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Using field theory techniques we analyze the perfect fluid limit, defined as fastest possible local
equilibration, in a medium with polarizability, defined as a nonzero local equilibrium partition of angular
momentum into spin and vorticity. We show that to restore causality a relaxation term linking vorticity
and polarization, analogous to the Israel-Stewart term linking viscous forces and gradients, is required.
This term provides the minimum amount of dissipation a locally thermalized relativistic medium with
polarizability must have, independently of its underlying degrees of freedom. For materials susceptible to
spin alignment an infrared acausal mode remains, which we interpret as a Banks-Casher mode signaling
spontaneous transition to a polarized phase. With these ingredients, we propose a candidate for a fully
causal Lagrangian of a relativistic polarizable system near the perfect fluid limit, and close with some
phenomenological considerations.
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I. INTRODUCTION

The dynamics of polarization density (spin alignment) in
a fluid close to the ideal hydrodynamic limit is currently not
so well understood. Its development [1–11] has been
motivated by the experimental observation of transfer of
angular momentum degrees of freedom (d.o.f.) from hydro-
dynamic vorticity to polarization [12] and longstanding
thermodynamic phenomena such as the Barnett-effect [13].
Beyond phenomenological issues, the fact that microscopic
d.o.f. have spin means their polarization susceptibility is
generally nonzero even when the scale of microscopic
thermalization is “fast,” since spin carries a fraction of
angular momentum also in thermal equilibrium, both local
and global.
Including polarization in hydrodynamics could also help

in having a well-defined stable theory. Polarization could
potentially regulate the fluctuation-driven instability that
was pointed out in [14,15]: Because of the fact that there
is no mass gap for vortex formation, and there is also no
vortex propagation, it is apparent, when hydrodynamics is
looked at from a field theory perspective, that a hydrostatic
“vacuum” is unstable against perturbations. As argued in
[1], such fluctuations, provided vortical susceptibility goes
to 0 as vorticity goes to 0, could give a soft mass gap to
vortices fixing this instability.

A universal formulation of transport/hydrodynamics
with polarization is still in development.
At one end, there are works with one-particle Wigner

functions (for instance, see [6,7]), which can be used to
model local equilibrium instantaneously, but most likely
cannot lead to a dynamical theory close to local equilibrium
throughout its evolution, since vorticity-spin interactions
require long-distance correlations of microscopic d.o.f. [1],
which by definition factor out of one-particle Wigner
functions.
At the other end, a global equilibrium including

spin and vorticity is well defined (for instance, see
[3,8]), but again making a transition to dynamics from
such a global equilibrium ab initio state is nontrivial since
the global equilibrium state with angular momentum is
nonextensive; it cannot be split up into many local equili-
brium cells.
A version of relativistic hydrodynamics that incorporates

local equilibrium and microscopic polarization is concep-
tually challenging [1,2,9,10], since quite a lot of character-
istics we usually associate with the ideal fluid limit (vorticity
conservation, isotropy, and coarse-graining) apply in a very
differentwaywhen collective angularmomentumexcitations
can be transferred to microscopic spin d.o.f. As shown in
[1,2], as dynamics is not dictated by conservation laws when
polarization is present, Lagrangian techniques [14,16–19]
provide a way to deal with these issues.
However, as shown in [2] a problem with causality

remains: the mixing of the sound and the vortex mode
driven by polarization induces a generally acausal
dispersion relation. This latter issue is a manifestation of
Ostrogradski’s theorem [18,20] since a Lagrangian with
vorticity-polarization coupling depends on acceleration.
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What this shows is that [18]
(i) new variables are necessary to avoid Ostrogradski’s

instabilities;
(ii) these new variables must have a purely dissipative

dynamics, to recover global equilibrium after a
small perturbation. This can be done within the
Lagrangian formalism using the doubled variables
techniques [18,21,22].

In the rest of this work we therefore identify these new
variables (basically, vorticity and polarization are decoupled
in the transient dynamics), assume dissipative corrections,
and show that indeed the problem with causality is resolved.
The relaxation time thereby obtained, however, unlike in

the Israel-Stewart case, corrects a previously nondissipative
system and hence introduces a minimal amount of dis-
sipation, dictated solely by causality and a nonzero polar-
izability. In other words causality requires a bottom-up
lower limit of thermalization of a relativistic fluid whose
microscopic constituents have spin.

II. POLARIZATION AND DISSIPATION IN
A CAUSAL FIELD THEORY OF

HYDRODYNAMICS

A. The Lagrangian and equations of motion

Let us briefly recap the approach of [1,2], where the
formalism we use is introduced, explained, and justified in
detail: There, following the formalism of [14] we construct
a Lagrangian that contains the information of the equation
of state (EOS), including an entropy term derived from the
fluid Lagrangian coordinate d.o.f. ϕI,

b ¼ ðdetIJ½∂μϕI∂μϕJ�Þ1=2; ð1Þ
as well as the polarization tensor yμν, a chemical potential
analogue that however transforms as a vector in the
comoving frame [1]. yμν is constructed to be a generali-
zation of the chemical potentials in [16] from an internal
Uð1Þ symmetry to a spacetime SOð3Þ one,

yμν ∼ uβ∂β

�X
i

θiðϕIÞT̂i

�
; ð2Þ

where θi are local phases, depending on the coordinates,
and T̂i are the generators. Since spin density is not
conserved, yμν is an auxiliary field (rather than ϕI becom-
ing a matrix in y− space, as in [16]), which forms a global
SOð3Þ-invariant Lagrangian together with the ϕI fields. ϕI
locally preserves SOð3Þ; y does not.
Note that it represents an “average of many particles” per

volume cell. Hence, commutation relations, representation,
and phases [the latter distinguish SUð2Þ from SOð3Þ] are
irrelevant. The different phases represent the “chemical
potential” of that component of the spin orientation in the
comoving frame. Wether the spins aligned are of fermions
or bosons, and their respective spin, modifies the EOS but

is irrelevant to the symmetries of yμν as long as the number
of particles in each volume cell ≫ 1.
yμν breaks local isotropy explicitly, but does not vanish at

thermodynamic equilibrium, and hence should be present
in the “ideal fluid limit” where the timescale of local
equilibration vanishes. The breaking of isotropy is similar
to that in magnetic materials, be they ferromagnetic (where
it is spontaneous, as the minimum energy state is aligned in
spin) or antiferromagnetic (where it generally occurs at
angular momentum densities high enough to align spin;
otherwise the lowest energy configuration has no magneti-
zation). However, this is not magnetism, since it is driven
by the presence of angular momentum in the fluid rather than
magnetic interactions, and has the same sign for particles and
antiparticles (as is experimentally shown to happen in heavy
ion collisions). Such a substitution of angular momentum
for magnetic fields has long been known as the “Barnett
effect” [13]. Indeed, in the case where vortical susceptibility
is calculated explicitly [8], the expressions for magnetic and
vortaic susceptibility parallel each other, suggesting the
dynamics is the same up to C symmetry. In a fluid with
no chemical potential one expects that the spin alignmentwill
not produce a magnetic field (since the magnetic moment of
particles and antiparticles is opposite), but it will break
isotropy and take angular momentum out of vorticity and
vice versa.
For small polarizations, the Lagrangian reduces to the

form

L ¼ Fðb; yÞ ¼ Fðbð1 − cyμνyμνÞÞ; ð3Þ
c > 0 implies the material is analogue to a ferromagnet,
with the potential to get spontaneously polarized (spin
alignment lowers the free energy). c < 0 is equivalent to an
antiferromagnet, with the ground state resisting spin align-
ment (polarization increases the free energy, all other
parameters being equal).
Both cases are realized in nature (c is related to the

susceptibility calculated in [8]), and could correspond to
systems with ideal-fluid behavior. We call these analogues
to ferromagnets and antiferromagnets driven by vorticity
“ferrovortetic” and “antiferrovortetic” materials.1

Note that since c can depend on temperature, antiferro-
vortetic here could just as well mean a vortetic material
whose microscopic d.o.f. are above the equivalent of the
“Curie” temperature, since no order parameter is implied.2

1To distinguish the two effects, one needs mobile charge
carries of both signs, which does not generally happen in
nonrelativistic magnets. If the forces aligning spins are exchange
forces rather than magnetic ones, it might be that what we know
as some ferromagnets are actually “ferrovortets”

2An antiferromagnet’s usual order parameter is susceptibility,
which jumps from 0 in an antiferrovortetic phase to nonzero in a
paramagnetic phase. But we are not considering magnetohydro-
dynamics here; magnetic fields are assumed to be 0, so the order
parameter is irrelevant.
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It just means that at local microscopic equilibrium spin
angular momentum density vanishes.
For a well-defined local equilibrium, i.e., the absence of

nonhydrodynamic microscopic “spin-wave” modes, we
need vorticity and polarization to be parallel [1], in other
words,

yμν ¼ χðb;ωμνω
μνÞωμν; ð4Þ

where the relativistic vorticity [23] includes the enthalpy w,

ωμν ¼ 2∇½μwuν� ¼ 2wð∇½μuν� − _u½μuν� þ u½μ∇ν� lnwÞ
≃ β∇½μuν�: ð5Þ

Here it is important to note that the distinction between
“thermal” [Eq. (5), whose circulation is conserved in
relativistic ideal fluids] and “kinematic” circulation
(∇ × uμ, whose circulation is conserved in incompressible
nonrelativistic ideal fluids) [6,23] can, to linear order in
the equation of motion, be reabsorbed into the definition of
χ [Eq. (4)] in terms of the EOS, since around a hydrostatic
background the perturbation in enthalphy w follows the
perturbation in velocity,

∂μδðwuνÞ ∼ FðTÞ∂μδuν þOððδuÞ2Þ; ð6Þ

where FðTÞ is a function of temperature.
Since Kubo formulas are defined in terms of linear

dispersion relations,3 and since the definition of χ is arbitrary
in thiswork,we can ignore the distinction between kinematic
and thermal vorticity.
Then, provided polarization and vorticity are parallel [1]

(we refer to χ as the proportionality constant) the Lagrangian
becomes a Legendre transform of the energy density,
analogously to the case with chemical potential [16]. The
linearized dispersion relation derived from this Lagrangian is
however generally acausal [2].
As shown in [2], constructing equations of motion out

of the Lagrangian in Eq. (3) and expanding around the
hydrostatic limit leads to causality violation. Proceeding
from the conclusion of [2] and the insight of [18,24], we
consider Eq. (4) to be an asymptotic limit of a relaxation
Maxwell-Cattaneo-type equation [24],

τY∂τδYμν þ δYμν ¼ yμν ¼ χðb; w2Þωμν; ð7Þ

where nonequilibrium polarization, represented by a
“Magnon” tensor Yμν with the same symmetry properties
as those of yμν [Eq. (2)], evolves to its equilibrium value in
a dissipative manner from arbitrary initial conditions. τY is
related, via an analogous equation to the Kubo formula [25]

(NB [4]), to the two-point function between polarization
and vorticity, in time as vortices do not propagate,

τY ∝ lim
w→0

1

w
Im

Z
d3xθðtÞh½yijðt; x⃗Þ; yijð0Þ�i exp ðiwtÞ: ð8Þ

The real part is, as usual, proportional to χðb;ωμνω
μνÞ=β

while the imaginary part is dissipative. Both, as transport
coefficients, are functions of temperature, vorticity, and
perhaps chemical potentials. Formulas of this type should
arise from a generalization of the identities derived in [26] for
theories admitting a breaking of isotropy due to polarization.
This is done explicitly in a forthcoming work [25].
Note that this is a first rather than a second order gradient

term, unlike in the case of the Israel-Stewart relaxation time
[27], as is expected since here, unlike in the Israel-Stewart
case, the limit of relaxation is ideal rather than dissipative.
This equation can be easily obtained from the Lagrangian

formalism [18] via the doubled variables technique [21,22],
where two copies of the theory are present (variable X
becomes X� in the notation of [18]) and, once a direction of
time is chosen, dissipative terms are represented by terms
∼XþX−. In [18]we have formulated a Lagrangian describing
aMaxwell-Cattaneo equation, with an asymptotic relaxation
of the dissipative part of the energy-momentum tensor to
viscous forces.
Hence we define nonequilibrium polarization d.o.f. Yμν,

having the same symmetries as Eq. (2), and a Lagrangian of
the same form as the dynamics of Π in Eq. (36) of [18],

L ¼ Fðbð1 − cyμνyμνÞÞ þ LIS−vortex; ð9Þ

LIS−vortex ¼
1

2
τYðYμν

− uαþ∂αYμνþ − Yμν
þ uα−∂αYμν−Þ

þ 1

2
Yμν�Y

μν
� þ Yμν

� ðχðb; w2ÞωμνÞ; ð10Þ

such a Lagrangian, just like the Israel-Stewart Lagrangian,
is free of Ostrogradski instabilities. We proceed from the
equation of motion (defined in terms of any combination
between Yþ and Y− as per the closed time path symmetry
illustrated in [18,21]).
One could worry about the universality of this choice, as

opposed, for example, to writing a general Lagrangian in
terms of magnon/spin-wave d.o.f.. Magnons after all generi-
cally appear as free massless particles in all materials with
spontaneously broken isotropy. In a generic theory incorpo-
rating fluid dynamics with vorticity andmagnon kinetics, the
distribution of angular momentum between vorticity and
isotropy in each cell does not follow local equilibrium.
As our theory is built around the local equilibrium

assumption, Eqs. (7) and (9) give magnons a purely dis-
sipative dynamics coupled only to collective d.o.f. with
angular momentum. This is equivalent to assuming the effect
of magnon-magnon interactions is so strong as to “quickly”

3This is a corollary of the assumption that the system is close to
local equilibrium. Note that equilibrium here must be local, since
global equilibrium with angular momentum leads to rotation [3].

CAUSALITY AND DISSIPATION IN RELATIVISTIC POLARIZABLE … PHYS. REV. D 100, 056011 (2019)

056011-3



reach the state of local maximum entropy [1]. The alternative
(for example, adding a nondissipative kinetic term for Yμν

in the Lagrangian) would necessitate calculating transport
properties for magnons from this Lagrangian; i.e., entropy is
not guaranteed to be at a local maximum after dissipation,
and the resulting Lagrangian would become a microscopic
Lagrangian to be coarse-grained. If Eq. (9) leads to causal
dynamics then, close to the ideal fluid limit, this iswhat itwill
coarse-grain to since additional terms would contain more
derivatives and a lack of local entropy maximization.
Causality is what we aim to test for in this work.
We note that we linearize around the hydrostatic limit,

under the physically reasonable assumption that any
perturbation is linear when one looks sufficiently in the
beginning. However, the stability of equations of the type
of Eq. (7) has been established in a wider context [28].
In this regard, we note that an “inverted” relaxation

equation,

τY∂τδωμν þ δωμν ¼ χðb; w2Þ−1yμν;

would, according to the reasoning in [1], be necessary to
resolve the vortical instability noted in [14,15]. However,
nonequilibrium vorticity is ill definedwithout viscous Israel-
Stewart terms; hence we do not see a coherent way to define
such an inverted equation in the ideal hydrodynamic limit.
We therefore proceed with Eq. (7), valid since in the linear
regime fluctuation dissipation guarantees the two approaches
are equivalent.

B. Causality analysis of perturbations
around a hydrostatic limit

Considering a system without further parameters, i.e.,
without chemical potential, shear and bulk viscosity gives
us dissipative modes in Yμν and sound and vortex modes
due to EOS. Following the prescription of [16], the field ϕI

can be rewritten as an expansion around the hydrostatic
coordinates ϕI ¼ xI,

ϕIðxÞ ¼ xI þ πI þ 1

2!
π · ∂πI þ 1

3!
π · ∂ðπ · ∂πÞ þOðπ4Þ;

ð11Þ
where πI carry linearized sound/vortex perturbations. Note
that, as mentioned previously [Eq. (6)] changing the defi-
nition of vorticity from kinematic to thermal, when the
Lagrangian is expanded in πI , changes the coefficients of
order Oðπ2Þ by terms depending on temperature only. Only
Oðπ3Þ terms (the self-energies and “three-point functions”)
directly feel the difference between the two definitions.
This is not relevant for the conclusions of this paper, although
it affects how the system responds to thermal fluctuations
[see the discussion around Eq (28) in the conclusion], since
the self-energies of the two vortices renormalizing χ are
generally different for the thermal and kinematic case.
The equation of motion to a general polarization from the

Euler Lagrange equation becomes

2c∂μ∂ν

�
Yρσ

∂Yρσ

∂ð∂μ∂νπ
IÞ
�

¼ Aðc2s∂I½∂π� − π̈IÞ ð12Þ

with c2s ¼ F0ðboÞþ2boF00ðboÞ
F0ðboÞ , A ¼ boF0ðboÞ, and ∂π ¼ ∂IπJ,

½∂π� ¼ ∂Iπ
I (using the notation in [19]).

To linear order fluctuations of field could be written as

π⃗ ¼ π⃗T þ π⃗L ¼ ∇⃗ΦIðx⃗; tÞ þ ∇⃗ × Ω⃗ðx; tÞ; ð13Þ

where πL usually parametrize a sound wave, a deformation
of coordinates ϕI parallel to the perturbation while πT is a
vortex, in the direction perpendicular to propagation of
sound. Because of sound-vortex mixing, k ≠ 0 for πT.
Polarization terms Yμν, once relaxation terms Eq. (7) are
included, propagate differently from sound and vortices.
Thus, the sound potentials in Eq. (13) can be Fourier
expanded separately,

�Φ
Ω

�
¼

0
B@Φ0

Ω0

Ỹ0

1
CA exp ½iðwL;T;Yt − k⃗:x⃗Þ�: ð14Þ

We can now use a trick analogous to that used in [29] to
invert Eq. (7). The left-hand side of Eq. (7) becomes, in
Fourier space (ηIμ are the metric components),

χðbo; 0Þ þ f−boχ0ðbo; 0ÞikIðπLÞ þ ðω2
L − c2sðkILÞ2ÞðπLÞ2g

þ
�
boχ0ðbo; 0Þ

1

2
½kJðπITÞkIðπJTÞ�

�
− ω2χðbo; 0Þ

× fδPμkðPΩÞδQμ kðQΩÞðk ×Ω0ÞIðk ×Ω0ÞI
þ kIΩk

J
Ωðk ×Ω0ÞJðk ×Ω0ÞIg; ð15Þ

where the first two terms ∼π2L represent, respectively, the
diffusion (imaginary) and real (sound mode), the term
∼πITπJT is the vortex (transverse excitation), and the last
term represents the Israel-Stewart mode relaxing to a
vortex. Note that sound waves have the speed

c2s ¼
b2oχ00ðbo; 0Þ þ bo

2
χ0ðbo; 0Þ

bo
2
χ0ðbo; 0Þ

and the imaginary part has nonpropagating mode. Now, we
see the first order and second order expansion of ωμν,

∂Ỹμν

∂ðkαkβπLTÞ ¼
2

ð1þ iωYτYÞ
χðbo; 0ÞfηPμηνQδ0αδQβ δPLg; ð16Þ

note that, as conjectured in [2], Eq. (7) now only has
gradients up to order 2, in contrast to the equations of
motion of a fluid where polarization and vorticity align
automatically. Ostrogradski’s instabilities therefore should
be absent.
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To this order, Ỹ is completely determined, just like the nonequilibrium part of the stress-energy tensor in [29]. The full
dispersion relation for Ỹ is

Ỹμν ¼ 1

1þ iωYτY

�
χðbo; 0ÞgI½μgν�J½ωkJΩðk ×Ω0ÞI�eiωTt−ikT·x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

∼πT

−iboχ0ðbo; 0ÞkIðkIΦ0ÞfgI½μgν�J½ωkJΩðk ×Ω0ÞI�geiðωLþωT Þt−iðkT·xþkL·xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∼πLπT

−iχðbo; 0ÞfgI½μgν�JðωÞðkJΩkPΩÞðk ×Ω0ÞPðk ×Ω0ÞI þ gI½μgν�JðωkJΩkPΩÞðk ×Ω0ÞIðk ×Ω0ÞJgeiωT t−ikT·x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∼πTπT

: ð17Þ

Therefore, only the first term of the equation above is
first order at π. The second term represents an interaction
between sound waves and vorticity, while the final term is
second order at vorticity perturbation.
Plugging the expression for Ỹ into Eq. (12), we get, after

some algebra separate dispersion relations for the trans-
verse and longitudinal parts, because we take up to second
order πI.

fω4
T − k2ω2

Tg
�

4cχ2ðbo; 0Þ
boF0ðboÞð1þ iωYτYÞ2

�
− ω2

T ¼ 0; ð18Þ

fω4
L þ k2ω2

Lg
�

4cχ2ðbo; 0Þ
boF0ðboÞð1þ iωYτYÞ2

�
− ω2

L þ c2sk2 ¼ 0:

ð19Þ

We can then express wYðwL; wTÞ and solve these equations
for the group velocity vg ¼ dwT;L=dk of the longitudinal
and transverse modes. Unless 0 < vg < 1 for all perturba-
tions, a theory cannot be causal. Thus, we use a calculation
analogous to [29,30] to test for acausal modes. The
dispersion relations are shown in Fig. 1, where for brevity
we defined with

B ¼ 4cχ2ðbo; 0Þ; A ¼ boF0ðboÞ:

As can be seen, when τ2Y
ðB=AÞ ≃ 3 the group velocity is not

casual and its asymptotic velocity goes to negative values as
we can note in Fig. 2 for sound modes. In the large k limit
dispersion relations are monotonic. In this UV limit the
group velocity is calculable analytically. As this is the limit
where deviations from the Effective Field Theory should
manifest themselves, examining it in a bottom-up approach
tells us if the ideal hydrodynamic limit to an arbitrary scale
is well defined. For the ferrovortetic c > 0 and antiferro-
vortetic c < 0 cases we get

limk≫1

djωT j
dk

����
c≶0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ τ2Y

ðB=AÞ

q : ð20Þ

The equivalent for the longitudinal case is

limk≫1

djωLj
dk

����
c≶0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sτ2Y ∓ ðB=AÞ
τ2Y � ðB=AÞ

s
: ð21Þ

FIG. 1. The longitudinal and transverse dispersion relations for
various entropy densities. The noncausal region is shaded. The
grey lines correspond to c < 0 and brown lines to c > 0. The top
figure shows sound modes. The full, dotted, and dashed lines are
τ2Y

ðB=AÞ ¼ f3; 5; 10g, respectively, for both grey and beige color.

The bottom figure is the transverse mode where grey: full, dotted,

and dashed lines are τ2Y
ðB=AÞ ¼ f0.1; 0.3; 0.5g, respectively. Beige:

full, dotted, and dashed line are τ2Y
ðB=AÞ ¼ f0.1; 3; 10g, respectively.
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These are plotted in Fig. 2, again for the transverse and
longitudinal modes for both ferrovortetic and antiferrovor-
tetic materials.

III. DISCUSSION

A. Antiferrovortetic materials and a lower
limit on viscosity

As can be seen from Fig. 2, an antiferrovortetic material
can be causal given a constraint on τ2Y , given by

τ2Y ≥
8cχ2ðbo; 0Þ

ð1 − c2sÞboF0ðboÞ
: ð22Þ

It relates the vortical susceptibility χ to nonvortical coef-
ficients (speed of sound, enthalphy, and hydrostatic entropy).
The denominator expression ð1 − c2sÞboF0ðboÞ is equivalent
to dp=db in the polarizationless limit. The numerator is
proportional to vorticity’s absorption by angular momentum.
Thus, it has exactly the form required of a coefficient
describing an effective viscosity arising from spin. For an

unpolarizable medium (where χ ¼ 0 by definition) the lower
limit of τ2Y goes to 0, as expected. What this shows is that
when polarization is present, taking the ultraviolet cutoff
∼τ−1Y of hydrodynamic applicability, with zero polarization
susceptibility and finite entropy density bo and F0ðb0Þ, is
incompatible with causality.
It should be noted that while this is a relaxation time, its

effect is very similar to a viscosity. This can be seen by
evolving a small vortex with a finite dissipation time. If the
system contains very little vorticity, Eqs. (7) and (12)
together with a thermodynamically sensible form of χ
[χðjωj → 0Þ → 0, as do all its derivatives] vorticity will
evolve as,

ωμνðtÞ ∼ ωμνðt ¼ 0Þ exp
	
−

t
τY



: ð23Þ

The best way to show this for the general case is a Green’s
function calculation, done in the Appendix. Generally, for a
causal medium it can be seen that. Such an evolution
corresponds to the expectation from the definition of a
Kubo formula such as Eq. (8).
Thus, vortex fluid perturbations dissipate intomicroscopic

spin angular momentum and heat on a timescale τY . But, as
is apparent already from the discussion in Sec. III A 1 and the
definition Eq. (5), vortices in a viscous medium dissipate on
a timescale η=ðsTÞ [31]. Putting these two scales togetherwe
get that the viscosity η over entropy density s is bounded by

η=s ≥ TτlimY ; ð24Þ

with τlimY saturating Eq. (22). This constraint again makes
sense, since the right-hand side ∼T × χ. In a system with
a large degeneracy for a finite amount of energy
cTχðb; 0Þ → 0; hence the limit of η=s argued for here goes
to 0.

1. Some considerations on a bottom-up
lower limit on viscosity

The result illustrated above connects to a question that is
much more general and profound than the problem directly
dealt with in this work.
The question of wether there exists a universal limit to

viscosity and/or dissipation (parametrized in relativistic
systems by the viscosity over entropy ratio η=s) is both
profound and difficult to handle. On a fundamental level, it
is plausible to argue that quantum uncertainty gives rise to
fluctuations that dissipate information. However, trans-
lating this realization into a bottom-up limit, independent
of a microscopic theory, is problematic. From the funda-
mental point of view, moreover, it is unclear “where the
dissipation even comes from” since the quantummechanical
evolution is nondissipative even if the initial state is initially
infinitesimally close to equilibrium. Generally [32] one
assumes that the system is open and coupled to a thermal

FIG. 2. The asymptotic value of the group velocities for the
transverse and longitudinal modes as a function of the relevant
parameter; full and dotted line are c > 0 and c < 0, respectively.
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bath, with the couplingmodeled as a time-dependent source.
Dissipation coefficients can then be extracted from the
response.
In quantum field theory, where the number of d.o.f. is

continuously infinite, we can assume an infinitesimal
departure from thermal equilibrium in a thermodynamic
limit and calculate the infrared (long-frequency-wave-
number limit) response, which is dissipative [32] provided
the vacuum is stable. This is the principle under which we
proposed Eq. (8), as all transport coefficients are calculated
similarly.
Thus, given a microscopic theory, the shear viscosity η is

then generally related [31,33] to the correlator of the off-
diagonal components of the energy-momentum tensor
Tij;i≠j via Kubo’s formula, defined in Euclidean space as

η ¼ lim
w;k→0

w−1Im
Z

θðx0Þh½TijðxÞTijð0Þ�ieiðkx−wx0Þdxdx0;

ð25Þ

the real part of the correlator is w × p [31,33], and hence
can be used to obtain the entropy density via thermody-
namic identities s ¼ dp=dT.
This allows us, in principle, to calculate transport

coefficients given a thermally equilibrated microscopic
theory that is also tractable. However, since relativistic
systems with low viscosity are usually strongly coupled,
this is a very blunt instrument for claiming “universal”
limits since Eq. (25) cannot be calculated even approx-
imately in the strongly coupled limit.
A fundamental limit has been claimed heuristically

decades ago by combining the uncertainty principle with
Boltzmann’s derivation of viscosity [34], η=s ∼Oð0.1Þ.
While this is a plausible order-of-magnitude estimate, it
was always clear that Boltzmann’s derivation should not
generally apply to strongly coupled quantum fields because
microscopic correlations, in a strongly coupled system,
ensure that all n-point functions contribute equally to
Eq. (25) so the Boltzmann equation (which only keeps
one-point functions) is inadequate.
More recently, gauge-gravity correspondence allowed

one to conclude [35] that theories with a classical gravity
dual have η=s ¼ ð4πÞ−1 in their strong-coupling limit. The
universality of this limit is a consequence of the black-hole
no-hair theorem, and hence it critically depends on the
existence of a classical gravity dual, namely, a planar limit
(and consequently an infinite heat capacity) and a con-
formal strongly coupled fixed point. Counterexamples have
been argued for beyond this limit [36–38], which makes
its relevance to systems well away from the planar limit
dubious.
These difficulties illustrate that most likely one cannot

get a lower limit from top-down arguments, where hydro-
dynamics appears as a limit of a known microscopic theory,
and this theory is used to calculate the right-hand side of

Eq. (25). A bottom-up constraint, based on effective field
theory constraints such as low-energy unitarity and cau-
sality of the fluid dynamics, is necessary. Such a constraint,
if it exists, would imply that any consistent and causal
theory would have an η or η=s above a certain value.
Attempts in this direction can be formulated in terms of

the necessity to renormalize the Kubo formulas with
hydrodynamic fluctuations [33,39,40], energy conditions
[41], the necessity of a quantum cutoff for the Kolmogorov
cascade [17], and other arguments, typically related to the
number of microscopic d.o.f. per unit volume (infinite in
the planar limit but finite for a realistic theory), rather than
the Knudsen number/gradient expansion.
We note that this planar limit can be thought of as a

“ðthermodynamicÞ2” limit, where not just the total number
of d.o.f., but the number of d.o.f. per unit volume,
diverges.4This can be seen explicitly in a perturbative
calculation [17] of a deformed ideal hydrodynamic limit
[14], where a finite η=s arises only for a diverging micro-
scopic degeneracy. Thus, it is a deviation from this limit
(obviously unrealistic since Nc ¼ 3 ≪ ∞, and, given the
applicability of hydrodynamics for systems with<100 fm−3

d.o.f., most likely not a good approximation) that a bottom-
up limit from viscosity might turn up. However, as vortex
d.o.f. in three dimensions appear strongly nonperturbative
[14,16,19], analytical progress in this direction is not easy.
So far, the most quantitative argument we have relating

the mean free path to the viscosity is to assume the
microscopic scale to be an ultraviolet cutoff and calculating
loop corrections [33,39,40]. The result of such calculations
is plausible, but the nonperturbative dynamics of vortices
as well as the fact that the UV cutoff is imposed by hand
means one cannot think of it as fully established.Apromising
direction for its completion could be to link the existence
of the cutoff to causality, following the link found in [41] to
the null energy condition.
The question then is, can Eq. (24) be interpreted in such

a way?
While polarization appears irrelevant to viscosity, all

known physical realizations of strongly coupled fluids as
well as most nontrivial interacting field theories contain
particles with spin, and the strongly coupled dynamics
of such systems must self-evidently include spin-orbit
interactions.
So, can the limit found in the previous section be a

candidate for such a “bottom-up viscosity limit?”Comparing
Eq. (25) to the result of the appendix [Eq. (23)], it can be seen
that indeed τY behaves exactly as η=ðsTÞ as shown in
Eq. (24). Qualitatively, transverse modes “dissipate“into
polarization, and longitudinal and transverse modes are
inherently mixed by finite susceptibility.

4Note that some models have been constructed where it is
claimed only entropy density diverges, invalidating any bounds
on η=s [37,38].
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The behavior of τY with a number of d.o.f. is also
consistent with the expectation that such “fluctuationlike”
effects go away in the limit of “many d.o.f.” per unit
volume, the “square of the thermodynamic limit” [42]. In
this limit (corresponding to the planar limit in Yang-Mills
theories and the applicability of molecular chaos in trans-
port equations), the amount of angular momentum redis-
tributed in polarization d.o.f. (∼χ) vanishes. Thus, the
bound found here is “orthogonal” to the celebrated bound
of [35], and is relevant for systems that are strongly coupled
but with comparatively few d.o.f. per unit volume. The
quark-gluon plasma and ultracold atoms would be obvious
examples.
The limit in Eq. (24) is bottom up, inasmuch as it is only

dependent on the assumption of causality, local thermal-
ization, and symmetries and that, unlike Israel-Stewart, it
corrects an ideal fluid limit rather than one that is already
dissipative. τY as a cutoff is generated dynamically by the
fundamental quantization of spin, rather than imposed by
hand in loop corrections. This cutoff also breaks up
turbulence cascades, which make vortices unstable [14],
as expected [17] from a quantum (because of the presence
of spin) viscosity limit.
The fundamental issue of how to reconcile the loss of

unitarity inherent in dissipation with the unitary nature of
quantum evolution is of course still mysterious on a
rigorous level. However, there are a few things we can
say. While the theory used here is classical, it follows from
the intrinsically quantum notion of “spin” of a point particle
[43] and any qualitative explanation requires a finite de
Broglie wavelength.
Qualitatively, the effect we derived can be understood

from a microscopic quasiparticle picture, as illustrated in
Fig 3: A particle with spin and a finite de Broglie wave-
length [4], moving in a fluid with momentum flow, could,
given any spin-orbit interaction, have its helicity flipped by
the gradient of the momentum density, which in a flowing
fluid is the gradient of the flow. By angular momentum
conservation, the helicity flip quenches some of the
gradient [note that in relativistic fluids vorticity is defined
via the energy momentum tensor used in Eq. (25) [9,10]],
thereby ensuring that gradients of macroscopic quantities
impact parameters of the distribution of microscopic
particles. Given Stokes theorem and the definition of

viscosities via Eq. (25), these helicity-momentum inter-
actions will have the same effect as a shear viscosity. Note
that, in the strong limit of the spin-orbit coupling this effect
does not go away; only for short de Broglie wavelengths
(i.e., high temperature) or many microscopic d.o.f. (the
planar limit in Yang-Mills theories) it disappears, just like
the dissipative effects of microscopic fluctuations [17,33].
That this effective viscosity is dissipative can be realized by
an entropy analysis [11], since entropy invariably depends
on flow gradients. Thus, in the thermodynamic limit but
with a finite number of d.o.f. per unit volume, quantum
uncertainties combined with the quantum internal structure
of each d.o.f. can result in an effect mimicking viscosity
that, in a field theory setting, can give rise to a finite η=s.

B. Ferrovortetic materials. Transition to
a polarized phase?

For the ferrovortetic (c > 0) material an acausal mode
remains, and, as one can see from Fig. 1 this mode is
infrared (small k) rather than ultraviolet (large k). Note that
the longitudinal mode only diverges at a critical k while the
transverse mode is always acausal. A simple explanation
would be to suppose c > 0 is unphysical, but then one
would not understand why this is so; spontaneous spin
alignment is known to microscopically occur in the non-
relativistic limit.
There is however a physically compelling hypothesis,

that the infrared mode is rather related to the thermo-
dynamic vacuum instability of the system. The unpolarized
vacuum is a false vacuum, and the decay into a true vacuum
can be seen as an infinitely soft perturbation. Within the
context of chiral phase transitions this is known as a Banks-
Casher [44] mode, relating the spectral function at k lim 0
to the appearance of the condensate (in this case of spin
alignment rather than chiral) and the spectral function ρðwÞ.

hyμνi≡ lim
k→0

ρðωT;LðkÞÞ; ð26Þ

where ρðωÞ is the spectral function. Such a relation however
is relevant to any relativistic system where a condensate,
in this case a spin condensate, appears. Physically, what
happens is that a low wavelength mode is indistinguishable
from the formation of a spin condensate, and indeed below a
critical temperature such a formation is unavoidable, and
hence the violation of causality signals the appearance of
spontaneous polarization.
As expected from fluctuation-dissipation arguments, the

wave number k (Fig. 1) where causality breaks down is
related to the size of the Domain wall where fluctuations
and spontaneous spin alignment are comparable. Locally,
the instability under spin alignment means that the hydro-
static vacuum is always unstable under vortex formation, so
πT is always acausal in the linear order.
In this case Eq. (7) is not anymore a good effective

theory, since the fluid d.o.f. and the spin condensate evolve

FIG. 3. An illustration of how polarization of a quantum
particle could lead to an effective viscosity independent of the
mean free path.
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and interact with their own equations of motion. Hence,
Eq. (26) cannot be used to calculate the condensate. In fact,
the vacuum instability signals that the expansion of Eq. (3)
needs to be augmented, at least, with the quartic term

Fðb; yÞ ¼ Fðbð1 − cðT;ωÞyμνyμν þ c4ðT;ωÞOðy4ÞÞÞ:
ð27Þ

This equation is exactly that of the free energy for Landau
phase transitions, and indeed in general there is a con-
densate defined by hyi ≠ 0 and the minimization of
Fðb; yÞ, in exact analogy with ferromagnetism.
However, we are considering a locally equilibrated fluid

here, including thermal fluctuations and sound waves. These
conditions should generate different condensate domains,
where thermal fluctuations and sound waves are in com-
petition with spontaneous condensation. All these effects
could be found by calculating the functional integral

lnZ ¼
Z

D½y;ϕI�eT
4
0

R
Lðy;ϕI ;cÞd4x ≃ Leff ½y0;ϕI

0; c0�T0
ð28Þ

in terms of the microscopic scale T0 [15,17,18]. Using the
Lagrangian given here, both fluid fluctuations and polari-
zation are treated on the same footing and could give the
interplay between spontaneous polarization, thermal fluctu-
ations, and hydrodynamic evolution that would manifest
in a renormalization group flow of c between a polarized
and a depolarized phase defined in terms of an effective
action [45],

ΓðhyiÞ ¼ lnZ −
Z

d4zJμνðzÞhyμνi: ð29Þ

We remark that, since this is correcting an ideal locally
equilibrated fluid, the timescale τY and the gradient around
the local minimum of Eq. (29) should be related to ensure an
equilibrium, as per the usual fluctuation-dissipation theorem
and the Kramers-Koenig relations [32].
Analyzing this in detail is a very ambitious, possibly

numerical project that is left for further work.

C. Discussion and conclusions

This work had two motivations: The specific issue with
causality in the ideal hydrodynamic limit when the fluid has
a nonzero polarization, i.e., when its microscopic constitu-
ents have a nonzero spin. As shown in [2], the ideal limit
is incompatible with causality. In this work, we have shown
that an Israel-Stewart-like approach can fix this problem.
However, unlike with Israel-Stewart hydrodynamics, the
limit theory is ideal. Hence, rather than correct a dissipative
theory we need to introduce dissipation in a nondissipa-
tive one.
This makes a connection to a much more general issue:

The possible existence of a bottom-up lower limit on

viscosity for general fluidlike systems, which does not
depend on specific assumptions on the microscopic theory
governing the constituents of the fluid. The minimal dis-
sipation we find can be thought of as just such a limit, since
the dynamics of this dissipation mimics that of viscosity.
We also showed the different behavior of the ferrovor-

tetic limit (where polarization lowers free energy) from
the antiferrovortetic one (where it increases the free
energy). It is in the ultraviolet limit of the antiferrovortetic
case that the noncausal mode is damped by the Israel-
Stewart dissipation, just as expected for a viscous correc-
tion. In the ferrovortetic regime noncausality appears, but
in the infrared rather than the ultraviolet limit. Its physical
interpretation is different, signaling the instability of the
fluid against spontaneous polarization.
We close with some phenomenological considerations.

To test this theory experimentally onemust be able to convert
our polarized fluid to particles. The usual method to do so is
via the Cooper-Frye formula [46] and its viscous extensions.
The Cooper-Frye formula has already been extended to
include conversion of angular momentum into spin [6] at
freeze-out. To linkwith our workwe need to understand how
freeze-out happens when both a vorticity and a spin current
Yμν exist when the fluid freezes out into particles.
The problem is that the Cooper-Frye formula is based

only on conservation laws and entropy nondecrease at
freeze-out. This, as shown in [1] is not enough to define
dynamics for a fluid with polarization. Hence, more
dynamics have to be added to the Cooper-Frye formula
once spin and angular momentum are separately handled.
One physically appealing way to do it is to use the

Wigner function formalism for coalescence. Yμν could be
straightforwardly linked to the spin wave function of the
constituent quarks/gluons [one would attach an eigenstate
to each coefficient instead of the generator in Eq. (2)] and
vorticity could be linked to the angular momentum part of
the wave function. Since this process is quantum, entropy
would be conserved. However, in practice, a lot of untested
assumptions (how many constituent quarks per each
hadron?) would have to go into such a model before a
meaningful connection with data is made.
The phenomenological manifestation of preexisting spin

is also nontrivial to investigate via experimental observ-
ables. As shown in [47] and [48], to describe transverse Λ
polarization it is enough to assume vorticity is transferred
to spin only at freeze-out. So, unsurprisingly, the effects
studied in this paper might well be subleading.
Longitudinal polarization [49] was explained within non-
equilibrium dynamics incorporating thermal vorticity [50].
Perhaps comparing polarization of Λ and vector mesons
[51,52] might show the need to go beyond the Cooper-Frye
approach, while electromagnetic probes [53] show the
necessity to propagate polarization as well as vorticity
from the hot initial phase where flow anisotropies develop.
For phenomenological comparisons, one would also

need to link with microscopic physics. To date, a lattice
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calculation of QCD in a rotating frame is available [54]
and calculations in effective theories are ongoing [55].
In principle, one can use them to calculate c, distinguish
between a ferrovortetic and an antiferrovortetic case, and
compute χ and τY via Eq. (8), but as yet we do not know
if QCD matter is ferrovortetic, antiferrovortetic, or both at
different temperatures.
Hence, a tight phenomenological test of this theory is

still far away. However, the fact that Lagrangian hydro-
dynamics can capture both textbook physics (spontaneous
spin condensation) and a widely expected but never quite
proven lower limit on dissipation in strongly coupled
systems certifies its status as a powerful theoretical tool
to examine the behavior of relativistic fluids. The
Lagrangian proposed in Eq. (9) can therefore be considered
as a candidate for the Lagrangian of a polarizable medium
close to the ideal fluid limit. A connection of this hydro-
dynamics to both microscopic theories and phenomenology
will be studied in forthcoming work.
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APPENDIX: EVOLUTION OF A VORTEX IN A
THERMAL POLARIZABLE

CAUSAL MEDIUM

The best way to approach this problem is to unfold
Eq. (18) into configuration space. After a tedious but
straight-forward calculation we have

B
∂4

∂t4 πTðx⃗; tÞ − A
∂2

∂x2
∂2

∂t2 πTðx⃗; tÞ

þ 2τ
∂3

∂t3 πTðx⃗; tÞ þ
∂2

∂t2 πTðx⃗; tÞ ¼ 0; ðA1Þ

where the constant variables are

B ¼ Aþ τ2; A ¼ 4cχ2ðbo; 0Þ
b0F0ðboÞ

: ðA2Þ

One simple redefinition of main variable ∂2
∂t2 πTðx⃗; tÞ ¼

ΠTðx⃗; tÞ ¼ XðxÞTðtÞ allows us to solve by the separation
of variable method. Assuming πTðx⃗; tÞ is an analytical
function and infinitely differentiable Eq. (A1) can be
rewritten as

1

TðtÞ
�
B
∂2

∂t2 TðtÞ þ 2τ
∂
∂t TðtÞ

�

¼ 1

XðxÞ
�
A

∂2

∂x2 XðxÞ − XðxÞ
�

¼ −λ: ðA3Þ

To construct the general solution, first, we seek to solve
each part separately, spatial and time, and afterwards
substituting into ΠTðx⃗; tÞ.

1. Spatial part

We turn now to the spatial differential equation that is
solved as an ordinary one,�

A
∂2

∂x2 XðxÞ − ð1 − λÞXðxÞ
�

¼ 0: ðA4Þ

By a characteristic method, the roots of the polynomial
equation are part of the general homogeneous solution.

Xðx⃗Þ ¼ γ1ðtÞeixχ
−1

ffiffiffiffiffiffi
ð1−λÞ
A0

p
þ γ2ðtÞe−ixχ

−1
ffiffiffiffiffiffi
ð1−λÞ
A0

p
; ðA5Þ

with γ1 and γ2 being smooth functions that may depend on
time, with the solution being unique in any interval where
γ1;2 is continuous. At first, such an “oscillating vortex” is
unexpected, but a “wave packet” of such solutions gives a
familiar localized vortex.
We can always expand on one complete closed set of

orthogonal functions since the operator is linear and self-
adjoint, and we can expand the Green function in terms of
this set. Being an invertible operator is straightforward to
evaluate a response function,

Gðx⃗0 − x⃗Þ ¼ −L−1δ3ðx⃗0 − x⃗Þ:

In our particular case

GTðx⃗0 − x⃗; t0 − tÞ ¼
Z

d3k
ð2πÞ3 e

−ik⃗ðx⃗0−x⃗ÞGTðk⃗; t0 − tÞ

GTðk; t0 − tÞ ¼ 1

k2 − ð1−λÞ
2A þ iϵ

: ðA6Þ

This Greens function evolves only the vorticity term πT ,
which is perpendicular to momentum. As such, it has no
isotropy in frequency space, but rather an anisotropy due to
a thermalization process that corresponds to angular veloc-
ity. The Greens function evolving πL is different, and will
be examined in a forthcoming work.

2. Time evolution

The evolution of the time-dependent part of the equation� ∂2

∂t2 TðtÞ þ
2τ

B
∂
∂t TðtÞ −

λ

B
TðtÞ

�
¼ 0 ðA7Þ
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is similar to a damped harmonic oscillator. By the method
of characteristics we have, after defining

r ¼ −
τ

B
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

B2
−

λ

B

r
ðA8Þ

B ¼
�
4

9
τ2limit þ τ2

�
; τ2limit ¼

8cχ2ðbo; 0Þ
ð1 − c2sÞboF0ðboÞ

¼ 9

4
A;

ðA9Þ

where the speed of sound squared c2s ¼ 1=3, and 9
4
arises

after taking the hydrodynamic limit on group velocity. The
case of interest is from three general possible solutions.
Null.—r ¼ 0 Critical damping

τ2 ¼ λB → τ2 ¼
�

λ

1 − λ

�
4

9
τ2limit

and

TðtÞ ¼ ðαðx⃗Þ þ βðx⃗ÞtÞe−τ
Bt:

Real.—r > 0 Overdamping

τ2 > λB → τ2 >

�
λ

1 − λ

�
4

9
τ2limit

and

TðtÞ ¼ e−t
τ
Bðαðx⃗Þeω2t þ βðx⃗Þe−ω2tÞ; ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

λB
−

λ

B
:

r
Imaginary.—r < 0 Underdamping

τ2 < λB → τ2 <

�
λ

1 − λ

�
4

9
τ2limit

and

TðtÞ ¼ e−t
τ
Beit

ffiffi
λ
B

p
−τ2

B2 þ βðx⃗Þe−tτBe−it
ffiffiffiffiffiffiffi
λ
B−

τ2

B2

q
:

Since 0 < λ < 1, overdamping corresponds to the cau-
sality limit defined by Eq. (22). The Green function is

GTðx0 − x;ωÞ ¼ 1

−ω2 þ ið2τ=BÞωþ ω2
o
; ðA10Þ

where

ω1;2 ¼ −iτ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
o − γ2

q
;

and

ImGTðx0 − x;ωÞ ¼ ð2τ=BÞω
ðω2

0 − ω2Þ2 þ ð2τ=BÞ2ω2
; ðA11Þ

ReGTðx0 − x;ωÞ ¼ ω2
o − ω2

ðω2
0 − ω2Þ2 þ ð2τ=BÞ2ω2

; ðA12Þ

the damping gradually dissipates initial energy, and only
the imaginary case results in oscillatory movement.
The qualitative behavior of the solutions at asymptotic

time is thus the following.
Null Its solutions at t → ∞ tend to 0 with a relaxation
time τ ¼ 2

3
τlimit. The system does not even reach the

crossing time axis.
Real The vector perturbation field goes to 0 at infinity
time slower than the critical damping solution. Where
boundary constraints are automatically satisfied,
πTðx⃗; tÞ sets up as dissipative solutionunder a character-
istic timescale.

Imaginary (Nonphysical) Unstable oscillatory move-
ment across the time axis lies between boundary
curves �αe−t

τ
B. Since a damping term is present, we

cannot define a frequency in the physical meaning
of word.

Equation (22) imposes the imaginary case, which we use to
obtain the general solution.

3. Solution

Putting everything together, and ensuring the causality
constraint 0 < λ < 1 we get the general evolution equation
for πT,

πTðx⃗; tÞ ¼ e−
τ
Bt

	
αðx⃗Þ

ðτB þ ω2Þ2
eω2t þ βðx⃗Þ

ðτB − ω2Þ2
e−ω2t




×

	
γ1ðtÞeixχ

−1
ffiffiffiffiffiffi
ð1−λÞ
A0

p
þ γ2ðtÞe−ixχ

−1
ffiffiffiffiffiffi
ð1−λÞ
A0

p 

þ c1ðx⃗Þtþ c2ðx⃗Þ;

where the boundary conditions (existence of equilibrium)
imply c1;2 ¼ 0 (the initial background value that would
represent c1 is absorbed into γ1;2 and c2 into their gradients).
This establishes the asymptotic behavior of Eq. (23).
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