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The evolution of the modulus and phase of the complex order parameter associated with the field-
induced phase transition (FIPT) of the vacuum state interacting with a time-dependent Sauter pulse is
studied to analyze different evolution stages of the order parameter: e.g., the quasielectron-positron plasma
(QEPP), transient, and residual electron-positron plasma (REPP) stages. By revisiting FIPT in the presence
of single-sheeted and multisheeted pulses, we attribute the transient stage to the nonlinear coupling in
the differential equations governing the dynamics of the phase and the modulus of the order parameter. The
appearance of rapid oscillations in the modulus is shown to be associated with the abrupt change in the
phase of the order parameter in the transient stage. FIPT is also studied for a multisheeted Sauter pulse with
linear and quadratic frequency chirp. The QEPP stage is found to show complex dynamical behavior with
fast and irregular oscillations due to the frequency chirp. The formation of the pretransient region due to the
quadratic frequency chirping is observed in the accelerating part of the QEPP stage before the electric field
attains the maximum value. As the quadratic chirp is increased, the pretransient and transient stages move
closer to the electric field maximum, which leads to a decrease in temporal separation between the two
stages. The early appearance of the transient stage, and hence of the following REPP stage, results in the
enhancement of the pair production rate.
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I. INTRODUCTION

Electron-positron pair production from an unstable
vacuum in the presence of a uniform electric field, widely
known as the Schwinger mechanism [1–5], is one of the
intriguing phenomena in the nonperturbative regime of
quantum electrodynamics (QED). This process is sup-
pressed exponentially for the electric field strength
E ≪ ES, where the critical electric field of QED ES ¼
m2c3=eℏ ¼ 1.38 × 1018 V=m [2], and the probability of
pair production in the presence of a constant electric field E
is given by Peþe− ≈ expð−πES=EÞ. As E ≪ ES for state-of-
the-art present-day ultraintense lasers and other light
sources, this fundamental prediction of QED could not
be tested experimentally. However, recent advances in laser
technology, especially the use of the chirp pulse amplifi-
cation method, promise to fast narrow the gap [6].

The European Extreme Light Infrastructure for Nuclear
Physics (ELI-NP) is planning to build a 10 PW pulsed laser
to achieve intensities I ∼ 1023 W=cm2 for the first time for
investigating new physical phenomena at the interfaces of
plasma, nuclear, and particle physics [7–10]. The electric
field at the laser focus will have a maximum value of
1015 V=m at such intensities. In the ELI-NP experimental
area E6, there is a proposal to study radiation reactions,
strong-field QED effects, and the resulting production of
ultrabright gamma rays which could be used for nuclear
activation.
The construction of an x-ray free electron laser (XFEL)

based on the principle of self-amplified spontaneous
emission (SASE) is underway at DESY, Hamburg [11],
which may produce a subcritical electric field. This facility
may have the potential to generate a considerable number
of electron-positron pairs.
In a landmark experiment E144 at the Stanford Linac

Acceleration Center (SLAC) in 1997, it was possible to
observe nonlinear QED processes like nonlinear Compton
scattering and stimulated pair production in the collision of
a 46.6 GeV electron beam with a laser beam of intensity
I ¼ 1.3 × 1018 W=cm2 [12,13]. Although these processes
pertain to the perturbative regime of QED, the successful
experimental realizations thereof raise hope for the
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experimental verification of the Schwinger mechanism in
coming decades.
The original formalism of the Schwinger mechanism

was developed for an electric field constant in space and
time. It was generalized subsequently for a time-varying
field [14] and is applied to study pair production by
ultraintense and ultrashort laser pulses with the consider-
ation that the length and timescales of the variation in the
field are much less than the Compton length and time. As
the pulse duration of some of the proposed light sources
(e.g., lasers) based on higher-order harmonics is expected
to be of the order of attoseconds, one needs to look beyond
the Schwinger formalism. Furthermore, for dynamical
studies like the longitudinal momentum spectrum of
created particles, one has to solve the underlying Dirac
equation for the fermionic system (the Klein-Gordon
equation for a scalar field) interacting with the external
electromagnetic field [15–22]. In order to have an analyti-
cally tractable dynamical description for the system of an
unstable vacuum in the presence of the external field, two
broad classes of theoretical formulations based on the
spatiotemporal inhomogeneity of the external field were
developed [23]. These are termed as the kinetic equation in
the Wigner [24–26] and in the quasiparticle [27–29]
representations. For a one-dimensional, spatially uniform,
time-dependent electric field, the equivalence between
these representations of the kinetic equation was shown
in Ref. [30]. We use here the quasiparticle representation
of the quantum kinetic equation (QKE) formalism
[27,28,31–34] for the evolution of the quasiparticle vacuum
in the presence of a time-dependent electric field in the
mean field approximation, wherein the collisional effects of
the created particles and backreaction force on the external
electric field are neglected.
The production of particle-antiparticle pairs from the

vacuum fluctuation in a time-dependent electric field EðtÞ
was seen as a field-induced phase transition (FIPT) via the
t-noninvariant vacuum state because of the non-stationary
Hamiltonian [29]. Here, the spontaneous symmetry break-
ing of the vacuum state takes place under time inversion, and
consequently electron-positron pairs are generated which
are the massive analogue of Goldstone bosons [35]. In order
to quantify this symmetry breaking, one defines a com-
plex order parameter Φðp̄; tÞ ¼ 2h0injB†

p̄ðtÞD†
−p̄ðtÞj0ini ¼

jΦðp̄; tÞj expðiψðp̄; tÞÞ [29,36], whereB†
p̄ðtÞ andD†

−p̄ðtÞ are
the creation operators of particles and antiparticles with
momentum �p̄, respectively, in the quasiparticle represen-
tation in the time-dependent adiabatic particle number basis.
FIPT was studied for the single and multisheeted electric
pulses [29,36]. It was shown that the evolution of the
modulus of order parameter jΦðp̄; tÞj brings out three
distinct stages or phases: namely, the quasielectron-positron
plasma (QEPP) stage, the transient stage, and the final
residual electron-positron plasma (REPP) stage. Here the
QEPP stage is defined as the region where the smooth

evolution of themodulus of the order parameter is defined by
the quasienergy ωðp̄; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p̄2⊥ þ P2

3ðtÞ
p

, where the
longitudinal quasimomentum P3ðtÞ ¼ p3 − eAðtÞ. The
REPP stage is defined as the region where the evolution
of jΦðtÞj does not show any oscillation, and it reaches a
constant value. The most intriguing stage is the transient
stage, where a highly oscillating region separates the
smoothly oscillating QEPP region and the REPP stage.
The effect of subcycle field oscillations on these stages was
also studied for different longitudinal momentum values
[36,37]. However, the evolution of the phase of the complex
order parameter ψðp̄; tÞ, to the best of our knowledge, has
not been studied so far.
In this article, we study the evolution of the modulus and

the phase of Φðp̄; tÞ and analyze their interrelation.
Frequency chirp is an essential and integral part of ultra-
short laser pulses. Frequency chirping changes the time
period of subcycle oscillations of the external electric field,
which further induces complexity in the evolution of the
order parameter. We analyze this complexity as a function
of linear and quadratic frequency chirp parameters.
We use the natural units where ℏ ¼ c ¼ 1, and the

corresponding Compton length and timescales are denoted
as λe ¼ τe ¼ 1=me. The critical electric field strength of
QED is then given by ES ¼ m2

e=e. Furthermore, the mass
and the charge of the electron are taken to be unity. The rest
of the article is organized as follows: In Sec. II, we describe
the basic equations governing the evolution of the modulus
and the phase of Φðp̄; tÞ. Results are discussed in Sec. III.
The article is concluded in Sec. IV.

II. THEORY

The kinetic equation used in this work has been
derived using different techniques by various researchers
[28,32,33]. Here we give the essential steps, closely
following the derivation given [28,34]. The basic formu-
lation of fermionic pair production can be derived from the
Dirac equation for the matter field ΨðxÞ:

ðiγμ∂μ − eγμAμ −mÞΨðxÞ ¼ 0: ð1Þ

Here, we have assumed that the external electric field is a
classical background, and we take a one-dimensional
spatially uniform but time-dependent electric field
which is characterized by the four-vector potential
Aμ ¼ ð0; 0; 0; AðtÞÞ. γ matrices are the usual gamma
matrices for the Dirac spinor field. The electric field can
easily be calculated by EðtÞ ¼ −dAðtÞ=dt. With the above
mentioned gauge field, we take the eigenstates of the Dirac
equation as

ψ ð�Þ
p̄;r ðxÞ ¼ ½iγ0∂0 þ γkpk − eγ3AðtÞ þm�χð�Þðp̄; tÞRreip̄·x̄;

ð2Þ
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where k ¼ 1; 2; 3, and the superscript (�) denotes eigen-
states with positive and negative energies. Rr is the
eigenvector of the matrix γ0γ3, and the functions
χð�Þðp̄; tÞ satisfy the oscillator-type equation [28]

χ̈ð�Þðp̄; tÞ ¼ −ðω2ðp̄; tÞ þ ie _AðtÞÞχð�Þðp̄; tÞ: ð3Þ

Now, one can construct the massive field operator ΨðxÞ
with the eigenstates as

ΨðxÞ ¼
X
r;p̄

ðψ ð−Þ
p̄;r ðxÞbp̄;rðt0Þ þ ψ ðþÞ

p̄;r ðxÞd†−p̄;rðt0ÞÞ; ð4Þ

where bp̄;rðt0Þ, b†p̄;rðt0Þ and dp̄;rðt0Þ, d†p̄;rðt0Þ are the
annihilation and creation operators for the particle and
antiparticle with momentum p̄ and spin r in the in-state
j0ini at t ¼ t0, and they satisfy the anticommutation relation

fbp̄;rðt0Þ; b†p̄;rðt0Þg ¼ fdp̄;rðt0Þ; d†p̄;rðt0Þg ¼ δrr0δp̄p̄0 : ð5Þ

Now the evolution in the presence of the time-dependent
field affects the vacuum state and mixes state with positive
and negative energies, which induces nondiagonal terms in
the Hamiltonian. The diagonalization is done by the time-
dependent Bogoliubov transformation:

bp̄;rðtÞ ¼ αp̄ðtÞbp̄;rðt0Þ þ βp̄ðtÞd†−p̄;rðt0Þ;
dp̄;rðtÞ ¼ α−p̄ðtÞdp̄;rðt0Þ − β−p̄ðtÞb†−p̄;rðt0Þ; ð6Þ

with jαp̄ðtÞj2 þ jβp̄ðtÞj2 ¼ 1. The Bogoluibov coefficients
αp̄ðtÞ, βp̄ðtÞ satisfy the coupled equations

_αp̄ðtÞ ¼
eEðtÞϵ⊥
2ω2ðp̄; tÞ β

�̄
pðtÞe2iΘðp̄;tÞ;

_β�p̄ðtÞ ¼ −
eEðtÞϵ⊥
2ω2ðp̄; tÞ αp̄ðtÞe

−2iΘðp̄;tÞ; ð7Þ

where ϵ⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
is the transverse energy, e is the

electric charge, and Θðp̄; tÞ ¼ R
t
t0
dt0ωðp̄; t0Þ gives the

dynamical phases accumulated between the initial and
final states.
Here one can define the creation and annihilation

operators of particles antiparticles in adiabatic particle
number basis by absorbing the fast oscillation as

Bp̄;rðtÞ ¼ bp̄;rðtÞe−iΘðp̄;tÞ; Dp̄;rðtÞ ¼ dp̄;rðtÞe−iΘðp̄;tÞ:
ð8Þ

The operators Bp̄;rðtÞ and Dp̄;rðtÞ satisfy the Heisenberg-
like equations of motion

dBp̄;rðtÞ
dt

¼ −
eEðtÞϵ⊥
2ω2ðp̄; tÞD

†
−p̄;rðtÞ þ i½HðtÞ; Bp̄;rðtÞ�;

dDp̄;rðtÞ
dt

¼ eEðtÞϵ⊥
2ω2ðp̄; tÞB

†
−p̄;rðtÞ þ i½HðtÞ; Dp̄;rðtÞ�; ð9Þ

where the quasiparticle Hamiltonian HðtÞ is given by

HðtÞ ¼
X
r;p̄

ωðp̄; tÞðB†
p̄;sðtÞBp̄;rðtÞ −D−p̄;rðtÞD†

−p̄;rðtÞÞ:

ð10Þ

We now define the occupation number of the electron in the
time-dependent basis with spin r and momentum p̄ for the
initial vacuum state: frðp̄; tÞ ¼ h0injB†

p̄rðtÞBp̄sðtÞj0ini:
Similarly, one can also define the occupation number of
the positron: f̄rð−p̄; tÞ ¼ h0injD†

−p̄sðtÞD−p̄;rðtÞj0ini: Here
frðp̄; tÞ ¼ f̄rð−p̄; tÞ due to the charge conjugation
invariance. Now, frðp̄; tÞ and f̄rð−p̄; tÞ will serve as
single-particle distribution functions in the quasiparticle
representation [28,29]. The evolution of frðp̄; tÞ satisfies
the equation

dfrðp̄; tÞ
dt

¼ −
eEðtÞϵ⊥
2ω2ðp̄; tÞRefΦrðp̄; tÞg; ð11Þ

where Φrðp̄; tÞ ¼ h0injD−p̄rðtÞBp̄rðtÞj0ini is the particle-
antiparticle correlation function, which satisfies the evolu-
tion equation

dΦrðp̄; tÞ
dt

¼ eEðtÞϵ⊥
ω2ðp̄; tÞ ½2frðp̄; tÞ − 1� − 2iωðp̄; tÞΦrðp̄; tÞ;

ð12Þ

provided that frðp̄; tÞ ¼ f̄rð−p̄; tÞ is used. In general,
Φrðp̄; tÞ ¼ urðp̄; tÞ þ ivrðp̄; tÞ, which turns into the above
equation:

durðp̄; tÞ
dt

¼ eEðtÞϵ⊥
ω2ðp̄; tÞ ½2frðp̄; tÞ − 1� þ 2ωðp̄; tÞvrðp̄; tÞ;

dvrðp̄; tÞ
dt

¼ −2ωðp̄; tÞurðp̄; tÞ: ð13Þ

In particular, we have a set of three differential equations
for the complete dynamical evolution of the vacuum
electron-positron pair production process, which are listed
below. [We have absorbed the minus sign which appears in
the above equations for fðp̄; tÞ, uðp̄; tÞ, and vðp̄; tÞ into the
definition of uðp̄; tÞ; i.e., uðp̄; tÞ → −uðp̄; tÞ.]
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dfðp̄; tÞ
dt

¼ eEðtÞϵ⊥
2ω2ðp̄; tÞ uðp̄; tÞ;

duðp̄; tÞ
dt

¼ eEðtÞϵ⊥
ω2ðp̄; tÞ ½1 − 2fðp̄; tÞ� − 2ωðp̄; tÞvðp̄; tÞ;

dvðp̄; tÞ
dt

¼ 2ωðp̄; tÞuðp̄; tÞ: ð14Þ

The anomalous average term uðp̄; tÞ which represents
vacuum polarization effects plays an important role in
the source term of the pair production. In fact, this term
gives information about the quantum statistic character via
½1 − 2fðp̄; tÞ�, due to the Pauli exclusion principle. The
term vðp̄; tÞ denotes some kind of countering term to the
pair production, which is basically the pair annihilation in
the vacuum excitation process. One can also combine the
above set of first-order differential equation into a single
first-order integrodifferential equation

dfðp̄; tÞ
dt

¼ eEðtÞϵ2⊥
2ω2ðp̄; tÞ

Z
t

−∞
dt0

eEðt0Þ
ω2ðp̄; t0Þ

× ½1 − 2fðp̄; t0Þ� cos½2Θðp̄; t; t0Þ�; ð15Þ

which will serve as the basis of the quantum transport
equation of the vacuum particle pair production [27,31],
where the non-Markovian character or the memory effect is
present via the terms ½1 − 2fðp̄; tÞ� and the highly oscillat-
ing kernel cos½2Θðp̄; t; t0Þ�.
Using the first integral of motion, ð1 − 2fðp̄; tÞÞ2þ

jΦðp̄; tÞj2 ¼ 1, we get the following nonlinear coupled
differential equations for the evolution of the modulus
jΦðp̄; tÞj and the phase ψðp̄; tÞ of the order parameter:

djΦðp̄;tÞj
dt

¼eEðtÞϵ⊥
ω2ðp̄;tÞ cosψðp̄;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jΦðp̄;tÞj2

q
;

dψðp̄;tÞ
dt

¼2ωðp̄;tÞ−eEðtÞϵ⊥
ω2ðp̄;tÞ sinψðp̄;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jΦðp̄;tÞj2

p
jΦðp̄;tÞj :

ð16Þ

The particle acceleration is governed by dP3ðtÞ=dt ¼
eEðtÞ in the presence of the time-dependent electric
field EðtÞ.
The electric field in this study is taken as the multi-

sheeted Sauter pulse, which is considered to describe well
the resultant field of counterpropagating ultrashort laser
pulses in the focal region:

EðtÞ ¼ E0 cosh−2ðt=τÞ cosðαt3 þ βt2 þ ω0tÞ; ð17Þ

where β and α are the linear and quadratic frequency chirp
parameters, respectively; ω0 is the central frequency of the
laser electric field oscillation, with τ being the total pulse
length. A single-sheeted Sauter pulse corresponds to
α ¼ β ¼ ω0 ¼ 0. In the present study, we have taken a

laser radiation field with frequency 25 keV, which
falls in the XFEL [38] region. However, the intensity
I ¼ 1.15 × 1027 W=cm2, which we consider here, is not
attainable in the XFELs presently or even in the foreseeable
future.

III. RESULTS

We solve Eq. (16) numerically for the evolution of
jΦðp̄; tÞj and ψðp̄; tÞ with the initial condition
jΦðp̄; t → −∞Þj ¼ 0. The phase ψðp̄; tÞ is defined only
up to an arbitrary additive constant. For definiteness, we
begin at t ¼ −10τ with jΦðp̄; t ¼ −10τÞj ¼ 10−16 and
ψðp̄; t ¼ −10τÞ ¼ π=4, so as to have u ¼ v ¼ 10−16=

ffiffiffi
2

p
initially. Here we have used the ordinary differential
equation solver ODE113 (a built-in package for solving
nonstiff differential equations with variable step and variable
order) in MATLAB [39] to solve Eq. (16). As we are dealing
with very small numbers,wehave taken care about numerical
errors. The relative and absolute error tolerances are set to
10−14 and 10−15, respectively for solving Eq. (16).
As mentioned before, the complete evolution of the

modulus of the order parameter jΦðp̄; tÞj was shown to go
through three distinct stages: namely, the initial QEPP
stage, the transient stage, and the final REPP stage of the
created electron-positron pairs by the external time-depen-
dent electric field of single-sheeted Sauter pulses and
multisheeted Gaussian pulses [36,37]. However, it is not
clear what is the origin of the transient stage. Furthermore,
the evolution of the phase ψðp̄; tÞ has not been studied so
far. We therefore revisit these cases. jΦðp̄; tÞj and ψðp̄; tÞ
are plotted as a function of time for single and multisheeted
Sauter pulses without any frequency chirp (ω0τ ¼ 5,
α ¼ β ¼ 0) in Fig. 1. It is seen in Fig. 1(a) that jΦðp̄; tÞj
increases monotonically with time in the QEPP region for
the single-sheeted Sauter pulse up to t ¼ 0, at which point
the electric field reaches its maximum value, and thereafter
jΦðp̄; tÞj decreases. jΦðp̄; tÞj, after decreasing to a certain
value, shows rapid oscillations and thus undergoes tran-
sition from QEPP to a transient region before settling down
to the REPP state as a consequence of FIPT wherein
jΦðp̄; tÞj reaches a constant value different from zero. The
phase ψðp̄; tÞ remains almost constant before increasing
rapidly about the time the transient stage in the evolution of
jΦðp̄; tÞj appears; see Fig. 1(c). For the multisheeted Sauter
pulse, the evolution of jΦðp̄; tÞj in Fig. 1(b) shows periodic
oscillations corresponding to the subcycle structure of the
electric field in the QEPP region. The transient region
appears later and becomes elongated before it reaches the
final REPP state. ψðp̄; tÞ is found to increase slowly in the
QEPP region and then rapidly at the onset of the transient
stage; note the abrupt change of slope in the linear growth
of ψðp̄; tÞ in Fig. 1(d). The blowup of the evolution of
ψðp̄; tÞ in the transient stage shows a staircase-like
structure.
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As seen in Eq. (16), the evolution of jΦðp̄; tÞj is
governed by the temporal profiles of the electric field
EðtÞ and the corresponding vector potential AðtÞ through
the ratio EðtÞ=ω2ðp̄; tÞ (note that ϵ⊥ ¼ e ¼ 1) and also by
the phase term cosψðp̄; tÞ. As ψðp̄; tÞ remains nearly
constant, the QEPP stage is largely controlled by
EðtÞ=ω2ðp̄; tÞ, as seen in Fig. 1(a). For the single-sheeted
pulse as shown in Fig. 2(a), the electric field profile is

smooth, having its maximum at t ¼ 0, while the vector
potential is large in magnitude on either side of the electric
field maximum, resulting in a sharper temporal profile of
EðtÞ=ω2ðp̄; tÞ. In Refs. [36,37,40], the temporal profile of
jΦðp̄; tÞj in the QEPP stage was compared to that of jEðtÞj.
However, the much sharper profile of jΦðp̄; tÞj, particularly
near the center of the pulse, and the faster decay thereof in
the tail regions is better explained by jEðtÞj=ω2ðp̄; tÞ than
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FIG. 1. Evolution of the modulus jΦðp̄; tÞj and the phase ψðp̄; tÞ of the order parameter: (a),(c) for a single-sheeted Sauter pulse;
(b),(d) for a multisheeted (ω0τ ¼ 5) Sauter pulse without frequency chirping (α ¼ β ¼ 0) for the longitudinal momentum values
p3 ¼ 0 MeV, ∓0.5 MeV. All the measurements are taken in electron mass units, and the transverse momentum p̄⊥ ¼ 0. The field
parameters are E0 ¼ 0.1 and τ ¼ 100. The insets show a magnified view of the evolution in the transient region.
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FIG. 2. (a),(c) EðtÞ, jEðtÞj=ω2ðp̄; tÞ for single-sheeted and multisheeted (ω0τ ¼ 5) Sauter pulses, respectively. (b) AðtÞ for single and
multisheeted pulses. (d),(e) Evolutions of uðp̄; tÞ and vðp̄; tÞ, respectively, for single and multisheeted pulses, with insets showing a
magnified view of the evolution in the transient stage. All the measurements are taken in electron mass units. The field parameters are
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β ¼ α ¼ 0. Transverse and longitudinal momenta are taken to be zero.
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jEðtÞj; see Fig. 2(a). The formation of the transient region
takes place because of the sudden rapid increase in the
value of the phase ψðp̄; tÞ, which makes cosψðp̄; tÞ [on the
right-hand side of Eq. (16)] and hence jΦðp̄; tÞj oscillate
rapidly; see Fig. 3(a). Once the electric field gets vanish-
ingly small, djΦðp̄; tÞj=dt ¼ 0, and we have a constant
value of jΦðp̄; tÞj in the REPP region. In this region
dψðp̄; tÞ=dt ¼ 2ωðp̄; tÞ, and hence Φðp̄; tÞ ∼ΦRe2iωt,
where ΦR is the constant value of Φðp̄; tÞ. ΦR being
largest for p3 ¼ 0 and the same for p3 ¼ �0.5 MeV is
consistent with the well-known fact that the asymptotic
momentum spectrum of pairs created by the single-sheeted
pulse is centered at p3 ¼ 0 and is symmetric about it [41].
At this point, it is worthwhile noting that in the QEPP stage
for t ≥ 0 and in the transient stage, jΦðp̄; tÞj is largest for
p3 ¼ −0.5 MeV, which suggests that the (quasi)particle
momentum spectrum should be centered about a negative
value of p3. As reported in a recent work [42], this indeed is
the case. For the multisheeted pulse, as shown in Fig. 2(c),
the electric field oscillates within the smooth envelope. In
contrast to the single-sheeted field case, the vector potential
is much suppressed in the tail region of the field, having
oscillatory structure in the center; see Fig. 2(b). The
resulting EðtÞ=ω2ðp̄; tÞ has a temporal profile close to that
of EðtÞ, except near the pulse center. The QEPP region is
consequently broader, and the temporal profile of jΦðp̄; tÞj
in this region is modified by the subcycle structures of the
electric field. In this case too, the temporal profile of
jΦðp̄; tÞj in the QEPP stage is well explained by that of
jEðtÞj=ω2ðp̄; tÞ. The rapid oscillation of jΦðp̄; tÞj in the
transient region in this case is governed by the oscillations
in EðtÞ, cosψðp̄; tÞ, and AðtÞ; therefore the transient region

is elongated and the modulation effect is seen in Fig. 1(b).
In the QEPP region, the counterterm vðp̄; tÞ governing the
depolarization and pair annihilation is stronger than uðp̄; tÞ,
which is responsible for the polarization and pair creation
[Figs. 2(d)–(e)]. Both uðp̄; tÞ and vðp̄; tÞ oscillate with
varying amplitudes which are large in the center of the
pulse. The decrease in the amplitude of vðp̄; tÞ in moving
away from the center is more than that of uðp̄; tÞ. In the
transient region, both the amplitudes are nearly the same,
before becoming identical in the REPP stage.

A. Effect of frequency chirping
on field-induced phase transition

It is clear from the results discussed so far that the
complexity in the evolution of the modulus and the phase
of the order parameter, particularly in the transient stage, is
because of the nonlinear coupling in the dynamical equations
governing the evolution of the modulus and the phase. As
demonstrated above, in theQEPP region, the evolution of the
modulus is mostly governed by both the electric field EðtÞ
and the vector potential AðtÞ. The evolution of the phase, on
the other hand, is governed by two distinct terms which
contain all the dynamic variables. In the QEPP stage, where
the phase evolves slowly and smoothly, the two terms seem to
balance each other. The transient stage arises when this
dynamic balance is lost and hence there is steep increase in
the phase over a very small duration.After the transient stage,
the dynamics of the phase and modulus of the order
parameter are decoupled; see Fig. 3.
The presence of frequency chirping in effect makes

frequency time dependent. This, in turn, affects the number
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FIG. 3. (a),(c) j cosψðp̄; tÞj for single-sheeted and multisheeted Sauter pulses, respectively. (b),(d) 2ωðp̄; tÞ and jλ sinψðp̄; tÞj=
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CHITRADIP BANERJEE and MANORANJAN P. SINGH PHYS. REV. D 100, 056016 (2019)

056016-6



of subcycle oscillations within the envelope. In the pres-
ence of linear frequency chirp β, the subcycle oscillations
are asymmetric about t ¼ 0. As we have taken the positive
value of β, the number of oscillations within the pulse
envelope is less for t < 0 than for t > 0. Hence, the evolu-
tion of jΦðp̄; tÞj shows irregular oscillations in the QEPP
state (Fig. 4). As β is increased further, the oscillations
become more rapid and are spread throughout the QEPP
region, as seen in Fig. 4(c). The evolution can be under-
stood qualitatively by looking at the temporal profiles of
EðtÞ, AðtÞ, and also the ratio jEðtÞj=ω2ðp̄; tÞ, as shown in
Fig. 5. For β ¼ 5 × 10−5, the effect of frequency chirping is
small. Hence, the evolution of jΦðp̄; tÞj, as in the case of the
multisheeted Sauter pulse discussed above, follows the
electric field profile in the QEPP stage, and the transient
stage is marked by the sudden change in the evolution of
the phase. For β ¼ 5 × 10−4, however, there is much more
asymmetry in the electric field profile, and the vector
potential is large and constant for t < 0, before undergoing

quick oscillations near t ¼ 0 and attaining a constant value
thereafter. The evolution of jΦðp̄; tÞj with enhanced oscil-
lation frequencies in the QEPP stage follows the temporal
profile of jEðtÞj=ω2ðp̄; tÞ.
We now study the effect of varying the linear chirp

parameter β in the presence of a fixed quadratic chirp
(α ¼ 1 × 10−6) on FIPT. For small values of β, the inequality
ω0 > ατ2 > βτ holds, and the quadratic chirp dominates the
evolution of jΦðp̄; tÞj. The evolution shows the formation of
a pretransient stage in the QEPP region for values of t < 0
(before the electric field reaches itsmaximumvalueE0). This
is shown in Fig. 6(a). The onset of the pretransient region,
like in the transient stage, is marked by the dominance
of the ðEðtÞ=ω2ðp̄; tÞÞðsinψðp̄; tÞ=jΦðp̄; tÞjÞ term over the
2ωðp̄; tÞ term in controlling the dynamics of ψðp̄; tÞ
[Fig. 6(d)]. This causes rapid oscillations in cosψðp̄; tÞ
[Fig. 6(c)], and hence in jΦðp̄; tÞj [Fig. 6(a)] around the
temporal region near the pretransient stage. However, the
pretransient stage gets suppressed for higher values of β to
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give the uninterrupted QEPP region with irregular, fast, and
spread out oscillations as seen in Fig. 6(b). It is seen that for
higher values of β, the formation of the REPP stage takes
place with a larger magnitude of the order parameter for the
p3 ¼ −0.5 MeV mode than for p3 ¼ 0.5 MeV, suggesting

thereby that the momentum spectrum pairs created by the
pulse are centered at a negative value of longitudinal
momentum.
The effect of only quadratic chirping on FITP is shown in

Fig. 7 for the longitudinal momentum values p3 ¼ 0 MeV
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and p3 ¼ �0.5 MeV. For α ¼ 2 × 10−6, the evolution of
jΦðp̄; tÞj shows high-frequency oscillations in the QEPP
stage, as seen in Fig. 7(a). There is a formation of the
pretransient region in this case. When the value of α is
increased to α ¼ 5 × 10−6, the pretransient and the tran-
sient regions move closer to the maximum of the electric
field and hence get closer to each other. The higher the
value of α, the larger the shift. When the pretransient and
transient stages are close enough, as in Fig. 7(b) for
example, the rapid oscillations in cosψðp̄; tÞ which set
in at the pretransient stage continue till the transient stage;
see Fig. 7(c). This should be compared with the evolution
of cosψðp̄; tÞ presented in Fig. 6(c), wherein the rapid
oscillations of a relatively far-off pretransient stage do not
extend all the way up to the transient stage. They are rather
interrupted by slower oscillations in the central region of
the pulse. An early occurrence of the transient stage leads to
the formation of the REPP stage at earlier times as the value
of α is increased. Consequently, the modulus of the order
parameter in the REPP region increases with the increase in
the value of α. This results in the enhancement of the pair
production rate. Furthermore, a clear separation for differ-
ent momentum modes is seen in the pretransient and
transient stages of evolution of the order parameter.
For quantitative estimation of the enhancement of the

pair production rate due to the presence of quadratic chirp
in the ultrashort laser pulse, we present the average number
of created particles neþe− ¼ 2g

R
d3p=ð2πÞ3fðp̄; t → ∞Þ

for different values of the quadratic frequency chirp
parameter α in Table I. Here, g is the spin degeneracy
factor. The average number of created particles increases by
5 orders of magnitude as the value of α is increased from
1 × 10−6 to 6 × 10−6. Such an enhancement in the pair
production rate may be attributed to the increase in the
subcycle oscillation frequency of the laser pulse away from
the pulse center in the temporal envelope. The subcycle
oscillation of the laser pulse may be described by an
effective time-dependent frequency ωeffðtÞ ¼ ω0 þ αt2.
With the values of the subcycle oscillation frequency

ω0ð¼ 0.05Þ and the field strength E0ð¼ 0.1Þ of the multi-
sheeted Sauter pulse considered in this article, the Keldysh
parameter γ ¼ mω=eE ¼ 0.5. Therefore, for the pulse
without any chirp, the pair production takes place largely
through the tunneling mechanism. On the other hand, in
the presence of quadratic chirp, the value of γ increases
with the increase in the effective frequency in the non-
central part of the pulse. When the chirp is sufficiently
strong, the multiphoton process also begins to contribute to
the pair production, resulting in the enhancement of the pair
production rate. A somewhat similar enhancement in pair
production for a probe photon propagating through a
polarized ultrashort laser pulse was reported in the ana-
lytical work of Titov et al. [43]. The observed enhancement
in the pair production, which takes place through the
multiphoton process for the system considered therein,
was ascribed to the presence of higher frequencies than the
central frequency of the laser pulse in its power spectrum.
However, in this case, the higher frequencies arise due to
the finiteness of the temporal pulse envelope.

IV. CONCLUSION

To summarize, we have studied FIPT in the presence of
a time-dependent Sauter pulse by converting the QKE for
the single-particle distribution function into a set of two
nonlinear coupled equations describing the evolution of
the modulus jΦðp̄; tÞj and phase ψðp̄; tÞ of the complex
order parameter associated with the phase transition.
The dynamics of jΦðp̄; tÞj is governed by the product
ðEðtÞ=ω2ðp̄; tÞÞ cosψðp̄; tÞ, and that of ψðp̄; tÞ is dictated
by two competing terms in the form of 2ωðp̄; tÞ, the
dynamical energy gap, and ðEðtÞ=ω2ðp̄; tÞÞðsinψðp̄; tÞ=
jΦðp̄; tÞjÞ, under the approximation jΦðp̄; tÞj ≪ 1 (which
indeed is true for all the cases considered here). With the
help of these coupled equations, we have been able to shed
light on the origin of different evolution stages reported in
Refs. [36,37,40] for the single-sheeted Sauter pulse and
multisheeted Gaussian pulse. We find that in such cases
ψðp̄; tÞ remains nearly constant or varies very slowly with
time in the beginning, as the competing terms governing the
evolution nearly cancel out. Consequently, cosψðp̄; tÞ
varies slowly with the timescale comparable to that of
the external electric field, thereby resulting in the QEPP
stage of FIPT, wherein the evolution of jΦðp̄; tÞj follows the
profile ofEðtÞ=ω2ðp̄; tÞ. The slow variation ofψðp̄; tÞ is fol-
lowed by its abrupt steep increase. This makes cosψðp̄; tÞ
oscillate much more rapidly than EðtÞ=ω2ðp̄; tÞ. In this
temporal regime, known as the transient stage, the evolution
of jΦðp̄; tÞj is modulated by the rapid oscillation of
cosψðp̄; tÞ. With further increase in time, electric field
strength becomes vanishingly small. As a result, the equa-
tions describing the dynamics of jΦðp̄; tÞj and ψðp̄; tÞ are
decoupled. jΦðp̄; tÞj becomes a constant, and the dynamics
of ψðp̄; tÞ is governed by the dynamical energy gap
2ωðp̄; tÞ.

TABLE I. The average number of created particles neþe− with
different values of the quadratic frequency chirp parameter α for
the multisheeted Sauter pulse with ω0τ ¼ 5. Here E0 ¼ 0.1,
τ ¼ 100.

α neþe− ¼ 4
R d3p

ð2πÞ3 fðp̄; t ¼ 10τÞ
1 × 10−6 1.056 × 10−10

2 × 10−6 6.48 × 10−10

3 × 10−6 6.48 × 10−9

4 × 10−6 5.912 × 10−7

5 × 10−6 2.649 × 10−6

6 × 10−6 1.0186 × 10−5

7 × 10−6 2.5254 × 10−5
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jΦðp̄; tÞj is related to the single-particle distribution
function, which gives the number of created particles
(antiparticles) for asymptotic times, which in this case is
the REPP stage of evolution of the order parameter. In the
QEPP stage, the phase ψðp̄; tÞ gives a measure of
coherence in the particle-antiparticle correlation function
in the vacuum state. The oscillations of ψðp̄; tÞ in the
transient stage of evolution signify “dephasing,” which
results in the loss of coherence of the correlation function,
which subsequently results in the creation of “real”
pairs. The real part of the order parameter, uðp̄; tÞ ¼
jΦðp̄; tÞj cosψðp̄; tÞ, gives vacuum polarization; whereas
the imaginary part, vðp̄; tÞ ¼ jΦðp̄; tÞj sinψðp̄; tÞ, repre-
sents the corresponding counterterm. It is found that in the
QEPP stage uðp̄; tÞ ≪ vðp̄; tÞ. It is in the transient stage
that uðp̄; tÞ and vðp̄; tÞ are nearly equal. Thus, the process
of pair production is associated with the sufficient weak-
ening of the “counterterm” of the vacuum polarization.
In the presence of frequency chirp, the QEPP stage of

evolution of jΦðp̄; tÞj gets far more complex with faster and
irregular oscillation, which is attributed to the complexity
in EðtÞ=ω2ðp̄; tÞ. The most striking effect of quadratic
frequency chirp is the appearance of a novel stage in the
otherwise QEPP stage of the evolution of jΦðp̄; tÞj, located
symmetrically opposite to the transient stage from the pulse
center. The onset of the pretransient region, as in the
transient stage, is accompanied by rapid oscillations in

cosψðp̄; tÞ, which in turn arise because of the dominance of
the ðEðtÞ=ω2ðp̄; tÞÞðsinψðp̄; tÞ=jΦðp̄; tÞjÞ term over the
2ωðp̄; tÞ term in the dynamics of ψðp̄; tÞ. With sufficient
increase in the quadratic chirp, the pretransient and tran-
sient stages move closer to the pulse center. The rapid
oscillations in cosψðp̄; tÞ continue uninterrupted from the
pretransient to the transient stages. An early occurrence of
the transient stage leads to the REPP stage with a higher
value of jΦðp̄;∞Þj, resulting thereby in the enhancement of
the pair production rate. It may be possible to relate the rich
dynamical features of the pretransient and transient stages
to the vacuum polarization current, which is in principle
an experimentally measurable quantity. Here the polariza-
tion current density jpolðp̄; tÞ ¼ geV3

R ½dp�Pp=ωðp̄; tÞu,
where u ¼ jΦðp̄; tÞj cosðψðp̄; tÞÞ, which depends on the
phase of the complex order parameter [44]. Therefore, the
evolution of the oscillating phase is an important parameter
to study, especially in the pretransient and transient regions.
Measuring pulse parameters of ultrashort and ultrain-

tense laser pulses is a challenging task. Experiments based
on the QED effects have been suggested to measure the
carrier envelope phase [45,46], the relative content of e- and
h-waves [47], the relative phase [48], and the temporal
envelope [42] of the counterpropagating pulses. Our studies
suggest that enhancement of the pair production rate and
polarization current can be used to measure the quadratic
chirp parameter of ultrashort pulses.
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