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We present the method of numerical optimization for the perturbative series using the renormalization
group in quantum chromodynamics. We apply our approach to the perturbation series in αs for the
coefficient function CBjpðαsÞ of the Bjorken sum rule for the polarized deep inelastic lepton-hadron

scattering. We optimize the Bjorken sum rule value, Γp-n
1 , at the COMPASS, SLAC, and JLab kinematics

and compare the obtained results with the experimental measurements and also with the truncated Bjorken
sum rule predictions.
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I. INTRODUCTION

One of the foundations of quantum chromodynamics
(QCD) is the renormalization group (RG) equation. The
latter defines the running of the coupling αsðQ2Þ that
characterizes the strong interaction of quarks and gluons.
Understanding the behavior of αs with the scale of the
virtual momenta Q2 allows us to describe hadronic inter-
actions at both short and long distances. The long-distance
domain at low Q2 is characteristic of quark confinement
and processes of hadronization, and the short-distance
domain, at high Q2, involves perturbative methods of
QCD (pQCD). The calculation of the 1-loop β-function
in pQCD over 40 years ago enabled the discovery of
asymptotic freedom. Since then, tremendous progress
has been made in perturbative calculations in QCD.
Particularly, the Bjorken sum rule (BSR) for the polarized
deep inelastic lepton-hadron scattering (DIS) [1,2], provid-
ing fundamental spin predictions of the nucleon, has
been studied in detail, both theoretically and experimen-
tally. The radiative corrections to BSR in the strong
coupling constant αs of order OðαnsÞ, n ¼ 1;…; 4 were
obtained in [3–6], respectively. In order to optimize the
perturbative series in αs of a physical observable, various
methods can be used. One of them is the Brodsky-Lepage-
Mackenzie (BLM) approach [7], later on developed in
two different approaches: the sequential BLM (seBLM),

e.g., [8,9], and the principle of maximal conformality
(PMC), e.g., [10] and references therein.
In this paper, we present another method of optimization

applied to the coefficient function CBjpðαsÞ for BSR pre-
dictions. In the next section, we discuss and fix the criteria for
the optimized analysis of theCBjpðαsÞwithin the perturbation
QCD and RG. Following these criteria, in Sec. III, we find
numerically the admissible domains for the corresponding
new normalization scales μ2 (μ2 ≠ Q2). In Sec. IV, the results
of optimization are presented and discussed. We optimize
the perturbation expansion for the BSR at the COMPASS,
SLAC, and Jefferson Lab (JLab) kinematics and compare
the obtained results with the experimental measurements
and also with our predictions based on the truncated Bjorken
sum rule (tBSR) approach [11,12].

II. RENORMALIZATION GROUP ANALYSIS OF
QCD PT SERIES FOR BJORKEN SUM RULE

For decades, perturbative QCD has been a powerful
tool in understanding the hadron structure. In the analysis,
the hadronic observables, like DIS sum rules, are expanded
into the power series in the strong coupling αs, providing a
robust test of the perturbative theory (PT). The Bjorken
sum rule [1,2], Γp−n

1 ðQ2Þ, which is a fundamental sum rule
for polarized DIS at hard momentum transfer q∶ − q2 ¼
Q2 and a rigorous pQCD prediction, is essential for
describing the nucleon spin structure. In the limit
Q2 → ∞, the BSR relates the difference between the first
moments of the proton, gp1 , and the neutron, gp1 , spin
structure functions to the nucleon axial charge, gA,
Γp−n
1 ¼ jgAj=6. Since in real experiments Q2 cannot reach

infinity, the QCD analysis of the BSR involves both the
perturbative leading-twist and the nonperturbative higher-
twist (HT) corrections. Thus, away from the large Q2 limit,
the Q2 dependence of the polarized BSR is given by
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Γth
1 ðQ2Þ ¼ Γp

1 ðQ2Þ − Γn
1ðQ2Þ ¼

���� gA6
����CBjpðasÞ þ

X∞
i¼2

μp−n2i

Q2i−2 ;

ð1Þ

where CBjpðasÞ is the leading-twist nonsinglet coefficient
function (c.f.) including radiative corrections obtained
within the MS scheme and is known to 4 loops [3–6].
The HT contribution is a series in power of 1=Q2, where
μp−n2i are the effective scales of the power corrections whose
effects become essential in the small and moderate Q2

region. Below, we will investigate the QCD radiative
corrections to CBjpðasÞ based on the renormalization group
transform.

A. The problem of PT optimization for
coefficient function CBjpðasÞ

The perturbation expansion for the c.f. CBjpðasÞ reads

CBjp

�
Q2

μ2
; asðμ2Þ

�
¼ 1þ c1ðasðμ2Þ þ c2a2sðμ2Þ

þ c3a3sðμ2Þ þ c4a4sðμ2Þ þ…Þ; ð2aÞ

where the coefficients ci ¼ ciðQ2=μ2Þ are calculated in the
MS scheme and are normalized by the first coefficient
c1 ¼ −3CF ¼ −4; the running QCD coupling as is
asðμ2Þ¼αsðμ2Þ=ð4πÞ. For the default condition μ2 ¼ Q2,
the coefficients ci ≡ cið1Þ are the numbers presented in the
Appendix A in different forms,

Cðasðμ2ÞÞ≡ CBjpð1; asðμ2ÞÞ
¼ 1 − 4ðasðμ2Þ þ 13a2sðμ2Þ þ 221.6a3sðμ2Þ
þ 6553.7a4sðμ2Þ þ…Þ: ð2bÞ

The numerical estimates in Eq. (2b) are taken at the number
of active quarks nf ¼ 4; see Eq. (A6). For the character
reference scale of BSR measurements near the τ-lepton
mass, μ2¼m2

τ ≈3.16GeV2, asðm2
τÞ≈0.332=ð4πÞ≈0.0264

[here αsðm2
τÞ ¼ 0.332� 0.005ðexpÞ � 0.015ðtheorÞ [13] ],

one obtains for the series in Eq. (2b) the estimate

Cðasðm2
τÞÞ≡ CBjpð1; asðm2

τÞÞ
¼ 1 − 4ð0.0264þ 0.0090þ 0.0041

þ 0.0032þ…Þ ð3aÞ

¼ 1 − 4ð0.0428Þ: ð3bÞ

One can see that the radiative corrections are significant,
being about −17% of the Born term in Eq. (3), and the
convergence of the series is not very good. Below, we
perform an optimization of the partial sum in Eq. (2a) by
choosing an appropriate new normalization scale μ → μ0

and following the renormalization group transform. The
value of the partial sum for the series in Eq. (2) as well as
the values of its separate terms start to change at the
variation of the renormalization scale μ2 around the default
scaleQ2. This is the inevitable effect of the series truncation
which we will use for optimization. Our goal is to make
smaller the total value of radiative corrections in Eq. (2a),
keeping simultaneously some natural hierarchy of the
coefficients ci for appropriate convergence, using for this
purpose the variation of a scale μ. The corresponding
approach goes back to the generalization of the BLM [7]
method, which was suggested in [8,9] for the RG invariant
quantities. The approach is based on the fβg-expansion
for the PT coefficients [8]1; here they are presented for ci
in Appendix A, which allows us to derive the intrinsic
structure of ci in connection with charge renormalization in
great detail. An alternative approach to the PToptimization,
named PMC (see [15]), is elaborated and applied to BSR in
[10]; we will discuss its results in Sec. IV. However, it is not
necessary to know all the details of the series structure to
solve a practical optimization of this series. Here, we will
avoid the details of fβg-expansion (different for different
approaches) and will not discuss them, but, instead, we
propose a direct numerical method to deal with the partial
sums of the series.
In other words, following the RG transform, we will

reorganize four successive orders of radiative corrections in
the parentheses in the rhs of Eq. (3a) to make their sum
minimal. In the next subsection, we will remind the reader
the required elements of the formalism for transformation
of the expansion coefficients for any RG invariant (RGI)
quantity.

B. Parametrization of the RG transformation

We consider the transformation of the coefficients ci
of the RGI quantity CBjpðasÞ under the change of the
normalization scale μ → μ0. Let as ¼ āsðtÞ and a0s ¼ āsðt0Þ
be the solutions of the RG equation for the QCD charge
with logarithmic argument t ¼ lnðμ2=Λ2

qcdÞ at the same
integration constant Λ2

qcd. Reexpanding the running cou-
pling āsðtÞ ¼ asðΔ; a0sÞ in terms ofΔ ¼ t − t0 ¼ lnðμ2=μ02Þ
and the coupling a0s, we obtain

as ¼ asðΔ; a0sÞ
¼ exp ½−ΔβðāsÞ∂ ās �āsjās¼a0s

¼ a0s − βða0sÞ
Δ
1!

þ βða0sÞ∂a0sβða0sÞ
Δ2

2!
þ…: ð4Þ

This is the way to write the RG solution for āðtÞ through the
operator exp ð−ΔβðaÞ∂aÞ½…�ja¼a0 (see [8,9] and references

1Another approach to construction of the fβg-expansion was
suggested in [14], but their results are numerically close.
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therein). The shift Δ of the logarithmic scale in Eq. (4) can
be expanded in its turn in the perturbation series in powers
of the rescaled charge a0sβ0 [8]:

t0 ≡ t − Δ;

Δ≡ Δða0sÞ ¼ Δ0 þ a0sβ0Δ1 þ ða0sβ0Þ2Δ2 þ…; ð5Þ

where the argument of the new coupling a0s depends on Δ,
i.e., a0s ≡ āsðt0Þ ¼ asðt − Δða0sÞÞ. Reexpansion as in terms
of a0s and Δi leads to rearrangement of the perturbation
series for c.f. CBjpðasÞ ¼

P
ia

i
sci →

P
iða0sÞic0i. The new

primed coefficients c0i there can be expressed as c
0
i ¼ Bijcj,

where Bij is a triangular matrix presented in Table I. In this
notation, CBjp from Eq. (2b) transforms to

CBjpðasÞ ¼
X
i≥0

aisci →
X
i≥0

ða0sÞic0i ¼ 1þ
X
i;j≥1

ða0sÞiBijcj;

ð6Þ

when the normalization scale μ is transformed μ → μ0.
The elements Bij appear as a composition of transforms in
Eq. (4) taken together with the expansion in Eq. (5).
Below, in the square brackets we write explicitly the

elements of the triangle matrix B:

a1s · c1 → a01s · ½c01 ¼ 1�;
a2s · c2 → a02s · ½c02ðΔ0Þ ¼ c2 − 1 · β0Δ0�; ð7aÞ

a3s · c3 → a03s · ½c03ðΔ0;Δ1Þ ¼ c3 − c2 · 2β0Δ0 − 1 · ðβ1Δ0 − β20Δ2
0 þ β20Δ1Þ�; ð7bÞ

a4s · c4 → a04s · ½c04ðfΔig20Þ ¼ c4 − c3 · 3β0Δ0 − c2 · ð2β1Δ0 − 3β20Δ2
0 þ 2β20Δ1Þ − ð7cÞ

− 1 ·

�
β2Δ0 þ β0β1Δ1 −

3

2
β0β1Δ2

0 − 2β30Δ0Δ1 þ β30Δ2

��
;

… …

ans · cn → a0sn · ½c0nðfΔign−20 Þ ¼ cn − cn−1 · ðn − 1Þβ0Δ0 −…�: ð7dÞ

New coefficients c0n in Eq. (7) depend on the fitted
parameters Δi. The different approaches based on
different fβg-expansion for ci tell us how to deal with
Δi to fix these c0i. At this point it is instructive to recall
the standard BLM [7] procedure which deals with
Oða2sÞ order and is based on the decomposition
c2 ¼ β0 · c2½1� þ c2½0�. BLM fixes the scale Δ0 in
Eq. (7a) by the requirement Δ0 ¼ c2½1�, and thereby
c2 → c02 ¼ β0 · 0þ c2½0�. This condition transfers 1-loop
renormalization of charge, accumulated in the term
a2sβ0c2½1�, into the new renormalization scale μ02 ¼
expð−c2½1�Þμ2 of the coupling a0s, where lnðμ02=μ2Þ ¼
t0 − t ¼ −Δ0. At the same time, the coefficient c02 is
reduced to c02 ¼ c2½0�, the “conformal part” of c2. For
further generalization of the BLM approach one needs
to know about the tracks of charge renormalization in

every higher order coefficient ci, which are described
by the so-called fβg-expansion [8,9] and which are
presented in Appendix A.
Another approach is to fit the parameters fΔ0;Δ1;

Δ2;…g≡ fΔg numerically following some criteria of
the PT series optimization and ignoring the intrinsic
structure of cn. One can manage both the values of the
PT coefficients c0iðfΔgÞ and the value of the new coupling
a0s ¼ āsðt0 ¼ t − ΔÞ, and thereupon improve the conver-
gence of expansion in the set of Eqs. (7). By the same
procedure, by means of Eqs. (5) and (7), we find a way to
improve perturbation expansion. The price we pay to
achieve this improvement is that we have to control
simultaneously both the expansion for Δ in Eq. (5) and
for the coefficients c0i in Eq. (7). In the paper, we develop
just this approach. In the next section, we will formulate

TABLE I. The first few elements of the matrix Bij. New PT coefficients c0i ¼ Bijcj.

1 0 0 0
−β0Δ0 1 0 0
−β20Δ1 − β1Δ0 þ β20Δ2

0 −2β0Δ0 1 0
−β30Δ2 − β2Δ0 − β0β1Δ1 þ 3

2
β0β1Δ0 þ 2β30Δ0Δ1 −2β20Δ1 − 2β1Δ0 þ 3β20Δ2

0 −3β0Δ0 1
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the foregoing conditions and discuss the admissible
domains of fΔ0;Δ1;Δ2…g following from them.

III. THE ADMISSIBLE DOMAINS OF fΔg
PARAMETERS

Let us apply the general scheme of optimization
described in the previous section to the relevant quantity
CBjp starting from the appropriate conditions for the
truncated PT series in Eq. (6). At first sight, it might seem
that one can choose any value for the new scale μ0 and,
therefore, the parameters fΔ0;Δ1;Δ2;…g in Eq. (5) might
look unconstrained, but that is not true. In order to satisfy
the reliability requirements for the PT expansion, we
demand natural inequalities (i)–(iii) for its successive
terms:

(i) The terms of PT expansion of ΔðtÞ in Eq. (5)
should be

jΔ0j ≥ jA0Δ1j ≥ jA02Δ2j; where A0 ≡ β0a0s; ð8Þ

which means that the next term of this PT expansion
cannot be larger than the previous one. These
inequalities suppose nonlinear conditions for Δi,
which become more restrictive for the case Δ0 > 0
by virtue of asymptotic freedom, A0 ≃ 1=t0, where t0
is defined in Eq. (5).

(ii) For PT expansion in Eq. (6) we impose conditions
with respect to c0i, which are similar to Eq. (8):

1 ≥
����A0 c

0
2

β0

���� ≥
����A02 c

0
3

β20

���� ≥
����A03 c

0
4

β30

����: ð9Þ

We assume Eqs. (8) and (9) to be necessary con-
ditions, admitting at the same time that we can
provide and substantiate more restricted ones. The
new coefficients c0i are given by Eq. (7), while the
explicit forms of the initial coefficients ci are pre-
sented in Appendix A. The running ās has an
asymptotic expansion, Eq. (B8) of Appendix B, or
can be taken from the numerical solution of Eq. (B3).

(iii) To fix the PT domain of applicability, we put for
the logarithmic variable t0 ¼ t − Δðt0Þ the appropri-
ate lower bound at μ20 ≃ 1 GeV2 that corresponds

to tμ0 ¼ ln ðμ20=Λ2
qcdÞ ≃ 2.3 at Λqcd ¼ Λðnf¼4Þ

ð4Þ ¼
0.318 GeV:

t; t0 ≥ tμ0 ⇒ t − 2.3 ≥ Δðt0Þ ¼ Δ0 þ A0Δ1 þ A02Δ2:

ð10Þ

Next, we will scan t in the practically interesting
interval 2.3 < t ≤ 8 (1 < μ2 ≤ 301 GeV2) and we
will localize at every t the region of the parameters
fΔ0;Δ1;Δ2g, where the constraint conditions,
Eqs. (8), (9), and (10), are fulfilled simultaneously.

These conditions form the admissible domain in the
fΔg-space at every value of t, denoted as fΔ̄g,
where one can perform optimization.

A. 2D optimization

We consider first CBjp, Eq. (6), of order Oða3sÞ for two-
dimensional parametrization, fΔ0;Δ1g. In this case, the
conditions, Eqs. (8), (9), and (10), obtain the shortened
form

jΔ0j ≥ jA0Δ1j; ð11aÞ

1 ≥
����A0 c

0
2

β0

���� ≥
����A02 c

0
3

β20

����; ð11bÞ

t ≥ tμ0 þ Δ0 þ A0Δ1: ð11cÞ

The corresponding admissible domains calculated numeri-
cally for t ¼ 3; 4;…; 8 or, respectively, for μ2 ¼ 2.0, 5.5,

15.0, 40.8, 111, 301 GeV2 at Λðnf¼4Þ
ð4loopÞ ¼ 0.318 GeV are

shown in Fig. 1. The constraints in Eqs. (11b) and (11c) are
much more restrictive for the parameters in the right half
plane for Δ0 > 0. Therefore, the corresponding domains
are significantly smaller than in the left half plane, where
Δ0 < 0. It is worth noting that the “standard” BLM value,
fΔ0 ¼ 2;Δi ¼ 0g, [7] also belongs to the admissible
domain. Moreover, the larger t is, the larger the corre-
sponding admissible domain that is the manifestation of

FIG. 1. 2D domains for admissible parameters fΔ̄0; Δ̄1g at
different t, distinguished by different degrees of gray: t ¼ 3 (dark),
…, t ¼ 8 (light). The black triangle on the right half plane
corresponds to the conditions c02 ¼ c03 ¼ 0. Blue points (on the
left) and red points (on the right) are the bare (global) and the
constrained (local) minima of the radiative corrections, respectively.
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asymptotic freedom. The point (0,0) in the ðΔ0;Δ1Þ-plane
in Fig. 1 corresponds to the nonoptimized result of CBjp,
Eq. (2a), while the points corresponding to the optimized
one, Eq. (6), are depicted for bothΔ0 < 0 (left, blue circles)
and Δ0 > 0 (right, red circles). The black triangle, also
lying in the admissible area, represents the conditions
c02 ¼ c03 ¼ 0 studied in [9],

c02 ¼ c03 ¼ 0 ⇒ Δ0 ¼ c2=β0 ¼ 1.56;

Δ1 ¼ ðc3 − c22 − c2β1=β0Þ=β20 ≈ −0.396: ð12Þ

The conditions in Eqs. (12) correspond to the new norm
scale μ02 ¼ μ2 exp ½−Δða0sÞ ¼ −1.56þ 0.396β0asðμ02Þ� >
0.22μ2; see Fig. 1 (right) in [9]. If one imposes also the
fourth term in the condition (ii), Eq. (9), for the 2D
parametrization, fΔ0;Δ1g, the domains fΔ̄g in the right
half plane become slightly disintegrated and get a cut along
the Δ0 direction. This effect can be seen on the corre-
sponding cross section atΔ2 ¼ 0 of 3D admissible domains
presented in Fig. 2.

B. 3D optimization

Next we consider the admissible 3D domains fΔ̄0; Δ̄1;
Δ̄2g in the order of Oða4sÞ. Examples for t ¼ 5

(μ2 ≈ 15.0 GeV2) and t ¼ 8 (μ2 ≈ 301.0 GeV2) are shown
in Fig. 2 in the left and right panels, respectively. We can
see again that the larger t is, the larger the corresponding
admissible domain. In comparison to the 2D case, 3D

admissible domains become disintegrated for Δ0 > 0,
having a cut along the Δ0 direction. Moreover, the large
black balls in the 3D plots corresponding to the conditions
c02 ¼ c03 ¼ c04 ¼ 0, an analogue of the 2D condition,
Eq. (12), are not contained in the admissible regions.
The reason is obvious: this condition contradicts the
inequality, Eq. (8), for the perturbation expansion of Δ
for t ≤ 9.

IV. THE RESULTS OF RENORMALIZATION
GROUP OPTIMIZATION FOR BSR

In the previous sections, we have generally described
the method of RG optimization. Now we present the
numerical results of this optimization for the Bjorken
sum rule. We consider optimization of c.f. CBjp as a
determination of the minimum of radiative corrections
by varying the parameters fΔ0;Δ1;Δ2g.2 We find
numerically the minimum of the function jfRadj which
accumulates all of the known radiative corrections up to
order α4s,

CBjpðt0; a0sÞ ¼ 1þ c1fRadðt; fΔgÞ≡ 1 − αg1s =π; ð13aÞ

fRadðt; fΔgÞ ¼ a0sð1þ a0sc02 þ ða0sÞ2c03 þ ða0sÞ3c04Þ: ð13bÞ

FIG. 2. 3D domains for admissible parameters fΔ̄0; Δ̄1; Δ̄2g at t ¼ 5 (left) and t ¼ 8 (right). The large black ball on the right half plane
corresponding to the conditions c02 ¼ c03 ¼ c04 ¼ 0 does not belong to the admissible region for both the cases. Blue (Δ0 < 0) and red
(Δ0 > 0) points within the domains denote the bare (global) and the constrained (local) minima of the radiative corrections, respectively,
similarly as in Fig. 1.

2The problem of optimization of QCD radiative corrections in
the parameter space fΔg was formulated in [9].
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The quantity jc1fRadðt; f0gÞj ¼ 4asð1þ asc2 þ ðasÞ2c3þ
ðasÞ3c4Þ is the auxiliary “effective αg1s =π” charge pro-
posed in [10,16]. The arguments fΔg of fRadðt; fΔgÞ are
taken within the admissible domain fΔ̄g at every t. The
approach of the PT optimization when the bare (global)
minimum of jfRadðt; fΔgj is restricted by a set of
inequality constraints, Eqs. (8)–(10), is universal and
does not depend on the knowledge of details of the fβg-
expansion for the quantity. Indeed, in our numerical
analysis, we will not need any information about the
intrinsic structure of the PT coefficients ci.

A. Numerical results of the renormalization
group optimization of CBjp

We compare different optimization results with the initial
nonoptimized one, Eq. (3a),

fΔ0 ¼ Δ1 ¼…¼ 0g
CBjpð1; asðm2

τÞÞ ¼ 1− 4ð0.0264þ 0.0090

þ 0.0041þ 0.0032þ…Þ
¼ 1− 4ð0.0428Þ ¼ 1− 0.171 ¼ 1− αg1s =π:

ð14Þ

Let us start with the 2D optimization in the fΔ0;Δ1g-space.
The optimal points (blue circles in Fig. 1) are located for
Δ0 < 0 on the boundary of admissible domains fΔ̄0; Δ̄1g.
For tτ ¼ lnðm2

τ=Λ2
qcdÞ ≈ 3.44 and t0τ ¼ tτ − Δ we have

fΔ0 ¼ −0.571;Δ1 ¼ −3.35;Δ2 ¼ 0g ð15aÞ

CΔ
opt;1ða0sÞ≡ CBjpðt0τ; a0sÞ

¼ 1 − 4ð0.0205þ 0.0074

þ 0.0054þ 0.0038þ…Þ ð15bÞ

¼ 1 − 4ð0.0371Þ
¼ 1 − 0.149 ¼ 1 − αg1s;opt1=π: ð15cÞ

From the comparison between two cases: Eqs. (14) and (15c),
we can see that the effective αg1s =π changes from 0.171
to 0.149, respectively, giving δopt1 ≡ αg1s =π − αg1s;opt1=π ≈
0.023. The advantage of the optimized result looks
substantial, while the values of the shift Δ in Eq. (15a) are
moderate.
The next step is to find the minimum of jfRadj at the

additional condition, Δ0 > 0. This corresponds with the
original BLM result, ΔBLM

0 ¼ 2 [see Eq. (A3b)], and also
with similar results within the PMC [10]. The correspond-
ing minima positions for Δ0 > 0, depicted as red circles in
Fig. 1, provide the following estimation:

Δ0 > 0 fΔ0 ¼ 0.660;Δ1 ¼ −2.98;Δ2 ¼ 0g ð16aÞ

CΔ
opt;2ða0sÞ≡ CBjpðt0τ; a0sÞ

¼ 1 − 4ð0.0266þ 0.0053

þ 0.0053þ 0.0038þ…Þ ð16bÞ

¼ 1 − 4ð0.0410Þ ¼ 1 − 0.164: ð16cÞ

This “optimum” result in Eq. (16c) is not pronounced in
comparison with Eq. (15c). At the same time, this solution
appears on the boundary, where ða0Þ2c02 ≈ ða0Þ3c03; see the
underlined terms. This makes PT convergence worse and
the final result less reliable.
For a similar 3D optimization within the admissible

domains shown in Fig. 2 we obtain

fΔ0 ¼ −0.381;Δ1 ¼ −2.21;Δ2 ¼ −12.8g ð17aÞ

CΔ
opt;3ða0sÞ≡ CBjpðt0τ; a0sÞ

¼ 1 − 4ð0.0207þ 0.0069

þ 0.0043þ 0.0042þ…Þ ð17bÞ

¼ 1 − 4ð0.0361Þ ¼ 1 − 0.144 ¼ 1 − αg1s;opt3=π

ð17cÞ

and

Δ0 > 0fΔ0 ¼ 0.573;Δ1 ¼ −2.72;Δ2 ¼ −5.69g ð18aÞ

CΔ
opt;4ða0sÞ≡ CBjpðt0τ; a0sÞ

¼ 1 − 4ð0.0253þ 0.0053

þ 0.0045þ 0.0044þ…Þ ð18bÞ

¼ 1 − 4ð0.0396Þ ¼ 1 − 0.158: ð18cÞ

We see that the 3D analysis has no significant advantages
over the corresponding 2D results, Eqs. (15c) and (16c).
The underlined terms in Eqs. (17b) and (18b) illustrate that
the PT convergence is not good enough to make the results
reliable. Summarizing our tests among the considered
cases, only the 2D result, Eq. (15c), is at a near optimum
level providing satisfactory convergence of the PT series.
Let us comment on the disadvantage of the used

numerical approach. Namely, “blind analysis” based on
the constraints, Eqs. (8)–(10), can lead to the unsatisfactory
solution. Indeed, the minima of the radiative corrections
in the cases, Eqs. (16b), (17b), and (18b), occur on the
boundary of the constraint, Eq. (9) (see the underlined
terms), where the PT convergence deteriorates. Another
lesson from these numerical tests is that the scales of
“BLM/PMC,” corresponding to the additional condition
Δ0 > 0, lead to the constrained (local) minimum which is
not close to the global minimum of radiative corrections.
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In this connection, it is instructive to compare the results
for αg1sPMCðQ2Þ=π obtained in [10] within the PMC scale
setting with our predictions. The PMC is based on some
version of β-expansion3 and the assumption about suffi-
cient convergence of the truncated PT series. The conven-
tional pQCD effective charge αg1s =π > αg1sPMC=π at much
better convergence of the latter. Let us briefly discuss
similarities: (i) The PMC scales qualitatively agree with
the scales Δ obtained in this paper for the local minimum
Δ0 > 0 in Eqs. (16a) and (18a). (ii) The advantage of the
PMC defined as δPMC ¼ ðαg1s =π − αg1sPMC=πÞjQ2¼m2

τ
≈ 0.013

(see Fig. 1 in [10]) is numerically close to δ from Eq. (18c)
here. In contrast, our 2D optimization for the global
minimum, Eq. (15), gives an almost twice higher advantage
with appropriate convergence, δopt1 ≈ 0.023 vs δPMC. These
differences originate from the fact that in our approach the
optimization is tightly related to the global minimum of
the partial sum of radiative corrections, as opposed to the
PMC purpose of faster convergence.

B. Optimized Bjorken sum rule vs different
experimental results

In this subsection, we compare the results for the BSR
obtained here for the optimized PT series for the leading
twist contributions with the experimental measurements
of COMPASS [18–20] (taking into account the results of
truncated moments [11,12,21]), the E155 Collaboration
at SLAC [22], and JLab EG1-DVCS [23]. These opti-
mized estimates are expectedly higher than the conven-
tional ones.

1. Optimized Bjorken sum rule
for COMPASS measurements

Experimental verification of the DIS sum rules always
encounters the difficulty that in any realistic experiment
one cannot reach arbitrarily small values of the Bjorken x,
x ≥ x0 ≡Q2

min=ð2ðPqÞmax > 0Þ, where P is hadronic
momentum and q the momentum transfer of the DIS.
The method of truncated Mellin moments (TMM) opera-
ting in the range ðx0; 1Þ can overcome this x0 problem
[24–26]. To obtain the optimized phenomenological result

for BSR, Γexp
1 ≃ Γ1ðx0Þ ¼

R
1
x0
gðnsÞ1 ðx; μ2Þdx, we used the

tBSR approach which incorporates experimental uncer-
tainties on the spin function g1 [12,21]. The tBSR elab-
orated in [11] is based on the TMM approach providing not
only a natural framework of DIS analysis in the restricted
kinematic region of x ≥ x0 but also allowing an effective
study of the sum rules in a low x limit. Since the tBSR
saturates in the low-x limit much sooner than the ordinary
BSR [11], we assume a smaller systematic error and the

total one of the level of 5% at a conservative approach to
this estimation. Thus, we find for the COMPASS data

Γexp -opt
1ðc−ssÞ ¼ 0.191� 0.01; ð19Þ

which is in good agreement with the most recent
COMPASS result provided for Q2 ¼ 3 GeV2 [20]:

Γexp
1ðc−ssÞ ¼ 0.192� 0.007stat � 0.015syst: ð20Þ

In the previous section, we discussed the optimized
results for the QCD radiative corrections at the world
reference scale m2

τ . Below, we provide similar results
starting with CBjpð1; asðQ2ÞÞ at the COMPASS reference
scale Q2 ¼ 3 GeV2. Thus, we obtain

CBjpð1; asðQ2ÞÞ
¼ 1 − 4ð0.0268þ 0.0093þ 0.0043þ 0.0034þ…Þ
¼ 1 − 4ð0.0438Þ ¼ 1 − 0.175: ð21Þ

Then, using the already discussed and approved 2D
fΔ0;Δ1g optimization in Eq. (15), we find the optimized
value of CBjp,

fΔ0 ¼ −0.545;Δ1 ¼ −3.13;Δ2 ¼ 0g ð22aÞ

CΔ
optða0sÞ≡CBjpðt0;a0sÞ

¼1−4ð0.0209þ0.0077þ0.0055þ0.0039þ…Þ
ð22bÞ

¼ 1 − 4ð0.0380Þ ¼ 1 − 0.152; ð22cÞ

that is visibly larger than the nonoptimized result 1–0.175
in Eq. (21). These values lead to the following estimates for
the leading twist-2 part of Γth

1 in Eq. (1):

Γth-non-opt
1;tw2 ðQ2Þ ¼

���� gA6
����
C-SS

CBjpð1; asðQ2ÞÞ

≈ 1.29=6 · 0.825 ¼ 0.177� 0.003; ð23aÞ

Γth-opt
1;tw2 ðQ2Þ ¼

���� gA6
����
C-SS

CΔ
optða0sÞ ≈ 1.29=6 · 0.848

¼ 0.182� 0.003; ð23bÞ

where jgAjC-SS ¼ 1.29� 0.05stat � 0.1syst is the specific
estimate obtained together with Γexp

1ðc−ssÞ in Eq. (20) in

the recent COMPASS measurement [20]. The uncertainties
of Γth

1;tw2 are determined by the uncertainty of αsðm2
τÞ. The

result of the 3D optimization for the bare minimum,
Γth
1;tw2 ≈ 0.183, does not improve the estimate distinctly.

3Let us mention here that we do not agree with a certain
construction of fβg-expansion used in [10] for c2;3;4; see our
criticism in [9,17].
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It is seen from the comparison of the nonoptimized result,
Eq. (23a); the optimized one, Eq. (23b); and then the
prediction of the tBSR approach, Eq. (19), with the
experimental result, Eq. (20), that the optimization reduces
the differences between theoretical and experimental
(exp, exp-opt) estimations.
Let us now briefly discuss possible implementation of

HT corrections in our theoretical analysis. At lower Q2 the
HT power corrections μp−n4 =Q2, μp−n6 =Q4, etc., Eq. (1), are
needed to describe the data. The precise JLab data on
Γp−n
1 ðQ2Þ at low Q2 provided a good test for both the

perturbative leading-twist (LT) and nonperturbative HT
contributions. Several theoretical and experimental esti-
mates of the scales μ2i have been made showing that impact
of the HT corrections can be important for Q2 ≲ 5 GeV2;
see, e.g., [23,27–32]. After taking into account the first
HT term μp−n4 , which is negative, the difference between
our theoretical prediction and the COMPASS results
will increase even more. For the estimate μp−n

4ðkmtkÞ=M
2 ¼

−0.047� 0.02 from [11], we obtain

Γth-opt
1 ðQ2Þ¼Γth-opt

1;tw2 ðQ2Þþ
μp−n
4ðkmtkÞ
Q2

¼0.167�0.007; ð24Þ

while for the experimental estimate provided by JLab
EG1-DVCS [23], μp−n

4ðJLabÞ=M
2 ¼ −0.021� 0.016, we

have

Γth-opt
1 ðQ2Þ¼Γth-opt

1;tw2 ðQ2Þþ
μp−n
4ðJLabÞ
Q2

¼0.175�0.006; ð25Þ

where the uncertainty of Γth-opt
1 is the combined uncertainty

from αs and HT. This latter result in Eq. (25) is supported
by the COMPASS value Γexp

1ðc−ssÞ in Eq. (20) within

combined statistical and systematic uncertainty and does
not contradict even more restricted Γexp -opt

1ðc−ssÞ in Eq. (19).

2. Optimized Bjorken sum rule for SLAC E155
Collaboration measurements

The initial result for the coefficient function CBjp at the
reference scale Q2 ¼ 5 GeV2 of E155 measurements reads

CBjpð1; asðQ2ÞÞ ¼ 1 − 4ð0.0236þ 0.0073

þ 0.0029þ 0.0020þ…Þ
¼ 1 − 4ð0.0358Þ ¼ 1 − 0.143 ¼ 0.857:

ð26Þ

Within the 2D fΔ0;Δ1g optimization, Eq. (26), at Q2 we
find

fΔ0 ¼ −0.800;Δ1 ¼ −5.513;Δ2 ¼ 0g ð27aÞ

CΔ
optða0sÞ≡CBjpðt0;a0sÞ

¼1−4ð0.0174þ0.0060þ0.0046þ0.0029þ…Þ
ð27bÞ

¼ 1 − 4ð0.0309Þ ¼ 1 − 0.124 ¼ 0.876; ð27cÞ

while within the 3D optimization we obtain the result that is
very close to the previous one but with badly convergent PT
series:

fΔ0 ¼ −0.548;Δ1 ¼ −3.58;Δ2 ¼ −24.3g ð28aÞ

CΔ
opt;5ða0sÞ≡CBjpðt0τ;a0sÞ

¼1−4ð0.0177þ0.0055þ0.0035þ0.0035þ…Þ
ð28bÞ

¼ 1 − 4ð0.0301Þ ¼ 1 − 0.120 ¼ 0.880: ð28cÞ

Therefore, hereafter we take the 2D result, Eq. (27c), which
gives the leading-twist contribution of BSR,

Γth-opt
1;tw2 ðQ2Þ ¼

���� gA6
����CΔ

optða0sÞ

¼ 1.27=6 · 0.876 ¼ 0.186� 0.002; ð29Þ

where jgAj ¼ 1.2723� 0.0023 [33]. Including in the esti-
mates of Eq. (1) also the HT contributions with the values
μp−n
4ðkmtkÞ=M

2 [11] and μp−n
4ðJLabÞ=M

2 [23], we obtain

Γth−1
1 ðQ2Þ¼Γth-opt

1;tw2 ðQ2Þþ
μp−n
4ðkmtkÞ
Q2

¼0.177�0.004; ð30aÞ

Γth−2
1 ðQ2Þ¼Γth-opt

1;tw2 ðQ2Þþ
μp−n
4ðJLabÞ
Q2

¼0.182�0.003: ð30bÞ

The optimized estimation in Eq. (30a) is in good agreement
with the experimental result

Γexp
1ðSLACÞ ¼ 0.176� 0.003stat � 0.007sys; ð31Þ

while for the smaller in modulo HT correction in Eq. (30b)
agreement to the data is reasonable.

3. Optimized Bjorken sum rule for
JLab EG1-DVCS measurements

It is worthwhile to compare our analysis with the recent
high precision determination of BSR at JLab [23]. To this
aim, we choose JLab EG1-DVCS data covering the range
1.0 ≤ Q2 ≤ 4.8 GeV2 where the perturbative methods are
justified. These experimental results are compared with the
optimized predictions of BSR in Fig. 3.
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We use twist-2 optimized values, Eqs. (1) and (13b),
calculated for different experimental Q2>1GeV2 together
with the nonoptimized ones, Eqs. (1) and (2b). For both
cases we also estimated twist-4 correction from the data
and obtained μp−n4 =M2 ¼ −0.034� 0.007 for the opti-
mized and −0.026� 0.007 for the nonoptimized approach.
Figure 3 shows that the pure LT contribution to BSR lies
significantly above the experimental data for both kinds of
theoretical results, and the difference grows with decreasing
Q2, motivating the necessity of HT corrections. It is found
that the value μp−n

4ðoptÞ=M
2 ¼ −0.034� 0.007 estimated from

comparison of the optimized predictions to the data is
compatible with the experimental value provided by JLab
EG1-DVCS and also with other theoretical estimations. It is
also seen that the optimized approach to the value LTþ HT
describes well theQ2 evolution of BSR even down to small
Q values.

V. CONCLUSIONS

We have discussed a possible improvement in theoretical
determination of the polarized Bjorken sum rule Γp−n

1 .
We performed minimization of the partial sums of the
QCD perturbation series for the coefficient function
CBjpðQ2=μ2; αsðμ2ÞÞ of the leading twist for a certain
DIS process by means of an appropriate normalization
scale μ2 resulting from the renormalization group. To this
aim, we provided a set of general conditions for the
optimized analysis of CBjp within the perturbation QCD
and the renormalization group. This frame is universal and
applicable for the analysis of any renormalization group

invariant quantities. Based on these conditions, we found
the admissible domains for the corresponding new nor-
malization scales μ2 for the cases of QCD corrections of the
orders of Oðα3sÞ and Oðα4sÞ. For these domains we found
numerically the minimum of the radiative corrections to
CBjpðαsÞ based on the 4-loop run of αsðμ2Þ. This leads to
the optimum values of the theoretical predictions for BSR.
The optimized results for BSR in the order Oðα4sÞ are
systematically higher than the standard ones and the
difference varies between 0.006 at Q2 ¼ 2 GeV2 and
0.003 at Q2 ¼ 10 GeV2. We compared these optimized
results including also the essential twist-4 correction
with the experimental measurements of COMPASS [20],
E155 [22], and JLab EG1-DVCS [23]. We obtained for
COMPASS Γth-opt

1 ð3 GeV2Þ ¼ 0.175� 0.006 and for E155
SLAC Γth-opt

1 ð5 GeV2Þ ¼ 0.177� 0.004. Thus, for the
precise E155 data we obtained good agreement with the
experimental value Γexp

1ðSLACÞ ¼0.176�0.003stat�0.007sys
while for COMPASS data, which suffer from large stat-
istical and experimental systematical uncertainties com-
pared to the SLAC E155 or JLab EG1-DVCS results, we
obtained reasonable agreement within the combined stat-
istical and systematic uncertainty. From comparison with
the EG1-DVCS precise data for Q2 > 1 GeV2 we found
that the optimized approach to LTþ HT describes well
the Q2 evolution of BSR even down to small Q values.
Comparing the optimized predictions to the JLab data, we
estimated the twist-4 correction and obtained μp−n

4ðoptÞ=M
2 ¼

−0.034� 0.007 which is compatible with the experimental
value μp−n

4ðJLabÞ=M
2 ¼ −0.021� 0.016 provided by EG1-

DVCS and also with other theoretical estimations.
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APPENDIX A: fβg-EXPANSION FOR CBjp

1. The fβg-expansion representation introduced in [8]
prescribes the following form of decomposition of the
perturbation coefficients cn for CBjp in Eq. (2) or for any
other RGI quantities:

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 1  1.5  2  2.5  3  3.5  4  4.5  5

Γ 1
p-

n

Q2 [GeV2]

NON-OPT LT
NON-OPT LT+HT

OPT LT
OPT LT+HT

JLab EG1-DVCS

FIG. 3. Comparison of the optimized (black solid curve) and
nonoptimized (red solid lower curve) predictions on BSR with
the experimental EG1-DVCS data. The impact of the twist-4
correction is also shown (dashed). For better visibility we show
the error band only for the optimized plots.
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c1 ¼ c1½0�; ðA1aÞ

c2 ¼ β0c2½1� þ c2½0�; ðA1bÞ

c3 ¼ β20c3½2� þ β1c3½0; 1� þ β0c3½1� þ c3½0�; ðA1cÞ

c4 ¼ β30c4½3� þ β1β0c4½1; 1� þ β2c4½0; 0; 1� þ β20c4½2� þ β1c4½0; 1� þ β0c4½1�
þ c4½0�; ðA1dÞ

..

.

cn ¼ βn−10 cn½n − 1� þ � � � þ cn½0�; ðA1eÞ

where βi are the expansion coefficients of the QCD β-function presented in Appendix B,

μ2
dasðμ2Þ
dμ2

¼ βðasÞ ¼ −a2sðμ2Þ
X
i≥1

βi−1ai−1s ðμ2Þ: ðA2Þ

The decomposition in Eqs. (A1) contains complete knowledge about αs-renormalization in each order of expansion for
the RGI quantity CBjp. It makes it possible to work on optimization of the perturbation series. According to Eq. (A1), the
explicit form of the fβg-expansion for CBjp within the sequential BLM approach [9] is

CBjpðasÞ ¼ 1þ asð−3CFÞ ðA3aÞ

þa2sð−3CFÞ ·
�
1

3
CA −

7

2
CF þ 2 · β0

�
ðA3bÞ

þ a3sð−3CFÞ ·
�
115

18
· β20 þ

�
59

12
− 4ζ3

�
· β1

−
��

215

36
− 32ζ3 þ

40

3
ζ5

�
CA þ

�
166

9
−
16

3
ζ3

�
CF

�
· β0

þ
�
523

36
− 72ζ3

�
C2
A þ 65

3
CFCA þ C2

F

2

�
ðA3cÞ

þa4sð−3CFÞ · c4: ðA3dÞ

The last known coefficient c4 has the explicit form [6]

c1 · c4 ¼ ð−3CFÞ ·
�
C3
A

�
−
4276

27
ζ3 þ

968

9
ζ23 −

25090

27
ζ5 −

1540

3
ζ7 þ

8004277

2916

�

þ nfTr

�
C2
A

�
−
236

3
ζ3 −

704

9
ζ23 þ

14840

27
ζ5 þ

560

3
ζ7 −

1238827

486

�

þ CACF

�
20624

27
ζ3 −

4400

27
ζ5 −

2240

3
ζ7 þ

87403

162

�
þ C2

F

�
−
3608

9
ζ3 þ

4640

9
ζ5 −

839

27

��

þ C2
ACF

�
−
25456

27
ζ3 þ

22000

27
ζ5 þ

6160

3
ζ7 −

1071641

648

�
þ CAC2

F

�
7768

9
ζ3 −

16720

9
ζ5 þ

3707

54

�

þ ðnfTrÞ2
�
CA

�
688

27
ζ3 þ

128

9
ζ23 −

320

9
ζ5 þ

165283

243

�
þ CF

�
1060

27
−
928

9
ζ3

��
þ C3

F

�
32ζ3 þ

4823

24

�

− nf
16dabcdF dabcdF

3CFdR
ð13þ 16ζ3 − 40ζ5Þ þ

16dabcdF dabcdA

3CFdR
ð3 − 4ζ3 − 20ζ5Þ −

38720

729
ðnfTrÞ3

�
; ðA4Þ
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with the SUcðNÞ-group fundamental fermion invariants

Tr ¼
1

2
; CF ¼ N2 − 1

2N
; CA ¼ N; NA ¼ 2CFCA ≡ N2 − 1;

dabcdabc ¼ ðN2 − 4ÞNA

N
; dabcdF dabcdA ¼ NðN2 þ 6Þ

48
NA;

dabcdF dabcdF ¼ N4 − 6N2 þ 18

96N2
NA; dabcdA dabcdA ¼ N2ðN2 þ 36Þ

24
NA; ðA5Þ

where dR is the dimension of the quark color representation, dR ¼ 3 in QCD, and nf denotes the number of active flavors.
The explicit form of the β-expansion for c4 is not known yet. The numerical form of CBjpðasÞ [6] reads

CBjpðasÞ ¼ 1 − 4

�
as þ a2s

�
55

3
−
4

3
nf

�
þ a3sð663.04 − 121.72nf þ 2.84n2fÞ

þ a4sð30684.6 − 7897.05nf þ 482.64n2f − 6.64n3fÞ
�
: ðA6Þ

APPENDIX B: RG solutions for QCD charge

1. Asymptotic freedom is the basic feature of QCD as the theory of strong interactions [34,35]. This leading order
prediction was quickly complemented by the corresponding 2-loop [36,37] and 3-loop [38,39] results. The 4-loop result
was obtained 17 years later [40] and here we stay on this level of accuracy. The explicit expressions for the first coefficients
of β function expansion are

β0 ¼
11

3
CA −

4

3
Trnf; β1 ¼

34

3
C2
A −

�
4CF þ

20

3
CA

�
Trnf;

β2 ¼
2857

54
C3
A þ 2C2

FTrnf −
205

9
CFCATrnf −

1415

27
C2
ATrnf þ

44

9
CFðTrnfÞ2 þ

158

27
CAðTrnfÞ2;

β3 ¼ C4
A

�
150653

486
−
44

9
ζ3

�
þ C3

ATRnf

�
−
39143

81
þ 136

3
ζ3

�
þ C2

FT
2
Rn

2
f

�
1352

27
−
704

9
ζ3

�

þ CACFT2
Rn

2
f

�
17152

243
þ 448

9
ζ3

�
þ CAC2

FTRnf

�
−
4204

27
þ 352

9
ζ3

�
þ 424

243
CAT3

Rn
3
f

þ C2
ACFTRnf

�
7073

243
−
656

9
ζ3

�
þ C2

AT
2
Rn

2
f

�
7930

81
þ 224

9
ζ3

�
þ 1232

243
CFT3

Rn
3
f

þ 46C3
FTRnf þ nf

dabcdF dabcdA

NA

�
512

9
−
1664

3
ζ3

�
þ n2f

dabcdF dabcdF

NA

�
−
704

9
þ 512

3
ζ3

�
þ dabcdA dabcdA

NA

�
−
80

9
þ 704

3
ζ3

�
:

ðB1Þ

The corresponding 3- and 4-loop RG equations for the coupling A ¼ β0αs=ð4πÞ read
dAð3Þ
dt

¼ −A2
ð3Þ½1þ b1Að3Þ þ b2A2

ð3Þ� ðB2Þ

and

dAð4Þ
dt

¼ −A2
ð4Þ½1þ b1Að4Þ þ b2A2

ð4Þ þ b3A3
ð4Þ� with bi ≡ βi

βiþ1
0

: ðB3Þ

2. The solution of this RG equation at the 2-loop level (b2 ¼ b3 ¼ 0) assumes the form

1

Að2Þ
þ b1 ln

�
Að2Þ

1þ b1Að2Þ

�
¼ t: ðB4Þ
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The exact solution of Eq. (B4) can be expressed in terms of
the Lambert function WðzÞ [41] (see also [42]), defined by

z ¼ WðzÞeWðzÞ: ðB5Þ

This solution has the form

Að2ÞðtÞ ¼ −
1

b1

1

1þW−1ðzðtÞÞ
; ðB6Þ

where zðtÞ ¼ ð1=b1Þ exp ð−1þ iπ − t=b1Þ and the
branches of the multivalued function W are denoted by

Wk, k ¼ 0;�1;… The second-iteration solution of
Eq. (B4), which provides sufficient accuracy, is

1

Að2ÞðtÞ
→

1

Ait−2
ð2Þ ðtÞ

¼ tþ b1 ln ½tþ b1 þ b1 ln ðtþ b1Þ�:

ðB7Þ
3. The approximate solution of the renormalization-

group equation in the 4-loop of QCD [33], where the
β-function is given by Eq. (B3), assumes the asymptotic
expansion

Að4ÞðtÞ ≃
1

t

�
1 −

b1l
t

þ 1

t2
ðb21ðl2 − l − 1Þ þ b2Þ:

þ 1

2t3
ðb31ð−2l3 þ 5l2 þ 4l − 1Þ − 6b1b2lþ b3Þ þ

1

6t4
ðb21b2ð2l2 − l − 1Þ

þ b41ð6l4 − 26l3 − 9l2 þ 24lþ 7Þ − b1b3ð12lþ 1Þ þ 10b22Þ
�
; ðB8Þ

where l ¼ lnðtÞ.
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