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We calculate the Wigner function for massive spin-1=2 particles in an inhomogeneous electromagnetic
field to leading order in the Planck constant ℏ. Going beyond leading order in ℏ we then derive a
generalized Boltzmann equation in which the force exerted by an inhomogeneous electromagnetic field
on the particle dipole moment arises naturally. Furthermore, a kinetic equation for this dipole moment is
derived. Carefully taking the massless limit we find agreement with previous results. The case of global
equilibrium with rotation is also studied. Finally, we outline the derivation of fluid-dynamical equations
from the components of the Wigner function. The conservation of total angular momentum is promoted as
an additional fluid-dynamical equation of motion. Our framework can be used to study polarization effects
induced by vorticity and magnetic field in relativistic heavy-ion collisions.
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I. INTRODUCTION

Relativistic heavy-ion collisions (HICs) create a new
phase of hot and dense strong-interaction matter, the quark-
gluon plasma (QGP) (see e.g., Ref. [1]). The interaction
rates between its constituents are sufficiently large that the
matter rapidly reaches a state which can be described by
fluid dynamics [2]. In noncentral HICs the global angular
momentum generates a nonvanishing vorticity of the QGP
fluid. Furthermore, in such collisions a strong magnetic
field is formed due to the electric current produced by the
spectator protons constituting the colliding ions.
In the QGP, quarks can be considered as (nearly) massless

fermions. The interplay between the chiral anomaly on the
one hand and themagnetic field and the fluid vorticity on the
other hand gives rise to novel transport phenomena called
chiral effects. Two such phenomena are the chiral magnetic
effect (CME) [3] and the chiral vortical effect (CVE) [4],
where a charge current is induced along the direction of the
magnetic field and the vorticity, respectively. Large-scale
experimental efforts are currently under way to discover
these phenomena in HICs (for a recent review, see Ref. [5]).
From the theoretical point of view, it is therefore

mandatory to develop a theory which allows to study such

transport phenomena in chiral fluids. One approach is
chiral kinetic theory, which has been derived using various
methods, e.g., the classical action [6–14], the Wigner
function [15–20], and the world-line formalism [21–23].
In Refs. [15,16] it was shown that, using Wigner functions,
one is able to recover the “side-jump” phenomenon first
discussed in Refs. [11,13] in order to ensure total angular-
momentum conservation in binary collisions. Furthermore,
the inclusion of the chiral effects in fluid dynamics was
studied in Refs. [4,24,25].
Another intriguing phenomenon occurring in the rotating

QGP is that particles in themedium can be polarized in away
resembling the Einstein-de Haas [26] and Barnett effects
[27]. Recently, the STAR Collaboration presented exper-
imental evidence for the alignment of the spin ofΛ hyperons
with the global angular momentum in peripheral HICs [28].
This finding revealed, for the first time, the strong vortical
structure of the QGP. Many theoretical works have explored
spin-polarizationmechanisms triggered by vorticity inHICs.
In particular, the importance of the spin-orbit interaction
[29–31] and the relation between spin polarization and
thermal vorticity in local thermodynamical equilibrium have
been studied [32–35]. A fluid-dynamical description, which
includes the space-time evolution of the spin polarization,
was proposed in Refs. [36–39]. However, this formulation is
based on a specific choice for the energy-momentum and
spin tensors. The physical implications of different sets of
energy-momentum and spin tensors in fluid dynamics was
investigated in Ref. [40].
Although there has been intense theoretical activity

which has led to a deeper understanding of the transport
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properties of chiral matter, few studies have attempted to
derive a covariant kinetic theory for massive particles using
Wigner functions [41,42]. The aim of this paper is to fill
this gap. We derive kinetic theory for massive spin-1=2
particles in an inhomogeneous electromagnetic field as a
basis to study polarization effects in HICs. Our starting
point is the covariant formulation of the Wigner function
[43–49]. In order to solve the equations of motion for the
Wigner function, we employ an expansion in the Planck
constant ℏ and truncate at the lowest nontrivial order. This
approximation is valid if the following two assumptions
hold:

(i) ℏjγμ∇μWj ≪ mjWj, where W is the Wigner func-
tion, m is the particle mass, ∇μ represents the
gradient operator in Eq. (6) [45,50], and the modulus
applies to each component of the corresponding
matrix in Dirac space,

(ii) ℏ ≪ ΔRΔP, where ΔR is a spatial scale over which
the electromagnetic field tensor varies significantly
and ΔP a momentum scale over which the Wigner
function varies significantly.

Assumption (i) implies that the ℏ–expansion is effectively a
gradient expansion. Assumption (ii) allows us to truncate
the power-series expansion of the Bessel functions entering
the equations of motion of the Wigner function [45].
Under these assumptions, we first give an explicit

derivation of the leading-order solution. Then, considering
the equation of motion for the Wigner function to first and
second order in ℏ, we derive a generalized Boltzmann
equation, where the external force acting on the particles is
given by two contributions. The first one is the Lorentz
force, which gives rise to the usual Vlasov term, and the
second one is the Mathisson force [51], i.e., the force
exerted on the particle’s dipole moment in an inhomo-
geneous electromagnetic field. In our context, the dipole
moment arises from the spin of the particle. We show how
to take the massless limit, obtaining a result that agrees with
previous works [15,16]. We also study the solution of the
Boltzmann equation in the case of global equilibrium with
rigid rotation. Finally, we derive fluid-dynamical equations
of motion with spin degrees of freedom from the Wigner
function using the canonical definitions of the energy-
momentum and spin tensors. In accordance with previous
works [36,40], the conservation of the total angular
momentum is promoted as an additional fluid-dynamical
equation, where the divergence of the spin tensor is related
to the antisymmetric part of the energy-momentum tensor.
We use units c ¼ kB ¼ 1 throughout this paper. It is

useful to explicitly keep Planck’s constant ℏ, since it will be
our power-counting parameter. The convention for the
metric tensor is gμν ¼ diagðþ1;−1;−1;−1Þ and ϵ0123 ¼
−ϵ0123 ¼ þ1 for the rank-four Levi-Civita tensor. We use
the notation aμbμ ≡ a · b for the scalar product of two four-
vectors aμ, bμ and a · b for the corresponding scalar
product of two spatial vectors a, b. A two-dimensional

vector in spin space is denoted by a⃗. The electromagnetic
four-potential is Aμ, where the electromagnetic charge is
absorbed into its definition. We denote the dipole-moment
tensor as Σμν. This quantity corresponds to the spin tensor
Sμν of Refs. [11,13]. In this paper the term “spin tensor” is
reserved for the rank-three Lorentz tensor Sλ;μν.

II. EQUATIONS FOR THE WIGNER FUNCTION
FOR MASSIVE FERMIONS

The Wigner function is defined as the Fourier transform
of the two-point correlation function [44],

Wαβðx; pÞ ¼
Z

d4y
ð2πℏÞ4 e

− i
ℏp·y

× h∶ψ̄ βðx1ÞUðx1; x2Þψαðx2Þ∶i: ð1Þ

Here, x1 and x2 are the space-time coordinates of two
different points, with yμ ≡ xμ1 − xμ2 and xμ ≡ ðxμ1 þ xμ2Þ=2.
The gauge link is defined as

Uðx1; x2Þ ¼ exp

�
−
i
ℏ
yμ
Z

1=2

−1=2
dtAμðxþ tyÞ

�
: ð2Þ

In this paper, Aμ will be treated as an external, classical
field (otherwise, the gauge link would need to be path-
ordered). The particular choice of path for the integration
between x1 and x2 ensures that pμ is the kinetic momentum.
Note that the factors 2πℏ in the denominator in Eq. (1)
belong to the phase-space volume and do not participate in
the ℏ–counting employed throughout this paper.
Starting from the Dirac equation and its adjoint,

ðiℏγ ·D −mÞψ ¼ 0 ¼ ψ̄ðiℏγ ·D† þmÞ; ð3Þ

where Dμ ≡ ∂xμ þ i
ℏAμ is the covariant derivative, one can

derive the kinetic equation for the Wigner function as [44]

ðγ · K −mÞWðx; pÞ ¼ 0: ð4Þ

Here one has defined the operator

Kμ ≡ Πμ þ 1

2
iℏ∇μ; ð5Þ

with the generalized space-time derivative and momentum
operators

∇μ ≡ ∂μ
x − j0ðΔÞFμν∂pν; ð6Þ

Πμ ≡ pμ −
ℏ
2
j1ðΔÞFμν∂pν; ð7Þ

whereΔ≡ ℏ
2
∂p · ∂x and Fμν ¼ ∂μ

xAν − ∂ν
xAμ is the electro-

magnetic field-strength tensor. We should emphasize that in
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Eq. (4) the space-time derivative ∂x contained inΔ only acts
on Fμν, but not on the Wigner function. The functions
j0ðxÞ ¼ sin x=x and j1ðxÞ ¼ ðsin x − x cos xÞ=x2 are spheri-
cal Bessel functions. If we assume that the particles only
interact with the classical electromagnetic field but not
among themselves (which, in the language of kinetic theory,
is the limit of the collisionless Boltzmann-Vlasov equation),
Eq. (4) is exact and contains the full dynamics of the Wigner
function.
In order to derive a kinetic equation for massive spin-1=2

particles, it is advantageous to decompose the Wigner
function in terms of a basis formed by the 16 independent
generators of the Clifford algebra f1; γ5; γμ; γ5γμ; σμνg, with
γ5 ≡ iγ0γ1γ2γ3 and σμν ≡ i

2
½γμ; γν�,

W ¼ 1

4

�
F þ iγ5P þ γμVμ þ γ5γμAμ þ

1

2
σμνSμν

�
: ð8Þ

The coefficients F ;P;Vμ;Aμ, and Sμν are real functions of
the phase-space coordinates x, p and correspond to the
scalar, pseudoscalar, vector, axial-vector, and tensor com-
ponents of the Wigner function. Some of them have an
obvious physical meaning [52]. For example, Vμ is the
fermion four-current and Aμ is related to the spin density.
Using the trace properties of the Dirac matrices, the
coefficients in Eq. (8) are given by

F ¼ TrðWÞ;
P ¼ −iTrðγ5WÞ;
Vμ ¼ TrðγμWÞ;
Aμ ¼ Trðγμγ5WÞ;
Sμν ¼ TrðσμνWÞ: ð9Þ

Replacing W in Eq. (4) by the decomposition (8), we find
the following complex-valued equations:

K · V −mF ¼ 0;

K ·Aþ imP ¼ 0;

KμF þ iKνSνμ −mVμ ¼ 0;

iKμP þ 1

2
ϵμναβKνSαβ þmAμ ¼ 0;

−iK½μVν� − ϵμναβKαAβ −mSμν ¼ 0; ð10Þ
where A½μBν� ≡ AμBν − AνBμ. Decomposing these equa-
tions into their real and imaginary parts, we obtain a set of
coupled equations which determine the coefficients in the
decomposition (8) of the Wigner function. The real parts
read

Π · V −mF ¼ 0; ð11Þ
ℏ
2
∇ ·AþmP ¼ 0; ð12Þ

ΠμF −
ℏ
2
∇νSνμ −mVμ ¼ 0; ð13Þ

−
ℏ
2
∇μP þ 1

2
ϵμναβΠνSαβ þmAμ ¼ 0; ð14Þ

ℏ
2
∇½μVν� − ϵμναβΠαAβ −mSμν ¼ 0; ð15Þ

and the imaginary parts are

ℏ∇ · V ¼ 0; ð16Þ

Π ·A ¼ 0; ð17Þ

ℏ
2
∇μF þ ΠνSνμ ¼ 0; ð18Þ

ΠμP þ ℏ
4
ϵμναβ∇νSαβ ¼ 0; ð19Þ

Π½μVν� þ
ℏ
2
ϵμναβ∇αAβ ¼ 0: ð20Þ

In the next sections, we will explicitly solve Eqs. (11)–(20)
to zeroth order in ℏ, and then derive kinetic equations which
the general solution has to fulfill up to first order in ℏ.

III. ZEROTH-ORDER SOLUTION

To zeroth order in ℏ, the operator Kμ ¼ pμ and Eq. (4)
reduces to

ðγ · p −mÞWð0Þðx; pÞ ¼ 0: ð21Þ

The solution is given by [41,50]

Wð0Þ
αβ ðx; pÞ ¼ Wþ

αβðx; pÞ þW−
αβðx; pÞ; ð22Þ

where

Wþ
αβðx; pÞ ¼

1

ð2πℏÞ3
Z

d4qθðq0Þδðq2 −m2Þδ4ðp − qÞ

×
X
rs

uαðq; rÞūβðq; sÞfð0Þþrs ðx;qÞ; ð23Þ

W−
αβðx; pÞ ¼ −

1

ð2πℏÞ3
Z

d4qθðq0Þδðq2 −m2Þδ4ðpþ qÞ

×
X
rs

vαðq; sÞv̄βðq; rÞfð0Þ−sr ðx;qÞ ð24Þ

are the contributions from positive and negative energies,
respectively. Here, fþrsðx;qÞ and f−srðx;qÞ are the distribu-
tion functions for fermions and antifermions, respectively,
which are in general matrices in spin space. The spin
indices label spin states parallel, r; s ¼ þ, or antiparallel,
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r; s ¼ −, to the quantization direction in the rest frame of
the particle, respectively.
This spin quantization direction can in principle be

chosen arbitrarily. However, the most convenient choice
is to quantize the spin with respect to the polarization
direction [41,45]. In other words, we choose a spin basis in
which the new distribution functions f̃�rs are diagonal, i.e.,

f̃ð0Þ�rs ¼ fð0Þ�s δrs: ð25Þ

In Appendix Awe demonstrate that such a choice is always
possible, at the expense of introducing space-time depen-
dent spinors, cf. Eq. (A7). We will also use the diagonal
basis in the calculation of the contributions of higher order
in ℏ in the following sections.
As shown in Appendix A, the spin quantization direction

nð0Þμ is given by

nð0Þμðx; pÞ≡ θðp0Þnþμðx;pÞ − θð−p0Þn−μðx;pÞ; ð26Þ

where

nþμðx;pÞ ¼
�
nþ · p
m

;nþ þ nþ · p
mðmþ EpÞ

p

�
;

n−μðx;pÞ ¼
�
n− · p
m

;−n− −
n− · p

mðmþ EpÞ
p

�
: ð27Þ

Here, n� is the spin quantization direction in the rest
frame of the particle/antiparticle [cf. Eq. (A6)] and Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. The spin quantization directionn� transforms as

an axial vector under Lorentz boosts and parity transforma-
tions. We show in Appendix A that n� depends in general
on p and x, thus n�μ is defined locally. The vector nð0Þμ is
aligned with the polarization direction and agrees with the
classical spin vector, i.e., as we will see later, it obeys the
classical equation for spin precession in an electromagnetic
field, the so-called Bargmann–Michel–Telegdi (BMT) equa-
tion [53]. Moreover, nð0Þμ fulfills p · nð0Þ ¼ 0 (which can be
seen using Eqs. (A9) and (A10) and applying the Dirac
equation for the u–and v–spinors as well as the iden-
tity ūðp;rÞγ5uðp;sÞ¼ v̄ð−p;rÞγ5vð−p;sÞ¼ 0).
Equations (22)–(24) represent the solution obtained in

Ref. [50] for vanishing electromagnetic fields. However, this
is also the solution for nonvanishing electromagnetic fields,
since the form of Eq. (4) remains the same. The momentum
variable pμ is then the kinetic (and not the canonical)
momentum.
Closer inspection of Eq. (4) reveals that Eq. (22) with

Eqs. (23), (24) is also a solution to Eq. (4) at arbitrary order in
ℏ, if γ · ∇Wð0Þ ¼ 0 and γμFμν∂pνWð0Þ ¼ 0 (because then the
ℏ–dependence of the operator Kμ vanishes). In the absence
of electromagnetic fields, one at least needs to require that
γ · ∂xWð0Þ ¼ 0. In the full solution, i.e., the solution to all

orders in ℏ, the momentum variable q is no longer equal
to the kinetic momentum p. This is obviously not the case
for Eqs. (23) and (24), since they are proportional to
∼δ4ðp ∓ qÞ, see also the discussion in Ref. [50].
Now we easily obtain the coefficients of the decom-

position (8) using Eqs. (9) and (25). We find

F ð0Þðx; pÞ ¼ mδðp2 −m2ÞVð0Þðx; pÞ;
Pð0Þðx; pÞ ¼ 0;

Vð0Þ
μ ðx; pÞ ¼ pμδðp2 −m2ÞVð0Þðx; pÞ;

Að0Þ
μ ðx; pÞ ¼ mnð0Þμ ðx; pÞδðp2 −m2ÞAð0Þðx; pÞ;

Sð0Þ
μν ðx; pÞ ¼ mΣð0Þ

μν ðx; pÞδðp2 −m2ÞAð0Þðx; pÞ; ð28Þ
with

Vð0Þðx; pÞ≡ 2

ð2πℏÞ3
X
es

θðep0Þfð0Þes ðx; epÞ ð29Þ

and

Að0Þðx; pÞ≡ 2

ð2πℏÞ3
X
es

sθðep0Þfð0Þes ðx; epÞ ð30Þ

where e ¼ �, fð0Þes are the distribution functions in the
diagonal basis, and the dipole-moment tensor is defined as

Σð0Þ
μν ðx; pÞ ¼ −

1

m
ϵμναβpαnð0Þβ; ð31Þ

for the proof, see Appendix A.

IV. GENERAL SOLUTION UP TO ORDER ℏ

In this section we derive the general solution for
Eqs. (11)–(20) to first order in ℏ. We emphasize that these
equations are not independent from each other. We prove in
Appendix B that Eq. (18) can be derived from Eqs. (11),
(15), (16), (20), and (19) can be derived from Eqs. (12),
(15), (17), and(20). Thus, one can ignore Eqs. (18) and (19)
when solving this system of partial differential equations.
Using Eqs. (12), (13) and, (14) one can express the

pseudoscalar, vector, and axial-vector parts P, Vμ, and Aμ

as follows:

P ¼ −
ℏ
2m

∇ ·A;

Vμ ¼
1

m
ΠμF −

ℏ
2m

∇νSνμ;

Aμ ¼
ℏ
2m

∇μP −
1

2m
ϵμναβΠνSαβ: ð32Þ

Inserting them back into Eqs. (11) and (15) one obtains
the modified on-shell conditions for the scalar and tensor
components,
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ðΠ ·Π−m2ÞF ¼ ℏ
2
Πμ∇νSνμ;

ðΠ ·Π−m2ÞSμν ¼−ΠαΠ½μSν�α −
ℏ
2
∇½μΠν�F −

ℏ2

4
∇½μ∇αSν�α

þℏ
2
ϵμναβΠα∇βP: ð33Þ

Equations (32) and (33) are equivalent to Eqs. (11)–(15).
In general, the right-hand sides are nonvanishing,
which indicates that the Wigner function contains off-
shell effects.
From their definitions (6), (7), we observe that the

operators ∇μ and Πμ can be expanded in a series of
powers in ℏ2. In order to derive the semiclassical limit,
we may truncate these series at order ℏ0 and ℏ2, respec-
tively,

∇μ ¼
X∞
n¼0

ℏ2n∇ð2nÞμ ¼ ∇ð0Þμ þOðℏ2Þ;

Πμ ¼
X∞
n¼0

ℏ2nΠð2nÞμ ¼ pμ −
ℏ2

12
ð∂α

xFμνÞ∂pν∂pα þOðℏ4Þ;

ð34Þ

where ∇ð0Þμ ≡ ∂μ
x − Fμν∂pν. We also expand the functions

F ;P;Vμ;Aμ;Sμν into power series in ℏ, e.g.,

F ¼
X∞
n¼0

ℏnF ðnÞ: ð35Þ

Inserting these expansions into Eqs. (11)–(20) and then
comparing order by order in ℏ one can get a set of equations
which we will analyze up to second order in ℏ in the
remainder of this section.

A. Zeroth order in ℏ

We first analyze the on-shell conditions (33) for the
scalar and tensor components to leading order in ℏ and
show that the direct calculation of the Wigner function to
this order presented in Sec. III is consistent with these
conditions. To order Oðℏ0Þ, Eq. (33) reads

ðp2 −m2ÞF ð0Þ ¼ 0;

ðp2 −m2ÞSð0Þ
μν ¼ 0; ð36Þ

where we have used pνSð0Þ
νμ ¼ 0, which is the constraint

equation (18) to zeroth order in ℏ. The general solution of
the above equations reads

F ð0Þ ¼ mVð0Þδðp2 −m2Þ;
Sð0Þ
μν ¼ mΣð0Þ

μν Að0Þδðp2 −m2Þ; ð37Þ

where Vð0Þ;Σð0Þ
μν Að0Þ are up to now arbitrary functions which

do not have singularities at p2 ¼ m2. We also demand that
they go to zero sufficiently fast for large momenta (in order
to neglect boundary terms when performing an integration
by parts). Comparing to the previous section, we can
identify Vð0Þ with the spin-symmetric combination (29)
and Að0Þ with spin-antisymmetric combination (30) of the

zeroth-order distribution function, as well as Σð0Þ
μν with the

dipole-moment tensor, which satisfies pμΣð0Þ
μν ¼ 0 in order

to fulfill Eq. (18). In order to be consistent with Eq. (31),

we demand Σð0ÞμνΣð0Þ
μν ¼ 2.

With the help of Eq. (32) we can now write down the
remaining components of the Wigner function to leading
order in ℏ,

Pð0Þ ¼ 0;

Vð0Þ
μ ¼ pμVð0Þδðp2 −m2Þ;

Að0Þ
μ ¼ −

1

2
ϵμναβpνΣð0ÞαβAð0Þδðp2 −m2Þ: ð38Þ

It is straightforward to check that our solutions (37), (38)
satisfy Eqs. (16)–(20). All zeroth-order solutions are on
mass-shell and agree with the results from the direct
calculation of the Wigner function in Sec. III.

B. First order in ℏ

The starting point for our analysis of the contributions of
next-to-leading order in ℏ is again the on-shell equa-
tion (33). The OðℏÞ part reads

ðp2 −m2ÞF ð1Þ ¼ 1

2
pμ∇ð0ÞνSð0Þ

νμ ¼ 1

2
FμνSð0Þ

μν ;

ðp2 −m2ÞSð1Þ
μν ¼ −pαp½μS

ð1Þ
ν�α −

1

2
∇ð0Þ

½μ pν�F ð0Þ ¼ FμνF ð0Þ;

ð39Þ

where we used pμSð0Þ
νμ ¼ 0 and the relation

pνSð1Þ
μν ¼ 1

2
∇ð0Þ

μ F ð0Þ; ð40Þ

which follows from Eq. (18) to first order in ℏ. Here the

leading-order functions Sð0Þ
μν andF ð0Þ have been obtained in

the previous subsection. The solutions to Eq. (39) can in
general be written as

F ð1Þ ¼ m

�
Vð1Þδðp2 −m2Þ − 1

2
FμνΣð0Þ

μν Að0Þδ0ðp2 −m2Þ
�
;

Sð1Þ
μν ¼ m½Σ̄ð1Þ

μν δðp2 −m2Þ − FμνVð0Þδ0ðp2 −m2Þ�: ð41Þ

Here, Σ̄ð1Þ
μν is, up to a factor m, the on-shell part of the first-

order dipole moment. We note that Σ̄ð1Þ
μν is not normalized.
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The functions Vð1Þ and Σ̄ð1Þ
μν will be determined from the

kinetic equations that we will derive below. The function
Vð1Þ can be identified as the OðℏÞ correction to the spin-
symmetric combination of the distribution function. Using

Eq. (40), we derive a constraint for Σ̄ð1Þ
μν ,

pνΣ̄ð1Þ
μν δðp2 −m2Þ ¼ 1

2
δðp2 −m2Þ∇ð0Þ

μ Vð0Þ: ð42Þ

Expanding all quantities in Eq. (32) into power series in
ℏ, to OðℏÞ we obtain

Pð1Þ ¼ −
1

2m
∇ð0ÞμAð0Þ

μ ;

Vð1Þ
μ ¼ pμ

m
F ð1Þ −

1

2m
∇ð0ÞνSð0Þ

νμ ;

Að1Þ
μ ¼ 1

2m
∇ð0Þ

μ Pð0Þ −
1

2m
ϵμναβpνSð1Þαβ: ð43Þ

Inserting the zeroth- and first-order solutions from
Eqs. (37), (38), and (41), we can derive the first-order
pseudoscalar, vector, and axial-vector functions,

Pð1Þ ¼ 1

4m
ϵμναβ∇ð0Þ

μ ½pνΣ
ð0Þ
αβ A

ð0Þδðp2 −m2Þ�;

Vð1Þ
μ ¼ δðp2 −m2Þ

�
pμVð1Þ þ 1

2
∇ð0ÞνΣð0Þ

μν Að0Þ
�

−
�
1

2
pμFαβΣð0Þ

αβ þ Σð0Þ
μν Fναpα

�
Að0Þδ0ðp2 −m2Þ;

Að1Þ
μ ¼ mn̄ð1Þμ δðp2 −m2Þ þ F̃μνpνVð0Þδ0ðp2 −m2Þ; ð44Þ

where

n̄ð1Þμ ≡ −
1

2m
ϵμναβpνΣ̄ð1Þαβ ð45Þ

is the first-order on-shell correction to nð0Þμ Að0Þ.
To first order in ℏ, the constraints (16), (20) read

∇ð0Þ · Vð0Þ ¼ 0;

p½μV
ð1Þ
ν� þ 1

2
ϵμναβ∇ð0ÞαAð0Þβ ¼ 0: ð46Þ

They lead to the kinetic equations of the particle distribu-
tions and the dipole moment to zeroth order in ℏ; for details
see Appendix C,

δðp2 −m2Þp · ∇ð0ÞVð0Þ ¼ 0;

δðp2 −m2Þp ·∇ð0ÞAð0Þ ¼ 0;

δðp2 −m2Þ½p ·∇ð0ÞΣð0Þ
μν − Fα

½μΣ
ð0Þ
ν�α� ¼ 0: ð47Þ

C. Second order in ℏ

As we have shown in the previous subsection, the zeroth-
order kinetic equations are derived from the first-order
constraint equations. In order to obtain the first-order
kinetic equations, we focus on the second-order parts of
Eqs. (16) and (20),

∇ð0Þ · Vð1Þ ¼ 0;

p½μV
ð2Þ
ν� þ Πð2Þ

½μ Vð0Þ
ν� þ 1

2
ϵμναβ∇ð0ÞαAð1Þβ ¼ 0; ð48Þ

with the operator Πð2Þ
μ ¼ − 1

12
ð∂xαFμνÞ∂α

p∂ν
p. After some

calculation (cf. Appendix C), one derives the following
kinetic equations,

0¼ δðp2−m2Þ
�
p ·∇ð0ÞVð1Þ þ 1

4
ð∂α

xFμνÞ∂pαðΣð0Þ
μν Að0ÞÞ

�

−
1

2
δ0ðp2−m2ÞFαβp ·∇ð0ÞðΣð0Þ

αβ A
ð0ÞÞ;

0¼ δðp2−m2Þ
�
p ·∇ð0ÞΣ̄ð1Þ

μν −Fα
½μΣ̄

ð1Þ
ν�αþ

1

2
ð∂xαFμνÞ∂α

pVð0Þ
�

− δ0ðp2 −m2ÞFμνp ·∇ð0ÞVð0Þ: ð49Þ

Multiplying the second equation (49) by − 1
2m ϵ

αβμνpβ and

using Eq. (45), we obtain a kinetic equation for n̄ð1Þμ ,

0 ¼ δðp2 −m2Þ
�
p ·∇ð0Þn̄ð1Þμ − Fμνn̄ð1Þν

−
1

2m
pνð∂xαF̃μνÞ∂α

pVð0Þ
�

þ δ0ðp2 −m2Þ 1
m
F̃μνpνp · ∇ð0ÞVð0Þ; ð50Þ

where F̃μν ≡ 1
2
ϵμναβFαβ is the dual field-strength tensor.

V. KINETIC EQUATIONS FOR spin-1=2
PARTICLES

In order to summarize our results in a compact form, we
define the resummed functions

V ≡ Vð0Þ þ ℏVð1Þ þOðℏ2Þ;
Σ̄μν ≡ Σð0ÞμνAð0Þ þ ℏΣ̄ð1Þμν þOðℏ2Þ: ð51Þ

Using these resummed functions, the components the
Wigner function, given by Eqs. (37) and (38) to zeroth
order in ℏ and by Eqs. (41) and (44) to first order in ℏ, can
be written as
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F ¼ m

�
Vδðp2 −m2Þ − ℏ

2
FμνΣ̄μνδ

0ðp2 −m2Þ
�
þOðℏ2Þ;

P ¼ ℏ
4m

ϵμναβ∇ð0Þ
μ ½pνΣ̄αβδðp2 −m2Þ� þOðℏ2Þ;

Vμ ¼ pμ

�
Vδðp2 −m2Þ − ℏ

2
FαβΣ̄αβδ

0ðp2 −m2Þ
�

þ ℏ
2
∇ð0Þν½Σ̄μνδðp2 −m2Þ� þOðℏ2Þ;

Aμ ¼ −
1

2
ϵμναβpν½Σ̄αβδðp2 −m2Þ − ℏFαβVδ0ðp2 −m2Þ�

þOðℏ2Þ;
Sμν ¼ m½Σ̄μνδðp2 −m2Þ − ℏFμνVδ0ðp2 −m2Þ� þOðℏ2Þ:

ð52Þ

The undetermined functions V and Σ̄μν satisfy one con-
straint equation,

pνΣ̄μνδðp2 −m2Þ ¼ ℏ
2
δðp2 −m2Þ∇ð0Þ

μ V þOðℏ2Þ; ð53Þ

and two kinetic equations, which are the sum of Eqs. (47)
and (49),

0 ¼ δðp2 −m2Þ
�
p ·∇ð0ÞV þ ℏ

4
ð∂α

xFμνÞ∂pαΣ̄μν

�

−
ℏ
2
δ0ðp2 −m2ÞFαβp ·∇ð0ÞΣ̄αβ þOðℏ2Þ;

0 ¼ δðp2 −m2Þ
�
p ·∇ð0ÞΣ̄μν − Fα

½μΣ̄ν�α þ
ℏ
2
ð∂xαFμνÞ∂α

pV

�
− ℏδ0ðp2 −m2ÞFμνp ·∇ð0ÞV þOðℏ2Þ: ð54Þ

Up to first order, we find that Eqs. (52), (53), and (54) are
invariant under the following transformation

Σ̄μν →
ˆ̄Σμν ¼ Σ̄μν þ ðp2 −m2ÞδΣ̄μν;

V → V̂ ¼ V −
ℏ
2
FμνδΣ̄μν; ð55Þ

or the transformation

V → V̂ ¼ V þ ðp2 −m2ÞδV;
Σ̄μν →

ˆ̄Σμν ¼ Σ̄μν − ℏFμνδV: ð56Þ

Here δΣ̄μν and δV are arbitrary functions, which should be
nonsingular on the mass-shell p2 ¼ m2. The invariance
can be easily proved by using the property of the Dirac
δ-function −xδ0ðxÞ ¼ δðxÞ. Note that the first (second)
transformation does not affect the on-shell value of Σ̄μν (V)
because the factor p2 −m2 in front of δΣ̄μν (δV) vanishes
on the mass-shell.

It is possible to show that without loss of generality one
can omit the terms proportional to the derivative of the delta
function in the kinetic equations (54). In order to prove this,
let us consider the p0-integrated version of the last term in
the second kinetic equation (54). For any function Gðx; pÞ,
we haveZ

dp0δ0ðp2 −m2ÞGðx; pÞp ·∇ð0ÞV

¼
Z

dp0
1

2p0
Gðx; pÞ½∂p0δðp2 −m2Þ�p · ∇ð0ÞV

¼ −
Z

dp0
1

2p0
δðp2 −m2ÞGðx; pÞ∂p0p · ∇ð0ÞV þOðℏÞ;

ð57Þ
where we integrated by parts in the last step and used
Eq. (47). Applying the transformation (56) to Eq. (57) and
choosing δV such that

δðp2 −m2Þ2p0p · ∇ð0ÞδV ¼ −δðp2 −m2Þ∂p0p · ∇ð0ÞV;

ð58Þ

(where we assume that δV is nonsingular at p2 ¼ m2) we
find Z

dp0δ0ðp2 −m2ÞGðx; pÞp ·∇ð0ÞV̂ ¼ OðℏÞ: ð59Þ

A similar procedure can be applied to the first kinetic
equation (54). This proves that the terms proportional to the
derivative of the delta function in the kinetic equations (54)
are actually of order Oðℏ2Þ, and we obtain

0 ¼ δðp2 −m2Þ
�
p ·∇ð0ÞV̂ þ ℏ

4
ð∂α

xFμνÞ∂pα
ˆ̄Σμν

�
þOðℏ2Þ;

0 ¼ δðp2 −m2Þ
�
p ·∇ð0Þ ˆ̄Σμν − Fα

½μ
ˆ̄Σν�α þ

ℏ
2
ð∂xαFμνÞ∂α

pV̂

�
þOðℏ2Þ: ð60Þ

The kinetic equations (60) are the main result of the present
paper. For the sake of notational convenience, we will omit
the hat in the following.
In order to write the first kinetic equation (60) in terms of

the distribution functions, we define

Vðx; pÞ≡ 2

ð2πℏÞ3
X
es

θðep0Þfesðx; epÞ; ð61Þ

where f�s ¼ fð0Þ�s þ ℏfð1Þ�s . Because of the theta function,
the support of the distribution function for antiparticles is
different from the one for particles. Thus, these distribution
functions have to fulfill the first equation (60) separately [45].
Then, using Eqs. (30), (51), and (61), the first equation (60)
can be written as
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0 ¼
X
s

δðp2 −m2Þ
�
p ·∇ð0Þ þ s

ℏ
4
ð∂μ

xFνρÞ∂pμΣ
ð0Þ
νρ

�

× θð�p0Þf�s : ð62Þ

To conclude this section, we remark that the terms
containing the derivative of the delta function, although
they do not contribute to the kinetic equations, lead to a
modification of the on-shell condition of the components of
the Wigner function. Noting that

δ

�
p2 −m2 − s

ℏ
2
FμνΣð0Þ

μν

�

¼ δðp2 −m2Þ − s
ℏ
2
FμνΣð0Þ

μν δ0ðp2 −m2Þ þOðℏ2Þ;
ð63Þ

we can for instance combine Eqs. (37) and (41) and use
Eqs. (29) and (30) to obtain to order OðℏÞ

F ¼ F ð0Þ þ ℏF ð1Þ

¼ 2

ð2πℏÞ3m
X
s

δ

�
p2 −m2 − s

ℏ
2
FμνΣð0Þ

μν

�

× ½θðp0Þfþs þ θð−p0Þf−s �: ð64Þ

Thus, to first order in ℏ the on-shell condition is modified to

p2 ¼ m2
s ≡m2 þ s

ℏ
2
FμνΣð0Þ

μν : ð65Þ

In the following, we discuss the massless limit and the
classical case, as well as some consequences for global
equilibrium and fluid dynamics.

VI. MASSLESS LIMIT

In this section, we explain how to obtain the massless
limit of the currents Vμ and Aμ, cf. Eqs. (38) and (44). The
crucial step is to replace the dipole-moment tensor (31)
for m ≠ 0 by the corresponding one for m ¼ 0. Obviously,
this cannot be achieved simply by taking the limit m → 0
in Eq. (31).
For massive particles, the dipole-moment tensor as well

as the particle’s position are uniquely defined in the rest
frame. The Pauli–Lubanski operator is defined as [54]

N̂μ ¼ −
1

2m
ϵμνρσσνρP̂σ; ð66Þ

where P̂μ ≡ iℏDμ is the (kinetic) momentum operator. In
the rest frame, the Pauli–Lubanski operator fulfills the
commutation relations of an angular momentum. Let ψ , ψ̄
be solutions of the Dirac equation (3). Then the dipole-
moment tensor Σμν ≡ ψ̄σμνψ fulfills pμΣμν ¼ 0, where pμ

is the eigenvalue of P̂μ. Thus,

Σμν ¼ −
1

m
ϵμναβpαnβ; ð67Þ

with nβ ¼ ψ̄N̂βψ . This agrees with Eq. (31), if ψ ¼ u or v.
On the classical level, Σμν is the intrinsic angular-

momentum tensor about the center of mass. In a relativistic
theory, the center of mass of a particle is frame-dependent.
In order to have a frame-independent definition of Σμν, one
requires pμΣμν ¼ 0 as a gauge condition. This requirement
identifies the dipole-moment tensor (67) as the intrinsic
angular-momentum tensor about the center of mass in the
rest frame of the particle [55].
For massless particles there is no rest frame, thus both the

position (in the classical case the center of momentum) and
the dipole-moment tensor can at first be defined in an
arbitrary frame, which makes them frame-dependent. For
massless particles, the polarization vector nμ is always
parallel to the momentum pμ. Thus, the requirement
pμΣμν ¼ 0 can no longer be used as a gauge condition,
since Eq. (67) automatically satisfies this constraint. [In the
massless limit, one also needs to change the normalization
of the spinors to ūu ¼ 2jpj [50].] If we choose the dipole-
moment tensor to be defined in a frame characterized by a
timelike four-vector uμ, we can choose the gauge condition
uμΣμν ¼ 0 [13]. Consequently, the frame vector uμ must
assume the role of pμ in Eq. (67). Moreover, since nμ and
pμ are parallel for massless particles, the momentum pμ can
assume the role of nμ in Eq. (67). Finally, in order to obtain
the massless case we need to replace the normalization
factor 1=m in Eq. (67). The energy of a massive particle in
its rest frame is p0

rf ¼
ffiffiffiffiffi
p2

p
. If the particle is on the mass-

shell, this is equivalent top0
rf ¼ m. The energy of a massless

particle in the rest frame of uμ, however, isp0
u ¼ p · u. Thus,

it is natural to replace the normalization 1=m in Eq. (67) by
1=ðp · uÞ. We emphasize that this replacement can only be
done in the presence of a δ-functionwhich sets the rest-frame
energy equal to the mass m. The explicit expression for the
dipole-moment tensor in the massless case is then given by

Σμν
u ¼ −

1

p · u
ϵμναβuαpβ; ð68Þ

which agrees with the definition of the “spin tensor” in
Ref. [13]. This tensor corresponds classically to the intrinsic
angular momentum about the center of momentum as seen
from the frame where uμ ¼ ð1; 0; 0; 0Þ and will have the
quantum-mechanical properties of an angular-momentum
operator in that frame.
With this knowledge, we can make the transition

between the Wigner functions of massive and massless
particles. For zero fermion mass, Eqs. (15) and (20)
decouple. By defining right- and left-handed currents Jμχ≡
1
2
ðVμ þ χAμÞ, χ ¼ � for right-/left-handed particles, we

have to order ℏ

ℏ
2
ð∇μJνχ −∇νJμχÞ ¼ χϵμναβpαJχ;β: ð69Þ
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These equations have been solved in Refs. [15,17,18],
with the result

Jμχ ¼ δðp2Þ
�
pμ þ χ

ℏ
2
Σμν
u ∇ν

�
fχ þ χℏF̃μνpνδ

0ðp2Þfχ ;

ð70Þ
where fχ is the distribution function for right-/left-handed
fermions and uμ is the four-velocity of an arbitrary frame.
We remark that in the massive case, s describes “spin up”
or “spin down,” which corresponds to positive or negative
helicity in the massless limit (mnμ → pμ). On the other
hand, the currents above are defined for given chirality χ.
Since helicity and chirality are identical for massless
particles, but opposite for massless antiparticles, the rela-
tion between chirality χ and spin/helicity s is χ ¼ es with
e ¼ � representing particles/antiparticles.
To obtain the massless limit of our solutions, we replace

the massive dipole-moment tensor by the massless one,
Σð0Þμν → Σμν

u . In order to obtain the vector current for the
massless case from Eq. (44), we need to consider the term

∼∇ð0ÞνΣð0Þ
μν . We first pull the constant factor 1=m out of the

derivative and then replace δðp2 −m2Þ=m ¼ δðp2 −m2Þ=ffiffiffiffiffi
p2

p
→ δðp2Þ=ðp · uÞ. Finally, replacing pμ=m → uμ,

mnμ → pμ in this term we find

Vð1Þ
μ;m¼0 ¼ δðp2Þ

�
pμVð1Þ þ 1

2p ·u
ϵμναβ∇ð0ÞνpαuβAð0Þ

�

−
�
1

2
pμFαβΣu;αβ þΣu;μνFναpα

�
Að0Þδ0ðp2Þ: ð71Þ

In Ref. [15] the frame-vector uμ is assumed to be inde-
pendent of space-time coordinates. In order to compare to
the solution found in that reference, we adopt the same
assumption. Evaluating the derivatives, contracting the
ϵ-tensors, and using p2δ0ðp2Þ ¼ −δðp2Þ, we find from
Eqs. (38) and (71)

Vμ
m¼0 ¼ δðp2Þ

�
pμV þ ℏ

2
Σμν
u ∇ð0Þ

ν Að0Þ
�

þ ℏF̃μνpνAð0Þδ0ðp2Þ þOðℏ2Þ; ð72Þ
where V ¼ Vð0Þ þ ℏVð1Þ. Note that Vð1Þ depends on the
frame vector uμ such that the whole expression (72) is
frame independent [13,17,20]. To obtain the axial-vector
current in the massless case from Eqs. (38) and (44), we
note that the general solution of Eq. (42) reads

Σ̄ð1Þ
μν ¼ Σv;μνAð1Þ þ 1

2p · u
ðuν∇ð0Þ

μ − uμ∇ð0Þ
ν ÞVð0Þ; ð73Þ

where the first and second terms depend on arbitrary
timelike unit vectors uμ and vμ, respectively. Here, one
makes use of the first equation (47) to see that the constraint
(42) is fulfilled. Inserting Eq. (73) into Eq. (44), and

replacing the zeroth order dipole-moment tensor Σð0Þ
μν

by Σu;μν, we find

Aμ
m¼0 ¼ δðp2Þ

�
pμAþ ℏ

2
Σμν
u ∇ð0Þ

ν Vð0Þ
�

þ ℏF̃μνpνVð0Þδ0ðp2Þ þOðℏ2Þ; ð74Þ
where A≡ Að0Þ þ ℏAð1Þ, with Að1Þ dependent on uμ. Note
that, in order for the above axial current to be frame-
independent, the function Að1Þ cannot depend on vμ.
Adding and subtracting Eqs. (72) and (74), we recover
the result (70). Acting with ∇μ on this equation, one can
derive the chiral kinetic theory of Refs. [15–20].

VII. COMPARISON TO THE CLASSICAL CASE

In this section, we show that Eq. (62) gives rise to the
first and second Mathisson–Papapetrou–Dixon (MPD)
equations [51,56] as well as to the BMT equation [53],
which were derived for classical, extended, spinning
particles with nonvanishing dipole moment. Comparing
Eq. (62) to the generic form of the collisionless relativistic
Boltzmann–Vlasov equation [56,57]

p · ∂xfs þm∂pμðFμ
sfsÞ ¼ 0; ð75Þ

where fs is the distribution function, Fμ
s ¼ dpμ=dτ is the

external force, pμ ¼ mdxμ=dτ and τ the world-line param-
eter, we find that in our case

Fμ
s ¼ 1

m

�
Fμνpν þ s

ℏ
4
ð∂μ

xFνρÞΣð0Þ
νρ

�
; ð76Þ

i.e., the external force is given as the sum of the Lorentz
force and the Mathisson force. This is the first MPD
equation [51,56]. In Refs. [51,56], the kinetic equation
for particles with classical dipole momentmμν was derived.
Our results agree with those, setting

mμν → gμB
s
2
Σð0Þ
μν ; ð77Þ

with Bohr’s magneton μB ≡ eℏ=ð2mÞ, where e is the
electric charge, and the gyromagnetic ratio g ¼ 2, as
expected for Dirac particles with spin 1=2.
The evolution of the dipole-moment tensor is given by

the third equation (47), which can be rewritten as

m _Σð0Þ
μν ¼ Fα

½μΣ
ð0Þ
ν�α; ð78Þ

where we used

_Σð0Þ
μν ≡ ð_xα∂xα þ _pα∂pαÞΣð0Þ

μν ð79Þ
with Fμ

s given by Eq. (76) to zeroth order. Equation (78)
is identical to the second MPD equation [51,56]. Using
Eq. (31), we obtain
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m _Σð0Þ
μν ¼ −ϵμναβ

�
pα _nð0Þβ −

1

m
Fλαpλnð0Þβ

�
: ð80Þ

Inserting Eq. (78) and contracting with ϵρσμν yields

pρ

�
m _nð0Þσ þ Fμ

σn
ð0Þ
μ

�
− pσ

�
m _nð0Þρ þ Fμ

ρn
ð0Þ
μ

�
¼ 0: ð81Þ

Contracting with pρ and using Eq. (76) to zeroth order in ℏ,
we conclude that

m _nð0Þμ ¼ Fμνnð0Þν: ð82Þ

This is the BMTequation for classical spin precession in an
electromagnetic field [53].

VIII. GLOBAL EQUILIBRIUM

Equation (62) determines the single-particle distribution
function f�s in a general nonequilibrium state. A special
solution is obtained in global equilibrium, which we will
consider in this section.
A necessary condition for equilibrium is vanishing

entropy production. Assuming the standard form of the
collision term, the distribution function in equilibrium must
have the form [13,56]

feqs ¼ ðegs þ 1Þ−1; ð83Þ

with gs being a linear combination of the collisional
invariants, namely, charge, kinetic momentum pμ, and
total angular momentum

Jμνs ¼ Lμν þ s
ℏ
2
Σð0Þμν þOðℏ2Þ; ð84Þ

which is the sum of orbital angular momentum Lμν ¼
x½μpν� and spin angular momentum, which to first order is
given by the dipole-moment tensor s ℏ

2
Σð0Þμν. (Also the

canonical momentum πμ is conserved in a collision and
could be used instead of the kinetic momentum. Here, we
will at first use the kinetic momentum, since it is inde-
pendent of space-time coordinates, as well as gauge-
independent.) Thus,

gs ¼ p · bðxÞ þ asðxÞ þ
1

2
ΩμνðxÞJμνs : ð85Þ

Here, bμðxÞ, asðxÞ, and ΩμνðxÞ are Lagrangian multipliers,
which can depend on x. Since Jμνs is antisymmetric, the
symmetric part of Ωμν can be dropped without loss of
generality.
Let us consider the case of global equilibrium with rigid

rotation. Using Eqs. (84) and (85) can be written as

gs ¼ p · βðxÞ þ asðxÞ þ s
ℏ
4
ΩμνðxÞΣð0Þμν; ð86Þ

where βμðxÞ≡ bμðxÞ þΩνμðxÞxν. In global equilibrium,
the Boltzmann equation (62) needs to be fulfilled. From the
part of Eq. (62) proportional to the derivative of feqs we
obtain

0 ¼
	
pμ∂xμ þ

�
Fμνpν þ s

ℏ
4
Σð0Þ
νλ ð∂μ

xFνλÞ
�
∂pμ



gs

¼ pμ½∂xμasðxÞ þ Fνμβ
νðxÞ� þ pμpν∂xμβνðxÞ

þ s
ℏ
4
Σð0Þρσp · ∂xΩρσðxÞ

þ s
ℏ
4
½Σð0ÞρσβðxÞ · ∂xFρσ þ Σð0Þμ½σFρ�

μ ΩρσðxÞ�; ð87Þ

where we used Eq. (47). This equation is fulfilled, if

∂xμβν þ ∂xνβμ ¼ 0;

∂xμasðxÞ ¼ Fμνβ
νðxÞ;

∂xμΩλνðxÞ ¼ 0; ð88Þ
which makes the terms in the first and second line of
Eq. (88) vanish. The terms in the third line of Eq. (87) can
be shown to vanish if bμ is constant, since then Ωμν is equal
to the thermal vorticity, i.e.,

Ωμν ¼ ωμν ≡ 1

2
ð∂xμβν − ∂xνβμÞ: ð89Þ

For the proof, one also employs the relation

βα∂xαFμν − Fαμ∂xνβ
α þ Fαν∂xμβ

α ¼ 0; ð90Þ
which can be proven with the help of the homogeneous
Maxwell equations and Eq. (88). These equilibrium con-
ditions agree with those found in the classical case [56] and
those using covariant statistical mechanics [58]. Note that the
second equation (88) implies that, in the rest frame of βμ, an
electric field is cancelled by a gradient in as. It is amusing to
note that, without electromagnetic fields, the tensorΩμν does
not need to be equal to the thermal vorticity.
We introduce the Lie derivative of Aμ along the direction

of βλ as

LβAμðxÞ≡ βðxÞ · ∂xAμðxÞ −AðxÞ · ∂xβμðxÞ: ð91Þ
Choosing a gauge in which LβAμ ¼ 0, we can rewrite
Eq. (88) as

∂xμ½asðxÞ − AðxÞ · βðxÞ� ¼ 0: ð92Þ
Defining

−βðxÞμsðxÞ≡ asðxÞ −AðxÞ · βðxÞ ¼ const; ð93Þ
the function gs becomes
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gs ¼ βπ · U − βμs þ s
ℏ
4
Σð0Þμνωμν: ð94Þ

Here, πμ ≡ pμ þ Aμ is the canonical momentum, Uμ is the
fluid velocity, β≡ 1=T is the inverse temperature, and μs
is the chemical potential for particles with spin s (for
antiparticles, we need to reverse the sign of the chemical
potential). This form of gs, and thus the distribution
function feqs , agrees in the massless and field-free limit
to the one suggested in Ref. [13]. Moreover, recalling the
definition (A12), (A13) of the dipole-moment tensor one
can prove that the distribution function agrees with the one
proposed in Ref. [33] to first order in ℏ if μþ ¼ μ− and if
the electromagnetic field vanishes.
The part of Eq. (62) which is proportional to f�s vanishes

if μþ ¼ μ− to zeroth order in ℏ. In the presence of a spin
imbalance, Δμ≡ μþ − μ− ≠ 0, it only vanishes if

ð∂λ
xFνρÞð∂pλΣ

ð0Þ
νρ Þ ¼ 0: ð95Þ

The reason that global equilibrium with spin imbalance can
in general not be realized for massive particles is that in this
case the axial-vector current is only conserved if the
pseudoscalar function P ¼ 0, see also Eq. (12).
To zeroth order in ℏ, the distribution function is given by

fð0Þs ¼ ðegð0Þs þ 1Þ−1; ð96Þ

with

gð0Þs ¼ βðπ · U − μsÞ: ð97Þ

We define the dual thermal vorticity tensor as ω̃μν≡
1
2
ϵμναβω

αβ. Now we calculate the vector current by inserting
the distribution function (83) into the equation for Vμ ¼
Vð0Þ
μ þ ℏVð1Þ

μ , cf. Eqs. (38), (44). With

∇ð0Þ
ν fð0Þs ¼ ∂fð0Þs

∂gð0Þs

ðπα∂xνβα þ βα∂xνAα − Fναβ
αÞ

¼ ∂fð0Þs

∂gð0Þs

pαωνα; ð98Þ

where we used LβAα ¼ 0, Taylor-expanding

feqs ¼ fð0Þs þ sℏ
4
Σð0Þ
μν ωμν ∂fð0Þs

∂gð0Þs

þOðℏ2Þ; ð99Þ

and noting that

δðp2 −m2Þ
�
Σð0Þμνpρωνρ þ

1

2
Σð0Þρνpμωρν

�
¼ −δðp2 −m2Þmω̃μνnν; ð100Þ

where we used p · n ¼ 0 and δðp2−m2Þp2¼δðp2−m2Þm2,
we find

Vμ ¼ 2

ð2πℏÞ3
X
s

�
δðp2 −m2Þ

�
pμ −ms

ℏ
2
ω̃μνnν

∂
∂gð0Þs

�

þmsℏF̃μνnνδ0ðp2 −m2Þ

−
sℏ
2m

δðp2 −m2Þϵμναβpαð∇ð0Þ
ν nβÞ

�

× ½θðp0Þfð0Þþs þ θð−p0Þfð0Þ−s � þOðℏ2Þ: ð101Þ

The current given by Eq. (101) contains contributions
which are not parallel to pμ. To first order in ℏ, particles are
not transported parallel to their momenta. The term con-
taining F̃μν in Eqs. (101) is caused by off-shell effects and
describes the vector current induced by electromagnetic
fields, which yields the analogue of the CME in the case of
nonzero mass. On the other hand, the term containing ω̃μν

describes the current induced by vorticity and thus gives the
analogue of the CVE.
We furthermore calculate the axial-vector current.

In order to do so, it is convenient to decompose the tensor

Σ̄ð1Þ
μν introduced in Eq. (41) in the following way,

Σ̄ð1Þ
μν ≡ 1

2
χμν þ Ξμν: ð102Þ

The tensor Ξμν is antisymmetric and satisfies pμΞμν ¼ 0.
On the other hand, χμν represents the dipole moment
induced by the gradients of the distribution function since,
according to Eq. (42), it satisfies

pνχμν ¼ ∇ð0Þ
μ Vð0Þ: ð103Þ

Inserting Vð0Þ into Eq. (103) and using Eq. (98) we can
derive the following constraint for χμν,

pνχμν ¼ pνωμνVð0Þ0; ð104Þ

where we adopted the short-hand notation

Vð0Þ0 ≡ 2

ð2πℏÞ3
X
s

∂
∂gð0Þs

½θðp0Þfð0Þþs þ θð−p0Þfð0Þ−s �:

ð105Þ

The most general solution of Eq. (104) can be written as

χμν ¼
�
κ1ωμν −

κ2
v · p

ðvμωνα − vνωμαÞpα

�
Vð0Þ0; ð106Þ

where κ1;2 are arbitrary coefficients which satisfy κ1þ
κ2 ¼ 1, and vμ is an arbitrary vector such that v · p ≠ 0.
Other possible terms which vanish when being con-
tracted with the momentum are absorbed into Ξμν.
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The decomposition into χμν and Ξμν is not unique, but
allows for the transformations

Ξμν → Ξμν −
C
2

�
ωμν þ

1

v · p
ðvμωνα − vνωμαÞpα

�
Vð0Þ0;

χμν → χμν þ C

�
ωμν þ

1

v · p
ðvμωνα − vνωμαÞpα

�
Vð0Þ0;

ð107Þ

with C being an arbitrary function of x and p. For any value
of κ2, we can apply the above transformation with C≡ κ2
to Eq. (106), which yields

χμν ¼ ðκ1 þ κ2ÞωμνVð0Þ0 ¼ ωμνVð0Þ0: ð108Þ

Thus, we can set κ2 ¼ 0 without loss of generality. In other
words, it is always possible to isolate the contribution

proportional to ωμν in the decomposition for Σ̄ð1Þ
μν . This

decomposition will assume a physical meaning when
looking at the kinetic equation for Sμν.
Inserting Eq. (102) into Eq. (49), we obtain

0 ¼ p · ∇ð0Þ
�
1

2
χμν þ Ξμν

�
− Fα

½μ

�
1

2
χν�α þ Ξν�α

�

þ 1

2
ð∂xαFμνÞ∂α

pVð0Þ: ð109Þ

Noting that p · ∇ð0Þχμν ¼ 0 and using Eqs. (90) and (108),
we find that the χμν-dependent part vanishes and

p ·∇ð0ÞΞμν ¼ Fα
½μΞν�α; ð110Þ

which is the second MPD equation for Ξμν. This part of the
dipole-moment corresponds, together with the zeroth-order
dipole moment, to the classical spin precession in electro-
magnetic fields.
We now derive from Eq. (44) the full axial-vector part of

the Wigner function up to first order in ℏ, i.e.,

Aμ ¼ 2

ð2πℏÞ3
X
s

�
δðp2 −m2Þ

�
smnð0Þμ −

ℏ
2
ω̃μνpν

∂
∂gð0Þs

�

þ ℏF̃μνpνδ
0ðp2 −m2Þ

�
½θðp0Þfð0Þþs þ θð−p0Þfð0Þ−s �

−
ℏ
2
ϵμναβpνΞαβδðp2 −m2Þ þOðℏ2Þ: ð111Þ

By looking at the different terms in Eq. (111), we identify
three contributions to the axial-vector current in the massive
case. The first term in the first line and the term in the last
line describe the spin precession in the presence of an
electromagnetic field according to the BMT equation. We
remark that the function Ξμν is not specified and has to be

determined through Eq. (110). The second term in the first
line gives rise to the axial current in the direction of the
vorticity, which is the analogue of the axial chiral vortical
effect (ACVE). Finally, the term in the second line describes
the axial current along the magnetic field, which is the
analogue of the chiral separation effect (CSE). These terms
are analogous to those found in Refs. [35,41,59].

IX. FLUID-DYNAMICAL EQUATIONS

In this section, we present the equations of motion of the
fluid-dynamical variables, i.e., of the net particle-number
current and the energy-momentum tensor. We also give an
equation for the spin tensor, which supplements these
equations in the case of spin-1=2 particles.
The net particle-number current is defined as

JμðxÞ≡ h∶ψ̄ðxÞγμψðxÞ∶i ¼
Z

d4pVμðx; pÞ: ð112Þ

Inserting the zeroth- and first-order solutions (38), (44) into
Eq. (112) we obtain

Jμ ¼
Z

dPpμ½Vð0Þ þ ℏVð1Þ� þ ℏ
2
∂xν

Z
dPΣð0ÞμνAð0Þ

þ ℏ
4
Fαβ

Z
dP∂μ

p½Σð0ÞαβAð0Þ�; ð113Þ

where dP≡ d4pδðp2 −m2Þ.
Equation (16) represents the conservation law for the

vector component of the Wigner function. Integrating this
equation over kinetic 4-momentum, we immediately obtain
the conservation law for the net particle-number current,

∂xμJμðxÞ ¼
Z

d4p½∇μ þ j0ðΔÞFμν∂ν
p�Vμðx; pÞ ¼ 0;

ð114Þ
where we assumed that Fμν is independent of pν and Vμ

vanishes sufficiently rapidly for large momenta, which
ensures the vanishing of a boundary term.
The Lagrangian operator for a Dirac spinor in an

electromagnetic field is [45]

L ¼ ψ̄

�
i
ℏ
2
γ · ðD⃗ − D⃖†Þ −m

�
ψ −

1

4
FμνFμν: ð115Þ

From the Lagrangian we can derive the canonical energy-
momentum tensor as follows,

Tμν ¼
�
∶

∂L
∂ð∂xμψÞ

∂ν
xψ þ ∂ν

xψ̄
∂L

∂ð∂xμψ̄Þ

þ ∂L
∂ð∂xμAαÞ

∂ν
xAα − gμνL∶

�

¼ Tμν
mat þ Tμν

int þ Tμν
em; ð116Þ
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where we have separated the total energy-momentum
tensor into three parts: the gauge-invariant matter part
Tμν
mat, the part containing the interaction between gauge

potential and matter current, Tμν
int, and the electromagnetic

part Tμν
em,

Tμν
mat ¼

ℏ
2
h∶ψ̄γμðiD⃗ν − iD⃖†νÞψ∶i ¼

Z
d4ppνVμ;

Tμν
int ¼ Aνh∶ψ̄γμψ∶i ¼ Aν

Z
d4pVμ;

Tμν
em ¼ 1

4
gμνFαβFαβ − Fμα∂ν

xAα: ð117Þ

Note that none of these are in general symmetric under
μ ↔ ν. The total energy-momentum tensor is conserved
∂xνTμν ¼ 0, which can be checked using the Dirac and
Maxwell equations. However, the matter part is not
conserved,

∂xμT
μν
matðxÞ ¼ FναðxÞJαðxÞ: ð118Þ

This equation can be derived by acting ∂xμ on Vμ in the
definition of Tμν

mat, cf. first equation (117), then using
Eq. (16), and finally integrating by parts. Inserting
Eqs. (38) and (44) into the energy-momentum tensor, we get

Tμν
mat ¼

Z
dPpμpν½Vð0Þ þ ℏVð1Þ� þ ℏ

2
∂xα

Z
dPpνΣð0ÞμαAð0Þ

þ ℏ
4
gμνFαβ

Z
dPΣð0Þ

αβ A
ð0Þ −

ℏ
2
Fν

α

Z
dPΣð0ÞμαAð0Þ

þ ℏ
4
Fαβ

Z
dPpμ∂ν

p½Σð0Þ
αβ A

ð0Þ�: ð119Þ

The total canonical angular momentum tensor is calcu-
lated as follows,

Jλ;μν ¼ xμTλν − xνTλμ þ ℏ
4
h∶ψ̄fγλ; σμνgψ∶i

− ðFλμAν − FλνAμÞ: ð120Þ
The first two terms, xμTλν − xνTλμ, can be interpreted as the
orbital angular-momentum tensor. The remaining terms
constitute the spin angular-momentum tensor, which can
be further separated into a matter and a field part. The spin
tensor of matter can be defined as [33]

Sλ;μνmat ðxÞ≡ 1

4
h∶ψ̄fγλ; σμνgψ∶i ¼ −

1

2
ϵλμνρ

Z
d4pAρðx; pÞ:

ð121Þ

With the help of Eq. (20) we find, to any order in ℏ,

ℏ∂xλS
λ;μν
mat ðxÞ ¼ Tνμ

matðxÞ − Tμν
matðxÞ; ð122Þ

where we assumed that boundary terms vanish. Thus, the
spin of matter is not conserved separately. To zeroth order

in ℏ, Tμν
mat is symmetric according to Eq. (119), thus both

sides of Eq. (122) vanish. To first order in ℏ, both sides are
nonzero. Inserting the zeroth-order Wigner function into
Eq. (121) we obtain

Sð0Þλ;μνmat ðxÞ ¼ 1

2

Z
dP½pλΣð0Þμν þ pμΣð0Þνλ − pνΣð0Þμλ�Að0Þ:

ð123Þ

The above expressions for the energy-momentum and spin
tensor emerge directly from Noether’s theorem and thus
correspond to the canonical ones. However, one can obtain
different sets of tensors by applying pseudogauge trans-
formations that keep the conservation laws for energy-
momentum and spin. It has been shown that using different
sets of tensors related through this pseudogauge freedom is
not equivalent and leads to different measurable quantities
[40]. We should mention that a similar derivation of fluid-
dynamical equations of motion from the Wigner function
for massless particles including the conservation of total
angular momentum was carried out in Ref. [19].
Note that with Eq. (122), we can also prove that

∂xνT
μν
mat ¼ FμαJα, the form of the equation of motion for

the matter energy-momentum tensor given in Refs. [60,61].

X. CONCLUSIONS

In this paper we have derived kinetic theory for massive
spin-1=2 particles in an inhomogeneous electromagnetic
field starting from the covariant formulation of the Wigner
function. Carrying out an expansion in ℏ and truncating it at
first order, we found a general solution of the equations of
motion. We showed how to consistently take the massless
limit and demonstrated agreement with previous works,
which describe the CME and CVE. One of the crucial results
of our work is the derivation of the collisionless Boltzmann
equation for particles that carry a dipole moment due to their
spin. We also recovered well-known results in the classical
limit. The external force acting on the particles is the sum of
the Lorentz force and theMathisson force, i.e., the first MPD
equation. The time evolution of the dipole moment follows
the second MPD equation, and the spin polarization pre-
cesses according to the BMT equation. Moreover, as an
example, we studied the case of a rigidly rotating fluid in
global equilibrium. In particular, we found the conditions
that the Lagrange multipliers related to the conservation of
charge, energy, momentum, and angular momentum have to
satisfy in order for the distribution function to be a solution of
theBoltzmann equation. Finally, fluid-dynamical equations of
motion are provided, in which the spin tensor is included
among the evolved densities.
A straightforward extension of this work could be the

inclusion of a collision term into our generalized Boltzmann
equation and the derivation of the equations of motion for
dissipative relativistic magneto-hydrodynamics for spin-1=2
particles. This could be achieved using the method of
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moments, following Refs. [60,61], where this has already
been done for spin-0 particles. Another potential extension
would be the derivation of a transport equation starting from
the equal-time Wigner-function formalism [46].
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APPENDIX A: DIAGONAL SPIN BASIS

In this Appendix, we show how to diagonalize the
distribution function by choosing the spin quantization
direction along the polarization direction. The axial-vector
current which one obtains directly from Eq. (22) reads

Að0Þ
μ ðx; pÞ ¼ 1

ð2πℏÞ3 δðp
2 −m2Þ

×
X
rs

½θðp0Þūðp; sÞγμγ5uðp; rÞfð0Þþrs ðx;pÞ

− θð−p0Þv̄ð−p; rÞγμγ5vð−p; sÞfð0Þ−sr ðx;−pÞ�:
ðA1Þ

The distribution functions fð0Þ� are Hermitian matrices in
spin space and can thus be diagonalized by a unitary
transformation [50]. Since the Pauli matrices σi together
with the unit matrix are a basis of the space of Hermitian
(2 × 2) matrices, the distribution functions can be written as
[37,65]

fð0Þe ¼ ae þ be · σ; ðA2Þ

with some coefficients ae and be and e ¼ � represents
positive-/negative-energy states.
In the rest frame, the standard spinors u and v are given

as [54]

uð0;þÞ ¼
ffiffiffiffiffiffiffi
2m

p
ð1; 0; 0; 0ÞT;

uð0;−Þ ¼
ffiffiffiffiffiffiffi
2m

p
ð0; 1; 0; 0ÞT;

vð0;þÞ ¼
ffiffiffiffiffiffiffi
2m

p
ð0; 0; 1; 0ÞT;

vð0;−Þ ¼
ffiffiffiffiffiffiffi
2m

p
ð0; 0; 0; 1ÞT: ðA3Þ

Note that uð0;þÞ corresponds to a particle with spin
parallel to the z-direction, while vð0;þÞ corresponds to
an antiparticle with spin antiparallel to the z-direction.
We diagonalize the distribution functions fð0Þe in the rest

frame,

fð0Þes δrs ¼
X
r0s0

ðDeÞ†rr0fð0Þer0s0 D
e
s0s; ðA4Þ

with De being 2 × 2 matrices in spin space,

De ¼ ðd⃗eþ; d⃗e−Þ; ðA5Þ

where d⃗e� are the eigenvectors of be · σ corresponding to
the eigenvalues �, respectively,

ðne · σÞd⃗e� ¼ �ed⃗e�; ðA6Þ

where ne ≡ be=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
be · be

p
is the unit vector along the

direction of be. Note that the distribution functions fð0Þe
in general depend on the space-time coordinates xμ, thus
the transformation matrices De as well as ne are defined
locally. We then define the following spinors, which can be
derived by rotating the standard ones,

ũðx; 0; sÞ≡X
s0
uð0; s0ÞDþ

s0sðxÞ ¼
ffiffiffiffiffiffiffi
2m

p  
d⃗þs
0⃗

!
;

ṽðx; 0; sÞ≡X
s0
vð0; s0ÞD−

s0sðxÞ ¼
ffiffiffiffiffiffiffi
2m

p  
0⃗

d⃗−s

!
: ðA7Þ

The spinors ũðx; 0;�Þ and ṽðx; 0;�Þ now correspond to
particles/antiparticles with spin parallel/antiparallel to n�.
Using Eqs. (A4) and (A7) we obtain

X
rs

ūð0; sÞγμγ5uð0; rÞfð0Þþrs ðx; 0Þ

¼
X
rs

¯̃uðx; 0; sÞγμγ5ũðx; 0; rÞfð0Þþs ðx; 0Þδrs

¼ 2m
X
s

sð0;nþÞfð0Þþs ðx; 0Þ; ðA8Þ

and similarly for the v–spinors. Then, performing a Lorentz
transformation we obtain
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X
rs

ūðp; sÞγμγ5uðp; rÞfð0Þþrs ðx;pÞ

¼ 2m
X
s

snþμðx;p;nþÞfð0Þþs ðx;pÞ; ðA9Þ

and similarly

X
rs

v̄ð−p; sÞγμγ5vð−p; rÞfð0Þ−rs ðx;−pÞ

¼ 2m
X
s

sn−μðx;−p;−n−Þfð0Þ−s ðx;−pÞ; ðA10Þ

where n�μ is given by Eq. (27). We rewrite the axial-vector
current as

Að0Þ
μ ¼ mnð0Þμ Að0Þδðp2 −m2Þ; ðA11Þ

where the vector nð0Þμ ðx; pÞ and the distribution function
Að0Þðx; pÞ are determined by Eqs. (26) and (30), respectively.
Furthermore, we define

sΣþμνðx;pÞ≡ 1

2m
¯̃uðx;p; sÞσμνũðx;p; sÞ; ðA12Þ

and

sΣ−μνðx;pÞ≡ 1

2m
¯̃vðx;−p; sÞσμνṽðx;−p; sÞ: ðA13Þ

We have

Σ�μνðx;pÞ ¼ −
1

m
ϵμναβpαn�β ðx;pÞ; ðA14Þ

which can be easily checked in the rest frame using the Dirac
representation of the γ–matrices and ½σi; σj� ¼ 2iϵijkσk.
Defining

Σð0Þμνðx; pÞ≡ θðp0ÞΣþμνðx;pÞ − θð−p0ÞΣ−μνðx;pÞ;
ðA15Þ

we obtain the tensor current Sð0Þ
μν as

Sð0Þ
μν ðx; pÞ ¼ 1

ð2πℏÞ3 δðp
2 −m2Þ

×
X
s

½θðp0Þ ¯̃uðx;p; sÞσμνũðx;p; sÞfð0Þþs ðx;pÞ

− θð−p0Þ ¯̃vð−p; sÞσμνṽð−p; sÞfð0Þ−s ðx;−pÞ�
¼ mΣð0Þ

μν ðx; pÞδðp2 −m2ÞAð0Þðx; pÞ: ðA16Þ

Using

¯̃uðx;p; sÞũðx;p; sÞ ¼ − ¯̃vðx;−p; sÞṽðx;−p; sÞ ¼ 2m;

¯̃uðx;p; sÞγ5ũðx;p; sÞ ¼ ¯̃vðx;−p; sÞγ5ṽðx;−p; sÞ ¼ 0;

¯̃uðx;p; sÞγμũðx;p; sÞ ¼ − ¯̃vðx;−p; sÞγμṽðx;−p; sÞ ¼ 2pμ;

ðA17Þ

the calculation of F ð0Þ, Pð0Þ, and Vð0Þ
μ is straightforward.

Finally, we stress that the diagonalization procedure for
the distribution function described in this Appendix is in
general possible also at higher order in ℏ, even though the
exact form of the spinors is not known.

APPENDIX B: REDUNDANCY OF EQS. (11)–(20)

In this section we prove that Eqs. (11)–(20) are not
independent from each other. Combining Eqs. (11), (15),
(16), and (20), we derive

0 ¼ ℏ
2m

∇μðΠ · V −mF Þ − 1

2m
Πμðℏ∇ · VÞ

−
1

m
Πν

�
ℏ
2
∇½μVν� − ϵμναβΠαAβ −mSμν

�

þ ℏ
2m

∇ν

�
Π½μVν� þ

ℏ
2
ϵμναβ∇αAβ

�
: ðB1Þ

After some calculation we obtain

ℏ
2
∇μF þ ΠνSνμ

¼ ℏ
2m

ð½∇μ;Πν� þ ½∇ν;Πμ�ÞVν þ ℏ
2m

½Πν;∇ν�Vμ

þ 1

2m
ϵμναβ

�
½Πν;Πα� þ ℏ2

4
½∇ν;∇α�

�
Aβ: ðB2Þ

The commutators can be easily calculated using the
definition of the operators (7):

½Πμ;Πν� ¼ −ℏj1ðΔÞFμν −
ℏ
2
Δj01ðΔÞFμν;

½Πμ;∇ν� ¼ Δj1ðΔÞFμν − j0ðΔÞFμν;

½∇μ;∇ν� ¼
2

ℏ
Δj0ðΔÞFμν; ðB3Þ

where j01ðxÞ≡ d
dx j1ðxÞ. Using the definitions of the spherical

Bessel functions we can prove

xj0ðxÞ − 2j1ðxÞ − xj01ðxÞ ¼ 0: ðB4Þ
Inserting the commutators into Eq. (B2) and using the above
relation, one finds that the right-hand side of Eq. (B2)
vanishes, and we just obtain Eq. (18).
Analogously, we can construct the following equation

using Eqs. (12), (15), (17), and (20),
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0 ¼ 1

m
Πμ

�
ℏ
2
∇ ·AþmP

�
−

ℏ
2m

∇μðΠ ·AÞ − ℏ
4m

ϵμναβ

×∇ν

�
ℏ
2
ð∇αVβ −∇βVαÞ − ϵαβρσΠρAσ −mSαβ

�

−
1

2m
ϵμναβΠν

�
ΠαVβ − ΠβVα þ ℏ

2
ϵαβρσ∇ρAσ

�
; ðB5Þ

from which we get

ΠμP þ ℏ
4
ϵμναβ∇νSαβ

¼ −
ℏ
2m

ð½Πμ;∇ν� þ ½Πν;∇μ�ÞAν þ ℏ
2m

½Πν;∇ν�Aμ

þ 1

2m
ϵμναβ

�
½Πν;Πα� þ ℏ2

4
½∇ν;∇α�

�
Vβ: ðB6Þ

Analogously to Eq. (B2), the right-hand side of Eq. (B6)
vanishes and we obtain Eq. (19).

APPENDIX C: DERIVATION OF KINETIC
EQUATIONS

In this Appendix we show some technical details we
used when deriving the kinetic equations (47), (49). First
we focus on the kinetic equation for the zeroth-order
dipole-moment tensor Σð0Þ

μν and the axial distribution
function Að0Þ. We insert the vector part of Eq. (43) into

Eq. (46) and use the relation Að0Þ
μ ¼ − 1

2m ϵμναβp
νSαβð0Þ, to

derive

0 ¼ −
1

2m
½pμ∇ð0ÞαSð0Þ

αν − pν∇ð0ÞαSð0Þ
αμ �

−
1

4m
ϵμναβ∇ð0ÞαϵβγρσpγS

ð0Þ
ρσ

¼ −
1

2m
f½∇ð0Þαp½μ�Sð0Þ

ν�α þ pα∇ð0Þ
α Sð0Þ

μν g: ðC1Þ

Inserting the zeroth-order solution we get

δðp2 −m2Þfp · ∇ð0Þ½Σð0Þ
μν Að0Þ� − Fα

½μΣ
ð0Þ
ν�αA

ð0Þg ¼ 0: ðC2Þ

The dipole-moment tensor is normalized, Σð0ÞμνΣð0Þ
μν ¼ 2,

thus contracting the above equation with Σð0Þμν we obtain

δðp2 −m2Þp ·∇ð0ÞAð0Þ ¼ 0; ðC3Þ

where we have used

Σð0Þμν½Fα
μΣ

ð0Þ
να − Fα

νΣ
ð0Þ
μα � ¼ 2FαμΣð0ÞμνΣð0Þα

ν ¼ 0; ðC4Þ

because Fαμ is antisymmetric and Σð0ÞμνΣð0Þ α
ν is symmetric

under α ↔ μ. Inserting Eq. (C3) into Eq. (C2) one obtains

the kinetic equation for Σð0Þ
μν .

The kinetic equation for Vð1Þ is derived from the first line
of Eq. (48). According to Eq. (43), Vð1Þ can be expressed in
terms of F ð1Þ and Sð0Þ

μν . Thus we get

1

m
p ·∇ð0ÞF ð1Þ þ 1

2m
∇ð0Þμ∇ð0ÞνSð0Þ

μν ¼ 0: ðC5Þ

The dipole-moment tensor is antisymmetric in its indices,
so we can use the commutator ½∇ð0Þμ;∇ð0Þν� ¼ ð∂α

xFμνÞ∂pα

to simplify the second term. Using also the zeroth- and first-
order solutions we obtain

0 ¼ 1

m
p · ∇ð0ÞF ð1Þ þ 1

4m
ð∂α

xFμνÞ∂pαS
ð0Þ
μν

¼ δðp2 −m2Þp ·∇ð0ÞVð1Þ

−
1

2
δ0ðp2 −m2Þp ·∇ð0Þ½FαβΣð0Þ

αβ A
ð0Þ�

þ 1

4
ð∂α

xFμνÞ∂pα½Σð0Þ
μν Að0Þδðp2 −m2Þ�

¼ δðp2 −m2Þ
	
p · ∇ð0ÞVð1Þ þ 1

4
ð∂α

xFμνÞ∂pα½Σð0Þ
μν Að0Þ�




−
1

2
δ0ðp2 −m2ÞFαβp · ∇ð0Þ½Σð0Þ

αβ A
ð0Þ�: ðC6Þ

In order to derive the kinetic equation for the first-order
dipole-moment tensor, we first need Vð2Þ

μ , which is calcu-
lated by expanding Eq. (32) into a series in ℏ and
identifying the ℏ2 term,

Vð2Þ
μ ¼ 1

m
pμF ð2Þ þ 1

m
Πð2Þ

μ F ð0Þ þ 1

2m
∇ð0ÞνSð1Þ

μν : ðC7Þ

Inserting this, as well as Að1Þ
μ from Eq. (43) into the second

line of Eq. (48) we get

0 ¼ 1

m
ð½Πð2Þ

μ ; pν� − ½Πð2Þ
ν ; pμ�ÞF ð0Þ −

1

2m
p · ∇ð0ÞSð1Þ

μν

þ 1

2m
ð½∇ð0Þα; pμ�Sð1Þ

αν − ½∇ð0Þα; pν�Sð1Þ
αμ Þ: ðC8Þ

The commutators are given by ½∇ð0Þα; pμ� ¼ Fμ
α and

½Πð2Þ
μ ; pν� − ½Πð2Þ

ν ; pμ� ¼ −
1

4
ð∂xαFμνÞ∂α

p: ðC9Þ

Inserting the solutions for F ð0Þ and Sð1Þ
μν from Eqs. (37) and

(41) into Eq. (C8) and using the above commutators, one

obtains the kinetic equation for Σ̄ð1Þ
μν .
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