
 

O(4)ϕ4 model as an effective light meson theory:
A lattice-continuum comparison

Gergely Markó 1,* and Zsolt Szép 2,†

1Department of Theoretical Physics, Eötvös University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
2MTA-ELTE Theoretical Physics Research Group, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary

(Received 18 July 2019; published 23 September 2019)

We investigate the possibility of using the four-dimensional Oð4Þ symmetric ϕ4 model as an effective
theory for the sigma-pion system. We carry out lattice Monte Carlo simulations to establish the triviality
bound in the case of explicitly broken symmetry and to compare it with results from continuum functional
methods. In the case of a physical parametrization we find that triviality restricts the possible lattice
spacings to a narrow range, and therefore cutoff independence in the effective theory sense is practically
impossible for thermal quantities. We match the critical line in the space of bare couplings in the different
approaches and compare vacuum physical quantities along the line of constant physics.
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I. INTRODUCTION

The ϕ4 scalar model with an internal Oð4Þ symmetry in
four spacetime dimensions has long been used as a model
for spontaneous chiral symmetry breaking [1]. The direc-
tion of the symmetry breaking is associated with the sigma
meson, while the pions are the Goldstone bosons emerging
as a result of the spontaneous symmetry breaking. It is also
widely known that as a field theory it is trivial and it has no
finite ultraviolet limit with nonzero coupling strength [2].
Although this property is still discussed (see e.g., [3]), we
accept it as a fact and investigate what is the bound set by
triviality to the quantitative applicability of the model.
Based on a calculation carried out by Lüscher and Weisz
(LW) in the same model applied to the Higgs particle [4]
one can estimate the lowest lattice spacing that can be
reached in a parametrization adjusted to light mesons. This
turns out to be aLWmin ¼ 0.40ð4Þ fm, which corresponds to a
maximal cutoff in momentum representation to a few
times 500 MeV. This foreshadows that a scaling region
of physical quantities as a function of a on the lattice is
unlikely to be found without getting too close to the
triviality bound, and therefore cutoff independence, even
in the effective theory sense, is not feasible.
The above estimate was derived in a specific renormal-

ization scheme for the case without explicit symmetry

breaking. It is interesting to see to what extent it changes
when, compared to [4], a different renormalization scheme
is employed in the case when the pions are massive. At the
same time, experience shows [5] that the use of continuum
functional methods is less restricted in the shadow of
triviality and can retain some predictivity. To study this in
more detail we use two continuum methods: the functional
renormalization group (FRG) [6,7] in the local potential
approximation (LPA) and the two-loop and Oðg20Þ trunca-
tions of the two-particle irreducible approach (2PI) [5,8,9].
Treating the model as a cutoff theory, we solve it using the
same bare couplings as in the lattice version along the line
of constant physics (LCP). Then, to compare the values of
physical quantities, we need the relation between the lattice
spacing a and the cutoff Λ. This is determined by matching
the critical line of the model at zero temperature with the
one determined by Lüscher and Weisz in [2] using the
hopping parameter expansion.
The paper is structured as follows. In Sec. II we

introduce notations for the model and summarize the
details of the lattice simulations. In Sec. III we define
the LCP and describe how the triviality bound is obtained.
We also discuss the immediate consequences of the value of
the minimal lattice spacing. In Sec. IV we compare the
lattice results with those obtained in the continuum
approximations, and finally in Sec. V we summarize our
findings.

II. GENERALITIES

We discuss the OðNÞ symmetric, Euclidean ϕ4 model
specifically for N ¼ 4, described in terms of bare quantities
denoted by the subscript 0 by the continuum action
[omitting the obvious x≡ ðt; x⃗Þ dependencies]
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SC¼
Z

d4x

�
1

2
∂μϕ⃗0∂μϕ⃗0þ

m2
0

2
ϕ⃗0ϕ⃗0þ

g0
24

ðϕ⃗0ϕ⃗0Þ2−H⃗0ϕ⃗0

�
;

ð1Þ

where ϕ⃗0 is the N ¼ 4 component field, m0 is the mass,
and g0 is the quartic coupling. In the explicit symmetry
breaking term the external field H⃗0 is chosen to point in the
direction of the first component of the scalar field with a
length of H0, independent of x. Discretization on a
periodic, four-dimensional cubic lattice consisting of
NT × N3

S sites (using a forward derivative), and rewriting
in terms of the hopping parameter κ, leads to the well
known lattice action [2]:

SL ¼
X
x

�
φ⃗ φ⃗−2κ

X4
μ̂¼1

φ⃗ðxÞφ⃗ðxþ aμ̂Þ

þ λðφ⃗ φ⃗−1Þ2 − λ − h⃗ φ⃗

�
; ð2Þ

where a is the lattice spacing and μ̂ is the usual four-
dimensional unit vector. The connections between the
continuum and the lattice parameters are

aϕ⃗0 ¼
ffiffiffiffiffi
2κ

p
φ⃗; ð3Þ

g0 ¼
6λ

κ2
; ð4Þ

a3H⃗0 ¼
h⃗ffiffiffiffiffi
2κ

p ; ð5Þ

a2m2
0 ¼

1 − 2λ

κ
− 8: ð6Þ

We use Monte Carlo integration with importance sam-
pling to evaluate path integrals. Configuration generation is
done by using a poor man’s heat bath algorithm, in which
each site is updated using ten metropolis steps before its
neighbors are updated in order to make the new field
value at the chosen site practically independent of its initial
value. Between two heat bath sweeps we also include
two overrelaxation sweeps in order to sample a much
larger part of the phase space using the same number of
configurations.

III. LINE OF CONSTANT PHYSICS

A. Observables defining the LCP

The explicitly broken Oð4Þ symmetric ϕ4 model has
three parameters: the hopping parameter κ, the quartic
coupling λ, and the external field h. In order to define a

continuum limit1 we give two physical prescriptions, which
restrict our parameter space to the LCP, along which the
lattice spacing a tends to zero in physical units, at least in
principle. The two prescriptions are

mσa

ϕ̄Ra
¼ 300 MeV

93 MeV
≈ 3.226; ð7aÞ

mπa
ϕ̄Ra

¼ 138 MeV
93 MeV

≈ 1.484; ð7bÞ

where mσ;π are the respective pole masses and ϕ̄R is the
expectation value (denoted by the bar) of the σ component
of the renormalized field, which takes the role of the pion
decay constant in the linear sigma model (LSM). We
choose a lower sigma mass (300 MeV) than what is
generally agreed upon (≈450 MeV) [10]. Our choice is
limited on the one hand by the fact that higher sigma
masses are barely reachable in approximate continuum
solutions of the LSM [11,12] and on the other hand by the
fact that we want to retain the kinematic possibility of the
σ → 2π decay.
To obtain the pole masses we measure time slice

correlators. Let us define a time slice as

s⃗ðtÞ ¼ 1

N3
S

X
x⃗

φ⃗ðt; x⃗Þ; ð8Þ

and then

CijðtÞ ¼
1

NT

X
τ

siðtÞsjðt − τÞ ð9Þ

is the time slice correlator matrix for one configuration. The
ensemble average of CijðtÞ is the time slice correlator. By
our choice of h⃗ the σ direction is i ¼ 1; therefore CσðtÞ≡
C11ðtÞ is dominated by mσ, while CiiðtÞ, i ≠ 1, are all
dominated by mπ. We do a least squares fit using the
function2

fðtÞ ¼ Aþ Bðexpð−mtÞ þ expð−mðNT − tÞÞÞ; ð10Þ

with parameters A, B, and m to CσðtÞ as well as to the
average of the three pion directions3

CπðtÞ ¼
1

3

X4
i¼2

CiiðtÞ: ð11Þ

1Even though a true continuum limit is not possible due to the
triviality of the model, we follow the standard procedure which
would allow us to define it if it existed.

2Contributions of excited states, if they exist, are invisible
within our precision: the remnant obtained by subtracting the
fitted form from the data is consistent with zero.

3Averaging over the three pion directions lowers the statistical
error of mπ compared to mσ .
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The average and error of the fit parameters and in particular
the masses are obtained by a jackknife analysis. The fit is
carried out on each jackknife sample, leaving out the t ¼ 0
point of the correlator from the data in order to lower the
distortions caused by possible higher excitations.
In the case of the sigma mass, one must take care of the

disconnected part of the correlator. The connected part of
the correlator is

hCσ;cðtÞi ¼ hCσðtÞi − hM1i2; ð12Þ

where M1 is the first component of the average field over
one configuration,

M⃗ ¼ 1

NTN3
S

X
x

φ⃗ðxÞ: ð13Þ

To subtract the correlated errors from the connected sigma
correlator, instead of (12) we use another prescription (the
two definitions differ only in a constant),

hCσ;cðtÞi ¼ hCσðtÞ −M2
1i: ð14Þ

The definition (12) has a bad signal to noise ratio due to
correlated errors which are canceled in (14) leading to a
better signal. We show the reduction of error achieved by
using the definition in (14) in Fig. 1.
The measurement of ϕ̄R goes as follows. The ensemble

average of the first component (the sigma direction) of M⃗ is

hM1i ¼
aϕ̄0ffiffiffiffiffi
2κ

p ; ð15Þ

where the 0 index on the right-hand side denotes that ϕ0 is a
bare field; that is, wave function renormalization is still
needed. Then the renormalized vacuum expectation value is

ϕ̄R ¼ ϕ̄0ffiffiffiffi
Z

p : ð16Þ

We obtainZ by prescribing the value of the zero-momentum
inverse pion propagator to be the pion pole mass:

G−1
R;πðp ¼ 0Þ ¼! m2

π: ð17Þ
Through aWard identity [13] the inverse two-point function
can be rewritten as

G−1
R;πðp ¼ 0Þ ¼ HR

ϕ̄R
¼ Z

H0

ϕ̄0

; ð18Þ

which, in terms of lattice quantities and combined with the
renormalization prescription, leads to

Z ¼ 2κm2
πhM1ih−1: ð19Þ

The value of Z is slowly changing between 0.74 and 0.8
along the LCP in the measured range of a.

B. Determining the LCP

To obtain a point of the LCP curve, we fix the value of
one of the parameters (usually h, but in the region where
triviality strongly influences the LCP we fix λ) and measure
the ratios of observables appearing in (7a) and (7b) on an
appropriate grid in the plane of the remaining two param-
eters, κ‐λ and κ − h planes, respectively. The physical
values of ratios define contour lines, and the LCP is
obtained as the intersection of two contour lines, each
belonging to one surface. Points of the contour lines are
obtained by linear interpolation between grid points and are
fitted with parabolas. The intersection of the two parabolas
is one point of the LCP corresponding to the h or λ where
the grid was defined. The error is estimated by a bootstrap
resampling using 104 samples. A detailed description of
this procedure is relegated to Appendix A. The original
ratios of observables were obtained using 16 × 163 lattices
with 105 field configurations. While 16 ×mπa > 6 even
for the smallest lattice spacing, we tested volume inde-
pendence by checking at the last LCP point that the
observable ratios of (7a) and (7b) only change within
errors when 20 × 203 and 24 × 243 lattices are used.
With the method outlined above, we obtain the points of

the LCP shown in Fig. 2. The conversion of a to physical
units is done using

aϕ̄R ¼ aphys × 93 MeV ¼ aphys × ð93=197.327Þ fm−1:

ð20Þ
In Fig. 2 we see that the LCP follows the critical line in

the λ − κ plane. In a theory with a proper continuum limit

FIG. 1. An example of the two definitions of the connected
sigma correlator. The purple points were obtained using the
definition in (12), while the green points were obtained using
(14). The two definitions differ in a constant, but here they are
shifted on top of each other for better comparison.
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the LCP should run into the critical line at least at infinite
coupling. While in our case h ≠ 0 for all LCP points, h
tends to zero along the line as it should to approach
criticality. Triviality appears here by seeing that even at
λ → ∞ the LCP does not converge to the critical line,
meaning that a remains finite. This means that the bare ϕ4

coupling g0 must have a pole as a function of a, at the
minimal value of the lattice spacing. The results for g0 are
shown in Fig. 3 and are in compliance with the generally
accepted view on the triviality of the ϕ4 model. Fitting the
data shown in Fig. 3 with the second order perturbative β
function

g−10 ðaÞ ¼ g−11 − ðβ1 þ β2g1Þ logða1=aÞ; ð21Þ
where

β1 ¼
1

3

N þ 8

8π2
; β2 ¼ −

1

3

3N þ 14

ð16π2Þ2 ð22Þ

are the standard β-function coefficients [14], we estimate
amin ¼ 0.52ð2Þ fm. This leads to an estimate for the
minimal value of the lattice σ mass, amσ ¼ 0.79ð3Þ.
The result for the minimal lattice spacing can be

compared to the one which can be given based on [4].
In the renormalization scheme of Lüscher and Weisz

gR ¼ 3m2
R

v2R
; ð23Þ

where gR is the renormalized quartic coupling, mR is the
renormalized mass, which we identify with the sigma mass
for the sake of the estimate, and vR ≡ ϕ̄R takes the value of
the pion decay constant as in our case, although the Z
factor, which we do not need here, is defined differently.
In [4] the renormalization trajectories are described, and
taking the λ → ∞ limit in them yields a relation between
mRamin and gR,

logðmRaminÞ ¼
1

β1gR
þ β2
β21

logðβ1gRÞ − 1.9ð1Þ; ð24Þ

where the number 1.9(1) is the result of a numerical
calculation at a high order of the hopping parameter
expansion. Plugging mR ¼ 300 MeV and vR ¼ 93 MeV
into (23) and (24) yields aLWmin ¼ 0.4 fm already mentioned
in Sec. I. We see that our result amin ¼ 0.52ð3Þ is even more
restrictive.
An important implication of the largeness of amin is that

on the lattice the maximal temperature that can be simu-
lated is T ¼ ðNt · aminÞ−1jNt¼1 ≈ 420 MeV. Furthermore if
one is interested in a “continuum limit” in the effective
theory sense the feasible temperature range is definitely
below 50 MeV. This limits the comparison of the con-
tinuum methods practically to vacuum quantities.

IV. COMPARISON WITH 2PI AND FRG RESULTS

Since according to the previous section, a comparison
between lattice and continuum physical quantities is not
feasible at a finite temperature, we remain at T ¼ 0, and
using continuum functional methods, we determine the

FIG. 2. Points of the LCP in the λ − κ plane labeled by the value
of the lattice spacing (values not shown are listed in Table I).
A simple interpolating approximation of the critical line based on
the results of Lüscher and Weisz [2] is also shown for orientation.
The “fixed h” and “fixed λ” indicate that a grid taken in a constant
h or λ plane, respectively, was used to measure the ratios
appearing in (7a) and (7b). The interpolation procedure used
to find the LCP points is described in the text and detailed in
Appendix A. The ellipse represents the 68.3% confidence level
associated with the bootstrap configurations, and the error bar
indicates the standard deviation of κ (and in one case also of λ)
over the bootstrap sample.

FIG. 3. The original bare self-coupling defined in (1) as a
function of the lattice spacing. The second order perturbative β
function (21) is also shown (red line, standard deviation shaded),
with the parameters g1 and a1 being fitted to the data. Using this
functional form we can also estimate the triviality bound amin.
The error was obtained using bootstrap resampling which also
had samples having their poles around a ¼ 0.55 fm, causing the
standard deviation to grow enormously in that region.
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masses along the LCP shown in Fig. 2. In order to compare
to a lattice result determined at a fixed lattice spacing, we
need to treat the continuum version of the model as a cutoff
theory. Hence we need the relation between the continuum
cutoff Λ and the lattice spacing a; i.e., we need c ¼ Λa.
This relation was studied in [15,16] where the conversion
factor c ≈ 4.9 was calculated analytically for the four-
dimensional (4D) hypercubic lattice and obtained also by
fitting the perturbative continuum result [using (4) and (6)]

−
m2

0;c

Λ2
¼ N þ 2

6

�
g0

ð4πÞ2 −
2

3

g20
ð4πÞ4 þOðg40Þ

�
ð25Þ

to the critical line m2
0;cðg0Þ obtained by Lüscher and Weisz

in [2]. The above equation comes from the condition of the
vanishing curvature mass at the vanishing field value at
second order in the perturbation theory. We can see in Fig. 4
that atOðg20Þ it reproduces the LW critical line only at small
values of the coupling. One expects that this behavior
changes if one uses a more sophisticated approximation.
In Fig. 4 we also show the LCP points corresponding to

the “’fixed h” data points of Fig. 2. While doing the
transformation of the bootstrap data from the λ − κ plane to
the g0 −m2

0 plane, we have also performed a principal
component analysis of the correlation matrix. As indicated
in Fig. 4, the bootstrap sample in the g0 −m2

0 plane is much
more elongated in one direction than it was in the λ − κ
plane. Based on the standard deviations of g0 and m2

0 over

the bootstrap sample, shown for the rightmost LCP point,
one could be incorrectly led to think that the LCP is
compatible with the critical line. This is not the case, of
course, as the bootstrap sample is well separated from the
critical line, as was the case already in the λ − κ plane.

A. The critical line m2
0;cðg0Þ in the 2PI framework

In the 2PI framework, the curvature mass at the vanish-
ing field value is given at the Oðg20Þ level of truncation of
the effective action by M̂2

ϕ¼0 ¼ M̄2
ϕ¼0ðK ¼ 0Þ, where the

gap mass satisfies the self-consistent equation [17]

M̄2
ϕ¼0ðKÞ ¼ m2

0 þ
N þ 2

6

�
g0T ½Ḡ� − g20

3
S½Ḡ�ðKÞ

�
: ð26Þ

The tadpole and setting-sun integrals involve the propaga-
tor ḠðKÞ ¼ 1=ðK2 þ M̄2

ϕ¼0ðKÞÞ. The critical line is deter-
mined from the condition of the vanishing curvature
mass: M̂2

ϕ¼0 ¼ M̄2
ϕ¼0ðK ¼ 0Þ ¼ 0.

The nontrivial momentum dependence makes (26) rather
hard to solve; however, the solution M̄2

ϕ¼0ðK ¼ 0Þ can be
approximated by using a localized propagator with momen-
tum independent mass gap M̄2 ¼ m2

0 þ Nþ2
6

g0T ½Ḡloc�,
where ḠlocðKÞ ¼ 1=ðK2 þ M̄2Þ. This approximation cor-
responds in fact to the two-loop 2PI truncation. In this
approximation, the tadpole can be explicitly computed with
a 4D cutoff Λ and the condition of the vanishing curvature
mass can be written as

M̃2 ¼ N þ 2

18
g20S̃ðM̃2Þ; ð27aÞ

m2
0;c

Λ2
¼ M̃2 −

ðN þ 2Þg0
96π2

½1 − M̃2 ln ð1þ M̃−2Þ�; ð27bÞ

where S̃ðM̃2Þ is a perturbative setting-sun integral at
vanishing external momentum and we used the tilde for
a quantity scaled by appropriate powers of Λ.
For a given g0, one then solves (27a) for M̃2, and using

this solution one has m2
0;c from (27b). The critical line

obtained in this way is shown in Fig. 4. It still deviates from
the LW curve, but remains closer to it in a wider range of
the coupling than theOðg20Þ perturbative curve. We mention
that (25) can be obtained by first using (27a) in the first
term on the right-hand side of (27b) and then taking the
M̃2 → 0 limit, in which S̃ðM̃2Þ → 2=ð4πÞ4.
Now let us discuss the determination of the critical line

by solving (26) without further approximation. m2
0;cðg0Þ

could be obtained in principle by approaching it from the
symmetric phase: fixing g0, the equation is solved for
increasing values of jm2

0j, and m2
0;cðg0Þ is obtained by

extrapolating the determined values of M̄2
ϕ¼0ðK ¼ 0Þ to

zero. As detailed in Appendix C, Eq. (26) is solved by

FIG. 4. The critical line determined in the continuum theory
using various approximations as compared to that obtained with
the hopping parameter expansion to 14th order. In the perturba-
tion theory (PT) and the 2PI approach c ¼ 4.9, while in the FRG
study c ¼ 6.923. The points of the LCP corresponding to the
fixed h data points shown in Fig. 2 with ellipses are also
presented. With the exception of the rightmost point of the
LCP, the error bar corresponds to the standard deviation (square
root of the larger eigenvalue of the covariance matrix) along the
major axis of the bootstrap sample (the minor axes are too small
to be seen on this scale). For the rightmost point we also show the
standard deviation of g0 and jm2

0ja2 over the bootstrap sample.
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treating the setting-sun SðKÞ as a double convolution: a
convolution of the propagator with a bubble integral, where
the latter is itself a convolution of two propagators. It turned
out that the solution to (26) is lost for a value of m2

0 where
M̄2

ϕ¼0ðK ¼ 0Þ is nonzero (see Fig. 8). This loss of solution,
which seems to be a feature of the Oðg20Þ 2PI gap equation,
and was investigated in detail in [17], prevents us from the
direct determination of the critical line at this order of the
2PI truncation scheme and furthermore from a comparison
along the LCP.
As Fig. 4 shows, the simpler two-loop approximation

indeed has a critical line determined by Eqs. (27a) and
(27b). Nevertheless, a loss of solution can also happen in
this approximation in the broken phase (that is, at ϕ ≠ 0)
depending on the parameters [17]. We found that the usual
iterative procedure to solve the broken phase two-loop
equations (which were written down and solved as detailed
in [5] with little modifications to accommodate for the
use of nonrenormalized equations and approximating the
T → 0 limit numerically) breaks down close to the critical
line in comparison to where the points of the LCP are;
therefore in the LCP points no solution exists and no
comparison can be made. We checked that this loss of
solution persists in the even simpler localized two-loop
approximation which we detailed in [17]. We conclude that
in the considered approximations the 2PI formalism cannot
be compared to the lattice LCP results.

B. Determination of observables using the FRG method

Another functional method from which one can calculate
curvature masses along the LCP is the functional renorm-
alization group method. The flow equation describing the
evolution of the scale-dependent average action Γk from the
ultraviolet (UV) scale k ¼ Λ, where the microscopic theory
is defined through the bare action, down to the deep
infrared (IR), where the usual quantum effective action
is obtained in the k → 0 limit, is [6]

∂kΓk½ϕ� ¼
1

2
Tr

�
∂kRk

�
δ2Γk½ϕ�
δϕiδϕj

þ Rkδij

�−1�
; ð28Þ

where Rk is a regulator function; that is, in momentum
space it suppresses the IR modes, while ∂kRk regulates the
integral in the UV. In the LPA the Ansatz

Γk½ϕ� ¼
Z

ddx
�
1

2
ð∂xϕiÞ2 þ UkðρÞ

�
ð29Þ

is used, where ρ ¼ ϕ⃗2=2 is OðNÞ invariant and it is
customary to choose the LPA-optimized regulator [18]
RkðqÞ ¼ ðk2 − q2ÞΘðk2 − q2Þ (q is the Euclidean four-

momentum). Then, using ∂2UkðρÞ∂ϕi∂ϕj
¼ U0

kðρÞðPL
ij þ PT

ijÞ þ
2ρU00

kðρÞPL
ij with PL=T being the longitudinal/transverse

projectors, the integral can be performed and, at zero
temperature and d ¼ 4, one obtains

∂kUkðρÞ ¼
k5

32π2

�
N − 1

k2 þ M̂2
TðkÞ

þ 1

k2 þ M̂2
LðkÞ

�
; ð30Þ

where M̂2
TðkÞ ¼ U0

kðρÞ and M̂2
LðkÞ ¼ M2

TðkÞ þ 2ρU00
kðρÞ.

This equation is solved numerically by integrating it down
to k ¼ 0 (in practice to some kend > 0, due to the flattening
of the potential) starting at scale k ¼ Λ, where the initial
condition for the potential is given in terms of the couplings
m2

0 and g0 as Uk¼ΛðρÞ ¼ m2
0ρþ g0ρ2=6.

In the so-called grid method UkðρÞ is discretized using
Nρ grid points so that (30) transforms into a system of Nρ

coupled ordinary differential equations. We solve this
system using the Runge-Kutta-Fehlberg algorithm with
adaptive step-size control provided by the GNU Scientific
Library (GSL) [19]. We work in units of the cutoff,
denoting with a tilde a quantity scaled with the cutoff,
and we choose Nρ ¼ 5000 equidistant values of ρ̃ ¼ ρ=Λ
in the range between 0 to ρ̃max ¼ 0.026. The flow was
stopped at k̃end ¼ 1.28 × 10−2 where all the monitored
quantities became practically constants. At each point of
the grid the first and second order derivatives of the
potential are calculated with OðΔρ̃4Þ finite difference
formulas. The minimum of the potential is obtained with
spline interpolation, while the curvature masses at the
minimum are obtained fitting a sixth order polynomial
to the potential in an appropriate ρ̃ interval which has the
minimum as its left end point.
The transverse and longitudinal curvature masses

are obtained at kend as M̂T ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
U0

kðρ̄Þ
p

and M̂L ¼ ðM̂2
Tþ

2ρ̄U00
kðρ̄ÞÞ1=2, where ρ̄ ¼ ϕ̄2=2 is the minimum of the

potential. In the LPA they can be regarded as approxima-
tions to the pole masses due to the simplicity of the
Euclidean propagator. In order to compare M̂T=L along
the LCP with the values Mσ ¼ 300 MeV and Mπ ¼
138 MeV which in the lattice simulation are constant
along the line, we need to know what is the relation
between the cutoff scale Λ and the lattice spacing a. This
relation is obtained by matching the critical curve m̃2

0;cðg0Þ
determined in the FRG case to the one obtained by Lüscher
and Weisz in [2] using the hopping parameter expansion to
14th order. We determine m̃2

0;cðg0Þ working at fixed g0
and using dichotomy on m̃2

0, as shown in Fig. 5, where
the quantity that distinguishes between the broken and
symmetric phases is U0

kð0Þ=k2.
Once we match m̃2

0;c and m2
0;ca

2 at some value of g0,
finding the relation

aΛ ≈ 6.923; ð31Þ
the entire critical curve determined using FRG agrees
with the one obtained by Lüscher and Weisz, as shown
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in Fig. 4. The very good agreement of the two critical
curves is in line with the findings of Ref. [20], where it
was reported that in the one component ϕ4 model the
critical line, obtained in the LPA with the Litim regulator
and lattice discretization, compares well with the one
determined with Monte Carlo simulations.
Having obtained the relation between a and Λ, we can

now solve the flow equation (30) and determine the
curvature masses for the fixed h data points of Fig. 2.
The results shown in the first four rows of Table I in units of
the cutoff can be used in two ways. In the first case, shown
in the last four columns of Table I, one can determine for
each point of the LCP the value of the cutoff from the lattice
spacing using (31). Then ϕ̄ is smaller than fπ ¼ 93 MeV
by ∼8%, M̂T is 5%–8% larger than Mπ ¼ 138 MeV, while
M̂L is 15%–20% larger thanMσ ¼ 300 MeV. In the second

case one can require ϕ̄ to be fπ. In this case, due to the
larger value of the cutoff, one finds that M̂L is 22%–30%
larger than the sigma values used to determine the LCP,
while M̂T is larger by around 10% than the pion mass. The
deviation from the lattice results decreases for smaller a.

1. Solution of a modified flow equation
for m2

0 < −Λ2 < 0

With the chosen quartic potential at the initial value of
the scale, k ¼ Λ, the flow equation (30) cannot be solved
form2

0 < −Λ2 < 0 due to a singularity in the equation. One
could either change the initial condition by including
higher order, perturbatively nonrenormalizable terms in
the potential or, as we do it here following [21], try to
circumvent the problem by modifying the flow equation
expanding in power series to some order Ng the fractions
appearing in the right-hand side of (30),

1

k2 þ M̂2
L=T

¼ 1

k2 þM2
0

1

1 − ξ
≈

1

k2 þM2
0

XNg

n¼0

ξn; ð32Þ

where ξ ¼ ðM2
0 − M̂2

L=TðkÞÞ=ðk2 þM2
0Þ with M0 some

large parameter, i.e.,M0 > Λ, which for numerical reasons
has to be chosen appropriately.4

First, keeping the numerical framework used so far, that
is, changing only the right-hand side of (30) according to
(32), we tested the method in a case where a direct solution
to (30) exists, and then we applied it for the fixed λ data
points of the LCP shown in Fig. 2 (points P7–P10 in
Table I). In the latter case the solution is regarded as an
approximation to the solution of the original Wetterich
equation (28), assumed to exist for an appropriate form of
the effective action at scale Λ.

TABLE I. Field and curvature mass values in units of the cutoff at the minimum of the potential of the LCP shown in Figs. 2 and 4. The
points are denoted by Pi with i ∈ 1;…; 10 in increasing order from left to right of the LCP. For the first six (fixed h) points the values
comes from the direct numerical solution of (30), while for the last four (fixed λ) points the values come from the solution obtained using
the expansion (32) with an extrapolation to Ng ¼ ∞.

Point m2
0a

2 g0 H0a3 a [fm] ϕ̄=Λ M̂T=Λ M̂L=Λ Λ½MeV� ¼ 6.923
a½fm� ϕ̄ [MeV] M̂T [MeV] M̂L [MeV]

P1 −2.087Eþ1 1.648Eþ2 2.599E−1 1.022Eþ0 6.471E−2 1.100E−1 2.712E−1 1335.804 86.438 146.983 362.300
P2 −2.356Eþ1 1.909Eþ2 1.944E−1 9.375E−1 5.934E−2 9.938E−2 2.465E−1 1457.094 86.459 144.808 359.174
P3 −2.690Eþ1 2.254Eþ2 1.298E−1 8.164E−1 5.182E−2 8.691E−2 2.113E−1 1673.228 86.701 145.425 353.486
P4 −2.922Eþ1 2.484Eþ2 1.038E−1 7.632E−1 4.849E−2 8.033E−2 1.953E−1 1789.874 86.784 143.775 349.481
P5 −3.635Eþ1 3.167Eþ2 8.389E−2 7.130E−1 4.503E−2 7.493E−2 1.820E−1 1916.000 86.280 143.566 348.727
P6 −3.990Eþ1 3.528Eþ2 6.458E−2 6.475E−1 4.125E−2 6.869E−2 1.640E−1 2109.794 87.026 144.931 345.914

P7 −5.259Eþ1 4.746Eþ2 5.463E−2 6.305E−1 3.870E−2 6.517E−2 1.533E−1 2166.640 84 141 332
P8 −6.699Eþ1 6.122Eþ2 5.152E−2 5.952E−2 3.753E−2 6.417E−2 1.497E−1 2295.396 86 147 344
P9 −1.024Eþ2 9.534Eþ2 4.431E−2 5.742E−1 3.392E−2 6.257E−2 1.446E−1 2379.292 85 149 344
P10 −1.474Eþ2 1.387Eþ3 4.203E−2 5.637E−1 3.532E−2 6.095E−2 1.558E−1 2423.379 86 148 377

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10  12  14  16

U
’ k(

ρ =
0)

/k
2

ln(Λ/k)

FIG. 5. Determining m̃2
0;c at g0 ¼ 225.36 by dichotomy. For

jm̃2
0j > jm̃2

0;cj we are in the broken symmetry phase and
U0

kð0Þ=k2 → −1 as k → 0, while for jm̃2
0j < jm̃2

0;cj we are in
the symmetric phase and U0

kð0Þ=k2 → ∞ as k → 0. The closer
jm̃2

0j is to the critical value, the larger is lnðΛ=kÞ at which a curve
steeply goes upwards or downwards.

4We use the same values of M0 and Ng for both fractions
in (30).
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In the case of point P1, it turns out that in order to
reproduce the available direct solution of (30) with the
expansion method, one has to go to rather high orders in the
expansion. Also, for the method to work, the first and
second derivatives of the potential at ρ̃max had to be kept
fixed as a function of k; however, the chosen values were
practically arbitrary. We fixed the derivatives to their values
calculated at k ¼ Λ.
At a given order of the expansion the deviation from the

direct result increases with M0. Among the studied quan-
tities, M̂L, presented in Fig. 6, shows the slowest con-
vergence rate with Ng at a fixed value of M0. For
M̃2

0 ¼ 2 and Ng ¼ 50 the deviation from the direct result
is around 10%. To estimate the result of the curvature
masses and the minimum of the potential we fitted with
fðxÞ ¼ aþ b=ðx − cÞd the data obtained at various Ng

with the expansion method. For P1 one can practically
recover the direct results from a dataset obtained with up to
Ng ≃ 100 terms in the expansion, but as jm2

0j=Λ2 increases
we need larger M2

0 and larger values of Ng to maintain the
quality of the fit. Eventually, numerical errors prevent us
from going above a certain value of Ng. All these features
are illustrated in Fig. 6, and the results obtained with the
expansion values are given in the last four rows of Table I.
Based on the variation of the extrapolated results on the
fitting Ng interval, one can estimate the error of M̂L to be
1%–2% for P7 and P8 and 5%–10% for P9 and P10. For
the other two quantities the error of the extrapolation to
Ng ¼ ∞ is smaller.

V. CONCLUSION

We studied the four component Euclidean ϕ4 model in
four dimensions. In the presence of an explicit symmetry
breaking term, we determined with Monte Carlo simula-
tions the LCP in the bare parameter space of the model
based on ratios involving the pion and sigma masses and
the expectation value of the field. In this process we
brought further evidence in support of the triviality of
the model in a renormalization scheme which is different
from the one usually used by the lattice community (see
[22] for a recent study).
Using the bare couplings of the LCP, we solved the

model with two continuum functional methods (the 2PI
formalism and the FRG method) in an attempt to compare
the vacuum masses and expectation value obtained with
these continuummethods to the corresponding input values
of the lattice study of the model. The manifestation of
triviality prevented us from a meaningful comparison of
finite temperature quantities. It turned out that the com-
parison at T ¼ 0 can be done only with the FRG, since the
2PI is hindered by the loss of solution to the propagator
equation. The needed relation between the lattice spacing
and the cutoff, used in the lattice and continuum versions of
the model, respectively, was obtained by matching the
critical line of the parameter space determined originally by
Lüscher and Weisz using hopping parameter expansion.
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APPENDIX A: FINDING THE LCP POINT
AND ITS ERROR

We detail here the procedure used to find the points of
the LCP. The seemingly overly complex procedure sum-
marized in Sec. III B is needed because the observable
ratios (7a) and (7b) change very similarly over the three-
dimensional parameter space. Therefore, the search for the
LCP becomes the mathematical problem of finding the
intersection of two noisy surfaces which are almost parallel.
Our generic approach to find a point of the LCP is to fix

one parameter and scan the remaining two for the pair of
parameters where the observable ratios have both the
prescribed physical values. For points of the LCP that
are far from the triviality bound, that is, alatt is relatively
large, we fix h and scan the κ‐λ plane. As the lattice
spacing becomes smaller, we change to fixing λ and scan
the κ − h plane.

FIG. 6. Convergence properties of the solution to the modified
flow equation for parameters corresponding to points of the LCP
(see Table I for their labeling). The outset shows the scale
dependence of the longitudinal curvature mass M̂L at various
orders of the expansion for a point of the LCP where the solution
of the original LPA flow equation (30) is known. The inset shows
the dependence of M̂L at kend ¼ 0 on the order of the expansion,
and the influence of the expansion point M2

0, also in cases when
the original equation (30) has no solution. The horizontal lines
indicate the value at Ng ¼ ∞ extracted from fits.
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We discuss in what follows the case when we fix h and
search for the intersection point of two contour lines in the
κ‐λ plane. The two curves are marked out by (7a) and (7b),
which are almost parallel locally, as mentioned earlier. We
scan the plane by doing simulations in a set of ðκ; λÞ pairs
forming a square grid. In each point of the grid we
independently measured the observable ratios (R1 and
R2) with known errors (Δ1 and Δ2). To estimate the
location of the LCP point in the plane we generate 104

bootstrap configurations on the grid, where the value of
both observable ratios at each grid point is randomly taken
from independent normal distributions with means R1;2 and
standard deviations Δ1;2. Each bootstrap configuration can
then be thought of as two surfaces R1;2ðκ; λÞ over the
parameter plane sampled on the grid points.
For each bootstrap configuration we linearly interpolate

the observable surfaces along the edges of the square grid.
We locate the points which belong to the physical contour
lines of the respective surfaces (physical values of R1 and
R2). These two sets of points are then fitted by parabolas.
The intersection of the two parabolas is one bootstrap
realization of the LCP point. The bootstrap realizations
outline the probability distribution of the LCP point in the
κ‐λ plane, and hence its error can be estimated.
The procedure is illustrated in Fig. 7 for h ¼ 0.1 (P3 of

Table I), which shows the bootstrap realization of the LCP
point and its estimated average value and error. The bands
correspond to the averages and 1σ deviation of the
parabolas approximating the physical contours. The dis-
tribution shows correlation between the κ and λ coordinates
of the LCP point, and it is elongated along one of the
contour lines. This elongation is further enhanced when

transformed to m2
0 and g0, where the distribution becomes

practically one dimensional. As a result we show error
bands in the direction of the major axis of the distribution
for each LCP point in Fig. 4.
By appropriately choosing the grid and including more

points in it, as well as increasing the precision of the lattice
simulations, one could in principle further confine the
location of the LCP points.

APPENDIX B: THE T = 0 SETTING-SUN
INTEGRAL AS A HANKEL TRANSFORM

Using the Fourier transform, the convolution of two
momentum-dependent functions can be written as

C4d½f1; f2�ðqÞ ¼
Z
k
f1ðkÞf2ðq − kÞ

¼
Z
x
e−iq·xf1ðxÞf2ðxÞ; ðB1Þ

where we used the shorthands
R
k ¼

R
d4k
ð2πÞ4 and

R
x ¼

R
d4x.

Working with spherical coordinates in 4D, the angular
integral can be performed analytically by exploiting the
rotation invariance. Choosing q to point in the fourth
direction, such that q · x ¼ QX cos θ1, where Q ¼ jqj and
X ¼ jxj, and introducing τ ¼ sin θ1, the nontrivial part of the
angular integration gives a Bessel function of the first kind,Z

1

−1
dτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
e−iXQτ ¼ πJ1ðQXÞ

QX
; ðB2Þ

such that (B1) becomes

C4d½f1; f2�ðQÞ ¼ 4π2

Q

Z
∞

0

dXXJ1ðQXÞAðXÞ

≕
4π2

Q
H1½A�ðQÞ; ðB3Þ

where we used the Hankel transform of order 1 of the
function AðXÞ ¼ F1ðXÞF2ðXÞ=X, with FiðXÞ ¼ XfiðXÞ.
A similar calculation shows that FiðXÞ ¼ XfiðXÞ

appearing in (B3) can be given as the inverse Hankel
transform (denoted in what follows by a tilde) of order 1 of
F̃iðPÞ ¼ Pf̃iðPÞ (i ¼ 1, 2):

XfiðXÞ ¼
1

4π2

Z
∞

0

dPPJ1ðXPÞF̃iðPÞ

≕
H̃1½F̃i�ðXÞ

4π2
: ðB4Þ

So, in terms of Hankel transforms, the convolution (B1) can
be written as

C4d½f1; f2�ðQÞ ¼ H1½X−1H̃1½F̃1�ðXÞH̃1½F̃2�ðXÞ�ðQÞ
4π2Q

:

ðB5Þ

FIG. 7. Output of the LCP-point finding procedure at h ¼ 0.1.
The grid of black squares marks the parameter values where
simulations were carried out, the bands show the average and
error of the contour lines where the observables R1 and R2 take
their physical values, the green dots are the bootstrap realizations
of the LCP point, and the final estimate for the LCP is the yellow
blob, with error bars representing the standard deviation of
κ and λ.
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Then, writing the momentum dependent setting sun
as a convolution of a propagator and a bubble integral
B½G�ðq− kÞ ¼ R

p GðpÞGðq− k−pÞ, both the bubble inte-
gral and the setting-sun integral S½G�ðqÞ¼R

kGðkÞBðq−kÞ
can be written in terms of Hankel transforms. The discrete
version of the Hankel transform (DHT) and its inverse are
implemented in the GSL package [19]. In the discretized
case it is understood that all momenta and combinations of
momenta are cut by the cutoff Λ. Working in units of the
cutoff and using 3 × 210 sampling points the smallest
momentum on the grid is jk̃jmin ¼ 3.96 × 10−4.

APPENDIX C: ON THE SOLUTION OF (26)

Asmentioned in Sec. IVA, the setting sunS½G�ðKÞ can be
regarded as a double convolution. The convolution integral
can be computed using the Fourier transform, which for
rotational invariant functions leads at T ¼ 0 to the use of the
Hankel transform, as detailed in Appendix B. As discussed
in Sec. V.E.1 of [23], calculating a convolution using
discrete Fourier transform is not accurate if the function
does not decrease fast enough in the UV. We expect this
behavior in the case of the Hankel transform as well.
Although to determine the critical line we are interested
in an IR quantity, namely M̄2

ϕ¼0ðK ¼ 0Þ, since a momentum
integral is involved in its calculation, the discretization error
in the UV will influence this quantity. To check the method
that uses the Hankel transform, we also computed on a
nonuniform momentum grid5 the convolution as a double
integral using Eq. (A1) of [24]. The inner integral in that
expression is calculated numerically after a Tanh-Sinh
transformation (see Appendix A of [25] for details) using
the splined M̄2ðKÞ in the propagator. The bubble integral is
calculated in thiswayon a grid, then splined, and used for the
calculation of SðKÞ.
The iterative solution of (26) obtained for g0 ¼ 150 and

m2
0=Λ2 ¼ −0.5275 using the underrelaxation method [26]

with parameter α ¼ 0.1 is shown in Fig. 8. The upper part
of the figure shows what happens if the solution obtained
with DHT is used as an initial propagator in the solver that
computes the convolutions using adaptive integration
routines on a grid with 256 momentum values. We see
that M̄2

ϕ¼0ðKÞ obtained in the first iteration deviates by
5%–8% from the solution obtained with DHT as a result
of the fact that, as anticipated, the setting sun calculated

with DHT is not accurate. As the iteration progresses,
M̄2

ϕ¼0ðKÞ departs even more from the used initial function,
and hence the converged solution is substantially different
from the one obtained with DHT.
In the lower part of Fig. 8 we show M̄2

ϕ¼0ðKminÞ as a
function of jm2

0j at four values of g0. The difference
between the curves obtained with the two ways of treating
the convolution increases with the value of the coupling.
This is due to the fact that the numerical error made in
computing the convolution with DHT is magnified when
the setting sun is multiplied with a larger coupling. More
importantly, the shape of the curves is compatible with the
fact that the solution of (26) is lost at some value of m2

0

where M̄2
ϕ¼0ðKminÞ is still finite. As a result the critical line

cannot be determined.

5We use NK ¼ 128–256 values of momenta: Ki ¼ Kminþ
ðΛ − KminÞði=ðNK − 1ÞÞ2.5, i ¼ 0;…; NK − 1 with K̃min ¼
3.96 × 10−4.

FIG. 8. Comparison of the solution of the gap equation (26)
obtained using the discrete Hankel transformation (purple lines)
or numerical integration (green lines) to compute convolutions.
In both top panels, where g0 ¼ 150 and m2

0=Λ2 ¼ −0.5275, the
dotted blue lines correspond to the first, fourth, and 26th
iterations (from purple to green in order) if one initiates the
numerical integration method from the solution obtained using
DHT. Top left: both the functional form and the infrared limit of
the momentum dependent gap mass differs significantly. Top
right: the difference seen originates mainly from the different UV
behavior of the setting-sun diagram shown here. Bottom: the
infrared limit of the solutions of the gap equation as a function of
m2

0 for several fixed g0 values. These curves should be extrapo-
lated to M̄2

ϕ¼0ðKminÞ ¼ 0 in order to find the critical line;
however, a loss of solution at some finite M̄2

ϕ¼0ðKminÞ prohibits
doing so.

GERGELY MARKÓ and ZSOLT SZÉP PHYS. REV. D 100, 056017 (2019)

056017-10



[1] B. W. Lee, Chiral Dynamics (Gordon and Breach Science
Publishers, New York, 1972).

[2] M. Lüscher and P. Weisz, Nucl. Phys. B318, 705 (1989).
[3] R. Shrock, Phys. Rev. D 96, 056010 (2017).
[4] M. Lüscher and P. Weisz, Phys. Lett. B 212, 472 (1988).
[5] G. Markó, U. Reinosa, and Zs. Szép, Phys. Rev. D 87,

105001 (2013).
[6] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[7] J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363,

223 (2002).
[8] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D

10, 2428 (1974).
[9] J. Berges, S. Borsányi, U. Reinosa, and J. Serreau, Ann.

Phys. (Amsterdam) 320, 344 (2005).
[10] J. R. Pelaez, Phys. Rep. 658, 1 (2016).
[11] A. Patkós, Zs. Szép, and P. Szépfalusy, Phys. Lett. B 537, 77

(2002).
[12] J. O. Andersen, D. Boer, and H. J. Warringa, Phys. Rev. D

70, 116007 (2004).
[13] J. Zinn-Justin, Quantum Field Theory and Critical Phe-

nomena (Oxford Science Publications, New York, 2002).

[14] J. Smit, Introduction to Quantum Fields on a Lattice
(Cambridge University Press, New York, 2002).

[15] D. E. Brahm, arXiv:hep-lat/9403021.
[16] G.-J. Besjes, Linear Sigma models on the lattice, M.Sc.

thesis, Radboud University, 2010, https://www.ru.nl/
publish/pages/913395/thesis_geert-jan.pdf.

[17] G. Markó, U. Reinosa, and Z. Szép, Phys. Rev. D 92,
125035 (2015).

[18] D. F. Litim, Phys. Rev. D 64, 105007 (2001).
[19] M. Galasi et al., GSL Reference Manual (Version GSL-2.5,

2018), http://www.gnu.org/software/gsl.
[20] J. M. Caillol, Nucl. Phys. B865, 291 (2012).
[21] G. G. Barnaföldi, A. Jakovác, and P. Pósfay, Phys. Rev. D

95, 025004 (2017).
[22] J. Siefert and U. Wolff, Phys. Lett. B 733, 11 (2014).
[23] G. Markó, U. Reinosa, and Zs. Szép, Phys. Rev. D 86,

085031 (2012).
[24] G. Fejős and Zs. Szép, Phys. Rev. D 84, 056001 (2011).
[25] U. Reinosa and Zs. Szép, Phys. Rev. D 85, 045034 (2012).
[26] J. Berges, S. Borsanyi, U. Reinosa, and J. Serreau, Phys.

Rev. D 71, 105004 (2005).

Oð4Þϕ4 MODEL AS AN EFFECTIVE LIGHT MESON THEORY: … PHYS. REV. D 100, 056017 (2019)

056017-11

https://doi.org/10.1016/0550-3213(89)90637-8
https://doi.org/10.1103/PhysRevD.96.056010
https://doi.org/10.1016/0370-2693(88)91799-6
https://doi.org/10.1103/PhysRevD.87.105001
https://doi.org/10.1103/PhysRevD.87.105001
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1103/PhysRevD.10.2428
https://doi.org/10.1103/PhysRevD.10.2428
https://doi.org/10.1016/j.aop.2005.06.001
https://doi.org/10.1016/j.aop.2005.06.001
https://doi.org/10.1016/j.physrep.2016.09.001
https://doi.org/10.1016/S0370-2693(02)01910-X
https://doi.org/10.1016/S0370-2693(02)01910-X
https://doi.org/10.1103/PhysRevD.70.116007
https://doi.org/10.1103/PhysRevD.70.116007
http://arXiv.org/abs/hep-lat/9403021
https://www.ru.nl/publish/pages/913395/thesis_geert-jan.pdf
https://www.ru.nl/publish/pages/913395/thesis_geert-jan.pdf
https://www.ru.nl/publish/pages/913395/thesis_geert-jan.pdf
https://www.ru.nl/publish/pages/913395/thesis_geert-jan.pdf
https://www.ru.nl/publish/pages/913395/thesis_geert-jan.pdf
https://doi.org/10.1103/PhysRevD.92.125035
https://doi.org/10.1103/PhysRevD.92.125035
https://doi.org/10.1103/PhysRevD.64.105007
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
https://doi.org/10.1016/j.nuclphysb.2012.07.032
https://doi.org/10.1103/PhysRevD.95.025004
https://doi.org/10.1103/PhysRevD.95.025004
https://doi.org/10.1016/j.physletb.2014.04.013
https://doi.org/10.1103/PhysRevD.86.085031
https://doi.org/10.1103/PhysRevD.86.085031
https://doi.org/10.1103/PhysRevD.84.056001
https://doi.org/10.1103/PhysRevD.85.045034
https://doi.org/10.1103/PhysRevD.71.105004
https://doi.org/10.1103/PhysRevD.71.105004

