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We calculate the Wigner function for massive spin-1/2 particles in an inhomogeneous electromagnetic
field to leading order in the Planck constant 7. Going beyond leading order in # we then derive a
generalized Boltzmann equation in which the force exerted by an inhomogeneous electromagnetic field
on the particle dipole moment arises naturally. Furthermore, a kinetic equation for this dipole moment is
derived. Carefully taking the massless limit we find agreement with previous results. The case of global
equilibrium with rotation is also studied. Finally, we outline the derivation of fluid-dynamical equations
from the components of the Wigner function. The conservation of total angular momentum is promoted as
an additional fluid-dynamical equation of motion. Our framework can be used to study polarization effects
induced by vorticity and magnetic field in relativistic heavy-ion collisions.
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I. INTRODUCTION

Relativistic heavy-ion collisions (HICs) create a new
phase of hot and dense strong-interaction matter, the quark-
gluon plasma (QGP) (see e.g., Ref. [1]). The interaction
rates between its constituents are sufficiently large that the
matter rapidly reaches a state which can be described by
fluid dynamics [2]. In noncentral HICs the global angular
momentum generates a nonvanishing vorticity of the QGP
fluid. Furthermore, in such collisions a strong magnetic
field is formed due to the electric current produced by the
spectator protons constituting the colliding ions.

In the QGP, quarks can be considered as (nearly) massless
fermions. The interplay between the chiral anomaly on the
one hand and the magnetic field and the fluid vorticity on the
other hand gives rise to novel transport phenomena called
chiral effects. Two such phenomena are the chiral magnetic
effect (CME) [3] and the chiral vortical effect (CVE) [4],
where a charge current is induced along the direction of the
magnetic field and the vorticity, respectively. Large-scale
experimental efforts are currently under way to discover
these phenomena in HICs (for a recent review, see Ref. [5]).

From the theoretical point of view, it is therefore
mandatory to develop a theory which allows to study such
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transport phenomena in chiral fluids. One approach is
chiral kinetic theory, which has been derived using various
methods, e.g., the classical action [6-14], the Wigner
function [15-20], and the world-line formalism [21-23].
In Refs. [15,16] it was shown that, using Wigner functions,
one is able to recover the ‘“‘side-jump” phenomenon first
discussed in Refs. [11,13] in order to ensure total angular-
momentum conservation in binary collisions. Furthermore,
the inclusion of the chiral effects in fluid dynamics was
studied in Refs. [4,24,25].

Another intriguing phenomenon occurring in the rotating
QGP is that particles in the medium can be polarized in a way
resembling the Einstein-de Haas [26] and Barnett effects
[27]. Recently, the STAR Collaboration presented exper-
imental evidence for the alignment of the spin of A hyperons
with the global angular momentum in peripheral HICs [28].
This finding revealed, for the first time, the strong vortical
structure of the QGP. Many theoretical works have explored
spin-polarization mechanisms triggered by vorticity in HICs.
In particular, the importance of the spin-orbit interaction
[29-31] and the relation between spin polarization and
thermal vorticity in local thermodynamical equilibrium have
been studied [32-35]. A fluid-dynamical description, which
includes the space-time evolution of the spin polarization,
was proposed in Refs. [36-39]. However, this formulation is
based on a specific choice for the energy-momentum and
spin tensors. The physical implications of different sets of
energy-momentum and spin tensors in fluid dynamics was
investigated in Ref. [40].

Although there has been intense theoretical activity
which has led to a deeper understanding of the transport
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properties of chiral matter, few studies have attempted to
derive a covariant kinetic theory for massive particles using
Wigner functions [41,42]. The aim of this paper is to fill
this gap. We derive kinetic theory for massive spin-1/2
particles in an inhomogeneous electromagnetic field as a
basis to study polarization effects in HICs. Our starting
point is the covariant formulation of the Wigner function
[43-49]. In order to solve the equations of motion for the
Wigner function, we employ an expansion in the Planck
constant 4 and truncate at the lowest nontrivial order. This
approximation is valid if the following two assumptions
hold:

(i) nly*V,W| < m|W|, where W is the Wigner func-
tion, m is the particle mass, V, represents the
gradient operator in Eq. (6) [45,50], and the modulus
applies to each component of the corresponding
matrix in Dirac space,

(il) A < ARAP, where AR is a spatial scale over which
the electromagnetic field tensor varies significantly
and AP a momentum scale over which the Wigner
function varies significantly.

Assumption (i) implies that the 7—expansion is effectively a
gradient expansion. Assumption (ii) allows us to truncate
the power-series expansion of the Bessel functions entering
the equations of motion of the Wigner function [45].
Under these assumptions, we first give an explicit
derivation of the leading-order solution. Then, considering
the equation of motion for the Wigner function to first and
second order in 7, we derive a generalized Boltzmann
equation, where the external force acting on the particles is
given by two contributions. The first one is the Lorentz
force, which gives rise to the usual Vlasov term, and the
second one is the Mathisson force [51], i.e., the force
exerted on the particle’s dipole moment in an inhomo-
geneous electromagnetic field. In our context, the dipole
moment arises from the spin of the particle. We show how
to take the massless limit, obtaining a result that agrees with
previous works [15,16]. We also study the solution of the
Boltzmann equation in the case of global equilibrium with
rigid rotation. Finally, we derive fluid-dynamical equations
of motion with spin degrees of freedom from the Wigner
function using the canonical definitions of the energy-
momentum and spin tensors. In accordance with previous
works [36,40], the conservation of the total angular
momentum is promoted as an additional fluid-dynamical
equation, where the divergence of the spin tensor is related
to the antisymmetric part of the energy-momentum tensor.
We use units ¢ = kg = 1 throughout this paper. It is
useful to explicitly keep Planck’s constant 7, since it will be
our power-counting parameter. The convention for the
metric tensor is ¢ = diag(+1,—1,—1,—1) and "% =
—€0123 = +1 for the rank-four Levi-Civita tensor. We use
the notation a*b, = a - b for the scalar product of two four-
vectors a, b* and a-b for the corresponding scalar
product of two spatial vectors a, b. A two-dimensional

vector in spin space is denoted by a. The electromagnetic
four-potential is A¥#, where the electromagnetic charge is
absorbed into its definition. We denote the dipole-moment
tensor as 2. This quantity corresponds to the spin tensor
S of Refs. [11,13]. In this paper the term “spin tensor” is
reserved for the rank-three Lorentz tensor S*#.

II. EQUATIONS FOR THE WIGNER FUNCTION
FOR MASSIVE FERMIONS

The Wigner function is defined as the Fourier transform
of the two-point correlation function [44],

d4y i
W ,(x, p) = Py
o) = [ e

X (prg(x)U(x1, 0w (x2) ). (1)

Here, x; and x, are the space-time coordinates of two
different points, with y* = x{ — x5 and x* = (¥ + x4)/2.
The gauge link is defined as

1/2

i
U(x1.x,) = exp {—EJ’”/

A, (x + ty)} )
-1/2

In this paper, A, will be treated as an external, classical
field (otherwise, the gauge link would need to be path-
ordered). The particular choice of path for the integration
between x; and x, ensures that p* is the kinetic momentum.
Note that the factors 277 in the denominator in Eq. (1)
belong to the phase-space volume and do not participate in
the A—counting employed throughout this paper.
Starting from the Dirac equation and its adjoint,

(ihy - D —m)y = 0 = y(ihy - D" + m), (3)

where D, = ax,, + é A, is the covariant derivative, one can
derive the kinetic equation for the Wigner function as [44]

(r - K=m)W(x,p) = 0. (4)
Here one has defined the operator
L.
Kt =TI + ithﬂ’ (5)

with the generalized space-time derivative and momentum
operators

Vi = 8‘; - jO(A)Fﬂyapw (6)
h.
" = pﬂ - EJI(A)ijapw (7)

where A = %81, -0, and F* = YAV — 94A* is the electro-
magnetic field-strength tensor. We should emphasize that in
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Eq. (4) the space-time derivative 0, contained in A only acts
on F*_ but not on the Wigner function. The functions
Jjo(x) = sinx/xand j, (x) = (sinx — x cos x) /x* are spheri-
cal Bessel functions. If we assume that the particles only
interact with the classical electromagnetic field but not
among themselves (which, in the language of kinetic theory,
is the limit of the collisionless Boltzmann-Vlasov equation),
Eq. (4) is exact and contains the full dynamics of the Wigner
function.

In order to derive a kinetic equation for massive spin-1/2
particles, it is advantageous to decompose the Wigner
function in terms of a basis formed by the 16 independent
generators of the Clifford algebra {1, 7>, 7*, y>y*, 6** }, with

y =iy’ and o =3[y y"],
W= (FtidP i, + A, + Loms 8
_Z +l}/ +7 ;4+y7 ;4+§6 u |- ()

The coefficients F, P, V¥, A#, and S* are real functions of
the phase-space coordinates x, p and correspond to the
scalar, pseudoscalar, vector, axial-vector, and tensor com-
ponents of the Wigner function. Some of them have an
obvious physical meaning [52]. For example, V¥ is the
fermion four-current and A* is related to the spin density.
Using the trace properties of the Dirac matrices, the
coefficients in Eq. (8) are given by

F =Tr(W),
P = —iTr(yW),
V= Tr(y"W),
At = Tr(p'y° W),
S =Tr(c"W). 9)

Replacing W in Eq. (4) by the decomposition (8), we find
the following complex-valued equations:
K-V-mF =0,
K-A+imP =0,
K,F +iK*S,, —mV, =0,

i
1
lKﬂP + ES”yGﬂKUS(Xﬁ + mAM = O,

—iKV,) = €K AP —mS,, =0, (10)
where Ay B, =A,B, —A,B,. Decomposing these equa-
tions into their real and imaginary parts, we obtain a set of
coupled equations which determine the coefficients in the

decomposition (8) of the Wigner function. The real parts
read

m-V—mF =0, (11)

gV'A+mP:0, (12)

h v
[, F =3 V48, = mV, = 0, (13)
[ 1 v qap
—Evﬂp—l-ieﬂmﬁn S +m.,4” = O, (14)
"9, A —mS,, =0 15
5 1V~ €uvap —moy, =Y, ( )

and the imaginary parts are

AV -V =0, (16)
m-A=0, (17)
h 14
3 Vi IS, =0, (18)
h
[P + 5 € V*S7 =0, (19)
h i
[,V + 5 € VA = 0. (20)

In the next sections, we will explicitly solve Egs. (11)—(20)
to zeroth order in 7, and then derive kinetic equations which
the general solution has to fulfill up to first order in 7.

III. ZEROTH-ORDER SOLUTION

To zeroth order in %, the operator K* = p* and Eq. (4)
reduces to

(r-p—mWO(x,p) =0. (21)

The solution is given by [41,50]

WO (x. p) = Wiix. p) + Woy(x.p).  (22)
where
Wip(s.) = s | a0(d)o(a? =m0 (p =)
X D _ta(a )4, Y (x,q), (23)
Wos(x. p) = —ﬁ / d*q0(¢°)8(q* — m*)8*(p + q)

XD (@, )75(a. 1[5 (x. Q) (24)

are the contributions from positive and negative energies,
respectively. Here, f7(x,q) and f75,(x,q) are the distribu-
tion functions for fermions and antifermions, respectively,
which are in general matrices in spin space. The spin
indices label spin states parallel, r, s = +, or antiparallel,
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r,s = —, to the quantization direction in the rest frame of
the particle, respectively.

This spin quantization direction can in principle be
chosen arbitrarily. However, the most convenient choice
is to quantize the spin with respect to the polarization
direction [41,45]. In other words, we choose a spin basis in
which the new distribution functions f7; are diagonal, i.e.,

j-g(;)i = fﬁo)iars' (25)

In Appendix A we demonstrate that such a choice is always
possible, at the expense of introducing space-time depen-
dent spinors, cf. Eq. (A7). We will also use the diagonal
basis in the calculation of the contributions of higher order
in A in the following sections.

As shown in Appendix A, the spin quantization direction

nO# is given by
nO¥(x, p) = 6(p°)n**(x,p) — O(=p°)n*(x,p), (26)
where
n+ . p n+ . p
i — +
) = (b i)
_ n--p - n -p
“(x,p) = 2P ) (@27
n™(x.p) ( e m(m+Ep)p> (27)

Here, n* is the spin quantization direction in the rest
frame of the particle/antiparticle [cf. Eq. (A6)] and E, =

\/p? + m?. The spin quantization direction n* transforms as
an axial vector under Lorentz boosts and parity transforma-
tions. We show in Appendix A that n* depends in general
on p and x, thus n*# is defined locally. The vector n(9# is
aligned with the polarization direction and agrees with the
classical spin vector, i.e., as we will see later, it obeys the
classical equation for spin precession in an electromagnetic
field, the so-called Bargmann—Michel-Telegdi (BMT) equa-
tion [53]. Moreover, n(O% fulfills p - n(®) = 0 (which can be
seen using Egs. (A9) and (A10) and applying the Dirac
equation for the u—and wv—spinors as well as the iden-
tity a(p,r)r’u(p,s) = o(=p,7)y’v(-p,s) =0).

Equations (22)—(24) represent the solution obtained in
Ref. [50] for vanishing electromagnetic fields. However, this
is also the solution for nonvanishing electromagnetic fields,
since the form of Eq. (4) remains the same. The momentum
variable p* is then the kinetic (and not the canonical)
momentum.

Closer inspection of Eq. (4) reveals that Eq. (22) with
Eqgs. (23), (24)is also a solution to Eq. (4) at arbitrary order in
h,ify - VWO = 0and y,F*0,,W® = 0 (because then the
h—dependence of the operator K* vanishes). In the absence
of electromagnetic fields, one at least needs to require that
y- 6xW<°) = (0. In the full solution, i.e., the solution to all

orders in £, the momentum variable g is no longer equal
to the kinetic momentum p. This is obviously not the case
for Egs. (23) and (24), since they are proportional to
~5*(p F q), see also the discussion in Ref. [50].

Now we easily obtain the coefficients of the decom-
position (8) using Egs. (9) and (25). We find

FO (x, p) = ms(p> = m*)VO(x, p).
PO(x, p) =0.
V2 (x. p) = pd(p? = m*) VO (x. p).
A (x, p) = mnf) (x, p)8(p* = m*)AO (x, p),
S (x. p) = m=) (x. p)3(p? = m)AO (x. p).  (28)
with
VO(x.p) = s S 0er ) (x.em) (29
and

A0 (x, p) = (Mzh)g > st(er”) O ep)  (30)

where e = &+, f§°)e are the distribution functions in the
diagonal basis, and the dipole-moment tensor is defined as

1
0 a
E/Sv) ()C, P) = _Eeﬂuaﬁp n(O)ﬁ’ (31)

for the proof, see Appendix A.

IV. GENERAL SOLUTION UP TO ORDER 7

In this section we derive the general solution for
Egs. (11)—(20) to first order in 7. We emphasize that these
equations are not independent from each other. We prove in
Appendix B that Eq. (18) can be derived from Egs. (11),
(15), (16), (20), and (19) can be derived from Egs. (12),
(15), (17), and(20). Thus, one can ignore Egs. (18) and (19)
when solving this system of partial differential equations.

Using Egs. (12), (13) and, (14) one can express the
pseudoscalar, vector, and axial-vector parts P, V¥, and A*
as follows:

h
1 hoo,
V/l :ZHMF_%V 81//4’
h 1 » cap
Ay =5V, P = e S, (32)

Inserting them back into Eqgs. (11) and (15) one obtains
the modified on-shell conditions for the scalar and tensor
components,
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h
(T m?) F = TFVS,,

a h hz a
(H -1 — m2>8ﬂy =—II H[ﬂSy]a —EVMHD]]: - ZVWV Sy]a
)
+§eﬂmﬁnavﬂ7>. (33)

Equations (32) and (33) are equivalent to Egs. (11)—(15).
In general, the right-hand sides are nonvanishing,
which indicates that the Wigner function contains off-
shell effects.

From their definitions (6), (7), we observe that the
operators V¥ and IT¥ can be expanded in a series of
powers in /A2, In order to derive the semiclassical limit,
we may truncate these series at order 2° and 72, respec-
tively,

[Se]

Vi = Z P2V — YOk 4 O(p?),
n=0
[ hz

I =% Aes = pr — 15 (0F")0p,0p + O(RY),
n=0

(34)

where VO# = 9/ — F*9,,. We also expand the functions
F,P, V¢, A" S into power series in 7, e.g.,

F=> nFm. (35)

Inserting these expansions into Eqgs. (11)—(20) and then
comparing order by order in 72 one can get a set of equations
which we will analyze up to second order in # in the
remainder of this section.

A. Zeroth order in 7

We first analyze the on-shell conditions (33) for the
scalar and tensor components to leading order in 7 and
show that the direct calculation of the Wigner function to
this order presented in Sec. III is consistent with these
conditions. To order O(A%), Eq. (33) reads

(7 = m)FO =0,
(P> = m?)Sp) =0, (36)
where we have used p”S,S,O,) = 0, which is the constraint

equation (18) to zeroth order in A. The general solution of
the above equations reads

FO = mvOs(p* —m?),
S = mzAOs(p? — m?), (37)

where V() z}fl)A<0> are up to now arbitrary functions which
do not have singularities at p> = m?. We also demand that
they go to zero sufficiently fast for large momenta (in order
to neglect boundary terms when performing an integration
by parts). Comparing to the previous section, we can
identify V(©) with the spin-symmetric combination (29)
and A with spin-antisymmetric combination (30) of the
zeroth-order distribution function, as well as 2,(},),) with the
dipole-moment tensor, which satisfies p”Z,(,(Z) = 0 in order
to fulfill Eq. (18). In order to be consistent with Eq. (31),
we demand 2(0)””2,(,(,),> =2.

With the help of Eq. (32) we can now write down the
remaining components of the Wigner function to leading
order in A,

1
AY = L SO0 - ), (a9

It is straightforward to check that our solutions (37), (38)
satisfy Egs. (16)—(20). All zeroth-order solutions are on
mass-shell and agree with the results from the direct
calculation of the Wigner function in Sec. IIL

B. First order in 7

The starting point for our analysis of the contributions of
next-to-leading order in # is again the on-shell equa-
tion (33). The O(#) part reads

1 1
(p2 _ mZ)f(l) — 5p;tv(())y&g'l(jz) — EFﬂySI(g)’

1 a 1y 1o
(P =m)S) = =p"pSyja =5 Vi) Py FO = F O

(39)
where we used p”S,EO) = 0 and the relation
1
prSh) = 3 \aUl (40)

which follows from Eq. (18) to first order in %. Here the

leading-order functions S, ,(3) and F(©) have been obtained in
the previous subsection. The solutions to Eq. (39) can in
general be written as

1
FO =m|vs(p* —m?) - EF””Z,(,?,)A(O)é’(pZ -m?)|,

S = mEWs(p? —m?) = F, VO (p2—m?)].  (41)

Here, Z,(li) is, up to a factor m, the on-shell part of the first-
order dipole moment. We note that i,(,lJ 1s not normalized.

056018-5



NORA WEICKGENANNT et al.

PHYS. REV. D 100, 056018 (2019)

The functions V() and £ will be determined from the

kinetic equations that we will derive below. The function
V() can be identified as the O(#) correction to the spin-
symmetric combination of the distribution function. Using

Eq. (40), we derive a constraint for i,(,ly),

- 1
PEWS(p? = m?) = 55(p? = m? VIV (42)

Expanding all quantities in Eq. (32) into power series in
h, to O(h) we obtain

1 0
PO = - —vOuAD

2m
(0 _ Pu gy _ L gongo
Vﬂ m f 2m Sl/ﬂ ’
1 1 0 1 v 1
Al(l) = %V,(l )P<O) —Eé‘ﬂyaﬁp 8(1) ﬂ (43)

Inserting the zeroth- and first-order solutions from
Eqgs. (37), (38), and (41), we can derive the first-order
pseudoscalar, vector, and axial-vector functions,

1
P = w00 [p, Z]A0S(p? = )]
m

1
fo) = 8(p? — m?) [pﬂvu) + Ev(myzl(g)A@]

1
- [5 PuFPEy + T F ”“pm}‘l“’m’(p2 —m?),

A = mig5(p* = m?) + F,,p VO (p? —m?),  (44)
where

1 _
_(1 o
n,(, ) = =5 CuwapP S(Dap (45)

is the first-order on-shell correction to n,(,O)A(U).
To first order in 7, the constraints (16), (20) read

1
PV + 5 VAP = 0. (46)

They lead to the kinetic equations of the particle distribu-
tions and the dipole moment to zeroth order in #; for details
see Appendix C,

S(p*=m?*)p-VOVO =,
8(p2 —=m?)p - VA0 =,

5(p* = m?)[p- VO —Fr x0) =0, (47)

C. Second order in 7

As we have shown in the previous subsection, the zeroth-
order kinetic equations are derived from the first-order
constraint equations. In order to obtain the first-order
kinetic equations, we focus on the second-order parts of
Egs. (16) and (20),

VO .y =,
1
PV VY 45 VO A =0, (48)
with the operator H,(,Z) = — 5 (0xoF ) 0%0%. After some

calculation (cf. Appendix C), one derives the following
kinetic equations,

1
0= 307 =17) [ - POV 40610, (212

1 » 0
38 (p? = m?)Fp- VO (£]AO),

_ - 1
0= 5(172 - mz) [P : v(o)z}(i/) - Fa[yzz(/]li +§(axaFﬂv)a% V(O)]

-8(p? —mz)FWp-V(O)V«)). (49)

Multiplying the second equation (49) by —ﬁe“ﬁ’” pp and

using Eq. (45), we obtain a kinetic equation for ﬁf,l) ,

0= &(p> —m?) {p VO —F, @0

v

1 -
- % pv<8xaF/w)agV(O>:|

1.
+ 5/<p2 - m2) _F/wpyp : V(O)v(O)’ (50)
m

where F,, =1€,,,,F* is the dual field-strength tensor.

hvaf

V. KINETIC EQUATIONS FOR spin-1/2
PARTICLES

In order to summarize our results in a compact form, we
define the resummed functions

V=vO 4 avl) 4 Oh?),
v = 5O AQ) 4 pSWm 4 O(R?). (51)

Using these resummed functions, the components the
Wigner function, given by Egs. (37) and (38) to zeroth
order in /2 and by Egs. (41) and (44) to first order in %, can
be written as
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h _

F=m {V&(p2 -m?) — 5 w38 (p* — mz)] + O(n?),

h uvaf (0) 3 2 2 2

P = 4m€ vll [puza/fa(p —m )] + O(h )7
h _

V, = b, [va(ﬁ ) =D S, (- m2>]

/) _
+DVOMS, 602 — )] + O(2),

1 _

A, = _Eelwaﬁpv [Z98(p* — m?*) — hFPVE (p* — m?)]
+ O(h?),

= m[Z,,6(p* —m*) — aF, V& (p* —m?)] + O(h?).

(52)

S

1122

The undetermined functions V and i,,,, satisfy one con-
straint equation,

PR =) = Do~ m) TV L O). (53)

and two kinetic equations, which are the sum of Egs. (47)
and (49),

h _
0=25(p>—m?)|p-VOV 4 1 (azFW)apaz,w}

h _
- 56/(192 —m?)F?p VO, + O(h?),

[ - - h
0=58(p>—m?)|p-VOF, — Fo 2.+ 5 (GXQFW)%V}
—nd (p* —m?)F,,p- VOV + O(n?). (54)

Up to first order, we find that Egs. (52), (53), and (54) are
invariant under the following transformation

i;w - iﬂl/ = iﬂl/ -+ (p2 - m2)5im,,

. oo
Vo V=V-2PsL,, (55)

or the transformation

<>

Vo> V=V+(p*—m?)sV,

3, > %,=5%,—hF,»sV. (56)

Here 5iﬂl, and 8V are arbitrary functions, which should be
nonsingular on the mass-shell p> = m?. The invariance
can be easily proved by using the property of the Dirac
S-function —x&'(x) = &(x). Note that the first (second)
transformation does not affect the on-shell value of i,w V)
because the factor p> — m? in front of 6%, (§V) vanishes
on the mass-shell.

It is possible to show that without loss of generality one
can omit the terms proportional to the derivative of the delta
function in the kinetic equations (54). In order to prove this,
let us consider the p-integrated version of the last term in
the second kinetic equation (54). For any function G(x, p),
we have

/dpoé’(p2 —m?)G(x,p)p - VOV
1
= [ 55t Pty = m)p - VOV
1

== [ @ 553 = 1G5, PO VOV + O,
(57)

where we integrated by parts in the last step and used

Eq. (47). Applying the transformation (56) to Eq. (57) and

choosing oV such that

8(p* —m?)2p°p - VOGSV = —=5(p> = m*)9 op - VOV,
(58)

(where we assume that 8V is nonsingular at p?> = m?) we
find

/dpoé’(p2 —-m®)G(x,p)p-VOV =0(n). (59)

A similar procedure can be applied to the first kinetic
equation (54). This proves that the terms proportional to the
derivative of the delta function in the kinetic equations (54)
are actually of order O(#?), and we obtain

0=05(p> —m?) |:p VOV + Z (azFW)apai,w] + O(n?),

0= 5(p2 _ mZ) |:p . V(O)i}w _ F(l[ﬂiy]a + g (amFﬂb)a‘}",f/}
o). (60)

The kinetic equations (60) are the main result of the present
paper. For the sake of notational convenience, we will omit
the hat in the following.

In order to write the first kinetic equation (60) in terms of
the distribution functions, we define

V(w.p) = o S0’ )filx.ep). (61)

where ff = f§0>i +n f§l) *. Because of the theta function,
the support of the distribution function for antiparticles is
different from the one for particles. Thus, these distribution
functions have to fulfill the first equation (60) separately [45].
Then, using Egs. (30), (51), and (61), the first equation (60)
can be written as
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)
0= Eé(pz - m?) {p VO 4 ST (0KF)0, Zy,,

< 0(%po)f5 (62)

To conclude this section, we remark that the terms
containing the derivative of the delta function, although
they do not contribute to the kinetic equations, lead to a
modification of the on-shell condition of the components of
the Wigner function. Noting that

h
5<p2 —m? - sEF””Z,(g))

= 8(p? —m?) — s;LF/“’Z( 05 (p? — m?) + O(h?),
(63)

we can for instance combine Eqgs. (37) and (41) and use
Eqgs. (29) and (30) to obtain to order O(#)

f:f<°> + nFM
h
(- i)
[( O +0(=p°)f5]. (64)

Thus, to first order in 7 the on-shell condition is modified to

h

pP=mi=m’+ sEF"”Z,(,OD). (65)
In the following, we discuss the massless limit and the
classical case, as well as some consequences for global
equilibrium and fluid dynamics.

VI. MASSLESS LIMIT

In this section, we explain how to obtain the massless
limit of the currents 1V, and A,, cf. Egs. (38) and (44). The
crucial step is to replace the dipole-moment tensor (31)
for m # 0 by the corresponding one for m = 0. Obviously,
this cannot be achieved simply by taking the limit m — 0
in Eq. (31).

For massive particles, the dipole-moment tensor as well
as the particle’s position are uniquely defined in the rest
frame. The Pauli—Lubanski operator is defined as [54]

A+ = —ﬁeﬂwv%ﬁg, (66)
where P* = jhD* is the (kinetic) momentum operator. In
the rest frame, the Pauli-Lubanski operator fulfills the
commutation relations of an angular momentum. Let v,
be solutions of the Dirac equation (3). Then the dipole-
moment tensor 2 = yoy fulfills p, 2 = 0, where p,
is the eigenvalue of 13”. Thus,

1
= —— by ny 67
m € pan/)’ ( )

with ng = J/Nﬂy/. This agrees with Eq. (31), if w = u or v.

On the classical level, X** is the intrinsic angular-
momentum tensor about the center of mass. In a relativistic
theory, the center of mass of a particle is frame-dependent.
In order to have a frame-independent definition of Z**, one
requires p, 3" = 0 as a gauge condition. This requirement
identifies the dipole-moment tensor (67) as the intrinsic
angular-momentum tensor about the center of mass in the
rest frame of the particle [55].

For massless particles there is no rest frame, thus both the
position (in the classical case the center of momentum) and
the dipole-moment tensor can at first be defined in an
arbitrary frame, which makes them frame-dependent. For
massless particles, the polarization vector n* is always
parallel to the momentum p#. Thus, the requirement
P, 2" =0 can no longer be used as a gauge condition,
since Eq. (67) automatically satisfies this constraint. [In the
massless limit, one also needs to change the normalization
of the spinors to u = 2|p| [50].] If we choose the dipole-
moment tensor to be defined in a frame characterized by a
timelike four-vector #*, we can choose the gauge condition
w2, =0 [13]. Consequently, the frame vector u* must
assume the role of p# in Eq. (67). Moreover, since n* and
p" are parallel for massless particles, the momentum p* can
assume the role of n* in Eq. (67). Finally, in order to obtain
the massless case we need to replace the normalization
factor 1/m in Eq. (67). The energy of a massive particle in

its rest frame is p. = +/p?. If the particle is on the mass-
shell, this is equivalent to p(r)f = m. The energy of a massless

particle in the rest frame of u*, however, is p® = p - u. Thus,
it is natural to replace the normalization 1/m in Eq. (67) by
1/(p - u). We emphasize that this replacement can only be
done in the presence of a 5-function which sets the rest-frame
energy equal to the mass m. The explicit expression for the
dipole-moment tensor in the massless case is then given by

thiy = _Leﬂyaﬁuap/ﬁ (68)
p-u

which agrees with the definition of the “spin tensor” in
Ref. [13]. This tensor corresponds classically to the intrinsic
angular momentum about the center of momentum as seen
from the frame where w* = (1,0,0,0) and will have the
quantum-mechanical properties of an angular-momentum
operator in that frame.

With this knowledge, we can make the transition
between the Wigner functions of massive and massless
particles. For zero fermion mass, Eqs. (15) and (20)
decouple. By defining right- and left-handed currents J;, =
T+ yA*), x = + for right-/left-handed particles, we
have to order A
- VuJy)

h
5 (vﬂ‘,}lé = Zeﬂyaﬁpa‘l)(,ﬂ- (69)
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These equations have been solved in Refs. [15,17,18],
with the result

h =
7 = 8(p?) <P" a5 Vv)fx + 2P p,8 (p)
(70)

where [, is the distribution function for right-/left-handed
fermions and u* is the four-velocity of an arbitrary frame.
We remark that in the massive case, s describes “spin up”
or “spin down,” which corresponds to positive or negative
helicity in the massless limit (mn, — p,). On the other
hand, the currents above are defined for given chirality y.
Since helicity and chirality are identical for massless
particles, but opposite for massless antiparticles, the rela-
tion between chirality y and spin/helicity s is y = es with
e = = representing particles/antiparticles.

To obtain the massless limit of our solutions, we replace
the massive dipole-moment tensor by the massless one,
>Om — ¥ Tn order to obtain the vector current for the
massless case from Eq. (44), we need to consider the term

~V(0)”ng. We first pull the constant factor 1/m out of the
derivative and then replace §(p? — m?)/m = &(p> — m?)/

Vv p* = 6(p?)/(p-u). Finally, replacing pH/m — u*,
mnt — p” in thls term we find

Vl(lfl)nzo - 5(172) [pﬂv(l) + €ﬂvaﬂv(0)ypauﬂA(0>]

1
2p-u
1
- [Equaﬂzu,aﬁ +z‘u,;u/FDmpot:|A(O>5/(I72)' (71)

In Ref. [15] the frame-vector u, is assumed to be inde-
pendent of space-time coordinates. In order to compare to
the solution found in that reference, we adopt the same
assumption. Evaluating the derivatives, contracting the
e-tensors, and using p*§'(p?) = —58(p?), we find from
Egs. (38) and (71)

Vi =d(p )p”V+2Z’wV

+ hE*p, A0S (p?) + O(h?), (72)
where V = V(© + av()_ Note that V(') depends on the
frame vector u#* such that the whole expression (72) is
frame independent [13,17,20]. To obtain the axial-vector
current in the massless case from Eqgs. (38) and (44), we
note that the general solution of Eq. (42) reads

1

o)
2]) u (ul/ H

0
£ =3,,A0 ¢ —u,VYVO(73)

where the first and second terms depend on arbitrary
timelike unit vectors u* and v*, respectively. Here, one
makes use of the first equation (47) to see that the constraint
(42) is fulfilled. Inserting Eq. (73) into Eq. (44), and

replacing the zeroth order dipole-moment tensor Zf,?,)

by £, ,,, we find

h
Hpg = 8(p?) | A + 52V VO

+aFp, VO (p?) + O(R?), (74)
where A = A© 4+ 7AW with A" dependent on u¥. Note
that, in order for the above axial current to be frame-
independent, the function A" cannot depend on v*.
Adding and subtracting Eqs. (72) and (74), we recover
the result (70). Acting with V, on this equation, one can
derive the chiral kinetic theory of Refs. [15-20].

VII. COMPARISON TO THE CLASSICAL CASE

In this section, we show that Eq. (62) gives rise to the
first and second Mathisson—Papapetrou—Dixon (MPD)
equations [51,56] as well as to the BMT equation [53],
which were derived for classical, extended, spinning
particles with nonvanishing dipole moment. Comparing
Eq. (62) to the generic form of the collisionless relativistic
Boltzmann—Vlasov equation [56,57]

PO fs+ mapp<F?fs) =0, (75)

where f, is the distribution function, F§ = dp*/dr is the
external force, p# = mdx*/dr and 7 the world-line param-
eter, we find that in our case

1 h
F= -\ Fep, 5 (F0)s | (76)

i.e., the external force is given as the sum of the Lorentz
force and the Mathisson force. This is the first MPD
equation [51,56]. In Refs. [51,56], the kinetic equation
for particles with classical dipole moment m* was derived.
Our results agree with those, setting

oz, (77)

m,, — gip 2

with Bohr’s magneton up = eh/(2m), where e is the
electric charge, and the gyromagnetic ratio g =2, as
expected for Dirac particles with spin 1/2.

The evolution of the dipole-moment tensor is given by
the third equation (47), which can be rewritten as

msy) = F 5 (78)
where we used
S50 = (K000 + PU0p0) i) (79)

with F¥ given by Eq. (76) to zeroth order. Equation (78)
is identical to the second MPD equation [51,56]. Using
Eq. (31), we obtain
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. 1
mZ,(,(p = —€uap <p"’f1<0)ﬂ - —F’l"‘pln(())ﬂ). (80)
m
Inserting Eq. (78) and contracting with €”°* yields
Py (mil,(;()) + F’én,&o)) - Do (miz,(,o) + F%nl(,o)) =0. (81)

Contracting with p” and using Eq. (76) to zeroth order in A,
we conclude that

miry) = F,,nOv, (82)

This is the BMT equation for classical spin precession in an
electromagnetic field [53].

VIII. GLOBAL EQUILIBRIUM

Equation (62) determines the single-particle distribution
function f7 in a general nonequilibrium state. A special
solution is obtained in global equilibrium, which we will
consider in this section.

A necessary condition for equilibrium is vanishing
entropy production. Assuming the standard form of the
collision term, the distribution function in equilibrium must
have the form [13,56]

9= (e + 1), (53)

with ¢, being a linear combination of the collisional
invariants, namely, charge, kinetic momentum p#, and
total angular momentum

h
S =L+ s§z<°>ﬂv + O(h?), (84)

which is the sum of orbital angular momentum L* =
x¥p¥ and spin angular momentum, which to first order is
given by the dipole-moment tensor S%Z(O)W. (Also the
canonical momentum z* is conserved in a collision and
could be used instead of the kinetic momentum. Here, we
will at first use the kinetic momentum, since it is inde-
pendent of space-time coordinates, as well as gauge-
independent.) Thus,

1
gs=r- b(x) + as(x) +59ﬂl/

(x)J5". (85)
Here, b,(x), a,(x), and Q,, (x) are Lagrangian multipliers,
which can depend on x. Since J%* is antisymmetric, the
symmetric part of €, can be dropped without loss of
generality.

Let us consider the case of global equilibrium with rigid
rotation. Using Egs. (84) and (85) can be written as

0= P BL) +a(x) + 570 (0, (86)

where f,(x) = b,(x) +Q,,(x)x". In global equilibrium,
the Boltzmann equation (62) needs to be fulfilled. From the
part of Eq. (62) proportional to the derivative of f5? we
obtain

0= {p"% + [F"”py + sngj) (%F”i)] 3,;,4}95
= pF0y.a5(x) + F B0 (x)] + p*p* 0P, (x)

h
+ s ZZ(O)P"p - 0,Q,,(x)
h
+ 57 [EOB@) - 0,F o + ZOFIQ,, (). (87)

where we used Eq. (47). This equation is fulfilled, if

8xyﬂv + 8xuﬁ/4 =0,
8x;4as(x> = F/wﬁv(x>’
axygiv(x> = Ov (88)

which makes the terms in the first and second line of
Eq. (88) vanish. The terms in the third line of Eq. (87) can
be shown to vanish if b, is constant, since then €, is equal
to the thermal vorticity, i.e.,

1
uy — Oy = E (8x;¢ﬂv - 8)61/:6;1)' (89)

For the proof, one also employs the relation

ﬂaaxaF;w - Faﬂaxyﬁa + F(zyaxﬂ/ja = O’ (90)

which can be proven with the help of the homogeneous
Maxwell equations and Eq. (88). These equilibrium con-
ditions agree with those found in the classical case [56] and
those using covariant statistical mechanics [58]. Note that the
second equation (88) implies that, in the rest frame of f*, an
electric field is cancelled by a gradient in a;. It is amusing to
note that, without electromagnetic fields, the tensor Q,, does
not need to be equal to the thermal vorticity.

We introduce the Lie derivative of A, along the direction
of p* as

Lo (x) = Fx) - 9,4, (x) = AR) - 9,6,(x). (O1)

Choosing a gauge in which L£zA, =0, we can rewrite
Eq. (88) as

Oulay(x) = Alx) - f(x)] = 0. (92)

Defining

—p()ps(x) = a;(x) = A(x) - f(x) = const,  (93)

the function g, becomes
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h
=pr-U=fus+s7 sO0nq,. (94)

Here, m, =put+ Aﬂ is the canonical momentum, U¥ is the
fluid velocity, = 1/T is the inverse temperature, and g
is the chemical potential for particles with spin s (for
antiparticles, we need to reverse the sign of the chemical
potential). This form of g, and thus the distribution
function f5?, agrees in the massless and field-free limit
to the one suggested in Ref. [13]. Moreover, recalling the
definition (A12), (A13) of the dipole-moment tensor one
can prove that the distribution function agrees with the one
proposed in Ref. [33] to first order in A if yu, = pu_ and if
the electromagnetic field vanishes.

The part of Eq. (62) which is proportional to f3 vanishes
if g, = p_ to zeroth order in #. In the presence of a spin
imbalance, Ay = p, —u_ # 0, it only vanishes if

(LF)(9,,Z4) = 0. (95)

The reason that global equilibrium with spin imbalance can
in general not be realized for massive particles is that in this
case the axial-vector current is only conserved if the
pseudoscalar function P = 0, see also Eq. (12).

To zeroth order in 7, the distribution function is given by

S = (e ) (%)

with

0" =Bz U= p,). (97)

We deﬁne the dual thermal vorticity tensor as @, =

é €ap® . #. Now we calculate the vector current by inserting
the distribution function (83) into the equation for V, =

VO £ avM| of. Egs. (38), (44). With

(0)
vf/O)f_(Y()) = Zf; ( “ xuﬂa ﬁaaqua - Ft/aﬁa>
(

ofY

— (l

 og

a)l/(l ’ (98)

where we used LA, = 0, Taylor-expanding

i Z;w " o
g

(). (99)

and noting that

1
5([)2 - m2) <2(0)prﬂa)y/) + ZZ(O)IJVpﬂw/w>

= =5(p? — m*)ma**n,, (100)

2

where we used p - n = 0 and §(p*>—m?) p>=68(p*—m?)m?,

we find

_ 2 2 _ 2 Ho_ é MY —8
— (2nh) Z [5(1) m )(p ms 2(0 n, ag§°)

+mshEF*n,d (p> — m?)

sh vap ) (70O
—%5(17 —m?)etp,(V, nﬂ)}

x [0(p9) £ + 6(-

The current given by Eq. (101) contains contributions
which are not parallel to p#. To first order in 7, particles are
not transported parallel to their momenta. The term con-
taining F#* in Egs. (101) is caused by off-shell effects and
describes the vector current induced by electromagnetic
fields, which yields the analogue of the CME in the case of
nonzero mass. On the other hand, the term containing @
describes the current induced by vorticity and thus gives the
analogue of the CVE.

We furthermore calculate the axial-vector current.
In order to do so, it is convenient to decompose the tensor

PO+ O(R2). (101)

iful,) introduced in Eq. (41) in the following way,

o(1 —
/(w) X + S (102)

1
2
The tensor &, is antisymmetric and satisfies p*E,, = 0.
On the other hand, y,, represents the dipole moment
induced by the gradients of the distribution function since,
according to Eq. (42), it satisfies
0
P L = VL VO (103)
Inserting V(© into Eq. (103) and using Eq. (98) we can
derive the following constraint for y,,,

Pl = Pr @,V (104)
where we adopted the short-hand notation
27m (27h)? Z £+ 0(=p0) 177
(105)

The most general solution of Eq. (104) can be written as

Ky

)(/w = |:K1w/w - 1}— Dvwﬂa)pa V(0>/7 (106)

(Uﬂwva

where k;, are arbitrary coefficients which satisfy x; +
Kk, = 1, and v* is an arbitrary vector such that v - p # 0.
Other possible terms which vanish when being con-

tracted with the momentum are absorbed into E,,.
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The decomposition into y,, and E
allows for the transformations

,u 18 NoOt unique, but

= - C 1 .,

S T S T 5 [CO,,D + n (v, = V@) P :| vy

}(/41/ - ){/w + C |:(UM + — (Uﬂwl/a va’ua>pa:| V(O)/’
(107)

with C being an arbitrary function of x and p. For any value
of k,, we can apply the above transformation with C =k,
to Eq. (106), which yields

T = (K1 + 62)0, VO = @, VO (108)
Thus, we can set k, = 0 without loss of generality. In other
words, it is always possible to isolate the contribution

proportional to @, in the decomposition for if,l,). This
decomposition will assume a physical meaning when
looking at the kinetic equation for S,,,.

Inserting Eq. (102) into Eq. (49), we obtain

1 1 =
0= p- A < Xuw + H/uz) - Fa[ﬂ <§)(v]a + ':‘y]a>

+ E (8xaFﬂv>aZ V<O) (109)
Noting that p - V(O))(W = 0 and using Eqs. (90) and (108),
we find that the y,,-dependent part vanishes and
P V(O)” Fabt:”]“’ (110)
which is the second MPD equation for E,,. This part of the
dipole-moment corresponds, together with the zeroth-order
dipole moment, to the classical spin precession in electro-
magnetic fields.
We now derive from Eq. (44) the full axial-vector part of

the Wigner function up to first order in #, i.e.,
2 h 0
Ho__ = 2 _ 2 O _ gy _—
‘A (271’71)3 Z |:5(p m ) <Smn D) ' Py ag§0)>
P, =) [0 7 + 0=
h = 2 2 2
—56/‘”“/’]7”.:&/;5(17 —m*) + O(h*). (111)
By looking at the different terms in Eq. (111), we identify
three contributions to the axial-vector current in the massive
case. The first term in the first line and the term in the last
line describe the spin precession in the presence of an

electromagnetic field according to the BMT equation. We
remark that the function E,, is not specified and has to be

determined through Eq. (110). The second term in the first
line gives rise to the axial current in the direction of the
vorticity, which is the analogue of the axial chiral vortical
effect (ACVE). Finally, the term in the second line describes
the axial current along the magnetic field, which is the
analogue of the chiral separation effect (CSE). These terms
are analogous to those found in Refs. [35,41,59].

IX. FLUID-DYNAMICAL EQUATIONS

In this section, we present the equations of motion of the
fluid-dynamical variables, i.e., of the net particle-number
current and the energy-momentum tensor. We also give an
equation for the spin tensor, which supplements these
equations in the case of spin-1/2 particles.

The net particle-number current is defined as

P = (P ():) = / dpVi(xp).  (112)

Inserting the zeroth- and first-order solutions (38), (44) into
Eq. (112) we obtain

h
JH = / aprpt v +ay] +50u / dPEOm A ©)

h

+—Faﬂ/dpa”[ 0)ap A 0], (113)

4

where dP = d*ps(p? — m?).

Equation (16) represents the conservation law for the
vector component of the Wigner function. Integrating this
equation over kinetic 4-momentum, we immediately obtain
the conservation law for the net particle-number current,

0,0 (x) = / &P, + jo(A)F V¥ (x, p) = 0.
(114)

where we assumed that F* is independent of p* and V¥
vanishes sufficiently rapidly for large momenta, which
ensures the vanishing of a boundary term.
The Lagrangian operator for a Dirac spinor in an
electromagnetic field is [45]
_|.h n '~ 1 uv
Ezy/liy-(D—D)—m l//—ZF F. (115)
From the Lagrangian we can derive the canonical energy-
momentum tensor as follows,

oL oL
™ = {: S + O
< (D) " T a0,

2
or
I./A — L

T oAy a9 >
= Tho o+ T + Thi,

nt

)

(116)
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where we have separated the total energy-momentum
tensor into three parts: the gauge-invariant matter part
Thy the part containing the interaction between gauge
potential and matter current, 7%, and the electromagnetic

part Tem,

int’

oo .=
Thoat = §<1W"(1D” —iD™y:) = /d4pp”V”,
= A Grs) = ¢ [ atpyr,

1
Thm = Zg"”F“ﬂFaﬂ — FHOVA,. (117)
Note that none of these are in general symmetric under
u <> v. The total energy-momentum tensor is conserved
0,,T" = 0, which can be checked using the Dirac and
Maxwell equations. However, the matter part is not
conserved,
O T () = F*(x)T o (x). (118)
This equation can be derived by acting axﬂ on V¥ in the
definition of Th. ., cf. first equation (117), then using
Eq. (16), and finally integrating by parts. Inserting
Egs. (38) and (44) into the energy-momentum tensor, we get

n
Tt = /de”p”[V(°> + AV + 20 [ dPpEOHA)
h 0 40 _N o
+7 Jrad a4 dPZaﬂA< ) — > F¥, | dPEOkap0)

h 0
+3 P / dPp+dy (=) A0)). (119)
The total canonical angular momentum tensor is calcu-
lated as follows,

h
T = T = T 4 2 gy o Yy

— (F¥AY — FAR), (120)

The first two terms, x#*T* — x*T*, can be interpreted as the
orbital angular-momentum tensor. The remaining terms
constitute the spin angular-momentum tensor, which can
be further separated into a matter and a field part. The spin
tensor of matter can be defined as [33]

D ) 1
Subt(x) == (u{rt oYy = ‘Eew / d*pA,(x, p).

(121)

=

With the help of Eq. (20) we find, to any order in 7,
7S (X) = Titay (%) = Thoae (), (122)

where we assumed that boundary terms vanish. Thus, the
spin of matter is not conserved separately. To zeroth order

in A, Thy, is symmetric according to Eq. (119), thus both
sides of Eq. (122) vanish. To first order in #, both sides are
nonzero. Inserting the zeroth-order Wigner function into
Eq. (121) we obtain

S](ggfslll/(x) _ %/ dP[p/Iz(O);w 4 pyz(o)wl _ puz(O);M]A(O)'
(123)

The above expressions for the energy-momentum and spin
tensor emerge directly from Noether’s theorem and thus
correspond to the canonical ones. However, one can obtain
different sets of tensors by applying pseudogauge trans-
formations that keep the conservation laws for energy-
momentum and spin. It has been shown that using different
sets of tensors related through this pseudogauge freedom is
not equivalent and leads to different measurable quantities
[40]. We should mention that a similar derivation of fluid-
dynamical equations of motion from the Wigner function
for massless particles including the conservation of total
angular momentum was carried out in Ref. [19].

Note that with Eq. (122), we can also prove that
0, They = F**J ,, the form of the equation of motion for
the matter energy-momentum tensor given in Refs. [60,61].

X. CONCLUSIONS

In this paper we have derived kinetic theory for massive
spin-1/2 particles in an inhomogeneous electromagnetic
field starting from the covariant formulation of the Wigner
function. Carrying out an expansion in 7 and truncating it at
first order, we found a general solution of the equations of
motion. We showed how to consistently take the massless
limit and demonstrated agreement with previous works,
which describe the CME and CVE. One of the crucial results
of our work is the derivation of the collisionless Boltzmann
equation for particles that carry a dipole moment due to their
spin. We also recovered well-known results in the classical
limit. The external force acting on the particles is the sum of
the Lorentz force and the Mathisson force, i.e., the first MPD
equation. The time evolution of the dipole moment follows
the second MPD equation, and the spin polarization pre-
cesses according to the BMT equation. Moreover, as an
example, we studied the case of a rigidly rotating fluid in
global equilibrium. In particular, we found the conditions
that the Lagrange multipliers related to the conservation of
charge, energy, momentum, and angular momentum have to
satisfy in order for the distribution function to be a solution of
the Boltzmann equation. Finally, fluid-dynamical equations of
motion are provided, in which the spin tensor is included
among the evolved densities.

A straightforward extension of this work could be the
inclusion of a collision term into our generalized Boltzmann
equation and the derivation of the equations of motion for
dissipative relativistic magneto-hydrodynamics for spin-1/2
particles. This could be achieved using the method of
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moments, following Refs. [60,61], where this has already
been done for spin-0 particles. Another potential extension
would be the derivation of a transport equation starting from
the equal-time Wigner-function formalism [46].
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APPENDIX A: DIAGONAL SPIN BASIS

In this Appendix, we show how to diagonalize the
distribution function by choosing the spin quantization
direction along the polarization direction. The axial-vector
current which one obtains directly from Eq. (22) reads

AO(x, p) = ﬁaw — )
X Z (p°)a( p,s))/”y u(p, )frs (x,p)
— 0(=p°)5(=p. 1y v(=p. 5) 15 (x. —p)].

(A1)

The distribution functions f(©)* are Hermitian matrices in
spin space and can thus be diagonalized by a unitary
transformation [50]. Since the Pauli matrices o' together
with the unit matrix are a basis of the space of Hermitian
(2 x 2) matrices, the distribution functions can be written as
[37,65]

fO¢=a*+b¢-6 (A2)

with some coefficients ¢° and b® and e = +
positive-/negative-energy states.

In the rest frame, the standard spinors u and v are given
as [54]

represents

u(0,+) = v2m(1,0,0,0)7,
u(0,-) = v2m(0,1,0,0)7,
(0, +) = vV2m(0,0,1,0)7,
(0, -) = v2m(0,0,0,1)". (A3)

Note that u(0,+) corresponds to a particle with spin
parallel to the z-direction, while v(0,+) corresponds to
an antiparticle with spin antiparallel to the z-direction.

We diagonalize the distribution functions f(%)¢ in the rest
frame,

PO =D (D) SIS DS (A4)
r's'
with D¢ being 2 x 2 matrices in spin space,
= (d.dZ), (AS)

where 31 are the eigenvectors of b¢ - 6 corresponding to
the eigenvalues +, respectively,

(n¢ - 6)d, = +ed"., (A6)
where n¢ =b°/+/b°-b° is the unit vector along the
direction of b¢. Note that the distribution functions f©
in general depend on the space-time coordinates x*, thus
the transformation matrices D¢ as well as n¢ are defined
locally. We then define the following spinors, which can be
derived by rotating the standard ones,

2+
i(x,0,5) = Z (0,5)D} (x) = v2m| > |,
0

:@(?_).
d

The spinors i(x,0,+) and #(x,0,+) now correspond to
particles/antiparticles with spin parallel/antiparallel to n*.
Using Eqs. (A4) and (A7) we obtain

7(x,0,5) = ZU(O,S’)D (A7)

S a(0. )74 u(0.1) £ (x,0)

rs

= 3 0. 0.1 (5, 0,

= 2m2s 0,07 A" (x,0), (A8)

and similarly for the v—spinors. Then, performing a Lorentz
transformation we obtain
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> a(p.s)rrulp. ) f (x.p)

rs

=2my st (xp.n )7 (xp). (A9)
and similarly
> 5(=p. )y u(=p. )Y (x,-p)
=2my s (x,=p.—n7) A (x—p).  (AI0)

where n** is given by Eq. (27). We rewrite the axial-vector
current as

A = mnVAO05(p? — m?), (Al1)

where the vector n,(f)) (x, p) and the distribution function
A)(x, p) are determined by Egs. (26) and (30), respectively.
Furthermore, we define

1 _
ST (x,p) = 5 —i(x, p. s)o*ilx. p, ), (A12)
m
and
1 - -
S (x.p) = 5 - (5, =P s)o  Tx.—p.s).  (AI3)
m
We have
n 1 b+
> ’”’(x,P) = ——e" Pally (xvp)’ (A14)
m

which can be easily checked in the rest frame using the Dirac

representation of the y—matrices and [6;, ;] = 2i€; ;0.

Defining

=0k (x, p) = O(p°)ZH (x.p) = O(=p°)Z7(x. D),
(A15)

we obtain the tensor current S,g,i) as

1
SW(x,p) = 0(p? =)

(2zh
x > [0(p*)(x. p. $)o, i(x. p. s) £ (x.p)

s

—0(=p°)F(=p. )0, 7(~p, )£\ (x, —p)]
= mZy) (x. p)8(p> —m) A0 (x.p).  (A16)

Using

i(x,p,s)i(x,p,s) = =0(x,—p, s)(x, —p, s) = 2m,

a(x,p,s)y u(x,p,s) = v(x,—p, s)y’v(x,—p,s) =0,
a(x,p, s)r'a(x, p,s) = =o(x, =p, s)r*o(x, —p, s) = 2p*,
(A17)

the calculation of F©, P©) and V,(,O) is straightforward.

Finally, we stress that the diagonalization procedure for
the distribution function described in this Appendix is in
general possible also at higher order in 7, even though the
exact form of the spinors is not known.

APPENDIX B: REDUNDANCY OF EQS. (11)—(20)

In this section we prove that Egs. (11)—(20) are not
independent from each other. Combining Egs. (11), (15),
(16), and (20), we derive

7} 1
0=2-V,(I1-V = mF) ~ =11, (V- V)

1 14 h a
—EH <§VD4V,,] - eﬂmﬁH Aﬂ - mSﬂy>

1) )

+ m v <H[ﬂvu] + Eeﬂmﬂva'Aﬂ> : (B1)
After some calculation we obtain
f
EV”]: +1II°S,,
M o) v+ e vy
C2m Y v 2m- T OVH

1 1728 § (4 hZ v o p

+%€uvaﬁ [H’H]—’_Z[v’v] AP, (Bz)

The commutators can be easily calculated using the
definition of the operators (7):

. h .
[Hﬂ’nv] = _hjl(A)F;w _EAJII (A)F;wv

—Jo(A)F

[H/uvv] =Aj (A)Fﬂl/ s

2

V..V,] = gAjo(A)F (B3)

v
where j| (x) = £ j, (x). Using the definitions of the spherical
Bessel functions we can prove

xXjo(x) = 2j1(x) = xj(x) = 0. (B4)
Inserting the commutators into Eq. (B2) and using the above
relation, one finds that the right-hand side of Eq. (B2)
vanishes, and we just obtain Eq. (18).

Analogously, we can construct the following equation
using Eqgs. (12), (15), (17), and (20),
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1 h h fL
O—%HM<§VA+m77> —%V (H ./4) am /wot/i

x V¥ |:§ (V(zvﬂ _ v/iva) _ €aﬂ'[me-Aa _ mSa/)’:|
! I | [V — 1Py h P A B5
~ o et IV 2V, A, ) (BS)

from which we get

n
H”P + Z eﬂyaﬂV”S"’ﬂ
n n
= 2 ([Hu’v ] [ u])AD'F%[HD’vu}Aﬂ

1 n?
[T+ 5 99,9 )07 (B6)
Analogously to Eq. (B2), the right-hand side of Eq. (B6)
vanishes and we obtain Eq. (19).

APPENDIX C: DERIVATION OF KINETIC
EQUATIONS

In this Appendix we show some technical details we
used when deriving the kinetic equations (47), (49). First
we focus on the kinetic equatlon for the zeroth-order
dipole-moment tensor Z,(w) and the axial distribution
function A©®). We insert the vector part of Eq. (43) into

Eq. (46) and use the relation A = = € " SPO, 1o
derive

1
0=—-—1|[p,V
2m [P
1
—mé‘wjaﬂv

1
Z—%{[V”W]S +p VS

(0)a S((l(z) — p, V0 Sg,),)]
(0)agprpo P, Sé?,)
(C1)

Inserting the zeroth-order solution we get

5(p* = m?){p - VO[EAO)] - Fo 5040} = 0.

o (C2)

The dipole-moment tensor is normalized, 2<0>W2,§2> =2,
thus contracting the above equation with (V% we obtain

8(p? —m?)p - VOAO =0, (C3)
where we have used
sOwpesl) - Fes)] = 2F, zOws* — 0, (C4)

because F,, is antisymmetric and Oz s summetric
under a <> u. Inserting Eq. (C3) into Eq. (C2) one obtains

the kinetic equation for Z,(w)
The kinetic equation for V(1) is denved from the first line
of Eq. (48). According to Eq. (43), V(1) can be expressed in

terms of F() and SL(Z). Thus we get

1

—p-V0 +2—v YOS — 0. (C5)

The dipole-moment tensor is antisymmetric in its indices,
so we can use the commutator [VO#, VO] = (99Fm)0,,,
to simplify the second term. Using also the zeroth- and first-
order solutions we obtain

1

1
0= _p VOFWD 4 4_ (%Fﬂy)apa‘s}(tg)

=8(p* =m?)p-VO

1 a0

- 55/([)2 —m?)p - VO[F /’ZE,}A@]
1

+ 5 (0LF)0 o [Z) AV (p? — m?)

pa

1
=o(p* - m2>{p VOV <azFﬂ”>apa[z£‘i>A<°>]}

1 . 0
~58(p? = m?)Fp - VO A, (C6)

In order to derive the kinetic equatlon for the first-order
dipole-moment tensor, we first need V,(, ), which is calcu-
lated by expanding Eq. (32) into a series in A and
identifying the A” term,

1

1 1
Vl(f) _ 7p#_7:<2) -+ —H,(f)f(o) +
m m

—vorsty).

o (C7)

Inserting this, as well as A,(ll) from Eq. (43) into the second
line of Eq. (48) we get

2) ! (1)
([ ’ u] - [HV ’pﬂD]:<0) _%p ' V(O)Sﬂl/
1
2_ ) pl/]S((Iit))‘

(VO p 1S5 — VO (C8)

= F,* and

The commutators are given by [V(©7, p ] u

1
07, p) = 7, p,) = =5 (BuaFu) (C9)

Inserting the solutions for 7(©) and S,(,ly) from Eqgs. (37) and
(41) into Eq. (C8) and using the above commutators, one

obtains the kinetic equation for i,(ll,) .
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