

Z
∞

0

exp

�
−u
β0aμ

�
BδðuÞdu; μ ¼ mτ: ð18Þ

The analytic properties of the function BδðuÞ, which are
important for the problem investigated in this work, will be
discussed in Sec. VI.
Up to now we considered the perturbative expansions in

the MS renormalization scheme. Recently, a different
scheme was proposed in [26–28] and was investigated
further in [29] by means of the conformal mapping
approach to be presented in the next section. In this
scheme, the coupling âμ satisfies the renormalization-group
equation

−μ
dâμ
dμ

≡ β̂ðâμÞ ¼
β1â2μ

ð1 − β2
β1
âμÞ

; ð19Þ

which involves only the scheme-independent coefficients
β1 and β2. Furthermore, as shown in [27,28], the coupling
âμ depends on a single parameter, denoted as C, and the
dependence of âμ on this parameter is governed by the
same scheme-independent function β̂.
The connection between the C-coupling âμ and the

coupling aμ in the MS renormalization scheme can be
found by solving numerically a nonlinear equation given in
[26]. From this equation one can obtain also the perturba-
tive relations between the couplings âμ and aμ:

âμðaμÞ ¼
X
n≥1

ξnðCÞanμ; aμðâμÞ ¼
X
n≥1

ξ̄nðCÞânμ: ð20Þ

The explicit forms of these expansions are given in Eqs. (7)
and (8) of [26]. From the comparison with the full solution,
found numerically in [26,29], one can establish the range of
C where the perturbative expansions (20) are valid.
The expansion of the Adler function in powers of the

C-coupling, derived in a straightforward way using the
perturbative relations (20), has the generic form

D̂ðsÞ ¼
X
n≥1

ĉn;1ðCÞânμ: ð21Þ

For completeness, we write down the terms up to n ≤ 5:

D̂ðsÞ ¼ âμ þ ð1.64þ 2.25CÞâ2μ
þ ð7.68þ 11.38Cþ 5.06C2Þâ3μ þ ð61.06þ 72.08C

þ 47.40C2 þ 11.4C3Þâ4μ þ ðc5;1 þ 65.5þ 677.7C

þ 408.6C2 þ 162.5C3 þ 25.6C4Þâ5μ þ…; ð22Þ

where in the first four terms we have used as input the
values (6).
Starting from (21), the Borel transform of the Adler

function in the C scheme is defined by the series

B̂ðu; CÞ ¼
X∞
n¼0

b̂nðCÞun; ð23Þ

where

b̂nðCÞ ¼
ĉnþ1;1ðCÞ
βn0n!

: ð24Þ

The Borel transform (23) was introduced in [29], where
it was used for the calculation of the Adler function and the
τ hadronic width. In Sec. V we will discuss the usefulness
of the C renormalization scheme for the prediction of the
higher-order perturbative coefficients.

III. SERIES ACCELERATION
BY CONFORMAL MAPPINGS

The singularities of BDðuÞ set a limitation on the
convergence region of the power expansion (7): this series
converges only inside the circle juj ¼ 1, which passes
through the first UV renormalon, shown in the left panel of
Fig. 1. As it is known, the domain of convergence of a
power series in a complex plane can be increased by
expanding the function in powers of another variable,
which performs the conformal mapping of the original
plane (or a part of it) onto a disk.
The method of conformal mappings was introduced in

particle physics in [30–32] for improving the convergence
of the expansions of scattering amplitudes in powers of
various kinematical variables. By expanding the amplitude
in powers of the function that maps the original analyticity
domain onto a unit disk, the new series converges in a larger
region, well beyond the convergence domain of the original
expansion, and moreover has an increased asymptotic
convergence rate at points lying inside this domain. An
important result proved in [30,32] is that the asymptotic
convergence rate is maximal if the new variable maps the
entire holomorphy domain of the expanded function onto
the unit disk (a detailed proof is given in [13,16]). This
particular variable is known in the literature as the “optimal
conformal mapping.”
In QCD, since the correlators are singular at the origin of

the coupling plane [17], the method of conformal mapping
is not applicable to the formal perturbative series in powers

IRINEL CAPRINI PHYS. REV. D 100, 056019 (2019)

056019-4



of the coupling.2 However, the method can be applied in a
straightforward way to the Borel transform BDðuÞ, which is
holomorphic in a region containing the origin u ¼ 0 of the
Borel complex plane and can be expanded in powers of the
Borel variable as in (7).
As shown for the first time in [9], the optimal mapping,

which ensures the convergence of the corresponding power
series in the entire doubly cut Borel plane, is given by the
function

w̃ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p ; ð25Þ

whose inverse reads

ũðwÞ ¼ 8w
3 − 2wþ 3w2

: ð26Þ

One can check that the function w̃ðuÞ maps the complex u
plane cut along the real axis for u ≥ 2 and u ≤ −1 onto the
interior of the circle jwj ¼ 1 in the complex plane
w≡ w̃ðuÞ, such that the origin u ¼ 0 of the u plane
corresponds to the origin w ¼ 0 of the w plane, and the
upper (lower) edges of the cuts are mapped onto the upper
(lower) semicircles in the w plane. By the mapping (25), all
the singularities of the Borel transform, the UV and IR
renormalons, are pushed on the boundary of the unit disk in
the w plane, all at equal distance from the origin (see
the middle panel of Fig. 1). Therefore, the expansion of
BDðuÞ as

BDðuÞ ¼
X
n≥0

cnwn; w ¼ w̃ðuÞ; ð27Þ

converges in the whole u complex plane up to the cuts, i.e.,
in a much larger domain than the original series (7).
According to the results mentioned above (proved in
Ref. [13]), this expansion has the best asymptotic con-
vergence rate compared to other expansions based on
alternative conformal mappings.
The expansion can be further improved by exploiting the

fact that the nature of the leading singularities of BDðuÞ in
the Borel plane is known. Using (25), it is easy to check that

ð1þ uÞγ1 ∼ ð1þ wÞ2γ1 ; for u ∼ −1

ð1 − u=2Þγ2 ∼ ð1 − wÞ2γ2 ; for u ∼ 2: ð28Þ

It follows that the product BDðuÞð1þ wÞ2γ1ð1 − wÞ2γ2 will
be finite at u ¼ −1 and u ¼ 2. However, this product still

has singularities (branch points) at u ¼ −1 and u ¼ 2,
generated by the terms of BDðuÞ which are holomorphic at
these points. Therefore, the optimal variable for the
expansion of the product is the conformal mapping (25),
which accounts for these singularities. Using this remark,
we shall adopt the expansion

BDðuÞ ¼
1

ð1þ wÞ2γ1ð1 − wÞ2γ2
X
n≥0

fnwn; ð29Þ

proposed in [12] and investigated further in [13].
We note that a nonoptimal conformal mapping of the

Borel plane, which takes into account only the position of
the nearest singularity of BDðuÞ, was suggested in [19] and
was used further in [35,36] in order to reduce the
ambiguities due to the UV renormalons. This mapping
reads

ṽðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
− 1ffiffiffiffiffiffiffiffiffiffiffi

1þ u
p þ 1

ð30Þ

and has the inverse

ũðvÞ ¼ 4v
ð1 − vÞ2 : ð31Þ

The variable (30) maps the u complex plane cut along the
line u ≤ −1 onto the unit disk jvj < 1 in the plane
v≡ ṽðuÞ, such that the point u ¼ −1 becomes v ¼ −1
and the point at infinity becomes v ¼ 1 (see the right panel
of Fig. 1). In the v plane, the image of the IR cut is the real
segment ðṽð2Þ; 1Þ situated inside the circle. The expansion
of the Borel function in this variable is

BDðuÞ ¼
X
n≥0

gnvn: ð32Þ

We can implement the nature of the first singularities
expressed by (9) also in this variable. Using the relations

ð1þ uÞγ1 ∼ ð1þ vÞ2γ1 ; for u ∼ −1

ð1 − u=2Þγ2 ∼ ð1 − v=ṽð2ÞÞγ2 ; for u ∼ 2; ð33Þ

which can be derived from (30), we conclude that the
product BDðuÞð1þ vÞ2γ1ð1 − v=ṽð2ÞÞγ2 is finite at u ¼ −1
and u ¼ 2. By expanding this product in powers of v, we
write the expansion of BDðuÞ as

BDðuÞ ¼
1

ð1þ vÞ2γ1ð1 − v=ṽð2ÞÞγ2
X
n≥0

hnvn: ð34Þ

We emphasize that in the expansions (29) and (34), the
global prefactors which implement the known behavior (9)
near the first singularities are expressed in terms of the
variable used in the power expansion.

2The conformal mapping of the coupling complex plane was
used in [33,34] by assuming that the singularity is shifted away
from the origin by a certain amount at each finite perturbative
order and tends to the origin only for an infinite number of terms.
The corresponding conformal mappings are known as “order-
dependent” mappings.
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IV. HIGHER-ORDER COEFFICIENTS FROM
THE ADLER FUNCTION IN MS SCHEME

We recall that the aim of this work is to make predictions
on the higher-order perturbative coefficients cn;1 with
n ≥ 5, using as input the known coefficients cn;1 with n ≤
4 given in (6). As these coefficients appear in the expansion
(7) of the Borel transform, we focus on this function. We
start from the remark that this function admits a Taylor
series convergent in a disk around the origin of the complex
Borel plane and propose alternative expansions, which
converge in a larger domain and implement in an optimal
way the known analyticity properties in the Borel plane.
When reexpanded in powers of the Borel variable u, these
expansions contain higher-order terms, which allow the
extraction of the perturbative coefficients of interest.
Specifically, the strategy involves the following algo-

rithmic steps, which we explain in detail using for illus-
tration the optimal expansion (29): assuming we know N
coefficients cn;1 for 1 ≤ n ≤ N, we start from the expansion
(7) of BDðuÞ truncated at a finite order N − 1. We insert
u ¼ ũðwÞ in this truncated expansion and expand its
product with the global prefactor ð1þ wÞ2γ1ð1 − wÞ2γ2 in
powers of w to the same order N − 1. This gives a
polynomial in w of order N − 1, with N known nonzero
coefficients fn for 0 ≤ n ≤ N − 1. Finally, we reexpand in
powers of u the expression (29), where the series in powers

of w is truncated at n ≤ N − 1. In this way, we recover the
first N input coefficients cn;1 entering the coefficients bn by
(8), but obtain also definite values for the higher-order
coefficients cn;1 for n > N. The same steps are applied
when considering the expansions (27), (32) and (34).
Before presenting our results for the first unknown

perturbative coefficients, it is instructive to investigate
the potential of the four expansions (27), (29), (32) and
(34) to predict the next perturbative coefficient cN;1 from
the knowledge of the coefficients cn;1 with n ≤ N − 1, for
increasing orders N. The exercise is motivated by the
remark that, if a function is expanded as a convergent
power series, the knowledge of an increasing number of
expansion coefficients is expected to strongly constrain the
next terms, which should be close to the exact terms of the
full expansion.
For generating higher-order coefficients we used first a

model of the Adler function proposed in [7], which we
summarize for completeness in the Appendix. In Table I,
we present the results given by the expansions (27), (29),
(32) and (34), compared to the exact coefficients of the
model, given in the last column.
We first note that for the best expansion (29) in powers of

the optimal mapping with the exact implementation of the
nature of the first singularities, the predicted coefficients
cN;1 listed in column 5 start to be close to the exact values

TABLE I. Columns 2 to 4: Coefficient cN;1 obtained from the knowledge of the coefficients cn;1 for n ≤ N − 1 of
the model [7], using the expansions (32) and (34) in powers of the nonoptimal mapping (30) and the expansions (27)
and (29) in powers of the optimal mapping (25). Last column: The exact perturbative coefficients cN;1 of the
model [7].

N Eq. (32) Eq. (27) Eq. (34) Eq. (29) Exact cN;1

4 −52.34 −17.61 14.77 17.85 49.076
5 −932.45 −270.46 255.98 255.73 283.
6 −14348.46 −2290.94 3096.35 2928.76 3275.45
7 −274384. −39054.7 15740.1 16308.73 18758.4
8 −5.12 × 106 −272605.1 350336.4 381151.6 388445.6
9 −1.14 × 108 −6.89 × 106 455072.1 963059.1 919119.2
10 −2.56 × 109 −1.424 × 107 7.82 × 107 8.49 × 107 8.37 × 107

11 −6.68 × 1010 −1.78 × 109 −5.74 × 108 −5.04 × 108 −5.19 × 108

12 −1.76 × 1012 1.66 × 1010 3.36 × 1010 3.39 × 1010 3.38 × 1010

13 −5.29 × 1013 −8.47 × 1011 −5.89 × 1011 −6.04 × 1011 −6.04 × 1011

14 −1.61 × 1015 1.98 × 1013 2.42 × 1013 2.34 × 1013 2.34 × 1013

15 −5.48 × 1016 −7.09 × 1014 −6.24 × 1014 −6.53 × 1014 −6.52 × 1014

16 −1.89 × 1018 2.32 × 1016 2.52 × 1016 2.42 × 1016 2.42 × 1016

17 −7.22 × 1019 −8.62 × 1017 −8.12 × 1017 −8.46 × 1017 −8.46 × 1017

18 −2.78 × 1021 3.33 × 1019 3.48 × 1019 3.36 × 1019 3.36 × 1019

19 −1.18 × 1023 −1.36 × 1021 −1.32 × 1021 −1.36 × 1021 −1.36 × 1021

20 −5.01 × 1024 5.90 × 1022 6.07 × 1022 5.92 × 1022 5.92 × 1022

21 −2.34 × 1026 −2.68 × 1024 −2.62 × 1024 −2.68 × 1024 −2.68 × 1024

22 −1.09 × 1028 1.28 × 1026 1.31 × 1026 1.28 × 1026 1.28 × 1026

23 −5.54 × 1029 −6.41 × 1027 −6.32 × 1027 −6.41 × 1027 −6.41 × 1027

24 −2.80 × 1031 3.35 × 1029 3.39 × 1029 3.35 × 1029 3.35 × 1029

25 −1.54 × 1033 −1.83 × 1031 −1.81 × 1031 −1.83 × 1031 −1.83 × 1031
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for N ≥ 5 and practically coincide with them for higher N
(the number of identical digits in the corresponding values
is actually larger than is shown by rounding). By com-
parison, as shown in column 3, the expansion (27) in
powers of the optimal mapping without the implementation
of the nature of the nearest singularities has a poor
predictive power of the next coefficient at low orders,
but gradually approaches the exact results at high orders,
confirming the asymptotic convergence rate of this expan-
sion, mentioned above.
In Table I we show also the predictions of the expansions

(32) and (34) in powers of the mapping (30) proposed in
[18]. From the results given in column 2, one can see that
the series (32) fails to reproduce the next terms of the
expansion from the knowledge of the previous ones. This is
explained by the fact that the IR cut (the segment on the real
axis shown in the right panel of Fig. 1) restricts the
convergence of the series to a rather small domain. By
softening the first singularities, as done in (34), the
limitation set by the IR cut on the convergence is reduced
and the predictive power of the expansion increases. As
seen from column 4 of Table I, at high orders which are
influenced by the first UV renormalon, the expansion
reproduces with high accuracy the exact values of the next
coefficients.
As remarked in the literature [13,15,37,38], the model

proposed in [7] is characterized by a relatively large value
of the first IR renormalon residue dIR2 . It is of interest to
consider also alternative models with a smaller residue. An

example, proposed in [13], is briefly presented in the
Appendix. As seen from the perturbative coefficients listed
in Eq. (A9), the oscillatory character of the series, imposed
by the UV renormalons, starts a bit earlier in this case
compared to the previous model. On the other hand, the
large-order behavior of the two models is the same, being
dictated by the first UV renormalon which is modeled in the
same way.
In Table II we present the same analysis as in Table I,

performed for the alternative model. The results given in
columns 3 and 5 show that the expansions (27) and (29)
based on the optimal conformal mapping (25) reproduce
well the exact coefficient cN;1 of the model at high orders.
For the best expansion (29), which softens the first
singularities, the exact coefficients are reproduced also at
low orders, although the approximation is slightly worse
than for the previous model shown in Table I. For the
nonoptimal mapping (30), the simple expansion (32) fails
to recover the next coefficient, while the expansion (34)
which softens the first singularities gives good results both
at large and intermediate orders.
Based on the above study, we shall choose the expan-

sions (29) and (34) for predicting the higher coefficients
from the known cn;1 with n ≤ 4 given in Eq. (6). One may
argue that, as seen from the first rows of Tables I and II,
these expansions are not able to recover the coefficient c4;1
from the first three coefficients. However, since we do not
use ad hoc parametrizations, but systematic expansions
with improved properties when the order is increased, we

TABLE II. The same as in Table I for the alternative model proposed in [13], summarized in the Appendix.

N Eq. (32) Eq. (27) Eq. (34) Eq. (29) Exact cN;1

4 −52.34 −17.61 14.77 17.85 49.076
5 −932.45 −270.46 255.98 255.73 283.
6 −14348.46 −2290.94 3096.35 2928.76 2654.51
7 −253427.4 −28576.4 21587.4 18171.5 7901.76
8 −4.16 × 106 14826.9 470224.4 322587.1 241607.9
9 −8.18 × 107 −2.03 × 106 1.77 × 106 −1.48 × 106 −982236.7
10 −1.57 × 109 4.93 × 107 8.13 × 107 4.21 × 107 5.85 × 107

11 −3.67 × 1010 −1.10 × 109 −8.97 × 108 −9.95 × 108 −8.69 × 108

12 −8.36 × 1011 2.31 × 1010 2.09 × 1010 2.95 × 1010 2.86 × 1010

13 −2.35 × 1013 −7.89 × 1011 −9.58 × 1011 −6.52 × 1011 −6.84 × 1011

14 −6.32 × 1014 2.05 × 1013 1.43 × 1013 2.24 × 1013 2.21 × 1013

15 −2.10 × 1016 −6.98 × 1014 −8.81 × 1014 −6.77 × 1014 −6.76 × 1014

16 −6.58 × 1017 2.35 × 1016 1.84 × 1016 2.37 × 1016 2.37 × 1016

17 −2.53 × 1019 −8.59 × 1017 −9.92 × 1017 −8.56 × 1017 −8.55 × 1017

18 −9.03 × 1020 3.33 × 1019 2.99 × 1019 3.34 × 1019 3.34 × 1019

19 −3.94 × 1022 −1.36 × 1021 −1.45 × 1021 −1.36 × 1021 −1.36 × 1021

20 −1.57 × 1024 5.90 × 1022 5.71 × 1022 5.91 × 1022 5.91 × 1022

21 −7.64 × 1025 −2.69 × 1024 −2.72 × 1024 −2.68 × 1024 −2.68 × 1024

22 −3.36 × 1027 1.28 × 1026 1.28 × 1026 1.28 × 1026 1.28 × 1026

23 −1.79 × 1029 −6.41 × 1027 −6.38 × 1027 −6.41 × 1027 −6.41 × 1027

24 −8.59 × 1030 3.35 × 1029 3.38 × 1029 3.35 × 1029 3.35 × 1029

25 −4.99 × 1032 −1.83 × 1031 −1.81 × 1031 −1.83 × 1031 −1.83 × 1031
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can expect the prediction of the coefficient c5;1 and the next
ones to be better. Moreover, in Sec. VIII we shall
corroborate the predictions based on the expansion of
the Adler function with those based on the expansion of
a suitable weighted integral of D̂ðsÞ in the complex s plane.
Using the first four coefficients cn;1 given in (6) and

applying the strategy explained at the beginning of this
section, we arrive at the representation

BDðuÞ ¼
1 − 0.7973wþ 0.4095w2 þ 8.6647w3

ð1þ wÞ2γ1ð1 − wÞ2γ2 ; ð35Þ

which, reexpanded in powers of u, reads

BDðuÞ ¼ 1þ 0.7288uþ 0.6292u2 þ 0.7181u3

þ 0.4157u4 þ 0.4220u5 þ 0.1429u6 þ… ð36Þ

Using (8), we recover from the first four coefficients the
input values cn;1 for n ≤ 4, and from the remaining
coefficients we predict

c5;1 ¼ 255.73; c6;1 ¼ 2920.2; c7;1 ¼ 13357.1: ð37Þ

We note that the value of c5;1 was already reported in
Ref. [12], where the representation (29) was used for the
extraction of the strong coupling from the hadronic τ width.
For the nonoptimal mapping (30), the representation

analogous to (35) has the form

BDðuÞ ¼
1 − 4.2947vþ 1.6923v2 þ 32.1202v3

ð1þ vÞ2γ1ð1 − v=ð̃2ÞÞγ2 ; ð38Þ

which, reexpanded in powers of u, leads to

BDðuÞ ¼ 1þ 0.7288uþ 0.6292u2 þ 0.7181u3

þ 0.4162u4 þ 0.4561u5 þ 0.1397u6 þ… ð39Þ

The first four Taylor coefficients of this series coincide with
those of the expansion (36), being fixed by the values (6)
used as input, while from the remaining ones we obtain

c5;1¼ 255.98; c6;1¼ 3156.4; c7;1¼ 13047.8: ð40Þ

V. HIGHER-ORDER COEFFICIENTS FROM
THE ADLER FUNCTION IN C SCHEME

As remarked in Sec. II, the nature of the singularities of
the Borel transform in the u plane depend only on the first
two coefficients, β1 and β2, of the β function, which are
scheme independent. This means that the first singularities
of the function B̂ðu; CÞ defined in (23) are expected to have
the same location at u ¼ −1 and u ¼ 2, and their nature to
be described by the same relations (9). Another argument in

favor of this property, put forward in [18], is that the
behavior of the Borel transform near the first singularities is
dictated by the limit of vanishing coupling, where the MS
and the C scheme coincide. Therefore, we can adopt for the
function B̂ðu; CÞ defined in (23) the expansions written in
(29) and (34).
In particular, we consider the expansion

B̂ðu; CÞ ¼ 1

ð1þ wÞ2γ1ð1 − wÞ2γ2
X
n≥0

f̂nðCÞwn; ð41Þ

based on the optimal mapping (25) and the softening of the
first singularities. The expansion (41) is similar to (29), the
only difference being that now the coefficients f̂n depend
on C.
Using as input the first four coefficients ĉn;1ðCÞ from

(22) and applying the steps presented in the previous
section, we arrive at the representation

B̂ðu; CÞ ¼ 1

ð1þ wÞ2γ1ð1 − wÞ2γ2 ½1 − ð0.797 − 2.667CÞw

þ ð1.333þ 2.461Cþ 3.556C2Þw2

þð10.69þ 2.306Cþ 8.149C2 þ 3.16C3Þw3�:
ð42Þ

Reexpanded in powers of u, this gives

B̂ðu; CÞ ¼ 1þ ð0.729þ CÞuþ ð0.759þ 1.124C

þ 0.5C2Þu2 þ ð0.893þ 1.055C

þ 0.694C2 þ 0.167C3Þu3
þ ð0.544þ 0.638Cþ 0.499C2

þ 0.046C3Þu4 þ… ð43Þ

Using Eq. (24), one can check that the first four terms of
the expansion (43) reproduce exactly the known coeffi-
cients of the expansion (22) of the Adler function, while
from the last term of (24) compared with the last term of
(22) we extract the unknown perturbative coefficient c5;1 in
the MS scheme as

c5;1¼268.9−285.1C−101.8C2−133.9C3−25.6C4: ð44Þ

We plot this expression in Fig. 2, for the parameter C in
the interval from −1 to 1. A very similar curve is obtained
using an expansion based on the alternative mapping (30).
Figure 2 shows a quite drastic variation with C of the

perturbative coefficient c5;1, which actually must be inde-
pendent of C. As discussed in the previous studies [26,29],
a reasonable range of C appears to be situated close to the
origin. By restricting for instanceC to the range from−0.05
to 0.05, we obtain c5;1 ∈ ð269; 401Þ, with c5;1 ¼ 283 for
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C ¼ 0, values which are consistent with the determinations
in Sec. IV. However, since no prescription for choosing a
narrow range of C exists and Fig. 2 does not indicate a
region of stability, we conclude that the C scheme is not
useful for an accurate extraction of the higher-order
perturbative coefficients of the Adler function.

VI. HIGHER-ORDER COEFFICIENTS
FROM τ HADRONIC WIDTH

In order to apply themethod of conformalmappings to the
expansion of τ hadronic width, the analytic properties of the
Borel transform BδðuÞ defined in (16) must be known.
Information on these properties can be obtained by establish-
ing a relation between the functionsBδ andBD. This relation
was investigated in several works (see for instance [7,8,39]).
If we introduce the Laplace-Borel representation (11) in

the integral (13) and permute the integrals we obtain

δð0Þ ¼ 1

β0

Z
∞

0

duBDðuÞ
1

2π

Z
2π

0

dϕe
−u

β0að−sÞð1−eiϕÞ3ð1þeiϕÞ;

ð45Þ

where −s ¼ m2
τ expðiðϕ − πÞÞ.

The integral upon ϕ can be performed exactly in the one-
loop approximation of the running coupling, when (3)
implies

1

β0að−sÞ
¼ 1

β0aðm2
τÞ

þ ln
−s
m2

τ
; ð46Þ

where the last term is equal to iðϕ − πÞ. Then, the
comparison with (18) leads to [7]

BδðuÞ ¼
12

ð1 − uÞð3 − uÞð4 − uÞ
sinðπuÞ
πu

BDðuÞ: ð47Þ

From (47) it follows that BδðuÞ inherits from BDðuÞ the
first singularities at u ¼ −1 and u ¼ 2. No new singular-
ities appear, the poles at u ¼ 0, 1, 3 and 4 being canceled by
the zeros of sinðπuÞ. So, we can apply to BδðuÞ the method
of conformal mappings, using the same optimal variable w
defined in (25). We notice further that sinðπuÞ exhibits also
simple zeros at u ¼ −1 and u ¼ 2, which reduce by 1 the
strength of the singularities of BDðuÞ given in (9). So, we
can use for BδðuÞ an expansion similar to (29), with
exponents in the prefactors smaller by 1. Using the first
four known coefficients (15) and the strategy presented in
Sec. IV, we obtain the representation

BδðuÞ ¼
1þ 3.425wþ 7.695w2 þ 7.189w3

ð1þ wÞ2ðγ1−1Þð1 − wÞ2ðγ2−1Þ ; ð48Þ

which, reexpanded in powers of u, leads to

BδðuÞ ¼ 1þ 2.312uþ 2.604u2 þ 1.859u3

þ 1.114u4 þ 0.694u5 þ 0.360u6 þ… ð49Þ

The first four terms reproduce the coefficients b0n of the
expansion (16), known from (15) and (17), while from the
next three terms we extract the coefficients

c5;1 ¼ 378; c6;1 ¼ 3922; c7;1 ¼ 24414: ð50Þ

We recall that the expression (47) is only approximate:
beyond one loop, one expects the simple zeros of sinðπuÞ to
be replaced by branch points which vanish at the relevant
points and modify the prefactors in the representation (29)
of BDðuÞ by a certain unknown amount. The values (50)
obtained in the limit of one-loop coupling can be viewed
therefore only as a qualitative prediction.
To obtain further insight into the problem, we include in

the renormalization-group equation (3) the two-loop term
in the β function. Then (46) is modified to [39]

1

β0að−sÞ
¼ 1

β0aðm2
τÞ

þ ln
−s
m2

τ
−

β2
2β20

ln
að−sÞ
aðm2

τÞ
: ð51Þ

In an iterative approach, we use again (46) in order to
evaluate the last term, which we then expand to order
aðm2

τÞ, to obtain

1

β0að−sÞ
¼ 1

β0aðm2
τÞ

þ iðϕ − πÞ
�
1þ β2

2β0

αsðm2
τÞ

π

�
: ð52Þ

The integration upon ϕ in (45) can be done exactly also in
this case by a simple rescaling of the variable u, and we
obtain instead of (47) the relation

BδðuÞ ¼
12

ð1 − uξÞð3 − uξÞð4 − uξÞ
sinðπuξÞ
πuξ

BDðuÞ; ð53Þ

-1 -0.5 0 0.5 1
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-200
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FIG. 2. The coefficient c5;1 given by (44) plotted as a function
of C.
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where

ξ ¼ 1þ β2
2β0

αsðm2
τÞ

π
¼ 1þ 0.5659αsðm2

τÞ: ð54Þ

Of course, the relation (53) is only an approximation,
since BδðuÞ has some residual dependence on the coupling
αsðm2

τÞ contained in the parameter ξ. However, the expres-
sion (54) shows that for current values αsðm2

τÞ ∼ 0.3 the
parameter ξ differs from 1 by a small quantity. Therefore,
its presence in the sine function leads to only a slight shift
of the position of the zeros. In particular, instead of zeros at
u ¼ 2 and u ¼ −1, this factor vanishes at the nearby points
u ¼ 2=ξ and u ¼ −1=ξ. In consequence, the strength of the
singularities of BDðuÞ at u ¼ 2 and u ¼ −1 is not modified
in a manifest way, but is indirectly attenuated by the simple
zeros that BδðuÞ is expected to have near these points.
Using the above discussion, we consider a representation

of BδðuÞ of the form

BδðuÞ ¼
ðw − w̃ð−1=ξÞÞðw − w̃ð2=ξÞÞ

ð1þ wÞ2γ1ð1 − wÞ2γ2
X3
j¼0

gjwj; ð55Þ

which exhibits simple zeros as the positions indicated
above. The coefficients gj are fixed by the condition of
reproducing the first four known Taylor coefficients in the
standard expansion (16), and from the higher-order terms
we predict the higher-order perturbative coefficients.
For illustration, we present in Fig. 3 the coefficient c5;1

calculated from the representation (55) for a physical range
of values of αsðm2

τÞ. The comparison with (50) shows that
the inclusion of higher-loop effects in the running coupling
shifts the predicted value of c5;1 towards smaller values,
consistent with the predictions made in Sec. IV. However,
since the frame in which we worked is only approximate,

we consider this prediction only as a qualitative insight
towards the exact result.

VII. OTHER CONTOUR INTEGRALS

The analysis presented in Sec. IV proved that the power
of the method of conformal mapping is increased if the
nature of the first singularities of the Borel transform is
known. For the τ hadronic width this information is not
exactly available. In the one-loop (large-β0) limit, the factor
connecting BδðuÞ to BDðuÞ contains simple zeros at u ¼ 2
and u ¼ −1, which modify the nature of the first singu-
larities. A hint about what happens if we go beyond one
loop was provided in the previous section. But the nature of
the singularities in the exact case remains unknown.
Therefore, the τ hadronic width is not a suitable observable
for predicting the higher-order perturbative coefficients
with the method of conformal mappings applied in this
paper.
It is of interest to look for other quantities for which the

first singularities of the Borel transform can be exactly
determined. One may think to consider, instead of (13),
more general contour integrals of the form

Iω ¼ 1

2πi

I
jsj¼m2

τ

ds
s
ωðsÞD̂ðsÞ; ð56Þ

where ωðsÞ is a suitable weight.
A large class of integrals of this form have been

investigated in [15,40] for testing the perturbative expan-
sions of the moments of the spectral function ImΠðsÞ. In
these analyses, the weights [denoted asWiðsÞ in [15]], must
be boundary values of analytic functions in the disk
jsj < m2

τ , in order to connect by Cauchy relation the
contour integrals to observables measured on the timelike
axis. In the present frame, this restriction is not necessary,
since we only look for the perturbative expansion of the
quantity Iω. We retain however the requirement that ωðsÞ
vanish at the timelike point s ¼ m2

τ , in order to suppress the
contribution of the region where the perturbative logarithms
in (2) are large, worsening the convergence of the expansion.
We are actually interested in weights ωðsÞ for which the

singularities of the corresponding Borel transform BIωðuÞ
in the u plane can be inferred with some confidence. We
investigate the problem by using insight from the limit of
one-loop coupling. In this limit, BIωðuÞ is given by a
relation of the form

BIωðuÞ ¼ FωðuÞBDðuÞ; ð57Þ

where FωðuÞ is a calculable function containing explicitly
the factor sinðπuÞ as in (47).
Several restrictions must be imposed on this function, in

order to ensure suitable properties for BIωðuÞ. First, we
require that FωðuÞ do not vanish at u ¼ 2 and u ¼ −1. The
reason of this condition is simple: in the limit of one-loop

0.29 0.3 0.31 0.32 0.33 0.34 0.35

αs(mτ
2)

260

265

270

275

280

285

290

295

c 5,
1

FIG. 3. The coefficient c5;1 obtained from the representation
(55), for various values of αsðm2

τ Þ in the parameter ξ.
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coupling, as will be seen below, FωðuÞ has only simple
zeros. But in the exact case, a simple zero is expected to
become a branch point. Therefore, the zeros at u ¼ −1 and
u ¼ 2 would change the nature of the singularities present
in BDðuÞ at these points by an unknown amount, intro-
ducing an uncertainty in the behavior of BIωðuÞ. On the
other hand, no branch points at u ¼ 2 and u ¼ −1 are
expected to appear if zeros in FωðuÞ at these points are
absent in the one-loop limit. So, if FωðuÞ does not vanish at
u ¼ 2 and u ¼ −1, we can say with some confidence that
the singularities of BIωðuÞ at these points have the same
nature as those of BDðuÞ. We require also that FωðuÞ do not
exhibit zeros at low values of juj, in particular on the
interval ð−1; 2Þ, since in the exact case the simple zeros due
to the sine function are expected to become branch points,
which modify the analytic properties of BIωðuÞ.
We investigated a large class of weights ωðsÞ, for which

we calculated explicitly the function FωðuÞ. For illustra-
tion, we present several choices in Table III, where at i ¼ 5
we give for completeness the weight corresponding to the
physical quantity δð0Þ.
It turns out that the above conditions restrict seriously the

choice of acceptable weights. One can see that for i ≤ 6, the
functions Fωi

ðuÞ vanish at u ¼ −1, since there is no factor
in the denominator to compensate the zero of sinðπuÞ. On
the other hand, for i ¼ 1, 2, 5, 7 and 8, the functions Fωi

ðuÞ
vanish at u ¼ 2. For i ¼ 10, where the zeros of sinðπuÞ at
u ¼ −1 and u ¼ 2 are compensated by the denominator,
there is still a zero at u ¼ 1, which is not acceptable since in
the exact case it will become an unwanted branch point
below u ¼ 2.
We conclude that, from the functions listed in Table III,

only ω9ðsÞ satisfies the requirements discussed above. The
corresponding BIωðuÞ is expected to have the same ana-
lyticity properties in the u plane as BDðuÞ. Therefore, this

weight appears to be a suitable choice for the determination
of the higher-order coefficients from the perturbative
expansion of BIωðuÞ. This determination will be presented
in the next section.

VIII. HIGHER-ORDER COEFFICIENTS
FROM A SUITABLE CONTOUR INTEGRAL

We consider the integral

I ¼ 1

2πi

I
jsj¼m2

τ

ds
3s

�
s
m2

τ
− 1

�
3m2

τ

s
D̂ðsÞ; ð58Þ

where a normalization factor was introduced for
convenience.
The perturbative expansion of the quantity I reads

I ¼
X
n≥1

Inanμ; μ ¼ mτ; ð59Þ

where the first coefficients are

I1 ¼ 1; I2 ¼ 2.76; I3 ¼ 8.06; I4 ¼−17.85þ c4;1;

I5 ¼−379.33þ 4.5c4;1þ c5;1;

I6 ¼−2190.8− 31.99c4;1þ 5.63c5;1þ c6;1;

I7 ¼−895.7− 406.2c4;1 − 49.98c5;1þ 6.75c6;1þ c7;1:

ð60Þ

We have used in the calculation the first three coefficients
cn;1 from (6) and left free c4;1 and the next coefficients.
From the discussion in the previous section, we expect

the Borel transform of I, defined in analogy with (7) and (8)
by the Taylor series

BIðuÞ ¼
X∞
n¼0

Inþ1

βn0n!
un; ð61Þ

to have analyticity properties in the u plane similar to those
of the Borel transform BDðuÞ of the Adler function. In
particular, because the corresponding function Fω appear-
ing in (57) does not have zeros at u ¼ −1 and u ¼ 2, the
nature of the first singularities of BIðuÞ is expected to be
given by (9) and (10). Therefore, we can represent BIðuÞ by
an expansion in powers of the optimal variable w, with the
implementation of the nature of the first singularities,
similar to the expansion (29) of the Adler function.
As a first check, we kept three terms in the numerator of

the representation, using as input the first three coefficients
given in (60). When reexpanded in powers of u, this
representation contains higher terms, from which, using
(60), we extracted the five-loop coefficient

TABLE III. The function FωðuÞ defined in (57) for several
weights ωiðsÞ.
i ωiðsÞ Fωi

ðuÞ
1 ð1 − s

m2
τ
Þ 1

ð1−uÞ
sinðπuÞ
πu

2 ð1 − s
m2

τ
Þ2 2

ð1−uÞð2−uÞ
sinðπuÞ
πu

3 ð1 − s
m2

τ
Þ2ð2þ s

m2
τ
Þ 6

ð1−uÞð3−uÞ
sinðπuÞ
πu

4 ð1 − s
m2

τ
Þ3 − 6

ð1−uÞð2−uÞð3−uÞ
sinðπuÞ
πu

5 ð1 − s
m2

τ
Þ3ð1þ s

m2
τ
Þ 12

ð1−uÞð3−uÞð4−uÞ
sinðπuÞ
πu

6 ð1 − s
m2

τ
Þ3ð3þ s

m2
τ
Þ 24

ð1−uÞð2−uÞð4−uÞ
sinðπuÞ
πu

7 ð1 − s
m2

τ
Þ m2

τ
s − 1

ð1þuÞ
sinðπuÞ
πu

8 ð1 − s
m2

τ
Þ2 m2

τ
s − 2

ð1−uÞð1þuÞ
sinðπuÞ
πu

9 ð1 − s
m2

τ
Þ3 m2

τ
s − 6

ð1−uÞð2−uÞð1þuÞ
sinðπuÞ
πu

10 ð1 − s
m2

τ
Þ3ð1þ s

m2
τ
Þ m2

τ
s − 12

ð2−uÞð3−uÞð1þuÞ
sinðπuÞ
πu
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c4;1 ¼ 53.3: ð62Þ

Using then as input the first four coefficients from (60),
with the known value of c4;1 from (6), we obtained the
representation

BIðuÞ ¼
1 − 0.536w − 1.168w2 − 1.181w3

ð1þ wÞ2γ1ð1 − wÞ2γ2 ; ð63Þ

which, reexpanded in powers of u, reads

BIðuÞ ¼ 1þ 1.229uþ 0.796u2 þ 0.457u3

þ 0.274u4 þ 0.133u5 þ 0.091u6 þ… ð64Þ

Using (60) and (61), we obtained from this expansion the
next perturbative coefficients

c5;1 ¼ 327.0; c6;1 ¼ 2840.6; c7;1 ¼ 26475: ð65Þ
If we use, instead of (29), the expansion (34) based on

the alternative conformal mapping (30), the results are

c4;1 ¼ 51.6; ð66Þ

and, respectively,

c5;1 ¼ 308.9; c6;1 ¼ 2876.0; c7;1 ¼ 22829: ð67Þ

IX. AVERAGE OF THE UNBIASED PREDICTIONS

In the previous sections, we investigated the prediction
of the higher-order perturbative coefficients cn;1 using the
method of conformal mappings for the expansions of the
Adler function and of its contour integrals. The inves-
tigation in Sec. V showed that a precise prediction using the
C renormalization scheme is not possible, since an allowed
interval for the parameter C is not a priori available.
Furthermore, the analysis presented in Sec. VI showed that
in the case of the τ hadronic width, the behavior of the
Borel transform near the first singularities, which plays an
important role in the method applied in this paper, is not
known exactly.
Therefore, we retain for calculating an average the

predictions obtained from the expansions of the Adler
function in the MS scheme, investigated in Sec. IV, and the
contour integral considered in Sec. VIII. In these cases, the
nature of the first singularities in the Borel plane is exactly
known, which considerably improves the predictive power
of the method of conformal mappings. For these quantities,
we used both expansions (29) and (34), based on the
optimal mapping (25) and the alternative mapping (30).
Assuming first that only three perturbative coefficients

from (6) are used as input, the method leads to a prediction
for the coefficient c4;1. From the values given by the above
expansion for N ¼ 4 in Table I and the results quoted in
Eqs. (62) and (66), we obtain the average

c4;1 ¼ 34.4� 19.6; ð68Þ

where we took as error the largest of the up and down
values. We note that the error is rather large, which is
actually to be expected at such a low order. The prediction
is however compatible within errors with the true value
c4;1 ¼ 49.076 given in (6).
Using as input the first four coefficients from (6), the

method leads to the predictions for the next coefficients
given in Eqs. (37), (40), (65) and (67). Taking the average
of these values we obtain

c5;1 ¼ 287� 40; c6;1 ¼ 2948� 208;

c7;1 ¼ ð1.89� 0.75Þ × 104; ð69Þ

where, as above, the error is the largest of the up and down
values. As in [8], we cannot attach a statistical meaning to
this error. Rather, it is chosen such as to cover the range of
the values entering the average.

X. SUMMARY AND CONCLUSIONS

The state of the art in perturbative QCD is the calculation
of some correlators to five-loop order. For the Adler
function, the known perturbative coefficients are given in
(6). The knowledge of the higher-order coefficients is of
much interest, in particular for increasing the accuracy of
the determination of the strong coupling αs from hadronic τ
decays. As the exact calculations to six-loop order are not
foreseen in the near future due to computational difficulties,
various approximate estimates have been proposed
recently. Of course, some theoretical information about
the expanded function must be available if one wants to say
something about its higher-order Taylor coefficients.
In the present paper we exploited the analytic properties

in the Borel plane, which encode the high-order behavior of
the perturbative expansion. We proved that the method of
accelerating the series convergence by conformal mappings
provides a useful tool for the present purpose.
Specifically, we used the representations (29) and (34) of

the Borel transform, based on the optimal conformal
mapping (25) and the alternative mapping (30), which
implement also the known behavior near the first singu-
larities. The first four perturbative coefficients (6) were
used as input for fixing the first terms of the expansion in
powers of the conformal mappings in the representations
(29) and (34). When reexpanded in powers of u, these
expressions reproduce the known coefficients, but contain
also higher powers, from which the next coefficients can be
extracted. The good performance of these expansions to
predict higher-order coefficients has been tested in Sec. IV
up to high orders, using two renormalon-based models of
the Adler function summarized in the Appendix.
We based our predictions on the expansion of the Adler

function in the MS scheme discussed in Sec. IV, and on the
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expansion of a suitable contour integral investigated in
Sec. VIII. In both these cases the behavior of the Borel
transform near the first singularities is known, this infor-
mation being very useful for increasing the accuracy of the
predictions. Our final results given in Eq. (69) are obtained
from the average of the four values given in Eqs. (37), (40),
(65) and (67), with a conservative definition of the error.
It is of interest to compare these predictions with pre-

vious determinations made in the literature. In Ref. [3] the
value c5;1 ¼ 145� 100 was suggested, using only partial
information about the five-loop coefficient available
at that time. The value obtained from the principle of
FAC in Ref. [1] is c5;1 ¼ 275, while in Ref. [7] the estimate
c5;1 ¼ 283� 142 was made by studying the expansion of
the τ hadronic width. Finally, we quote the most recent
values c5;1 ¼ 277� 51, c6;1 ¼ 3460� 690 and c7;1 ¼
ð2.02� 0.72Þ × 104, obtained in [8] from Padé approx-
imants of the expansion of the τ hadronic width.
Our predictions (69) are compatible with the above

quoted values, in particular with the recent predictions
made in Ref. [8]. It must be emphasized that the values
obtained in [8] and in the present paper are obtained with
completely different methods, which strengthen the con-
fidence in these values. Our results support therefore the
statement made in [8] that it seems unlikely that the
six-loop coefficient would not be within the intervals given
above.
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APPENDIX: MATHEMATICAL MODELS

In order to assess the quality of various perturbative
frameworks, the exact pattern of the higher-order coeffi-
cients of the Adler function must be known. Since this
knowledge is not available, a suitable ansatz is usually
adopted. The description of the function in terms of its
dominant singularities in the Borel plane is a natural choice,
consistent with the general principles of analyticity.

However, a considerable ambiguity still remains because,
while the position and nature of the leading singularities are
known theoretically, nothing can be said from theory about
their strengths. In [40], some arguments in favor of a
“reference model” proposed in [7] were put forth. This
model seems to be natural because the residues of the first
renormalons result from the fit of the known low-order
coefficients and are not imposed by hand.
The model [7] expresses the Borel transform BDðuÞ in

terms of a few UV and IR renormalons:

BDðuÞ¼BUV
1 ðuÞþBIR

2 ðuÞþBIR
3 ðuÞþdPO0 þdPO1 u; ðA1Þ

where

BIR
p ðuÞ ¼ dIRp

ðp − uÞγp ½1þ b̃1ðp − uÞ þ…�; ðA2Þ

BUV
p ðuÞ ¼ dUVp

ðpþ uÞγ̄p ½1þ b̄1ðpþ uÞ þ…�: ðA3Þ

The free parameters of the models are the residues
dUV1 ; dIR2 and dIR3 of the first renormalons and the coef-
ficients dPO0 ; dPO1 of the polynomial in (A1), determined in
[7] as

dUV1 ¼ −1.56 × 10−2; dIR2 ¼ 3.16; dIR3 ¼ −13.5;

dPO0 ¼ 0.781; dPO1 ¼ 7.66 × 10−3; ðA4Þ

by the requirement to reproduce the perturbative coeffi-
cients cn;1 in MS scheme for n ≤ 4, given in (6), and the
estimate c5;1 ¼ 283.
Once the parameters are fixed, all the perturbative

coefficients cn;1 for n > 5 are determined and exhibit a
factorial increase at high orders. Their numerical values up
to n ¼ 25 are

c6;1 ¼ 3275.45; c7;1 ¼ 18758.4; c8;1 ¼ 388446; c9;1 ¼ 919119; c10;1 ¼ 8.36× 107; c11;1 ¼−5.19× 108;

c12;1 ¼ 3.38× 1010; c13;1 ¼−6.04× 1011; c14;1 ¼ 2.34×1013; c15;1 ¼−6.52× 1014; c16;1 ¼ 2.42× 1016;

c17;1 ¼−8.46× 1017; c18;1 ¼ 3.36× 1019; c19;1 ¼−1.36× 1021; c20;1 ¼ 5.92× 1022; c21;1 ¼−2.68× 1024;

c22;1 ¼ 1.28× 1026; c23;1 ¼−6.41× 1027; c24;1 ¼ 3.35×1029; c25;1 ¼−1.83× 1031: ðA5Þ

A feature of the abovemodel is the relatively largevalue of
the first IR renormalon dIR2 . Aswas argued in [38], this seems
to favor the FO calculation of δð0Þ, while the alternative CI
calculation is preferred by situations with a weaker first IR

renormalon. Therefore, alternative models imposing smaller
values for the residue of the first IR renormalon, and even
assuming that this singularity is absent, have been suggested
and investigated in [13,15,38,40].
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In our analysis we shall consider for illustration a model
presented in [13], which is defined by the same expressions
as in the model [7] for the first three singularities and the
same values of the residues at u ¼ −1 and u ¼ 3, but a
smaller residue at u ¼ 2, set at dIR2 ¼ 1. The model must
contain then three additional free parameters in order to
reproduce the first five cn;1. In [13], a quadratic term in the
polynomial and two additional IR singularities, at u ¼ 4
and u ¼ 5, have been introduced. For convenience, the
nature of these additional singularities, which is not known,
was assumed to be equal to that of the u ¼ 3 singularity.
Thus, the alternative model is defined by

BD;altðuÞ ¼ BUV
1 ðuÞ þ BIR

2 ðuÞ þ BIR
3 ðuÞ

þ dIR4
ð4 − uÞ3.37 þ

dIR5
ð5 − uÞ3.37

þ dPO0 þ dPO1 uþ dPO2 u3; ðA6Þ

where the residues of the first renormalons have been
fixed at

dUV1 ¼−1.56×10−2; dIR2 ¼ 1; dIR3 ¼−13.5; ðA7Þ

and the remaining five parameters, determined by matching
the coefficients cn;1 for n ≤ 5, read

dPO0 ¼ 3.2461; dPO1 ¼ 1.3680; dPO2 ¼ 0.2785;

dIR4 ¼ 1560.614; dIR5 ¼ −1985.73: ðA8Þ

As above, once the parameters are fixed, the model
predicts all the coefficients cn;1 for n > 5, which exhibit a
factorial increase at large orders. Their numerical values up
to n ¼ 25 are

c6;1¼ 2654.51; c7;1¼7901.76; c8;1¼241607.96; c9;1¼−982236.70; c10;1¼ 5.85×107; c11;1¼−8.69×108;

c12;1¼ 2.86×1010; c13;1¼−6.85×1011; c14;1¼ 2.21×1013; c15;1¼−6.76×1014; c16;1¼ 2.37×1016;

c17;1¼−8.551×1017; c18;1¼ 3.34×1019; c19;1¼−1.36×1021; c20;1¼5.91×1022; c21;1¼−2.68×1024;

c22;1¼ 1.28×1026; c23;1¼−6.41×1027; c24;1¼ 3.35×1029; c25;1¼−1.83×1031: ðA9Þ

One can see that at large orders the two models coincide, since the first UV renormalon is modeled in the same way. We
emphasize finally that we consider these models only as a mathematical framework for testing the convergence properties of
the various expansions investigated in this work.
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