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We study the electrical conductivity of hot Abelian plasma containing scalar charge carriers in the
leading logarithmic order in coupling constant α using the Boltzmann kinetic equation. The leading
contribution to the collision integral is due to the Møller and Bhabha scattering of scalar particles with a
singular cross section in the region of small momentum transfer. Regularizing this singularity by taking into
account the hard thermal loop corrections to the propagators of intermediate particles, we derive the second
order differential equation which determines the kinetic function. We solve this equation numerically and
also use a variational approach in order to find a simple analytical formula for the conductivity. It has the
standard parametric dependence on the coupling constant σ ≈ 2.38T=ðα log α−1Þwith the prefactor taking a
somewhat lower value compared to the fermionic case. Finally, we consider the general case of hot Abelian
plasma with an arbitrary number of scalar and fermionic particle species and derive the simple analytical
formula for its conductivity.
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I. INTRODUCTION

Transport coefficients are very important character-
istics of any medium providing information about its
response to external perturbations. In particular, electrical
conductivity is a basic property of any material describing
the electric charge transfer, if an external electric field
is applied to the system. Whereas in strongly coupled
systems it is usually impossible to predict theoretically
this coefficient and it is determined experimentally, in a
weakly coupled quantum field theory it can be calculated
from the first principles. One of the well-known examples
of the latter system is the weakly-coupled plasma which
exists in the Universe on different stages of its evolution.
Knowing the conductivity of such a plasma is important
for different cosmological applications, such as describ-
ing the evolution of primordial magnetic fields [1–6], the
processes of lepto- and baryogenesis [7–11], the evolu-
tion of chiral asymmetry [12–15] etc.
There are two ways to calculate the transport coefficients

from first principles. The first one is a microscopic
approach based on the linear response theory, which allows
one to express the transport coefficients in terms of retarded

correlation functions of the conserved currents in the low
momentum and frequency limit (the so-called Kubo rela-
tions). These correlators have to be calculated in finite
temperature quantum field theory and the leading order
result is obtained by the resummation of an infinite number
of ladder diagrams. This approach was applied to the
calculation of the transport coefficients in scalar field
theory [16–18], in gauge theories [19,20] as well as in
the effective models of quantum chromodynamics (QCD)
such as the Nambu-Jona-Lasinio model [21,22], the lattice
QCD [23], the Polyakov-quark-meson model [24] etc.
Although it is the most general approach, applicable to
any given field theory, it requires inventing ingenious
resummation schemes, especially for the gauge theories,
and therefore it is not very convenient.
On the other hand, there is also another approach based

on kinetic theory. The Boltzmann equation appeared in
classical physics and operates with pointlike particles
rather than quantum fields. Nevertheless, the behavior of
the hard modes in quantum field theory in the weak-
coupling limit admits a description in terms of quasipar-
ticles (throughout the paper we will call the momenta k≳ T
as hard, and those k ≪ T as soft ones). Indeed, starting
from the Schwinger-Dyson (SD) equations for the real-time
Green’s functions at finite temperature and assuming a
small departure from equilibrium it is possible to show in
the weakly coupled theory, that the hard modes can be
regarded as massless quasiparticles interacting through
a screened potential. Then, performing the gradient

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 056012 (2019)

2470-0010=2019=100(5)=056012(18) 056012-1 Published by the American Physical Society

https://orcid.org/0000-0002-6300-3079
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.056012&domain=pdf&date_stamp=2019-09-19
https://doi.org/10.1103/PhysRevD.100.056012
https://doi.org/10.1103/PhysRevD.100.056012
https://doi.org/10.1103/PhysRevD.100.056012
https://doi.org/10.1103/PhysRevD.100.056012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


expansion in SD equations and introducing the Wigner
functions which have the meaning of the phase space
distribution, it is easy to show that they satisfy the
Boltzmann equation with the collision integral in a canoni-
cal form including gain and loss terms [25–30]. The
scattering amplitudes in the collision integral have to be
calculated using the Feynman rules of the corresponding
quantum field theory. The kinetic equation describes the
deviation from equilibrium of the hard particles distribution
function on scales large compared to thermal de Broglie
wavelength λdB ∼ 1=T.
The kinetic approach is much simpler than the dia-

grammatic one, but unfortunately, it allows one to calculate
the transport coefficients only in the leading order in the
coupling constant. To compute the higher order corrections,
one has to take into account the modification of the
dispersion relations of the hard particles coming from
the self-energy corrections to their propagators. Usually
the leading order result is satisfactory for most of the
practical issues and the kinetic approach is widely
used to calculate the transport coefficients. In particular,
the electrical conductivity of the ultrarelativistic plasma
was computed in the framework of kinetic theory in
Refs. [31–41].
First attempts to extract the conductivity from kinetic

approach were made using the simplest τ-approximation
for the collision integral [31–33] or performing the
Chapman-Enskog expansion [34]. Later, the Boltzmann
equation was numerically solved using the Monte Carlo
simulations of the collision integral, and the conductivity of
the early Universe was determined in Refs. [35,37]. The
leading-log result for the conductivity of Abelian plasma
was derived in the constant flow velocity approximation
in Ref. [36], however not including the Compton scatter-
ing and pair annihilation processes which are equally
important as the Møller and Bhabha scattering in the
fermionic case. This inconsistency was removed in
Ref. [38] where the leading-log expressions for the
conductivity, viscosity, and flavor diffusivity of the hot
fermion plasma were derived in a variational approach.
Finally, in the companion paper [39], the corresponding
results in the next-to-leading-log approximation as well
as in the full leading order were presented.
Electrical conductivity in the early Universe in

the Standard Model framework was discussed in
Refs. [35–39]. A nonzero charge of a particle with respect
to Uð1Þ gauge interaction makes it an effective scatterer for
other charge carriers. However, the electric current is
determined only by those particles for which the Uð1Þ
interaction is the strongest one among all interactions they
can take part. Since the scalar Higgs particle interacts in the
symmetric phase not only with Uð1ÞY hypercharge gauge
field but also (more intensively) with SUð2ÞI gauge bosons,
the departure from equilibrium caused by the hyperelectric
field is washed out more quickly by means of SUð2Þ

interactions and the contribution to the hyperelectric
current is negligible. On the other hand, in the broken
symmetry phase, the Higgs boson is neutral and plays no
role in the electrical conductivity.
Charged scalar particles also exist in hadron gas for the

temperatures below the deconfinement phase transition in
QCD. In Refs. [42–49], the electric conductivity of such a
plasma was calculated by the variety of methods, including
Kubo relations, kinetic approach, chiral perturbation theory
etc. However, the lightest scalars, pions, have the mass
mπ ¼ 138 MeV which is of the same order as the phase
transition temperature Tc ≃ 150 MeV. This means that in
the hadronic phase one cannot treat these particles as
ultrarelativistic ones and have to take into account their
masses. Moreover, the mean-free path of charged hadrons
is mainly determined by their strong interaction, and the
simplified description in the framework of scalar electro-
dynamics is insufficient.
Therefore, the kinetic equation for ultrarelativistic

scalar charged particles was not studied previously in
the literature and their contribution to the conductivity
was not calculated. This could be interesting, however,
in some extensions of the Standard Model containing
extra charged scalars. Also it may be useful to compare
the results of numerical lattice simulations including
scalars with theoretical predictions. In particular, in
Refs. [13–15] the fermion chirality nonconservation in
Abelian gauge theory with a charged scalar field was
studied. The theoretical prediction for the chirality break-
ing rate depends on the electrical conductivity in the
system, and it has to be compared with the numerical
result measured from lattice simulations. Finally, it is
important to study the role of the scalar particles in order
to understand the whole picture of the transport phenom-
ena in hot Abelian plasmas.
This paper is organized as follows. We consider the

general form of the Boltzmann kinetic equation with the
collision integral resulting from 2 ↔ 2 scatterings in
Sec. II. In Sec. III, the electrical conductivity of the hot
scalar QED plasma with one type of charge carriers is
calculated using the exact solution of the Boltzmann
equation as well as by variational method. In Sec. IV
we derive the general formula for the conductivity of a
multicomponent Abelian plasma with an arbitrary number
of charged scalar and fermionic particles. The summary of
the obtained results is given in Sec. V. In the Appendix we
provide some details of the calculation of the collision
integral in the leading-log order.

II. BOLTZMANN EQUATION

As we mentioned in the Introduction, in order to
calculate any transport coefficient at leading order in the
coupling constant, it is sufficient to use the Boltzmann
kinetic equation which describes the dynamics of the phase
space distribution of hard particles in the plasma. We will
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follow the standard kinetic approach previously used in
calculations of the conductivity in the fermionic case in
Refs. [35–38]. Let us consider the Abelian plasma which
consists of several constituents, which we will mark by
the small Latin index a, b, c, etc. In particular, in scalar
electrodynamics, there are three of them: scalar particles,
their antiparticles, and photons. Each constituent can be
characterized by a phase space distribution function
faðX;kÞ, where X ¼ ðt;xÞ marks a space-time point and
k is the particle’s momentum. Then, the Boltzmann
equation reads:

ð∂t þ v ·∇x þ F · ∇kÞfaðX;kÞ ¼ −Ca½f�; ð1Þ

where v ¼ k=jkj is a particle velocity, and F is an external
force, e.g., the electric force in the case we are studying the
conductivity. In order to calculate the transport coefficients
in the leading-log approximation it is sufficient to con-
sider only 2 ↔ 2 processes, e.g., the Møller, Bhabha or

Compton scattering, pair annihilation and so on. Indeed, as
it was discussed in the fermionic case in Refs. [36,38], the
additional logarithmic dependence on the coupling con-
stant originates from the IR logarithmic divergence in the
matrix element corresponding to these scattering processes.
The processes 2 ↔ n with n > 2, in general give a result
parametrically of higher order in the coupling constant.
Nevertheless, it was shown in Refs. [39,40] that effective
1 ↔ 2 processes of nearly collinear bremsstrahlung and
pair production or annihilation in the presence of soft gauge
field excitations (in fact, these are the N þ 1 ↔ N þ 2
processes including N soft intermediate photons) may
also contribute in the same order as 2 ↔ 2 processes.
However, they do not have the additional logarithmic
enhancement and should be taken into account only in
the full leading order calculation, which lies beyond the
scope of our paper.
Therefore, the collision integral for the particle of type a

has the form:

Ca½f� ¼
X
fbcdg

Z
d3k0

ð2πÞ3
d3p
ð2πÞ3

d3p0

ð2πÞ3
jMab

cdðKP → K0P0Þj2
16ϵkϵk0ϵpϵp0

ð2πÞ4δð4ÞðK þ P − K0 − P0Þ

× ½faðkÞfbðpÞð1� fcðk0ÞÞð1� fdðp0ÞÞ − ð1� faðkÞÞð1� fbðpÞÞfcðk0Þfdðp0Þ�; ð2Þ

where K ¼ ðk0;kÞ is the 4-momentum, with k0 ¼ ϵk ¼ jkj
(although, in general, the particles have a nonzero mass, in
the hot plasma with temperature T ≫ m the hard particles
with k≳ T can be treated effectively as massless). The
delta-function takes into account the energy-momentum
conservation in scattering, and the � sign corresponds to
bosonic or fermionic particle statistics, respectively. The
sum over the particle species means the sum over all
possible collision processes for particle a. jMj2 is the
corresponding matrix element which takes into account
the symmetry factors in the case of identical particles in the
final state and number of spin or polarization degrees of
freedom (d.o.f.). Finally, the two terms in the square
brackets take into account the fact that the particle of
the type awith momentum k can disappear in the scattering
event aþ b → cþ d (the loss term) or it can appear in the
inverse process cþ d → aþ b (the gain term). It has to be
mentioned that all distribution functions appearing in the
collision term are taken at the same space-time point X and
this dependence was omitted in Eq. (2) for the sake of
simplicity.
In order to compute the transport coefficients, we have

to consider a slight departure from equilibrium and
linearize the collision integral with respect to this
deviation. Then, it is convenient to use the following
decomposition:

faðX;kÞ¼faeqðϵkÞþ
∂faeq
∂ϵk W

aðX;kÞ

¼faeqðϵkÞ−
1

T
faeqðϵkÞð1�faeqðϵkÞÞWaðX;kÞ;

ð3Þ

where faeqðxÞ ¼ nB;FðxÞ ¼ ½expðx=TÞ ∓ 1�−1 is the Bose-
Einstein or Fermi-Dirac equilibrium distribution function
depending on the statistics of the particles of the type a.
To first order inW, we can equivalently rewrite faðX;kÞ≈
faeqðϵk þWaÞ, which explains the physical meaning of the
function W as the local modification of the particle’s
dispersion relation under the impact of external force.
We now put decomposition (3) into expression (2) and

keep only the terms up to the first order in W. First of all,
it is worth noting that the collision integral calculated with
the equilibrium distribution functions (i.e., the contribution
from the zeroth order in W) identically vanishes. This can
be seen directly from the following identity:

faeqðϵkÞfbeqðϵpÞð1� fceqðϵk0 ÞÞð1� fdeqðϵp0 ÞÞ
ð1� faeqðϵkÞÞð1� fbeqðϵpÞÞfceqðϵk0 Þfdeqðϵp0 Þ

¼ expð−ϵk − ϵp þ ϵk0 þ ϵp0 Þ ¼ 1; ð4Þ
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which is a manifestation of the detailed balance principle in equilibrium. Therefore, the collision integral appears to be a
linear functional of the W-functions:

Ca½W� ¼ −
1

T

X
fbcdg

Z
d3k0

ð2πÞ3
d3p
ð2πÞ3

d3p0

ð2πÞ3
jMab

cdðKP → K0P0Þj2
16ϵkϵk0ϵpϵp0

ð2πÞ4δð4ÞðK þ P − K0 − P0Þ

× faeqðϵkÞfbeqðϵpÞð1� fceqðϵk0 ÞÞð1� fdeqðϵp0 ÞÞ½WaðX;kÞ þWbðX;pÞ −WcðX;k0Þ −WdðX;p0Þ�: ð5Þ

Further, we rewrite the left-hand side of the Boltzmann
equation (1) in terms of W assuming the external force
which pushes the particles from equilibrium to be of the
same order as W. Then, we obtain the following:

−
1

T
faeqðϵkÞð1� faeqðϵkÞÞ½v · ∂XWaðX;kÞ þ v · F�; ð6Þ

where v ¼ ð1; vÞ is the particle’s 4-velocity.
In order to calculate the electrical conductivity of the

plasma, we apply a constant electric field E to this
system. Then, it is natural to assume that the kinetic
functionWa which describes the deviation of the particles
distribution function from equilibrium does not depend
on time and coordinates, i.e., we consider the steady state
currents in the plasma. Furthermore, the charge conju-
gation symmetry requires for the departure from equi-
librium for particles and antiparticles to have equal
absolute values and opposite signs. In particular, this
gives Wā ¼ −Wa and Wγ ¼ 0.
The conductivity can be extracted in a standard way by

computing the electric current:

j ¼ e
X
a

qaga

Z
d3k
ð2πÞ3 v½f

aðkÞ − fāðkÞ�

¼ −
2e
T

X
a

qaga

Z
d3k
ð2πÞ3 f

a
eqðϵkÞð1� faeqðϵkÞÞvWaðkÞ

¼ σE; ð7Þ

where qa and ga are the charge and number of spin d.o.f.
for the particles of the type a, respectively, and the sum is
taken over the types of charged particles not including
their antiparticles separately. In the derivation we used
decomposition (3) and the charge-conjugation symmetry.
Knowing the kinetic function Wa for each type of particle
in the plasma, we can calculate the electric current and
identify the conductivity.

III. ELECTRICAL CONDUCTIVITY
OF SCALAR QED PLASMA

In this section we will calculate the conductivity in scalar
quantum electrodynamics (QED). We consider the self-
interacting complex scalar field ϕ coupled to the Uð1Þ

gauge field Aμ, i.e., the electromagnetic field. The corre-
sponding Lagrangian density has the form:

L¼−
1

4
FμνFμνþðDμϕÞ†ðDμϕÞ−m2ϕ†ϕ−λðϕ†ϕÞ2; ð8Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
tensor, Dμ ¼ ∂μ − ieAμ is a covariant derivative, e is the
scalar particle’s charge, and λ is a dimensionless self-
coupling constant of the scalar field. This theory allows for
the three types of interaction vertices: ϕϕϕ̄ ϕ̄ with coupling
λ, ϕϕ̄γγ with coupling e2, and ϕϕ̄γ with coupling e, where
by ϕ, ϕ̄, and γ we denote the scalar particle, antiparticle,
and photon, correspondingly. In what follows we assume
λ ∼ e2 because, in this case, all tree-level diagrams con-
tribute to the matrix elements at the same order in e.

A. Collision term

Let us consider all possible 2 ↔ 2 scattering processes in
which the scalar particle ϕ takes part. They are listed in
Table I together with the corresponding matrix elements
which are expressed in terms of the Mandelstam variables
s ¼ ðPþ KÞ2, t ¼ ðK − K0Þ2, and u ¼ ðK − P0Þ2.
Inspecting the last column in Table I, one could notice

that the matrix elements for the Compton scattering and
pair annihilation take constant values. This originates from
accidental cancellation of all momentum dependent terms
in the limit of massless scalar particles. If we take into
account their finite masses, the matrix element for the
Compton scattering would take the form:

jMj2 ¼ 4e4
�
1þ 2m2

�
1

s −m2
þ 1

t −m2

�

þ 2m4

�
1

s −m2
þ 1

t −m2

�
2
�
: ð9Þ

In the IR region, we have t ¼ −q2⊥ þOðq3=k; qm2=kÞ,
where q⊥ ¼ q − vðv · qÞ is the momentum transfer pro-
jection perpendicular to the velocity v of the incoming
scalar particle. Thus, taking the massless limit, we neglect
the terms of the form m2=ðq2⊥ þm2Þ which do not lead to
IR singularities.
As it was shown in Refs. [36,38], the leading-log result

comes from the singular behavior of the scattering matrix
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elements at small momentum transfer. From this we con-
clude that the processes of Compton scattering and pair
annihilation will not contribute to the leading-log result.
We would like to emphasize that the absence of IR
singularities in the matrix elements of these processes is a
distinctive feature of scalar QED. In contrast to this, in the
case of spinor electrodynamics (see Sec. IV below or
Refs. [35,37,38]), the corresponding matrix elements contain
divergences of the form ∝ e4s=t, and give a contribution to
the collision integral in the leading logarithmic order.
Now, let us pay attention to the scattering processes

which have a singular behavior for small momentum
transfer. They are shown in the first two rows in Table I.
The Møller scattering involves identical particles, therefore,
we have to include the additional factor of 1=2 to avoid
double counting in the final state. On the other hand, its
matrix element contains a singularity in the small momen-
tum transfer region in the t-channel as well as in the

u-channel. Swapping the outgoing momenta k0 ↔ p0 in the
u-channel diagram we obtain the same result as in the
t-channel. Thus, we can neglect both the symmetry factor
1=2 and the additional contribution from the u-channel and
take into account only the small-t expression. Using the
identity sþ tþ u ¼ 0 valid in the massless case, we take
only the most singular small-t contributions to the matrix
elements, which appear to have the same form:

jMϕ;b
ϕ;bðKP → K0P0Þj2 ≃ 4e4

s2

t2
; t → 0; ð10Þ

where b denotes ϕ for the Møller scattering or ϕ̄ for the
Bhabha process.
Therefore, we can write the kinetic equation suitable

for obtaining the leading-log result for the transport coef-
ficients in scalar QED. Denoting Wϕ ¼ W and Wϕ̄ ¼ W̄,
we have:

v · ∂XWðX;kÞ þ v · F ¼ −
Z

d3k0

ð2πÞ3
d3p
ð2πÞ3

d3p0

ð2πÞ3
4e4s2=t2

16ϵkϵk0ϵpϵp0
ð2πÞ4δð4ÞðK þ P − K0 − P0ÞnBðϵpÞð1þ nBðϵp0 ÞÞ

×
1þ nBðϵk0 Þ
1þ nBðϵkÞ

× ½2WðX;kÞ − 2WðX;k0Þ þWðX;pÞ −WðX;p0Þ þ W̄ðX;pÞ − W̄ðX;p0Þ�: ð11Þ

Let us simplify Eq. (11) considering the case of spatially homogeneous electric field E applied to the system which
implies W̄ ¼ −W. In order to extract the divergent part of the collision integral it is convenient to introduce the momentum
transfer Q ¼ K − K0 ¼ ðω;qÞ with the notation ω ¼ ϵk − ϵk−q, and express the integrand in terms of this quantity:

eðv ·EÞ ¼ −4πe4
Z

d3p
ð2πÞ3

Z
d3q
ð2πÞ3

ϵkϵpð1 − v · v0Þ2
ϵk−qϵpþqðω2 − q2Þ2 δðϵk þ ϵp − ϵpþq − ϵk−qÞ

× nBðϵpÞð1þ nBðϵpþqÞÞ
1þ nBðϵk−qÞ
1þ nBðϵkÞ

½WðkÞ −Wðk − qÞ�; ð12Þ

where v0 ¼ p=jpj.

TABLE I. Binary tree-level processes in scalar QED.

N0 Process Diagrams Matrix element jMj2
1 Møller scattering ϕϕ → ϕϕ ð4λþ e2 s2þt2þu2

tu Þ2

2 Bhabha scattering ϕϕ̄ → ϕϕ̄ ð4λþ e2 s2þt2þu2
st Þ2

3 Compton scattering ϕγ → ϕγ 4e4

4 2-photon annihilation ϕϕ̄ → γγ 8e4
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The matrix element (10) has a usual Rutherford 1=q4

behavior which is singular at small momentum transfer.
However, the collision integral also contains the difference
of the distribution functions with close momenta. As we
will see further, this helps to reduce the severe powerlike
divergence of the q-integral to a more weak logarithmic
one. This residual divergence is usually cut by introducing
the so-called Coulomb logarithm which comes from the
soft integration cutoff on eT scale (for more details about
the Coulomb logarithm in different plasma systems, see
classical textbooks [50,51]). We will discuss the origin of
this cutoff below, but now let us emphasize that the leading-
log behavior of the collision integral comes from the region
of small momentum transfer q and in order to obtain the
result in the leading-log approximation we have to expand
the integrand at small q keeping only the leading and first
subleading terms.
One more remark concerning the small-q expansion

should be added in the case where the scattering particles
are bosons, like in scalar QED. This expansion is based on
the hierarchy eT ≲ q ≪ p, k ∼ T and involves the terms of
the form q=p, q=k. This does not cause any problems if
the resulting integrals over p and k are convergent.
However, in the bosonic case, the equilibrium distribution
functions are singular at small momenta. One has to be
very accurate in this region because of the two over-
lapping singularities: the small-q expansion becomes
incorrect in the region of small p. Nevertheless, there
is a safe way to overcome these difficulties. The pre-
scription is to use the symmetrized variables, e.g.,
pþ q=2 and p − q=2 or the elliptic coordinates defined
in Appendix instead of usual p and p − q. This would give
the expansion which, in the subleading order, does not
contain the IR-divergent 1=p terms (they appear only in q2

correction which we are not interested in). The details of
calculation can be found in Appendix. After all, we obtain
the kinetic equation in the following form:

eðv ·EÞ ¼ −α2T3

Z
dq
q3

Z
dΩq

�
1 −

3q
2π2T

þ q · v
2T

½2nBðϵkÞ þ 1� þOðq2Þ
�

× ½WðkÞ −Wðk − qÞ�; ð13Þ

where α ¼ e2=ð4πÞ is the fine structure constant. This
result was derived without any assumption about the
kinetic function WðkÞ. To proceed further we need to
specify at least its dependence on the direction of k.
For this purpose, we at first apply the constant flow
velocity approximation and obtain a simple analytic result
for the conductivity. Later, we will find the exact solution
of the kinetic equation and check the validity of our
approximation.

B. Constant flow velocity approximation

The simplest approximation which allows one to specify
the functional dependence of the kinetic function is the
constant flow velocity approximation (CFV). It was pre-
viously used in Ref. [36] to calculate the conductivity of
plasma in usual spinor electrodynamics. Let us assume that
the external electric field leads to a stationary flow of the
plasma particles with some constant velocity u, and write
the distribution function of such a system as the equilibrium
Bose-Einstein distribution boosted along the flow (we
consider a sufficiently weak electric field so that the flow
velocity is non-relativistic):

fCFVðkÞ ≈ feqðϵk − u · kÞ ≈ feqðϵkÞ −
∂feq
∂ϵk u · k: ð14Þ

Comparing this expression with the definition of W-
function (3), we immediately obtain the following ansatz:

WðkÞ ¼ −k · u; u ¼ const: ð15Þ

Substituting it into Eq. (13), we obtain the following:

eðv ·EÞ ¼ α2T2

2
½2nBðϵkÞ þ 1�

Z
qmax

qmin

dq
q

Z
dΩqðq̂ ·uÞðq̂ · vÞ

¼ 2πα2T2 lnΛ
3

½2nBðϵkÞ þ 1�ðv ·uÞ; ð16Þ

where we introduced the Coulomb logarithm lnΛ ¼
lnðqmax=qminÞ. As we previously discussed, the severe
powerlike IR divergence of the q-integral is partially
ameliorated and transformed into weaker logarithmic
one. However, both divergences, at the upper integration
limit as well as at the lower one, are the consequences of the
simplifications made by us during the calculation. We can
estimate the value of the Coulomb logarithm by determin-
ing the scales on which our approximations are not valid.
First of all, we should mention that the divergence at the

upper limit is simply due to the fact that we neglected q in
the arguments of the Bose-Einstein distribution functions
assuming it much less than the typical hard momentum,
q ≪ T. This allowed us to perform the integration over p
but simultaneously made the dependence of the integrand
on q exponentially unsuppressed at large values. This
suppression would be restored if we perform the integration
exactly. Thus, we can estimate the upper integration limit
as qmax ∼ T.
The situation at the lower limit is more subtle. If we use

the free-particle propagators in the matrix elements, this
divergence is unavoidable because the photon has zero
mass and the range of the electromagnetic interaction is
infinite. However, this is only true for the particles
scattering in vacuum. In the plasma, the situation changes
drastically due to the screening by the thermal bath of the
particles. Indeed, in order to describe the scattering process
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in the plasma, we should take into account the modification
of the particle propagator due to the thermal effects. It is
well known that in the thermal bath the particles change
their dispersion relations and become quasiparticles with
finite lifetime. All major features can be captured in the
HTL approximation [52–54]. In particular, we are inter-
ested in the thermally renormalized photon propagator
because it mediates the Møller and Bhabha scatterings
giving the leading contribution to the collision integral.
Then, the matrix element would take the form:

jMðKP→K0P0Þj2

¼16e4ϵ2kϵ
2
p

����ΔHTL
L ðQÞþ

�
v ·v0−

ðq ·vÞðq ·v0Þ
q2

�
ΔHTL

T ðQÞ
����
2

;

ð17Þ

where the longitudinal and transverse components of the
propagator are the following

ΔHTL
L ðQÞ ¼ 1

q2 − Π00

; ΔHTL
T ðQÞ ¼ 1

q20 − q2 − ΠT

ð18Þ

and the components of the polarization operator equal

Π00ðQÞ ¼ −m2
D þm2

D
q0

q
Q0ðq0=qÞ;

ΠTðQÞ ¼ 1

2

�
m2

D −
Q2

q2
Π00ðQÞ

�
: ð19Þ

Here Q0ðxÞ ¼ 1
2
ln j 1þx

1−x j − i π
2
Θð1 − x2Þ is the Legendre

Q-function of the zeroth order and mD ¼ eT=
ffiffiffi
3

p
is the

Debye mass. It is easy to see that Π00 contains the constant
term −m2

D which gives the mass to the longitudinal photon
(the Debye screening), while the transverse component
does not have the massive term. However, the imaginary
part which is present for jq0j < q (and corresponds to the
Landau damping) also does not allow the denominator to
vanish [55]. In both cases, the propagator does not contain
the IR divergence ∝ 1=q2 any more because it is regular-
ized on the eT scale. It can be regarded as the lower cutoff
for the q-integration leading to the following value of the
Coulomb logarithm:

lnΛ ≈ ln
T
mD

≈
1

2
ln α−1: ð20Þ

A weak logarithmic divergence of the collision integral
in Eq. (16) allows us to obtain the leading order result by
simple estimate of the integration limits. However, such a
power counting would be insufficient if the divergence was
powerlike. In this situation we would be able to estimate
only the parametric dependence on the coupling constant

and the prefactor would remain completely unknown. This
may happen if a cancellation between the kinetic functions
in the collision integral does not occur. Such a situation
takes place, for example, in the calculation of the color
conductivity in QCD where the kinetic functions carry
also color indices. This leads to more severe divergences
which can be treated only by considering the exact matrix
element (17) and results in ∼αs log α−1s behavior of the
collision integral, where αs ¼ g2s=ð4πÞ is the strong inter-
action coupling constant [28,30,56–58]. In this case, not
only the power of coupling constant is different but also
the logarithm originates from completely different range of
scales, namely the interval g2sT < q < gsT gives the lead-
ing contribution to this result.
Now, let us return to the calculation of the conductivity.

In order to extract the flow velocity from Eq. (16), we
multiply it by knBðϵkÞð1þ nBðϵkÞÞ and integrate over k.
This gives us the following result:

u ¼ 18ζð3Þ
π3α2 ln α−1T2

eE: ð21Þ

Substituting the kinetic function (15) into Eq. (7), we
obtain the following simple analytic expression for the
conductivity:

σCFV ¼ 3224ζ2ð3Þ
π4

T
α ln α−1

≈ 2.1361
T

α ln α−1
: ð22Þ

In the next subsection we will find the exact solution for the
kinetic equation (13) and check how close is this simple
analytic result to the correct value of the conductivity.
Let us compare our result (22) in the case of scalar

charge carriers with the conductivity of plasma with one
type of charged fermions. In Ref. [36] it was calculated
in the CFV approximation, however, the authors did not
take into account the Compton scattering and pair
annihilation processes which are equally important as
the Møller and Bhabha processes. Their result σ ¼
ð3ζð3Þ= ln 2ÞT=ðα ln α−1Þ ≈ 5.203T=ðα ln α−1Þ is more
than two times larger compared to ours. The missing
scattering channels were properly taken into account in
Ref. [38], and the corresponding CFV value for the
conductivity equals σ ≈ 2.496T=ðα ln α−1Þ, which is
≈17% larger than the CFV result (22) for the scalar case.
Before going further, we would like to point out that in the

case of fermionic charge carriers considered in Ref. [36], in
order to extract the flow velocity, the authors multiplied both
parts of the kinetic equation by vnBðϵkÞð1þ nBðϵkÞÞ, i.e.,
one power of k less than we did. In our case we cannot do the
same, because the resulting integral over k would contain
the logarithmic IR divergence caused by Bose-Einstein
distribution functions. If regularized on the soft scale, this
divergence would lead to different parametric dependence
of the conductivity on the coupling constant, namely,
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σ ∝ T=ðα ln2 α−1Þ. In the next subsection we will see that
this is not the case and this divergence is an artifact of the
method. In order to avoid it, we multiplied the kinetic
equation by an additional power of k before integration.

C. Exact solution

Now let us return to Eq. (13) and find its exact solution.
First of all, we note that the kinetic function W must be
linear in electric fieldE in order to satisfy the equation. The
only scalar combination which satisfies this requirement is
k · E. Residual dependence on k can only be isotropic,
because there is no other vector quantities in the system.

Therefore, we will look for the solution in the following
form:

WðkÞ ¼ −eðk ·EÞgðϵkÞ; ð23Þ

where gðϵkÞ is the only unknown scalar function. Ansatz
(23) is just the same as considered in Ref. [38] where the
conductivity in the fermionic case was computed. The CFV
approximation considered in the previous subsection is a
partial case of Eq. (23) with gðϵkÞ ¼ const.
We now substitute ansatz (23) into Eq. (13) keeping the

leading term, linear in q, as well as the subleading one:

ðv ·EÞ ¼ α2T3

Z
dq
q3

Z
dΩq

�
1 −

3q
2π2T

þ q · v
2T

½2nBðϵkÞ þ 1� þOðq2Þ
�

×

�
ðq · EÞgþ ðk ·EÞðq · vÞg0 − ðk ·EÞ q

2⊥
2k

g0 − ðq ·EÞðq · vÞg0 − ðk ·EÞðq · vÞ2 g
00

2
þOðq3Þ

�
: ð24Þ

It is easy to see that in the product of two brackets the linear
order in q all vanishes after integration over the solid angle
and the nonzero result comes from the terms of order q2.
Therefore, just like in the previous subsection, the integral
over the absolute value of momentum transfer q contains
logarithmic divergence which can be cut at certain energy
scales leading to the Coulomb logarithm. All higher orders
in q should not be taken into account since we are interested
only in the leading-log behavior of the collision term.
Finally, after the integration, we obtain the following
equation:

1 ¼ −
πα2 ln α−1T3

3

�
ϵkg00ðϵkÞ þ 4g0ðϵkÞ

−
2nBðϵkÞ þ 1

T
ðϵkg0ðϵkÞ þ gðϵkÞÞ

�
: ð25Þ

This is an ordinary differential equation for the unknown
function gðϵkÞ. Unfortunately, it cannot be solved analyti-
cally. In order to find its numerical solution, it is convenient
to introduce the new dimensionless function χðxÞ defined
as follows:

gðϵkÞ ¼
3

πα2 ln α−1T2
χðxÞ; x ¼ ϵk

T
; ð26Þ

where the dimensionful prefactor was chosen so that to
obtain the resulting equation in the simplest possible form:

χ00ðxÞ þ χ0ðxÞ
�
4

x
− coth

x
2

�
− χðxÞ 1

x
coth

x
2
¼ −

1

x
: ð27Þ

Substituting the kinetic function (23) with g-function
in the form given by Eq. (26) into the expression for the

electric current (7), we can express the conductivity in
terms of the function χ as follows:

σ ¼ T
α ln α−1

4

π2

Z
∞

0

x3ex

ðex − 1Þ2 χðxÞdx: ð28Þ

Before solving Eq. (27) numerically, it is useful to
investigate the asymptotic behavior of its solution in the
two limiting cases, x → 0 and x → ∞. At x → 0 the
differential equation takes the form:

χ00ðxÞ þ 2

x
χ0ðxÞ − 2

x2
χðxÞ ¼ −

1

x
; ð29Þ

whose general solution reads as

χðxÞ ¼ 1

3
x ln

1

x
þ C1xþ

C2

x2
: ð30Þ

The last term should be excluded by settingC2 ¼ 0 because
it would lead to a divergence in conductivity (28). The
second term is much smaller than the first one in the limit
x → 0 and can be neglected. Therefore, the asymptotical
behavior of the solution at small momenta is given by

χðxÞ ∼ χ0ðxÞ ¼
1

3
x ln

1

x
; x → 0: ð31Þ

In the opposite case of large arguments, we have the
following equation, up to exponentially suppressed terms:

χ00ðxÞ þ χ0ðxÞ
�
4

x
− 1

�
−
1

x
χðxÞ ¼ −

1

x
: ð32Þ

Its general solution is the following:

O. O. SOBOL PHYS. REV. D 100, 056012 (2019)

056012-8



χðxÞ ¼ 1þ C1

�
1

x
þ 2

x2
þ 2

x3

�
þ C2

ex

x3
: ð33Þ

Again, the last term is not allowed because it gives the
divergent integral in conductivity (28), and the second term
is oð1Þ at x → ∞ and thus is negligible compared to the
first term. Therefore, we have the asymptotic at large values
of the argument:

χðxÞ ∼ χ∞ðxÞ ¼ 1; x → ∞: ð34Þ

Finally, we have the differential equation (27) with the
boundary conditions (31) and (34) which completely
determine the unique solution. We compute it numerically
and show in Fig. 1 by the blue solid line together with
approximate solution χCFVðxÞ ¼ 6ζð3Þ=π2 extracted from
the CFV approximation (21) by the red dashed line.
We now substitute the solution χðxÞ into Eq. (28) and

find the numerical value of the conductivity:

σ ¼ 2.3825
T

α ln α−1
: ð35Þ

It is interesting to compare this value with the leading-
log result for the conductivity of plasma with one type of
spin-1=2 charge carriers, calculated in Ref. [38]. It is worth
noting that in fermionic case one has to take into account
also the Compton scattering and pair annihilation processes
in the collision integral (for the details, see Sec. IV). Even
though the additional scattering channels are present, the
final result equals σ ≈ 2.498T=ðα ln α−1Þwhich is still ≈5%
larger compared to our result (35) for scalar particles.
Exact integration of the differential equation gives the

kinetic function only in the numerical form. However,
for some purposes it would be useful to obtain a simple

approximate analytical expression for it. This can be
done using the variational method described in the next
subsection.

D. Variational calculation

Equation (27) can be regarded as the Euler-Lagrange
equation which determines the extremum of the following
functional:

Q½χ� ¼
Z

∞

0

dx
x2ex

ðex − 1Þ2
�
xχðxÞ − 1

2
ðxχ0 þ χÞ2 − χ2ðxÞ

�
:

ð36Þ

This fact can be exploited in order to calculate the
conductivity using variational approach. Decomposing
the unknown function χ over a finite set of physically
reasonable trial functions, we can transform the problem
of numerical integration of Eq. (27) into the problem of
solving a linear algebraic system on the expansion coef-
ficients. Indeed, if we write

χðxÞ ¼
XN
n¼1

pnynðxÞ; ð37Þ

then, the functional Q½χ� becomes a quadratic function of
the unknown parameters pn:

Qðp⃗Þ ¼
XN
n¼1

Bnpn −
1

2

XN
m;n¼1

Amnpmpn; ð38Þ

where the coefficients have the form:

Bn ¼
Z

∞

0

x3exdx
ðex − 1Þ2 ynðxÞ;

Amn ¼
Z

∞

0

x2exdx
ðex − 1Þ2 ½ðxy

0
m þ ymÞðxy0n þ ynÞ

þ 2ymðxÞynðxÞ�: ð39Þ

The extremal (maximal) value of the function Q is
achieved for the solution of the following linear system

Â p⃗ ¼ B⃗ ð40Þ

and it is equal

Qmax ¼
1

2
B⃗TÂ−1B⃗: ð41Þ

Substituting decomposition (37) into expression (28) for
the conductivity, we obtain:

FIG. 1. Exact numerical solution of Eq. (27) with boundary
conditions (31) and (34) (blue solid line) and approximate
variational solutions with different number of terms in ansatz
(37) with trial functions (43): N ¼ 1, i.e., the CFVapproximation
(red dashed line), N ¼ 2 (green dash-dotted line), and N ¼ 3
(purple dotted line).

ELECTRICAL CONDUCTIVITY OF HOT ABELIAN PLASMA … PHYS. REV. D 100, 056012 (2019)

056012-9



σ ¼ T
α ln α−1

4

π2
B⃗Tp⃗max ¼

T
α ln α−1

8

π2
Qmax: ð42Þ

It is easy to check that the 1-term ansatz with y1 ¼ 1
gives result (22) in the CFV approximation. However, this
simple result differs from the exact value (35) by ≈10%
meaning that this is a rather crude estimate. It is interesting
to note that in the fermionic case the 1-term ansatz
gives much better accuracy, of order 0.1% [38]. This can
be explained by the fact that the exact solution of the
Boltzmann equation (either for scalars or for fermions)
significantly deviates from the constant in the region of
small momenta. Whereas the fermionic distribution func-
tion is not sensitive to the IR region and the contribution
from small x is suppressed by the powers of x coming from
the integration measure, the Bose-Einstein distribution is
singular for x → 0 and it makes the IR behavior of the
solution also quite important. For larger values of the
argument, the exact solution tends to a constant which is
easily captured by the CFV approximation. Since we
consider only the leading logarithmic contribution, the
sub-log terms may also give the corrections to the result of
order Oð1= ln α−1Þ ∼ 10% [39]. Therefore, the accuracy of
the CFV results could be regarded as sufficient in the
leading-log approximation.
In principle, in order to improve the accuracy, one can

choose the variational ansatz with more than one term. It is
natural to choose the set of basis functions which have
different behavior in the small momentum region and tend
to a constant for large values of the argument. We consider
the following set:

ynðxÞ ¼
2xn−1

1þ xn−1
; 1 ≤ n ≤ N: ð43Þ

We apply the variational method with a small number of
terms and the results for the conductivity as well as their
accuracy are listed in Table II. We would like to point out
that the satisfactory accuracy is achieved already for the
ansatz with two terms and this accuracy is much better than
that the leading-log approximation could provide itself.
We also plot the approximate kinetic functions compared to
the exact solution in Fig. 1.

It is interesting to note that the variational ansatz (37)
for the distribution function with a small number of terms
gives a perfect agreement with the exact kinetic function in
the region of small and intermediate values of the argument
although it slightly deviates from it for large x, see Eq. (1).
This can be understood as a result of exponential suppres-
sion of the integrand of functional (36). Visible difference
between the trial function and the exact result gives
exponentially suppressed contribution to the functional
and to the conductivity as well.

IV. ELECTRICAL CONDUCTIVITY OF THE
MULTICOMPONENT ABELIAN PLASMA

A. Degrees of freedom

Let us now consider a more general situation when a
plasma contains ultrarelativistic scalar and spin-1=2 fer-
mion charge carriers coupled to the Uð1Þ gauge field. Each
constituent (not treating the antiparticles separately from
particles) has its own electric charge qa and may also take
part in other types of interactions. Let us assume that there
are certain types of particles for which electromagnetic
interaction is the most intensive, i.e., the coupling constants
of all other interactions they take part are much smaller than
that of the electromagnetic one. We will call these types of
particles active because they contribute to the electric
current. On the other hand, if a particle can interact via
more intensive interaction than the electromagnetic one, we
call it passive since its role in the conductivity is reduced to
being a target for scattering of active particles. Indeed, the
deviation from equilibrium for any type of particles decays
in time with the characteristic relaxation time which is
determined by the most intensive interaction of the particle.
Therefore, the distribution of passive particles on electro-
magnetic scattering timescales may be regarded as an
equilibrium one.
For example, in the Standard Model plasma at the

temperature T ∼ 5 GeV (i.e., well below the electroweak
crossover) contains 3 types of relativistic charged leptons
and 4 types of quarks, of which only the leptons are active
d.o.f. and quarks are passive since they interact also strongly
with αs ≫ α. If we consider the hypercharge conductivity in
the Standard Model well above the electroweak crossover,
we conclude that only right-handed leptons are active.
Indeed, they interact only via the interchange of Uð1ÞY
gauge bosons while other types of particles take part also in
SUð2ÞI weak and SUð3Þc strong interactions with larger
couplings. From this we conclude that only fermionic d.o.f.
are important for the conductivity in the Standard Model and
scalar Higgs boson never contributes to it [36,38,39].
Nevertheless, considering the plasma with both bosonic
and fermionic active charge carriers might be useful for
possible extensions of the Standard Model.
Before considering the active fermions, we would like to

say a few words concerning the influence of additional

TABLE II. Electrical conductivity in scalar QED calculated
by means of the variational method with ansatz (37) and trial
functions (43) with different number of terms N and the error of
each approximation compared to the exact value (35) shown in
the last row.

N fp1;…; pNg σ × α ln α−1
T Error (%)

1 6ζð3Þ
π2

≈ 0.731 2.1361 10.34

2 f0.049; 0.523g 2.3820 0.02
3 f0.072; 0.435; 0.062g 2.3823 0.01
exact … 2.3825 …
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d.o.f. on the purely scalar conductivity. In the region of
small momentum transfer, the scattering matrix element,
averaged over the spins of incoming particles and summed
over the spins of outcoming particles, does not depend on
the type of scatterers but only on their charge:

jMab
abj2 ≃ 4e4q2aq2b

s2

t2
; t → 0: ð44Þ

Scattering between scalars of different types contains IR
divergence only in t-channel because the u-channel process
does not take place for the particles of different types. On
the other hand, there is no 1=2 factor coming from taking
into account of the identical particles in the final state.
Therefore, scattering on the scalar particles of different type
gives the same contribution as the scattering of the identical
particles weighted with the squared charge of the scatterers.

Scattering on fermions has to be considered separately.
Although the matrix element has the same structure, we
have to include the number of spin d.o.f. of the target
particle which gives the factor of 2. Following the same
procedure as in Sec. III A and Appendix, we should
replace the equilibrium distributions of the target par-
ticles with the Fermi-Dirac ones. In the final result this
would give a factor 1=2 compared to the scalar case
because of the integral by the Fermi-Dirac distribution
functions [compare Eqs. (A10) and (A11)]. Thus, we
conclude that scattering on the fermions gives the same
contribution as the scattering on scalars, weighted with
the squared charge of scatterers.
Finally, the kinetic equation describing the departure

from equilibrium of the scalar particle distribution takes
the form:

eqsðv · EÞ ¼ −α2T3q2sNeff

Z
dq
q3

Z
dΩq

�
1þ

�
−

3q
2π2T

�
þ q · v

2T
½2nBðϵkÞ þ 1�

	
× ½WsðkÞ −Wsðk − qÞ�; ð45Þ

where Neff ¼
P

bq
2
b is the effective number of particle

species weighted with the squares of their charges which is
taken over all types of particles, active and passive, since
they all take part in the electromagnetic scattering. The term
in round brackets is present only in the sum over scalar
particles. However, it has such an angular dependence that
it never contributes to the conductivity in the leading-log
order and can be safely omitted.

B. Kinetic equation for fermions

Let us now consider the Boltzmann equation for fer-

mions. Table III shows the Feynman diagrams and matrix

elements of 4 scattering processes with participating
fermions of one type.
Similarly to the scattering of scalar particles, the Møller

matrix element contains divergences in the t- and u-
channels. The latter can be led to the same form as the
former by the change of variables K0 ↔ P0. However, we
must also include the factor 1=2 connected to the fact that
we have two identical particles in the final state. Therefore,
we can neglect both, the additional divergence in the
u-channel and the symmetry factor 1=2, and take only
the t → 0 expression for the matrix element.
The scattering of the Møller and Bhabha types are

also possible on other particle species. In this case, only the

TABLE III. Binary processes in spinor QED.

N0 Process Diagrams Matrix element jMj2

1 Møller scattering e−e− → e−e− 2e4ðs2þu2

t2 þ s2þt2

u2 þ 2s2
tu Þ

2 Bhabha scattering e−eþ → e−eþ 2e4ðs2þu2

t2 þ u2þt2

s2 þ 2u2
st Þ

3 Compton scattering e−γ → e−γ 2e4ð−us þ s
−uÞ

4 2-photon annihilation e−eþ → γγ 2e4ð tu þ u
tÞ
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t-channel diagrams in the first and second rows in Table III
are present and the matrix elements are given by the first
terms in parentheses. In any case, in the region of small
momentum transfer, the scattering matrix elements have the
same structure (44) for all types of particles and depend
only on their charges. Therefore, we can easily derive the
collision integral coming from these scattering processes
following the same steps as we did in Sec. III A and using
relations of Appendix.
In contrast to the scalar case, fermions have singular

matrix elements of the Compton scattering and pair
annihilation, see the third and fourth rows in Table III.
Although this divergence is weaker, only ∝ 1=t for t → 0, it
is strong enough to contribute to the collision term in the
leading-log approximation. Indeed, in the Møller scattering
we have 1=t2 divergence, which is then reduced by addi-
tional powers of the momentum transfer q coming from the
cancellation between the kinetic functions with close
momenta. However, in the Compton and pair annihilation
processes only the different types of particles appear in one

vertex and the above mentioned cancellation between the
kinetic functions does not take place. It is also worth
emphasizing that the Compton scattering and annihilation
processes involve only charged particles of one type.
Therefore, for a given fermion type, their contribution to
the collision integral does not depend on the particle
content of the model.
Matrix element of the annihilation process fþf− → 2γ is

divergent for t → 0 and u → 0 and the final state contains
two identical particles. As before, we will take into account
only t → 0 singularity and omit the factor 1=2 from the
reduced phase space. Finally, the matrix element for the
Compton scattering and pair annihilation have the same
behavior:

jMfγ
fγj2 ≃ 2e4q4f

s
ð−tÞ ; t → 0: ð46Þ

Using the linearized collision integral (5), we obtain the
following contribution from fγ scattering processes:

Cfγ½Wf� ¼ −
2π

T

Z
d3p
ð2πÞ3

d3q
ð2πÞ3

2s × 2e4q4fs=ð−tÞ
16ϵkϵk0ϵpϵp0

δðϵk þ ϵp − ϵk0 − ϵp0 Þ

× fnFðϵkÞnBðϵpÞð1þ nBðϵk0 ÞÞð1 − nFðϵp0 ÞÞ½WfðkÞ −Wfðp0Þ�
þ nFðϵkÞnFðϵpÞð1þ nBðϵk0 ÞÞð1þ nBðϵp0 ÞÞ½WfðkÞ −WfðpÞ�g: ð47Þ

Since we do not have any cancellation between the kinetic functions in this case and we are interested only in the leading-
log result, there is no subtlety in expanding the integrand for small momentum transfer. Keeping q only in the denominator
of the matrix element and neglecting it in all other factors, we can easily perform the integration. Finally, the equation
describing the fermionic kinetic function takes the form:

eqfðv ·EÞ ¼ −α2T3q2fNeff

Z
dq
q3

Z
dΩq

�
1þ q · v

2T
½1 − 2nFðϵkÞ�

	
½WfðkÞ −Wfðk − qÞ�

−
π

4
q4fα

2 ln α−1T2
1þ nBðϵkÞ
1 − nFðϵkÞ

WfðkÞ
k

; ð48Þ

where the first term on the right-hand side originates from
the scattering involving only charged particles [an analog
of the collision integral for scalars in Eq. (45)] while the
second one comes from the Compton scattering and pair
annihilation processes.

C. Result for the conductivity

Now, we have the general kinetic equations for scalars
(45) and fermions (48). Making the substitution

Ws;fðkÞ ¼ −eqs;fðk ·EÞ 3

q2s;fNeffπα
2 ln α−1T2

χs;fðxÞ;

x ¼ ϵk=T; ð49Þ

we can rewrite them in the simplest form. The equation for
the scalar distribution function appears to be the same as in
pure scalar QED case, Eq. (27), whereas the equation for
the fermion kinetic function takes the form:

χ00fðxÞ þ χ0fðxÞ
�
4

x
− th

x
2

�
−
1

x

�
th
x
2
þ 3q2f
4Neff

coth
x
2

�
χfðxÞ

¼ −
1

x
: ð50Þ

Although this equation can be solved numerically for
any given Neff and particle charge qf, it is more convenient
to reformulate this task as a variational problem. It is
straightforward to check that Eq. (50) determines the
extremum of the following functional:
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Qf½χf� ¼
Z

∞

0

dx
x2ex

ðex þ 1Þ2
�
xχfðxÞ −

1

2
ðxχ0f þ χfÞ2

− χ2fðxÞ
�
1þ 3q2f

4Neff

x
2
coth

x
2

��
: ð51Þ

This functional up to a general prefactor coincides with that
derived in Ref. [38] in a different way, see Eq. (4.3) there.
The corresponding functional for the scalar particles dis-
tribution was derived previously in Eq. (36).
Knowing the distribution functions for all active d.o.f.,

we can use Eq. (7) to calculate the electric current.
Extracting the coefficient in front of the electric field,
we obtain the following total conductivity:

σtot ¼
T

α ln α−1

�
4

π2Neff

Xactive
s

Z
∞

0

dx
x3ex

ðex − 1Þ2 χsðxÞ

þ 8

π2Neff

Xactive
f

Z
∞

0

dx
x3ex

ðex þ 1Þ2 χfðxÞ
�
: ð52Þ

Solving Eqs. (27) and (50) one can use formula (52) to
find the exact value of the conductivity in the leading-log
approximation. However, we find it useful to derive a
simple analytic formula for the conductivity using the
CFVapproximation which is equivalent to the momentum-
dependent relaxation time approximation considered in
Ref. [59]. Making the simplest variational ansatz χs;f ¼
As;f ¼ const, we calculate functionals (36) and (51):

QsðAsÞ ¼ 6ζð3ÞAs −
1

2
π2A2

s ;⇒ Amax
s ¼ 6ζð3Þ

π2
; ð53Þ

QfðAfÞ ¼
9

2
ζð3ÞAf −

π2

4
A2
f

�
1þ 3q2fπ

2

32Neff

�
;

⇒ Amax
f ¼ 9ζð3Þ

π2

�
1þ 3q2fπ

2

32Neff

�−1

: ð54Þ

Finally, substituting these expressions into Eq. (52), we
obtain the following formula:

σtot ¼
T

α ln α−1

�
2432ζ2ð3ÞNs

π4Neff

þ 2234ζ2ð3Þ
π4Neff

Xactive
f

�
1þ 3q2fπ

2

32Neff

�−1�
; ð55Þ

where Ns is the number of active scalar particle species.
According to Eq. (55), the total conductivity is a sum over
all active charged particle species σtot ¼

P
a σa, while each

σa contains in the denominator the contributions from all
scattering channels involving particle a. This is in accor-
dance with previous studies [31,38,59].

In order to compare conductivities of different ultra-
relativistic plasmas, we collect the CFV results as well as
the corresponding leading-log results in Table IV. In
particular, setting in Eq. (55) Ns¼Neff ¼1 and Nf ¼ 0,
we recover, naturally, the result (22) of the pure scalar
QED. In the case of mixed plasma with one scalar and
one fermion particle species of unit charge, we have even
larger value for the conductivity than in pure scalar or
pure fermion cases. Whereas the scalar contribution to the
conductivity is simply proportional to the relative content
of scalar d.o.f. in the plasma Ns=Neff , the fermionic
contribution has a more complicated dependence on
Neff . That is why the conductivity of the mixed plasma
does not simply equal to the average of the conductivities of
pure scalar and fermion plasmas. This would be true only in
the case when all charge carriers are active, have equal
charges, and in the limit of very large number of particle
speciesNeff ≫ 1, when the expression in the parentheses in
Eq. (55) could be replaced with unity.
It is also interesting to consider the particular case of the

Standard Model (SM) plasma well below the electroweak
crossover and for temperatures T ≪ ðαEMGF

Þ1=2 ¼ 21=4

π1=2
e
gMW ∼

25 GeV at which the weak processes are suppressed with
respect to the electromagnetic ones. There we have Ns ¼ 0
active charged scalars, active fermions are represented by
charged leptons because for such temperatures their weak
interaction is less intensive than the electromagnetic one;
several flavors of quarks (depending on temperature) are
passive since they interact also strongly. Taking into
account that all leptons have the same charge qf ¼ 1,
we obtain the following result:

σSM ¼ T
α ln α−1

2234ζ2ð3ÞNl

π4Neff

�
1þ 3π2

32Neff

�−1
ð56Þ

with the effective number of charged d.o.f.

Neff ¼ Nl þ 3c ×

�
2

3

�
2

Nu þ 3c ×

�
−
1

3

�
2

Nd; ð57Þ

where Nl, Nu, and Nd are the numbers of relativistic
leptons, up and down quarks, respectively. This result is

TABLE IV. Electrical conductivity multiplied by ðα ln α−1Þ=T
for different ultrarelativistic plasmas calculated in the CFV
approximation (55) as well as the exact leading logarithmic
order (LLO) result.

System CFV
Exact
LLO Reference

Spinor QED (Ns ¼ 0, Nf ¼ 1) 2.4963 2.4982 [38]
Scalar QED (Ns ¼ 0, Nf ¼ 1) 2.1361 2.3825 [This paper]
Mixed plasma ðNs ¼ Nf ¼ 1Þ 2.7110 2.8350 [This paper]
SM (Ns ¼ 0, Nf ¼ 3,
Neff ¼ 20=3)

1.8992 1.9054 [38]
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shown in the last row in Table IV for the case of 3 leptons
(e, μ, τ) and 5 quarks (u, d, s, c, b) which is realized in
the SM plasma at temperatures 5 GeV≲ T ≲ 25 GeV.
Equation (56) exactly coincides with that derived
in Ref. [38].

V. CONCLUSION

In this work, we studied the electrical conductivity of a
general hot Abelian plasma with ultrarelativistic scalar
and fermionic charge carriers in the framework of kinetic
theory. The leading-log contribution of charged fermions
has been studied previously in Refs. [36,38] in application
to the conductivity in the early Universe. However, the
scalar counterpart, to the best of our knowledge, has not
been considered earlier.
In the case of pure scalar electrodynamics with one type

of scalar charged particles, we analyzed different binary
scattering processes and arrived at conclusion that only the
t-channel Møller and Bhabha scatterings contribute to the
conductivity in the leading-log approximation. The matrix
elements of these processes reveal the usual Rutherford-
type divergence in the limit of small momentum transfer
which is a consequence of the long-range electromagnetic
interaction mediated by the free photons. It is worth noting
that in Abelian plasma this divergence is reduced to merely
logarithmic one due to the additional cancellation between
the kinetic functions with close momenta in the collision
integral. In order to deal with this divergence, we took into
account the fact that the photon quasiparticles in the plasma
acquire the finite lifetime due to Landau damping and
obtain a finite mass due to Debye screening (longitudinal
components).
The weak logarithmic divergence of the collision integral

allowed us not to use the exact expression for the photon
propagator with HTL corrections but simply estimate the
momentum scale at which the regularization due to thermal
effects takes place, p ∼ eT. This procedure is well-known
in plasma physics and introduces the Coulomb logarithm
lnΛ ¼ lnðC=eÞ in the expressions for different plasma
characteristics, in particular, in the conductivity. It gives
only the leading parametric dependence on the coupling
constant, however, does not allow one to determine the
value of the constant C inside the logarithm. In order to do
this, one has to include all other binary processes as well as
1 ↔ 2 contributions and to use the HTL-corrected expres-
sions for the propagators. For fermionic plasma this was
done in Ref. [39]. However, computing this in the scalar
case lies beyond the scope of our paper.
We simplified the Boltzmann equation for scalar par-

ticles in the leading-log approximation and found its
solution using several methods. In order to take a simple
analytic insight into the problem, we applied the constant
flow velocity approximation assuming that the external
electric field induces a uniform flow of charged particles
with a velocity which does not depend on particles

momentum. Following the derivation of Ref. [36], with
a modification for the bosonic case, we obtained the simple
expression (22) for the conductivity. Naturally, it has the
same parametric dependence on the coupling constant,
although the numerical prefactor has a lower value com-
pared to the fermionic case considered in Refs. [36,38].
The axial symmetry of the problem allowed us to reduce

the functional dependence of the kinetic function to one
unknown scalar function of the absolute value of momen-
tum. We derived the second order differential equation
determining this function and found its numerical solution.
The result is shown by the blue solid line in Fig. 1 and it
significantly deviates from the constant for small arguments.
Since we deal with bosons whose distribution functions are
sensitive to the IR region, this deviation makes an impact on
the value of the conductivity and leads to a∼10% error of the
CFV result compared to the exact value.
The exact numerical integration of the kinetic equation

can be also reformulated in the form of variational principle,
in analogy with Ref. [38]. Decomposing the kinetic function
over a finite set of trial functions we found a satisfactory
approximation for the exact solution. We showed that even
the ansatz with two terms in the decomposition gives an error
of order 0.02% providing much better accuracy than that of
the leading-log approximation itself.
Finally, we generalized our results to the case of a

multicomponent Abelian plasma with an arbitrary number
of scalar and fermionic particles coupled to the Uð1Þ gauge
field. Depending on the strength of interactions of charged
particles, apart from the Uð1Þ interaction, the particle
species were classified into active (those which contribute
to the electric current) and passive (scatterers for active
species). We calculated the contribution of the passive
charge carriers to the collision integral and concluded that
they do not modify its general structure but only multiply
the whole expression by an effective number of scatterers
weighted with the squares of their charges. Furthermore,
we derived the kinetic equation for the fermionic charge
carriers including in the collision integral not only the
Møller and Bhabha scattering but also the Compton
scattering and pair annihilation processes which have in
this case the singular cross sections. In order to find a
solution of the obtained Boltzmann equation, we reformu-
lated it as a variational problem, and the corresponding
functional (51) is in full accordance with Ref. [38].
Applying the simplest variational ansatz, we obtained
the most general formula for the conductivity of the
multicomponent plasma (52) which includes all possible
partial cases, e.g., the pure scalar QED considered in this
article, as well as the case of the Standard Model plasma
addressed in Ref. [38].
Even though, the Standard Model plasma does not

contain the active ultrarelativistic scalar charge carriers,
the formula derived in our paper may be useful in some
extensions of the Standard Model or for the comparison
with the results of lattice simulations of Abelian field
theories containing scalars. The simulations conducted in
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Refs. [13–15] were aimed at calculating the rate of the
chirality nonconservation in the external magnetic field in
Abelian gauge theory with a scalar field. The theoretical
prediction for this rate can be derived in the framework of
magnetohydrodynamics and the result is expressed in terms
of electrical conductivity of the medium. Using our results
for the conductivity in hot scalar QED, one would obtain
the rate of chirality breaking which is roughly 10 times
smaller than the numerical result of the simulations [15].
The explanation of this discrepancy may shed light on the
mechanism of the chirality nonconservation in this system
and the role of the scalar long-wavelength modes in this
process. We plan to address this issue elsewhere.
In this work, we considered the ultrarelativistic plasma

where the masses of all charge carriers are much smaller
than temperature, m ≪ T. Nevertheless, it would be inter-
esting to study the influence of the finite mass on the
conductivity. Obviously, in the nonrelativistic case with
T ≪ m, the conductivity should be exponentially sup-
pressed ∼ expð−m=TÞ due to the small number of charge
carriers. However, its exact functional dependence for
arbitrary m and T requires a separate investigation. It is
worth noting that massive charged scalars exist in a hadron
gas for temperatures below the deconfinement phase
transition of QCD. The electrical conductivity of such a
plasma was considered in Refs. [42–49]. In contrast to our
results, the conductivity of the pion gas decreases with
temperature and reaches its minimal value in the vicinity of
the phase transition. However, their results cannot be
explained only by the impact of a finite mass. A very
important role is also played by the strong interaction
between hadrons which determines their mean-free path.
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APPENDIX: DETAILS OF CALCULATION OF
THE COLLISION INTEGRAL

In this Appendix, we present the details of calculation of
the collision integral avoiding the overlapping singularities
in the integrals over q and p.
We use the set of symmetric variables which are more

convenient to treat the delta-function in the collision
integral. Instead of three components of p we use the
azimuthal angle φp and two elliptic variables ξ and η. The
angle φp is defined in the spherical coordinate system with
z-axis directed along the vector q and the vector k lying in
xOz plane, see Fig. 2, and the elliptic coordinates are
defined as follows:

ξ ¼ ϵpþq þ ϵp
2

; η ¼ ϵpþq − ϵp
2

: ðA1Þ

The corresponding Jacobian equals jJj ¼ 2
q ðξ2 − η2Þ. The

q-integration is performed in a spherical coordinate system
with the polar axis directed along the vector k. The
collision integral in Eq. (12) takes the form:

eðv · EÞ ¼ −
2α2

π3

Z
qdq

Z
dΩq

Z
2π

0

dφp

Z
∞

q=2
dξ

Z
q=2

−q=2
dηðξ − ηÞ2

×
ϵk
ϵk−q

1þ nBðϵk−qÞ
1þ nBðϵkÞ

ð1 − cos θkq cos θpq − sin θkq sin θpq cosφpÞ2
½ðϵk − ϵk−qÞ2 − q2�2

× δð2η − ϵk þ ϵk−qÞnBðξ − ηÞð1þ nBðξþ ηÞÞ½WðkÞ −Wðk − qÞ�: ðA2Þ

We can now easily integrate the delta-function and expand the integrand in the limit q → 0 keeping only the leading and
first subleading order. This implies the following expressions:

FIG. 2. Geometry of the scattering.
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η ¼ ϵk − ϵk−q
2

¼ q

�
cos θkq

2
−
q sin2 θkq

4k
þOðq2Þ

�
; ðA3Þ

ðξ − ηÞ2 ¼ ξ2
�
1 −

q cos θkq
ξ

þOðq2Þ
�
; ðA4Þ

ϵk
ϵk−q

1þ nBðϵk−qÞ
1þ nBðϵkÞ

¼ 1þ q cos θkq

�
nBðϵkÞ
T

þ 1

k

�
þOðq2Þ;

ðA5Þ

ϵk
ϵk−q

1 − nFðϵk−qÞ
1 − nFðϵkÞ

¼ 1þ q cos θkq

�
−
nFðϵkÞ

T
þ 1

k

�
þOðq2Þ; ðA6Þ

Z
2π

0

dφpð1 − cos θkq cos θpq − sin θkq sin θpq cosφpÞ2

¼ 3πsin4θkq

�
1þ q cos θkq

�
1

k
þ 1

ξ

�
þOðq2Þ

�
; ðA7Þ

1

ðQ2Þ2 ¼
1

½ðϵk − ϵk−qÞ2 − q2�2

¼ 1

q4 sin4 θkq

�
1 −

2q cos θkq
k

þOðq2Þ
�
; ðA8Þ

nB;Fðξ − ηÞ½1� nB;Fðξþ ηÞ�

¼ nB;FðξÞ½1� nB;FðξÞ�
�
1þ q cos θkq

2T
þOðq2Þ

�
:

ðA9Þ

After substituting all these expressions into Eq. (A2) we
conclude that the ξ-dependence of the integrand does not
contain any singular terms and the integration can be
performed leading to the following result:

Z
∞

q=2
ξ2nBðξÞð1þ nBðξÞÞdξ ¼

π2T3

3

�
1 −

3q
2π2T

þOðq2Þ
�
:

ðA10Þ
Z

∞

q=2
ξ2nFðξÞð1 − nFðξÞÞdξ ¼

π2T3

6
½1þOðq3Þ�: ðA11Þ

Collecting the subleading order contributions altogether,
we finally obtain the kinetic equation in the form of
Eq. (13).
We also list below some integrals with Bose-Einstein and

Fermi-Dirac distribution functions used in the calculations
of the conductivity in the main text:

Z þ∞

0

dkkpnBðkÞð1þ nBðkÞÞ

¼ Γðpþ 1ÞζðpÞTpþ1; p > 1; ðA12Þ
Z þ∞

0

dkkpnFðkÞð1 − nFðkÞÞ

¼ Γðpþ 1ÞζðpÞTpþ1

�
1 −

1

2p−1

�
; p > −1; ðA13Þ

where ζðpÞ is the Riemann zeta-function and ΓðpÞ is the
Euler gamma-function [60].
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