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The universality of the QCD equation of state near the critical point is expressed by mapping pressure as
a function of temperature T and baryon chemical potential μ in QCD to Gibbs free energy as a function of
reduced temperature r and magnetic field h in the Ising model. The mapping parameters are, in general, not
universal, i.e., determined by details of the microscopic dynamics rather than by symmetries and long-
distance dynamics. In this paper we point out that in the limit of small quark masses, when the critical point
is close to the tricritical point, the mapping parameters show universal dependence on the quark mass mq.

In particular, the angle between the r ¼ 0 and h ¼ 0 lines in the ðμ; TÞ plane vanishes as m2=5
q . We discuss

possible phenomenological consequences of these findings.

DOI: 10.1103/PhysRevD.100.056003

I. INTRODUCTION

Mapping the QCD phase diagram is one of the funda-
mental goals of heavy-ion collision experiments as well as
lattice gauge theory computations. The QCD critical point
is one of the crucial features of the phase diagram [1]. The
position and even the existence of this point is still an open
question. The potential for discovery of the QCD critical
point is one of the major motivations for the ongoing beam
energy scan program at the Relativistic Heavy Ion Collider
as well as future heavy-ion collision experiments [2].
The straightforward reliable determination of the loca-

tion of the critical point by lattice QCD computations [3] is
impeded by the notorious sign problem. However, even in
the absence of such a first-principle calculation one can
predict some specific properties of QCD in the vicinity of
the critical point. These properties follow from the univer-
sality of the critical behavior. In this paper we shall focus
on static thermodynamic properties which are described
by the equation of state. Besides having fundamental
significance, the QCD equation of state is a crucial input
in hydrodynamic calculations aimed at describing the
heavy-ion collisions and identifying the signatures of the
critical point.
The universality of static critical phenomena allows us to

predict the leading singular behavior of thermodynamic
functions, such as pressure Pðμ; TÞ on temperature and
chemical potential. The leading singular contribution to the
QCD equation of state is essentially the same as the
singular part of the equation of state of the Ising model
with μ and T in QCD mapped onto (reduced) temperature
r ¼ T − Tc and ordering (magnetic) field h of the Ising
model. The parameters of the mapping are not universal
and are generally treated as unknown parameters.

In this paper we shall investigate the properties of
this mapping in order to constrain or determine a reason-
able domain for the values of the unknown mapping
parameters. Our main finding follows from the fact that,
due to the smallness of the light quark masses (collectively
denoted bymq ≡mu ≈md), the critical point is close to the
tricritical point [4]—the point separating the second- and
first-order finite-temperature chiral restoration transition.1

Thermodynamics near the tricritical point is also universal,
albeit the universality class is different from the one of the
Ising model. We point out that certain properties of the
ðμ; TÞ=ðh; rÞmapping near the critical point are universal in
the limit of small quark masses, mq → 0, due to the
proximity of the tricritical point.2 The mapping becomes
singular in a specific way. Most importantly, we observe
that the slopes of the r ¼ 0 and h ¼ 0 lines in the ðμ; TÞ
plane become increasingly aligned near the critical point,
with the slope difference vanishing with a specific power of
the quark mass: m2=5

q .
The paper is organized as follows: In Sec. II we describe

the mapping between QCD and Ising critical equations
of state, set notations and derive useful relations which
allow us to determine the mapping parameters from a
given equation of state. In Sec. III we describe how to

1These considerations would also apply, mutatis mutandis, to
the tricritical point separating the second- and first-order tran-
sitions as a function of the strange quark mass [5,6] instead of
the baryon chemical potential.

2While the light quark masses mu and md are taken to zero in
this limit, the strange quark mass ms is fixed at (or must
approach) a value large enough to ensure the second-order
finite-temperature phase transition in this limit, as in the scenario
discussed in Ref. [4].

PHYSICAL REVIEW D 100, 056003 (2019)

2470-0010=2019=100(5)=056003(15) 056003-1 © 2019 American Physical Society

https://orcid.org/0000-0001-9603-8086
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.056003&domain=pdf&date_stamp=2019-09-09
https://doi.org/10.1103/PhysRevD.100.056003
https://doi.org/10.1103/PhysRevD.100.056003
https://doi.org/10.1103/PhysRevD.100.056003
https://doi.org/10.1103/PhysRevD.100.056003


determine the nonuniversal mapping parameters in a
generic Ginzburg-Landau, or mean-field, theory of the
critical point. In Sec. IV we apply the results of Secs. II
and III to determine mapping parameters in a special case
where a critical point is close to a tricritical point, which is
also described by Ginzburg-Landau theory. We show that
the mapping becomes singular; i.e., the slopes of h ¼ 0 and
r ¼ 0 lines converge with the difference vanishing as m2=5

q .
In Sec. V we use the random matrix model of QCD to
illustrate our results and estimate the values of mapping
parameters for a physical value of quark mass. In Sec. VI
we investigate the effect of fluctuations, i.e., go beyond the
mean-field approximation using epsilon expansion. We
show that the main conclusion—convergence of the slopes
with difference of orderm2=5

q —is robust at least to two-loop
order. We conclude in Sec. VII and discuss possible
phenomenological implications.

II. MAPPING QCD TO 3D ISING MODEL

The universality of the critical phenomena is a conse-
quence of the fact that these phenomena are associated with
the behavior (such as response or fluctuations) of the
critical systems at scales much longer than the microscopic
scales (e.g., interparticle distances). Such a response is
nontrivial in critical systems because of the large (divergent
at the critical point) correlation length. As a result,
critical fluctuations and response can be described by a
field theory which becomes conformal at the critical point.
Microscopically different theories which have the same
conformal fixed point in the infrared can therefore be
mapped onto each other. For example, all liquid-gas critical
points can be mapped onto the critical point of the Ising
model because all flow to the same infrared fixed point
described by the one-component ϕ4 theory at the Wilson-
Fischer fixed point. The universality class corresponding to
this conformal fixed point is the most ubiquitous in nature3

and the QCD critical point, if it exists, belongs to it.
There are two relevant parameters in the ϕ4 theory which

need to be tuned to zero to reach the critical point: These are
the coefficients of the two relevant operators, ϕ and ϕ2. In
the Ising model, due to the Z2 symmetry ϕ → −ϕ, they map
directly onto the ordering (magnetic) field h and reduced
temperature r ¼ T − Tc, with no mixing. In QCD, or for a
generic liquid-gas critical point, the parameters which need
to be tuned are temperature T and chemical potential μ and
neither of them have any particular relation to the Z2

symmetry (in fact, there is no Z2 symmetry except in the
scaling regime near the critical point). Therefore one should
expect a generic mapping hðμ; TÞ and rðμ; TÞ.

A. Definition of mapping parameters

The universality is expressed by the relation of the
partition functions of QCD and the Ising model near the
critical point in terms of variables r and h. Since the
pressure in QCD and Gibbs free energy in the Ising model
are both proportional to the logarithms of the respective
partition functions one can write

Psingðμ; TÞ ¼ −AGðrðμ; TÞ; hðμ; TÞÞ; ð2:1Þ

where Psing is the leading singular term in the QCD
pressure at the critical point and G is the singular term
in the Gibbs free energy of the Ising model or ϕ4 theory.
The relation (2.1) and the corresponding ðμ; TÞ=ðh; rÞ
mapping was introduced by Rehr and Mermin and
termed “revised scaling”4 in Ref. [8]. In relativistic field
theories it has been studied in the context of QCD, e.g., in
Refs. [9–14], and, earlier, in the context of the electroweak
transition in Ref. [15].
Let ðμc; TcÞ be the location of the QCD critical point on

the ðμ; TÞ plane. To describe the leading singularity it is
sufficient to linearize the mapping functions hðμ; TÞ and
rðμ; TÞ in ΔT ¼ T − Tc and Δμ ¼ μ − μc. We follow the
convention for the coefficients of the linear mapping
introduced in Ref. [13]:

hðμ; TÞ ¼ hTΔT þ hμΔμ ¼ −
cos α1ΔT þ sin α1Δμ
wTc sinðα1 − α2Þ

;

rðμ; TÞ ¼ rTΔT þ rμΔμ ¼ cos α2ΔT þ sin α2Δμ
ρwTc sinðα1 − α2Þ

; ð2:2Þ

where we denoted by a subscript T or μ the partial
derivative with respect to the corresponding variable,
e.g., hT ≡ ∂h=∂T at fixed μ. Additional parameters w
and ρ provide absolute and relative normalization of h and r
setting the size and shape of the critical region (see the
Appendix A). The angles α1 and α2 describe the slopes of
the lines h ¼ 0 (r axis) and r ¼ 0 (h axis) on the ðμ; TÞ
plane, as shown in Fig. 1:

�
dT
dμ

�
h¼0

¼ −
hμ
hT

¼ − tan α1; ð2:3Þ

�
dT
dμ

�
r¼0

¼ −
rμ
rT

¼ − tan α2: ð2:4Þ

3This fixed point does not require any continuous symmetries
which are typically necessary to maintain degeneracy between
multiple components of the order-parameter field as is the case,
for example, in the Oð3Þ Heisenberg ferromagnet.

4The original version of scaling equation of state by Widom in
Ref. [7] mapped r to T − Tc directly, without allowing for mixing
with h, which did not account for the asymmetry on the
coexistence line found in liquid-gas transitions (e.g., disconti-
nuity of susceptibility). This original scaling corresponds, in the
notations used in the present paper, to α2 ¼ 0.
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An important property of the most singular part of the
Ising Gibbs free energy is scaling:

Gðλr; λβδhÞ ¼ λβðδþ1ÞGðr; hÞ ð2:5Þ

with well-known critical exponents β and δ. Another
important property is the Z2 symmetry:

Gðr;−hÞ ¼ Gðr; hÞ: ð2:6Þ

Equations (2.5) and (2.6) together imply that the function
G can be written in terms of an even function g of one
variable only:

Gðr; hÞ ¼ rβðδþ1Þgðhr−βδÞ: ð2:7Þ

The universal scaling function g is multivalued. In the
complex plane of its argument x≡ hr−βδ the primary
Riemann sheet describes the equation of state at high
temperatures T > Tc, i.e., r > 0. We shall denote the value
of g on this sheet as gþðxÞ. On the primary (high-temper-
ature) sheet the function is analytic at x ¼ 0. The closest
singularities are on the imaginary x axis and are known as
Lee-Yang edge singularities [16,17] (see also recent dis-
cussions in Refs. [18,19]). A secondary Riemann sheet
describes the low-temperature phase, r < 0. We shall
denote the value of g on this sheet as g−ðxÞ.

B. Relation between mapping parameters and
derivatives of pressure

Given an equation of state Pðμ; TÞ one should be able to
determine the mapping parameters. In this subsection, for
further applications, we shall derive expressions which can
be used to do that.

We shall take all derivatives of pressure below on the
crossover line, i.e., at h ¼ 0 for r > 0, and keep only the
most singular terms. In this manuscript, a subscript with
respect to μ or T implies differentiation with respect to that
variable when the other is kept fixed. Below, we also use
indices X and Y to represent either T or μ. We find, at
h ¼ 0,

PXY ¼ −AhXhYrβ−βδg00þð0Þ þ � � � ; ð2:8Þ

PXXX ¼ 3Aðβδ − βÞh2XrXrβ−βδ−1g00þð0Þ þ � � � ; ð2:9Þ

PXXYY ¼ −Ah2Xh2Yrβ−3βδg0000þ ð0Þ þ � � � : ð2:10Þ

The dots represent the terms which are subleading to the
terms explicitly written in the limit r → 0. From the above
equations, it is easy to see that

hX ¼ lim
h¼0
r→0þ

�
PXXrβδ−β

−Ag00þð0Þ
�

1=2

; ð2:11Þ

rX ¼ lim
h¼0
r→0þ

PXXXr
3ðβ − βδÞPXX

: ð2:12Þ

Therefore,

tan α1 ¼
hμ
hT

¼ lim
h¼0
r→0þ

Pμμ

PμT
; ð2:13Þ

tan α2 ¼
rμ
rT

¼ lim
h¼0
r→0þ

Pμμμ

PTTT

PTT

Pμμ
: ð2:14Þ

Equation (2.13) simply means, in particular, that the
slope of the contour of critical number density (n ¼ Pμ) at
the critical point is equal to the slope of h ¼ 0.

FIG. 1. The mapping between QCD and Ising variables given by Eq. (2.2). Note that, since the sign of h is a matter of convention, the
mappings with α2 and α2 � π are essentially equivalent. The figure is taken from Ref. [13].
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Equation (2.14) relates the slope of r ¼ 0 to the ratios
of third and second derivatives of pressure evaluated along
the crossover line. These equations could be compared
and contrasted with the expressions obtained by Rehr
and Mermin in Ref. [8] using the discontinuities of the
derivatives of pressure along the first-order line.
Similarly, the parameters ρ and w in the mapping can

also be related to pressure derivatives. In order to do that we
also need an expression for r:

r ¼
�
−
g00ð0Þ2APμμTT

g0000ð0ÞPμμPTT

�−½1=βðδþ1Þ�
: ð2:15Þ

Using that expression in Eqs. (2.11) and (2.12) we can
obtain ρ and w by substituting hX and rX into the following
expressions:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2μ þ h2T
r2μ þ r2T

s
; ð2:16Þ

wTc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2μ þ r2T

q
jrThμ − rμhT j

: ð2:17Þ

The normalization convention in Ref. [13] which we
follow corresponds to A ¼ T4

c=2. Obviously, the angles α1
and α2 do not depend on this normalization whereas ρ and
w do. To fix the normalization of h and r we follow the
standard convention, also used in Ref. [13]:

g0−ð0þÞ ¼ −ð−1Þβ; lim
x→∞þ

x−1=δg0�ðxÞ ¼ −1: ð2:18Þ

Using equations in this subsection we can determine α1,
α2, ρ and w if the pressure is known as a function of μ and
T. It should be mentioned that we chose one among many
ways of expressing α1, α2, ρ and w in terms of ratios of
pressure derivatives. Our choice was guided by the desire to
obtain expressions which treat T and μ variables most
symmetrically.

III. MEAN-FIELD EQUATION OF STATE

A. Symmetry and scaling in mean-field theory

In the mean-field description of the critical point
equation of state, pressure can be expressed as the mini-
mum of the Ginzburg-Landau potential as a function of the
order parameter ϕ:

Pðμ; TÞ ¼ −Amin
ϕ
Ωðϕ; μ; TÞ: ð3:1Þ

Let us make a simple but very useful observation: By a
change of variable ϕ → fðϕÞ one can obtain a family of
potentials Ω̂ðϕÞ obeying Ω̂ðϕÞ ¼ ΩðfðϕÞÞ each of which

gives the same pressure. We shall refer to this property as
reparametrization invariance.
Close to the critical point, Ω can be expanded around the

critical value of ϕ (chosen to be ϕ ¼ 0):

Ωðϕ; μ; TÞ ¼ Ω0 − hϕþ r
2
ϕ2 þ u

4
ϕ4 þ � � � ; ð3:2Þ

where we eliminated cubic term ϕ3 by a shift of variable ϕ
(such an operator or term is called redundant in renorm-
alization group terminology). Parameters Ω0, h, r and u are
analytic functions of μ and T. The critical point is located at
h ¼ 0 and r ¼ 0 (with u > 0). If we truncate the expansion
at order ϕ4 as in Eq. (3.2), the ϕ-dependent part Ω −Ω0

possesses two important properties. The first is the Z2

symmetry:

ϕ → −ϕ; h → −h; r → r: ð3:3Þ

The second is scaling:

ϕ ∼ r1=2; h ∼ r3=2; Ω −Ω0 ∼ r2: ð3:4Þ

This corresponds to the scaling of the Gibbs free energy G
in Eq. (2.5) with mean-field exponents β ¼ 1=2 and
βδ ¼ 3=2.
One could be tempted to expand the coefficients h and r

in Eq. (3.2) to linear order in ΔT and Δμ and identify the
mixing parameters α1, α2, etc., by using Eq. (2.2). This,
however, is not entirely correct as it would ignore the fact
that the mixing of h and r described by Eq. (2.2) necessarily
violates scaling, since h ∼ r3=2 and r have different scaling
exponents. Therefore, we need also to look at the omitted
terms which violate scaling in Eq. (3.2) or, more precisely,
provide corrections to scaling of relative order h=r ∼ r1=2

(i.e., rβδ−1). Furthermore, mixing of h and r also violates Z2

symmetry in Eq. (3.3); i.e., we need also to look at omitted
Z2-breaking terms in Eq. (3.2).
Since ϕ ∼ r1=2, omitted higher-order terms in Eq. (3.2)

represent corrections to scaling. The leading correction is
due to the ϕ5 term. Because in mean-field theory this term
is smaller by exactly a factor of r1=2 compared to the terms
in Eq. (3.2), and also because it violates the Z2 symmetry
in Eq. (3.3) (being odd), this term will affect the mixing
of h and r.

B. The effect of the ϕ5 term

Let us denote the coupling of the ϕ5 term by vu, i.e.,

Ω ¼ Ω0 − h̄ϕþ 1

2
r̄ϕ2 þ u

4
ϕ4 þ vuϕ5 þOðϕ6Þ; ð3:5Þ

where we also changed the notation for the coefficients of
the ϕ and ϕ2 terms in anticipation of them being different
from h and r in Eq. (2.2).
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To understand the effect of the ϕ5 term on the mixing of
h and r we can use reparametrization invariance of pressure
to change the variable ϕ in such a way as to eliminate the ϕ5

term from Ω. This can be achieved by the following
transformation:

ϕ → ϕþ v

�
r̄
u
− ϕ2

�
; ð3:6Þ

which eliminates ϕ5 and as well as ϕ3 term at order up
to r5=2:

Ω ¼
�
Ω0 −

vh̄ r̄
u

�
−
�
h̄ −

vr̄2

u

�
ϕþ

�
r̄
2
þ vh̄

�
ϕ2

þ u
4
ϕ4 þOðϕ6; r3Þ; ð3:7Þ

where we kept only terms up to order r5=2, since we are
interested in the leading correction to scaling. From
Eq. (3.7) we can now read off the parameters h and r:

h ¼ u−1=4
�
h̄ −

vr̄2

u

�
¼ u−1=4h̄þOðr̄2Þ; ð3:8Þ

r ¼ u−1=2ðr̄þ 2vh̄Þ; ð3:9Þ

which match Eq. (3.7) onto a mean-field potential without
leading asymmetric (Z2-breaking, non-Ising) corrections to
scaling. The additional rescaling ϕ → u−1=4ϕ was applied
to bring the potential to the canonical form5:

Ω ¼ −hϕþ r
2
ϕ2 þ 1

4
ϕ4: ð3:10Þ

The scaling function gðxÞ corresponding to this potential
via G ¼ minϕΩ ¼ r2gðhr−3=2Þ [see Eq. (2.7)] satisfies

xþ g0ðxÞ þ g03ðxÞ ¼ 0; ð3:11Þ

which agrees with the normalization in Eq. (2.18).
Therefore, parameters h and r in Eqs. (3.8) and (3.9)
are the parameters which appear in the mapping
equations (2.2).
Note that the main effect of the asymmetric corrections

to scaling is to modify r̄ in Eq. (3.9) by a term linear in h̄,
which has a direct effect on the angle α2 determining the
slope of the r ¼ 0 axis. The slope of the h ¼ 0 axis is not
affected as the shift of h̄ in Eq. (3.8) is quadratic in r̄.

C. Direct relation to derivatives of the potential

It is also useful to relate mapping parameters hX and rX,
where X ¼ T or μ, directly to the Ginzburg-Landau
potential Ω. The relation can be obtained straightforwardly
from Eqs. (2.8)–(2.10) using

PXX ¼ −ΩXX þ Ω2
XϕΩ−1

ϕϕ; ð3:12Þ

PXXX ¼ −ΩXXX − 3Ω−2
ϕϕΩXϕðΩXϕΩXϕϕ − ΩϕϕΩXXϕÞ

þ Ω3
ϕXΩ−3

ϕϕΩϕϕϕ: ð3:13Þ

To simplify the expressions we shall first consider potential
Ω̂ obtained from Ω by bringing it into the “Ising” form in
Eq. (3.2) with no ϕ3 or ϕ5 terms (up to order r5=2). We
showed that this can be always achieved by a reparamet-
rization as in Eqs. (3.6) and (3.7). In this case, Ω̂ϕϕϕ ¼ 0 on
the h ¼ 0 line along which we take the limits in Eqs. (2.11)
and (2.12) and expressions simplify:

tan α1 ¼
Ω̂ϕμ

Ω̂ϕT

; ð3:14Þ

tan α2 ¼
Ω̂ϕϕμ

Ω̂ϕϕT

; ð3:15Þ

ρ ¼
�
Ω̂ϕϕϕϕ

6

�1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̂2

ϕμ þ Ω̂2
ϕT

Ω̂2
ϕϕμ þ Ω̂2

ϕϕT

s
; ð3:16Þ

wTc ¼
�
Ω̂ϕϕϕϕ

6

�1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̂2

ϕϕμ þ Ω̂2
ϕϕT

q
jΩ̂ϕμΩ̂ϕϕT − Ω̂ϕTΩ̂ϕϕμj

: ð3:17Þ

Note that in the mean-field theory these expressions are
analytic at the critical point and can be simply evaluated at
the critical point without taking a limit. This is in contrast to
Eqs. (2.11) and (2.12) where the derivatives of pressure
are singular and a careful limit has to be taken to cancel
singularities.
One can then generalize these expressions to

arbitrary potential (Ωϕϕϕ ≠ 0 at h ¼ 0) by observing that
combinations

ΩϕX; ΩϕϕX −
ΩϕϕϕϕϕΩϕX

10Ωϕϕϕϕ
; and Ωϕϕϕϕ; ð3:18Þ

are reparametrization “covariant” to leading order in r in
the sense that under ϕ → fðϕÞ they transform multiplica-
tively by factors f0, ðf0Þ2 and ðf0Þ4, respectively. Thus, we
can drop “hats” and replace

Ω̂ϕϕX → ΩϕϕX −
ΩϕϕϕϕϕΩϕX

10Ωϕϕϕϕ
ð3:19Þ

5The rescaling does not affect the slopes of h ¼ 0 or r ¼ 0
(angles α1 and α2) but needs to be taken into account when
calculating ρ and w.
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in Eqs. (3.14)–(3.17) to obtain general formulas applicable
to any potential. Note that the last term in Eq. (3.19)
corresponds to the last term in Eq. (3.9) describing the
mixing of r and h due to the ϕ5 term.

IV. CRITICAL POINT NEAR A
TRICRITICAL POINT

A tricritical point arises in many systems where the order
of the finite-temperature transition from broken to restored
symmetry phase depends on an additional thermodynamic
parameter, such as pressure or chemical potential. The point
where the order of the transition changes from second to
first is a tricritical point. There are reasons to believe QCD
to be one of the examples of such a theory [1,4]. A nonzero
value of a parameter which breaks spontaneously broken
symmetry explicitly (quark mass in QCD) removes the
second-order phase transition and replaces it with analytic
crossover, while the first-order transition then ends at a
critical point.
We shall apply mean-field theory near the tricritical

point. The potential needed to describe the change from a
first- to second-order transition needs to include a Φ6 term
which becomes marginal in d ¼ 3. Therefore, mean-field
theory should be applicable in d ¼ 3 if one is willing, as we
are, to neglect small logarithmic corrections to scaling.6

As in Sec. III we want to express the pressure as a
minimum of the Ginzburg-Landau potential Ω. We can do
that using the Legendre transform of pressure P with
respect to mq:

VðΦ; μ; TÞ ¼ −Pðμ; T;mqðΦÞÞ þmqðΦÞΦ; ð4:1Þ
where mqðΦÞ is the solution of

∂P=∂mq ¼ Φ; ð4:2Þ
which means Φ is the chiral condensate (times Nf—the
number of light quarks).
It is easy to see that the potential Ω defined as

AΩðΦ; μ; T;mqÞ ¼ VðΦ; μ; TÞ −mqΦ ð4:3Þ
is related to pressure by

Pðμ; T;mqÞ ¼ −Amin
Φ

ΩðΦ; μ; T;mqÞ; ð4:4Þ

where we chose the normalization constant A to
match Eq. (3.1).

The potential V has to be symmetric underΦ → −Φ (this
is a discrete subgroup of the continuous chiral symmetry)
and to describe a tricritical point we need terms up to Φ6.
Expanding V we find

VðΦ; μ; TÞ ¼ V0 þ
a
2
Φ2 þ b

4
Φ4 þ c

6
Φ6 þ � � � ; ð4:5Þ

where a, b and c are functions of T and μ. The tricritical
point occurs when a ¼ b ¼ 0 with c > 0. If we truncate V
at orderΦ6 as in Eq. (4.5), theΦ-dependent part of V andΩ
has the following scaling property:

Φ ∼ a1=4; b ∼ a1=2; mq ∼ a5=4; V − V0 ∼ a3=2:

ð4:6Þ
The minimum value of Ω in Eq. (4.4) is achieved at Φ

satisfying, to lowest order in a → 0,

mq ¼
∂V
∂Φ ¼ aΦþ bΦ3 þ cΦ5: ð4:7Þ

At nonzero mq the critical point occurs when both second
and third derivatives of Ω vanish at the minimum given by
Eq. (4.7). In other words,

∂2V
∂Φ2

¼ ∂mq

∂Φ ¼ aþ 3bΦ2 þ 5cΦ4 ¼ 0 ð4:8Þ

and

∂3V
∂Φ3

¼ 6bΦþ 20cΦ3 ¼ 0: ð4:9Þ

Equations (4.7)–(4.9) can be solved simultaneously to find
the critical values of Φ, a and b for a given mq:

Φc ¼
�
3mq

8c

�
1=5

; ac ¼ 5cΦ4
c; bc ¼ −

10c
3

Φ2
c:

ð4:10Þ
As a function of mq, the trajectory ðmq; acðmqÞ; bcðmqÞÞ
corresponds to the line of critical points on the edges of
“wings”—coexistence surfaces in the mq, T, μ phase
diagram (see, e.g., Fig. 3 for illustration). Note that critical
values of parameters in Eq. (4.10) scale as Φc ∼m1=5

q , ac ∼
m4=5

q and bc ∼m2=5
q consistent with the scaling in Eq. (4.6).

We can now expand Ω around that solution:

AΩðΦ; μ; T;mqÞ
¼ AΩðΦc;Tc; μc; mqÞ þ ðΔaΦc þ ΔbΦ3

cÞϕ

þ 1

2
ðΔaþ 3ΔbΦ2

cÞϕ2 þ 1

4

�
20cΦ2

c

3
þ Δb

�
ϕ4

þ ΔbΦcϕ
3 þ cΦcϕ

5 þ c
6
ϕ6; ð4:11Þ

6For example, if these corrections have negligible conse-
quences for applications, such as heavy-ion collisions or lattice
QCD simulations. To be rigorous, we can also formally consider
d > 3. In fact, our analysis near the critical point is constrained by
an even stronger condition, since the upper critical dimension in
this case is d ¼ 4 and, in practice, we work in d ¼ 4 − ϵ > 3
when we study the effects of fluctuations in Sec. VI.
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where Δa ¼ a − ac, Δb ¼ b − bc and ϕ ¼ Φ −Φc. We
can now compare this expansion to the ϕ4 theory in the
previous section. The redundant term ϕ3 can be eliminated,
as usual, by a shift of ϕ. Comparing with Eq. (3.5) we find

Ah̄ ¼ −ðΔaþ ΔbΦ2
cÞΦc; ð4:12Þ

Ar̄ ¼ Δaþ 3ΔbΦ2
c; ð4:13Þ

Au ¼ 20Φ2
c

3
; v ¼ 3

20Φc
: ð4:14Þ

The ϕ5 term causes mixing of h̄ and r̄ as in Eq. (3.9). Using
Eqs. (3.8) and (3.9) to linear order inΔa andΔb (i.e., linear
order in ΔT and Δμ) we find

Ah ¼ −u−1=4ðΔaþ ΔbΦ2
cÞΦc; ð4:15Þ

Ar ¼ u−1=2
�
7

10
Δaþ 27

10
ΔbΦ2

c

�
: ð4:16Þ

Since a and b are analytic functions of T and μ near the
critical point we can expand to linear order:

Δa ¼ aTΔT þ aμΔμ;

Δb ¼ bTΔT þ bμΔμ: ð4:17Þ

Using Eqs. (3.14) and (3.15), we determine the slopes at the
critical point:

tan α1 ¼ −
�
dT
dμ

�
h¼0

¼ hμ
hT

¼ aμ þ bμΦ2
c

aT þ bTΦ2
c
; ð4:18Þ

tan α2 ¼ −
�
dT
dμ

�
r¼0

¼ rμ
rT

¼ aμ þ 27bμΦ2
c=7

aT þ 27bTΦ2
c=7

: ð4:19Þ

In general, the two slopes are different and nonuniversal
(i.e., depend on the nonuniversal coefficients aμ, aT , etc.).
However, the limit mq → 0 is special. In this limit the two
slopes approach each other with the difference vanishing as
Φ2

c ∼m2=5
q [see Eq. (4.10)]:

tan α1 − tan α2 ¼
�
dT
dμ

�
r¼0

−
�
dT
dμ

�
h¼0

¼ 20

7a2T

∂ða; bÞ
∂ðμ; TÞΦ

2
c þOðΦ4

cÞ

¼ 20

7a2T

∂ða; bÞ
∂ðμ; TÞ

�
3

8c

�
2=5

m2=5
q þOðm4=5

q Þ;

ð4:20Þ

where ∂ða; bÞ=∂ðμ; TÞ ¼ aμbT − aTbμ is the Jacobian of
the mapping in Eq. (4.17).
The relative orientation of the slopes, i.e., the sign of the

slope difference, is determined by the sign of the Jacobian
of the ða; bÞ → ðμ; TÞ mapping. It is positive in the case of
the mapping without reflection and negative otherwise. In
that sense, it is topological. We show how to determine the
sign on Fig. 2 by comparing the phase diagram in the
vicinity of the tricritical point in ða; bÞ coordinates with
the standard scenario of the QCD phase diagram in ðμ; TÞ

FIG. 2. Left: The phase diagram of the Φ6 theory described by Eq. (4.11) in the a − b plane. Right: QCD phase diagram in the μ − T
plane. The blue and red lines correspond to the first-order and second-order phase transitions at mq ¼ 0, respectively. They join at a
tricritical point. The green line represents the first-order phase transition at mq ≠ 0 ending in a critical point. The symmetry broken
(ordered) phase is in the lower left corner in both cases. The slopes of the h ¼ 0 and r ¼ 0 lines at the critical point are indicated by the
dashed and dotted lines, respectively.
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coordinates. We see that the two graphs are topologically
the same: The first-order transition is to the right of the
tricritical point and the broken (order) phase is below the
tricritical point. This means that the Jacobian of the ða; bÞ
to ðμ; TÞ is positive (no reflection is involved). This means
that, since the h ¼ 0 slope is negative, the r ¼ 0 slope must
be less steep, or if α1 itself is small, α2 could be slightly
negative. We shall see in the next section that in the random
matrix model both slopes are negative and small (i.e., α1 >
α2 > 0 in the model).
The Jacobian in Eq. (6.20) can be rewritten in a more

geometrically intuitive form in terms of the difference of
slopes of a ¼ 0 and b ¼ 0 on the ðμ; TÞ phase diagram of
QCD at mq ¼ 0:

1

a2T

∂ða; bÞ
∂ðμ; TÞ ¼

�∂b
∂a

�
μ

��∂T
∂μ

�
b¼0

−
�∂T
∂μ

�
a¼0

�
: ð4:21Þ

The a ¼ 0 slope is, of course, the slope of the chiral phase
transition line at the tricritical point.
One can also determine the dependence of ρ and w onmq

using Eqs. (3.16) and (3.17). Using Eq. (4.11) we find, in
the limit of mq → 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ϕμ þ Ω2
ϕT

q
∼m1=5

q ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ϕϕμ þ Ω2
ϕϕT

q
∼m0

q;

ΩϕμΩϕϕT −ΩϕμΩϕϕT ∼m3=5
q ; Ωϕϕϕϕ ∼m2=5

q ; ð4:22Þ

and thus

ρ ∼m3=10
q ; w ∼m−1=2

q : ð4:23Þ

V. RANDOM MATRIX MODEL

To illustrate the general results derived in the previous
section we consider the random matrix model (RMM)
introduced by Halasz et al. in Ref. [20] in order to describe
the chiral symmetry restoring phase transition in QCD.
This is a mean-field model which has features similar to the
effective Landau-Ginzburg potential near a tricritical point
discussed in the previous section. The QCD pressure in this
model is given by

Pðμ; T;mqÞ ¼ −Nmin
ϕ
ΩRMMðΦ; μ; T;mqÞ; ð5:1Þ

where

ΩRMMðΦ; μ; T;mqÞ ¼ Φ2 −
1

2
lnf½ðΦþmqÞ2 − ðμþ iTÞ2�

· ½ðΦþmqÞ2 − ðμ − iTÞ2�g ð5:2Þ

and N ¼ ninstNf where ninst ≈ 0.5 fm−4 is the typical
instanton number 4-density and Nf ¼ 2 is the number of
flavors of light quarks. The units for T, μ and mq here are

such that T ¼ 1, μ ¼ 1 and mq ¼ 1 in these units corre-
spond to approximately 160, 2300 and 100 MeV, respec-
tively (as in Ref. [20]).
To use the results of the previous section we identify

AΩðΦ; μ; T;mqÞ ¼ NΩRMMð2Φ; μ; T;mqÞ; ð5:3Þ

which takes into account that ∂ΩRMM=∂mq ¼ 2Φ.
The equation of state that follows from this potential,

∂Ω=∂Φ ¼ 0, is a fifth-order polynomial equation. The
phase diagram resulting from this potential is shown
in Fig. 3.
The tricritical point for this model is at ðμ3; T3Þ ¼

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ ffiffiffi

2
pp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffi

2
pp

Þ=2. Expanding the potential given
by Eq. (5.2) we find

N −1AΩðΦ; μ; TÞ ¼ N −1AΩð0; μ; TÞ þ a
2
Φ2 þ b

4
Φ4

þ c
6
Φ6 − dΦþ � � � ; ð5:4Þ

where

a ¼ 1

2

�
μ2 − T2

ðμ2 þ T2Þ2 þ 1

�
; b ¼ μ4 þ T4 − 6μ2T2

8ðμ2 þ T2Þ4 ;

ð5:5Þ

c ¼ ðμ2 − T2Þðμ4 þ T4 − 14μ2T2Þ
32ðμ2 þ T2Þ6 ;

d ¼ mq
T2 − μ2

ðT2 þ μ2Þ2 ; ð5:6Þ

and dots denote terms such as Φ8, mqΦ3, etc., which are of
order a2 and smaller, negligible compared to the terms kept

FIG. 3. The phase diagram for the random matrix model in
Ref. [20]. On the mq ¼ 0 plane, the thick and the thin lines
represent the first-order and the second-order phase transitions,
respectively. Upon turning onmq, the tricritical point where these
two lines meet turns into a line of Ising-like critical points
ðμcðmqÞ; TcðmqÞÞ. For the discussion that follows, we fix mq to a
particular value and obtain the map from ðμ − μcðmqÞ; T −
TcðmqÞÞ to ðh; rÞ variables.
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(which are of order a3=2), according to the scaling
in Eq. (4.6).
For a given mq, the critical values Φc, μc and Tc are

obtained by simultaneously requiring the first, second
and third derivatives of Ω with respect to Φ to vanish.
As mq → 0,

μcðmqÞ ¼ μ3 þOðm2=5
q Þ; TcðmqÞ ¼ T3 þOðm2=5

q Þ;
ΦcðmqÞ ¼ ð6mqÞ1=5 þOðm3=5

q Þ: ð5:7Þ

Using Eq. (4.20), we can now obtain the slope difference:

tan α1 − tan α2 ¼
20

7
ð2þ

ffiffiffi
2

p
Þð6mqÞ2=5 þOðm4=5

q Þ: ð5:8Þ

As mq → 0, the lines h ¼ 0 and r ¼ 0 become nearly
parallel to each other with the difference in their slopes
being proportional to m2=5

q as predicted in the previous
section. Comparing Eq. (5.8) to Eq. (4.20), one can see that
∂ða; bÞ=∂ðμ; TÞ is positive, as expected.
Using more general (finite mq) Eqs. (3.14)–(3.17) and

(3.19) we computed the values for the parameters α1, α2, ρ
and w at mq ¼ 0.05 (which corresponds to quark masses of
5 MeV in the units of Ref. [20]) in the RMM:

α1 ∼ 13°; α2 ∼ 1°; ρ ∼ 0.5; w ∼ 1.4: ð5:9Þ

The contour plots of singular pressure derivatives
χ2 ¼ Pμμ, χ3 ¼ Pμμμ and χ4 ¼ Pμμμμ (baryon number
cumulants, or susceptibilities, of second, third and fourth
order, respectively) around the critical point at small quark
mass are shown in Fig. 4. The following observations can
be made.

(i) The slopes of h ¼ 0 and r ¼ 0 are both negative and
the h ¼ 0 axis (coexistence line) is steeper than the
r ¼ 0 axis.

(ii) ρ < w, which is in qualitative agreement with the
small mq scaling in Eqs. (4.23).

(iii) The signs of the cumulants χ2 and χ4 on the
crossover side of the h ¼ 0 line are in agreement

with Eqs. (2.8) and (2.10) with g00þð0Þ ¼ −1 < 0 and
g0000þ ð0Þ ¼ 6 > 0 according to Eq. (3.11).

(iv) Most interestingly, the sign of χ3 on the crossover
side of the h ¼ 0 line, according to Eq. (2.9), is
determined by the sign of −rμ. This is clearly seen in
Fig. 4(b) where χ3 < 0 in accordance to rμ > 0

(α2 > 0). If the same holds true in QCD, this may
have phenomenological consequences as the sign of
cubic cumulant (skewness) is measured in heavy-ion
collisions (see also discussion in Sec. VII).

The RMM is a model of QCD, capturing some of its
physics, such as chiral symmetry breaking, and missing
other features, such as confinement. Its results should be
treated with caution to avoid mistaking artifacts for physics.
The behavior of the equation of state near the tricritical
point is, however, subject to universality constraints, which
we verified are satisfied by the model. The numerical
values for the mapping parameters we obtained in Eq. (5.9)
should be treated as estimates or informed guesses. These
parameters are not universal. However, their dependence on
mq is universal and is manifested in the RMM [e.g., the
slope difference is small and ρ < w in accordance with
Eqs. (4.23)]. Since no other information about these
parameters is available as of this writing, we believe our
estimates in Eq. (5.9) could be helpful for narrowing down
the parameter domain of the approximate equations of state
constructed along the lines of Ref. [13].

VI. BEYOND THE MEAN-FIELD THEORY

In Secs. III–V, we discussed the mean-field theory near a
critical point. Within such a theory, we derived scaling
relations for tan α1 − tan α2, ρ and w in the mq → 0 limit in
Eqs. (4.20) and (4.23). The mean-field theory should break
down sufficiently close to the critical point in d ¼ 3
dimensions since the upper critical dimension near a critical
point is d ¼ 4. The breakdown occurs because contribution
of fluctuations increases with increasing correlation length
ξ (the fluctuations become coherent at larger scales). The
extent of the region where the mean-field theory breaks
down can be estimated using the Ginzburg criterion by
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T
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3

FIG. 4. Contour plots of susceptibilities χ2 ¼ Pμμ, χ3 ¼ Pμμμ and χ4 ¼ Pμμμμ near the critical point corresponding tomq ¼ 0.05 in the
RMM. The black and white dots represent the critical point and the tricritical point (at mq ¼ 0), respectively. The dotted and the dashed
lines are the r ¼ 0 and h ¼ 0 lines, respectively. The slope of r ¼ 0 is negative for this value ofmq. The negative-valued regions are red
and positive-valued regions are blue. Note that the value of χ3 along the h ¼ 0 line on the crossover side is negative.
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comparing the strength of the one-loop correction (infrared
divergent for d < 4) to the coupling to its tree-level value as
shown in Fig. 5.
Since the mean-field limit is essentially the weak-

coupling limit, a quicker argument is to compare the
coupling u expressed in dimensionless units, i.e., uξϵ,
where ϵ ¼ 4 − d is the mass dimension of u, to unity.
Since in the mean-field region h ∼ ξ−3 and r ∼ ξ−2, the
boundary of the Ginzburg region where the mean-field
theory breaks down is parametrically given by hG ∼m6=5

q ,

rG ∼m4=5
q in d ¼ 3. Note that the Ginzburg region is

parametrically small for small mq. It is also parametrically
smaller than the distance between the critical and the
tricritical points bc ∼m2=5

q , Eq. (4.10). The characteristic
size and shape of the Ginzburg region is illustrated
in Fig. 6.
In this section we study the effects of the fluctuations to

see if and how our mean-field results are modified in the
Ginzburg region. We are going to use ϵ expansion to order
ϵ2 to address this question. We shall focus on our main
result—the convergence of the r ¼ 0 and h ¼ 0 slopes in
the chiral limit mq → 0 described by Eq. (4.20).

The result we derived using mean-field theory could be
potentially modified if the contributions of the fluctuations
modify the expression for r̄ in Eq. (4.13). An obvious
contribution to the ϕ2 in the effective potential Ω comes
from a tadpole diagram. This correction, however, does not
break the Z2 symmetry which is necessary to induce the
additional mixing of r and h needed to change the direction
of the r ¼ 0 axis.7

Therefore, to induce r − h mixing via fluctuations we
would need a Z2-breaking term. Furthermore, r − hmixing
violates scaling, since h ∼ rβδ and thus we need terms
which violate scaling by rβδ−1. In mean-field theory this
corresponds to scaling violations of order r1=2, which are
produced by terms in the potential Ω which scale as r5=2,
i.e., operators of dimension 5. We have already seen how
operator ϕ5 induces r − h mixing in Sec. III. Here we
need to generalize this discussion to include effects of
fluctuations.
As usual, we start at the upper critical dimension d ¼ 4

and then expand in ϵ ¼ 4 − d. When ϕ is a fluctuating field,
in d ¼ 4, the scaling part of the potentialΩ also includes an
additional dimension-4 operator, ð∇ϕÞ2, i.e.,

Ω ¼ 1

2
ð∇ϕÞ2 þ r̄

2
ϕ2 þ u

4
ϕ4 − h̄ϕþ � � � ; ð6:1Þ

where the ellipsis denotes higher-dimension operators.
While ϕ5 is the only dimension-five Z2-breaking term in
the mean-field theory, when fluctuations of ϕ are consid-
ered there are two such terms: ϕ5 and ϕ2∇2ϕ. However, we
shall see that only one special linear combination of these
terms has the scaling property needed to induce r − h
mixing when d < 4.
To identify this linear combination let us observe that

using the transformation of variables ϕ → ϕþ Δϕ, where
Δϕ ¼ −vðϕ2 − r̄=uÞ similar to Eq. (3.6), we can cancel a
certain linear combination of ϕ5 and ϕ2∇2ϕ, while intro-
ducing an additional ϕ2 term:

ΔΩ ¼ Δϕ
∂Ω
∂ϕ ¼ −vðuϕ5 − ϕ2∇2ϕÞ þ vh̄ϕ2 þ � � � ; ð6:2Þ

where the ellipsis denotes terms which do not affect the
mapping (being nonlinear in r̄ or simply total derivatives).
Therefore, the effect of the perturbation vV3, where

V3 ¼ uϕ5 − ϕ2∇2ϕ; ð6:3Þ

FIG. 5. The one-loop contribution of fluctuations compared to
the tree-level coupling. The fluctuation contribution diverges as
ξϵ, where ϵ ¼ 4 − d. The mean-field approximation breaks down
at sufficiently large ξ when the contribution of fluctuations is no
longer negligible. The scaling of u ∼Φ2

c ∼m2=5
q follows from

Eq. (4.11).

FIG. 6. Schematic representation of the scaling of various
parameters characterizing the location, the size and the shape
of the Ginzburg region (shown in blue) around the QCD critical
point in the T vs μ plane for small quark mass mq. The empty
circle denotes the location of the tricritical point at mq ¼ 0. The
dotted and dashed lines are the r ¼ 0 and h ¼ 0 axes, respec-
tively, with an angle between them vanishing as m2=5

q in the
chiral limit.

7More explicitly, such contributions (infrared singular at the
critical point, r ¼ 0) are of order ϵr log rϕ2. Together with the
tree-level term rϕ2, they assemble into rβδ−βϕ2 as dictated by
scaling, where βδ − β ¼ 1þOðϵÞ is the actual, non-mean-field
value of the corresponding critical exponent (see also
Refs. [21,22]). The correction to the critical exponent, obviously,
does not change the condition r ¼ 0.
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is equivalent to the shift r̄ → r̄þ 2vh̄. The correction to
scaling induced in G due to a perturbation v3V3 can be
absorbed by “revised scaling”

Gðr̄; h̄Þ ¼ r̄βðδþ1Þðgðh̄r̄−βδÞ þ v3r̄Δ3g3ðh̄r̄−βδÞÞ þ � � �
¼ rβðδþ1Þgðhr−βδÞ þ � � � ; ð6:4Þ

where

r ¼ r̄þ 2v3h̄ and h ¼ h̄: ð6:5Þ

This property also guarantees [23,24] that operator V3 is an
eigenvector of the renormalization group (RG) matrix of
anomalous dimensions which mixes uϕ5 and ϕ2∇2ϕ. The
corresponding correction-to-scaling exponent is given by
[23,25]

Δ3 ¼ βδ − 1 ¼ 1=2þOðϵ2Þ; ð6:6Þ

which is simply the difference between h and r scaling
exponents, as expected, since V3 induces r − h mixing.
The other eigenvalue of the anomalous dimension

matrix is

Δ5 ¼ 1=2þ ϵþOðϵ2Þ; ð6:7Þ

and the corresponding eigenvector is

V5 ≡ uϕ5 − ð10S5=3Þϕ2∇2ϕ: ð6:8Þ

The mixing parameter S5 has been calculated in Ref. [23]:

S5 ¼ −ϵ=108þOðuÞ; ð6:9Þ

where, consistent with our interest in the mq → 0 limit,

we assumed that u ≪ ϵ, since u ∼m2=5
q . The eigenvalue

degeneracy is lifted at one-loop order; however, the mixing
only appears at two-loop order due to the sunset diagram
shown in Fig. 7. Despite the diagram being of order ϵ2, the
mixing, i.e., S5, is of order ϵ2=ðΔ5 − Δ3Þ ¼ OðϵÞ.
In the case of physical interest, d ¼ 3, the values of

the exponents Δ3 and Δ5 are significantly different. The
exponents β and δ are fairly well known and have been
determined using different methods, including experimen-
tal [26–29]. Correspondingly, Δ3 ¼ βδ − 1 ≈ 0.56. The
exponent Δ5 is less well known but, being associated
with the leading Z2 asymmetric correction to scaling,

has also been calculated by a variety of methods, such
as functional RG (epsilon expansion estimates also
exist, but the convergence of the epsilon expansion is
notoriously poor for this exponent). Typically one finds
Δ5 ≈ 1.3–1.6 [23,30–32].
The operator V5 does not (and cannot, in d < 4) change

the mixing of r and h because its scaling dimension Δ5 is
different from βδ − 1. The corrections to scaling due to
operator V5 show up, as corrections to scaling generally do,
in the form

Gðr; hÞ ¼ rβðδþ1Þðgðhr−βδÞ þ v5rΔ5g5ðhr−βδÞÞ: ð6:10Þ

Since Δ5 > Δ3 the corrections to scaling from V5 are
significantly suppressed compared to the correction
accounted for by revised scaling in Eq. (6.4).
In the purely mean-field theory the operator ϕ2∇2ϕ is

essentially zero (there is no spatial dependence) and,
therefore, the coefficient v3 is undefined. In this case,
however, we can completely absorb the ϕ5 term by revised
scaling as we have described in Sec. II. On the other hand,
when ϕ is a spatially varying field and its fluctuations are
important, we can only absorb the linear combination V3,
and not V5 (in contrast to the mean-field theory where
the two operators are essentially identical and equal uϕ5).
The coefficient v3 of the operator V3 which determines the
revised scaling mixing depends on the coefficients of the
terms ϕ5 and ϕ2∇2ϕ.
Let us denote the contribution of the operators ϕ5 and

ϕ2∇2ϕ toΩ in Eq. (6.1) as ΔΩA and denote the coefficients
of uϕ5, ϕ2∇2ϕ and their linear combinations V3 and V5 so
that

ΔΩA ¼ w5uϕ5 − w3ϕ
2∇2ϕ ¼ v3V3 þ v5V5: ð6:11Þ

The coefficient v3 responsible for the revised scaling is
given by

v3 ¼ ð1 − 10S5=3Þ−1ðw3 − 10S5w5=3Þ; ð6:12Þ

while v5 ¼ ð1 − 10S5=3Þ−1ðw5 − w3Þ.
For smallmq, we have already determined the coefficient

of the ϕ5 term (in d ¼ 4 mean-field theory) by expanding
theΦ6 potential in powers of ϕ ¼ Φ −Φc in Eq. (4.11) [see
Eq. (4.14)]:

w5 ¼
3

20Φc
∼m−1=5

q : ð6:13Þ

To find the coefficient of the ϕ2∇2ϕ we need to consider
fluctuating, i.e., spatially varying, field Φ and the corre-
sponding potential in Eq. (6.1). For small mq, the largest
contribution to ϕ2∇2ϕ term comes from the expansion of
higher-dimension term Φ2ð∇ΦÞ2, and therefore w3 is
vanishing as Φc ∼m1=5

q in the mq → 0 limit.
FIG. 7. The two-loop diagram responsible for the mixing of ϕ5

and ϕ2∇2ϕ operators.
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Hence

w5 ∼m−1=5
q ≫ w3 ∼m1=5

q : ð6:14Þ

Thus, form2=5
q ≪ ϵ ≪ 1, the dominant contribution to v3 in

Eq. (6.12) comes from w5 and, therefore,

v3 ¼ −
S5ðϵÞ
2Φc

þOðϵ2Þ ∼ ϵm−1=5
q : ð6:15Þ

Using Eq. (6.5) we can now determine the OðϵÞ correction
to the slope difference:

hμ
hT

−
rμ
rT

¼ h̄μ
h̄T

−
r̄μ þ 2v3h̄μ
r̄T þ 2v3h̄T

¼
�
h̄μ
h̄T

−
r̄μ
r̄T

��
1þ 2v3

h̄T
r̄T

�−1
:

ð6:16Þ

From Eqs. (4.12) and (4.13) we conclude that

h̄μ
h̄T

−
r̄μ
r̄T

¼ 2

a2T

∂ða; bÞ
∂ðμ; TÞΦ

2
c þOðΦ4

cÞ ð6:17Þ

and that, to leading order in Φc ∼m1=5
q , h̄T=r̄T ¼ −Φc.

Substituting into Eq. (6.16) we find

hμ
hT

−
rμ
rT

¼ 2

a2T

∂ða; bÞ
∂ðμ; TÞ ð1þ S5ðϵÞ þOðϵ2ÞÞΦ2

c þOðΦ4
cÞ:

ð6:18Þ

We conclude that, at two-loop order, fluctuations do not
modify the exponent m2=5

q of the slope difference of r ¼ 0
and h ¼ 0 given by Eq. (6.17) but change the coefficient by
an amount OðϵÞ.
To summarize, the leading (and next-to-leading) singular

part of QCD pressure can be expressed as

Psingðμ; TÞ ¼ −Ar2−αðgðhr−βδÞ þ v5rΔ5g5ðhr−βδÞÞ;
ð6:19Þ

where h and r are given by the map in Eq. (2.2). The
leading behavior of the slope difference of r ¼ 0 and h ¼ 0
in the limit of small quark masses is given by

tan α1 − tan α2 ¼
�
dT
dμ

�
r¼0

−
�
dT
dμ

�
h¼0

¼ 2

a2T

∂ða; bÞ
∂ðμ; TÞ

�
3

8c

�
2=5

ð1þ S5ðϵÞ

þOðϵ2ÞÞm2=5
q þOðm4=5

q Þ: ð6:20Þ

Note that in the limit ϵ ¼ 0 this result does not agree with
Eq. (4.20) in the mean-field theory. This is because in this
limit Δ5 ¼ Δ3 and the second term in Eq. (6.19) for
pressure can, and should, be absorbed via revised scaling,
modifying the slope of the r ¼ 0 line (i.e., although v3 is
not well defined in the mean-field limit, v3 þ v5 ¼ w5 is).
Thus, we have verified the robustness of our main result,

α1 − α2 ∼m2=5
q , to fluctuation corrections up to two-loop

order. This should not be unexpected since the scalingm2=5
q

is related to the tricritical scaling exponents (δt ¼ 5) which
are unaffected by fluctuations in spatial dimension d ¼ 3
and above.

VII. SUMMARY AND CONCLUSIONS

Universality of critical phenomena allows us to predict
the leading singularity of the QCD equation of state near
the QCD critical point. This prediction is expressed in
terms of the mapping of the ðμ; TÞ variables of QCD onto
ðh; rÞ variables of the Ising model, Eqs. (2.1) and (2.2).
The mapping parameters are not dictated by the Ising
(ϕ4 theory) universality class and thus far have been treated
as unknown parameters. In this work we find that, due to
the smallness of quark masses, some of the properties of
these parameters are also universal. This universality is due
to the proximity of the tricritical point.
Our main focus is on the slope of the r ¼ 0 line in the

ðμ; TÞ plane which depends on the amount of the Z2

breaking at the Ising critical point due to leading correc-
tions to scaling driven by irrelevant operators, such as ϕ5.
Our main conclusion is that in the chiral limit mq → 0,
when the critical point of the ϕ4 theory approaches the
tricritical point of the ϕ6 theory, the ðμ; TÞ=ðh; rÞ mapping
becomes singular in a specific way: The difference between
the r ¼ 0 and h ¼ 0 slopes vanishes as m2=5

q [Eq. (6.20)].
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FIG. 8. Contours of χ3 when the slope (7.1) of the r ¼ 0 line (dotted) is negative, zero and positive (from left to right). The contour
χ3 ¼ 0 is shown by the thin dashed line. The thick dashed line is the h ¼ 0 axis (crossover). The regions of negative χ3 are shown in red,
and the regions of positive value of χ3 are in blue. Note that χ3 on the crossover line has the same sign as the slope of the r ¼ 0 line.
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The h ¼ 0 line is essentially the phase coexistence (first-
order transition) line and its slope is negative. Therefore, for
sufficiently smallmq, the slope of the r ¼ 0 line should also
become negative, with the r ¼ 0 line being less steep than
h ¼ 0 line.
Since the reliable first-principle determination of the

critical point mapping parameters is not available we turn to
a model of QCD—the random matrix model. In this model
we can see explicitly that for a physical value of the quark
mass the r ¼ 0 slope is indeed negative and quite small,
α2 ¼ 1°. We also estimate the values of mapping param-
eters ρ and w [Eq. (5.9)] and find them in agreement with
small mq scaling expectations from Eq. (4.23).
The smallness of the slope angle α2 may have significant

consequences for thermodynamic properties near the QCD
critical point. In particular, the magnitude of the baryon
cumulants determined by the derivatives with respect to the
chemical potential at fixed T should be enhanced. This is
because for α2 ¼ 0 these derivatives are essentially deriv-
atives with respect to h, which are much more singular than
r derivatives: e.g., ∂2G=∂h2 ∼ r−γ vs ∂2G=∂r2 ∼ r−α,
where γ ≈ 1 and α ≪ 1.
Another interesting conclusion of our study, with poten-

tial phenomenological consequences, is the relation
between the sign of the r ¼ 0 slope�∂T

∂μ
�

r¼0

¼ −
rμ
rT

¼ − tan α2 ð7:1Þ

and the sign of the cubic cumulant χ3 ¼ Pμμμ of the baryon
number (or skewness) on the crossover line. This relation-
ship can be seen directly in Eq. (2.9) with X ¼ μ, given
g00þð0Þ ¼ −1, and is illustrated in Fig. 8 using a ϕ4 mean-
field model defined in Eqs. (2.1) and (3.2). Since the
skewness is measurable in heavy-ion collisions [33,34],
such a measurement could potentially provide a clue to the
values of the nonuniversal parameters mapping the QCD
phase diagram to that of the Ising model.
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APPENDIX A: THE SIZE OF THE
CRITICAL REGION

Here we describe how the parameters of the mapping
control the size of the critical region. We define the critical
region as the region where the singular part of the equation
of state dominates over the regular part. This comparison

cannot be done on the pressure itself, since the critical
contribution to pressure vanishes at the critical point
(as r2−α). A reasonable measure of the critical region
should be based on a quantity which is singular at the
critical point, such as the baryon susceptibility, χ2 ¼ Pμμ.
We shall evaluate the size of the critical region along
the crossover, h ¼ 0, line. The singular part of χ2 is given
by, at h ¼ 0,

χsing2 ∼ AGμμðr; 0Þ ∼ AGhhðr; 0Þh2μ ∼ Ar−γ
�

s1
wTcs12

�
2

∼ A

�
Δμ

ρwTcc1

�
−γ
�

s1
wTcs12

�
2

; ðA1Þ

where s1 ¼ sin α1, c1 ¼ cos α1 and s12 ¼ sinðα1 − α2Þ.
Comparing this to the regular contribution of order
χreg2 ∼ T2

c, we find for the extent of the critical region in
the μ direction

ΔμCR ∼ Tcρwc1

�
s1

ffiffiffiffi
A

p

wT2
cs12

�2=γ

: ðA2Þ

Therefore, while increasing parameters ρ and A increases
the size of the critical region, the effect of increasing the
parameter w is the opposite: ΔμCR ∼ w1−2=γ . In the mean-
field theory γ ¼ 1 and ΔμCR is inversely proportional to w.

APPENDIX B: MAPPING PARAMETERS
FOR THE VAN DER WAALS

EQUATION OF STATE

In this Appendix, to illustrate the use of the formalism
developed in Sec. III we shall derive the equations for the
mapping parameters in the van der Waals equation of state.
The well-known equation of state expresses pressure as a
function of particle density n and temperature T:

P ¼ nT
1 − bn

− an2; ðB1Þ

where a and b are van der Waals constants corresponding to
the strength of the particle attraction and the hard-core
volume, respectively. The van der Waals equation of state
possesses a critical point at

nc ¼
1

3b
; Tc ¼

8a
27b

; Pc ¼
a

27b2
: ðB2Þ

The equation of state (B1) can be expressed in the mean-
field (Ginzburg-Landau) form

Pðμ; TÞ ¼ −Amin
n
Ωðn; T; μÞ; ðB3Þ

where

AΩðn; T; μÞ ¼ μn − FðT; nÞ ðB4Þ
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is expressed in terms of the free energy Fðn; TÞ, which is
the Legendre transform of Pðμ; TÞ:

Fðn; TÞ ¼ nμðn; TÞ − Pðμðn; TÞ; TÞ: ðB5Þ

In Eq. (B5), but not in Eq. (B4), the chemical potential
μðn; TÞ must be determined as a solution to n ¼ ∂P=∂μ.
This can be done by integrating the following set of partial
differential equations:�∂μ

∂n
�

T
¼ 1

n

�∂P
∂n

�
T
; ðB6Þ

�∂μ
∂T

�
n
¼ 1

n

�∂P
∂T

�
n
−
s
n
; ðB7Þ

�∂s
∂T

�
n
¼ cvn

T
; ðB8Þ

where cv is the heat capacity per particle (e.g., 3=2 for
monatomic gas). Using the values of μ and s at the critical
point, μc and sc, as initial conditions one finds

μðn; TÞ ¼ T

�
log

2bn
1 − bn

− log
2bnc

1 − bnc

�

þ T
1 − bn

−
Tc

1 − bnc
− 2aðn − ncÞ − cvT log

T
Tc

þ
�
cv −

sc
nc

�
ðT − TcÞ þ μc: ðB9Þ

Expanding the potential Ω one obtains

AΩðn; T;μÞ ¼ AΩðnc; Tc;μcÞ−
�
Δμ−

�
3

2
− 3bsc

�
ΔT

�
η

þ 27b
8

ΔTη2 þ 9ab2

8
η4 −

27ab3

40
η5 þ � � � ;

ðB10Þ

where η ¼ n − nc, ΔT ¼ T − Tc and Δμ ¼ μ − μc.
Comparing to Eq. (3.5) we identify

Ah̄ ¼ Δμ −
�
3

2
− 3bsc

�
ΔT; ðB11Þ

Ar̄ ¼ 27b
4

ΔT; ðB12Þ

Au ¼ 9ab2

2
; v ¼ −

3b
20

: ðB13Þ

Using Eqs. (3.8) and (3.9) one then finds

h ¼ A−3=4
�
9ab2

2

�−1=4�
Δμ −

�
3

2
− 3bsc

�
ΔT

�
; ðB14Þ

r ¼ −A−1=2 3

10

�
9a
2

�
−1=2

ðΔμþ 3ðbsc − 8ÞΔTÞ: ðB15Þ

Using Eqs. (2.13), (2.14), (2.16) and (2.17) one finally
obtains

tan α1 ¼ −
�
3

2
−
sc
nc

�
−1
; ðB16Þ

tan α2 ¼ −
�
24 −

sc
nc

�
−1
; ðB17Þ

ρ ¼ 5

�
3Pc

T4
c

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4scðsc − 3ncÞ þ 13n2c
scðsc − 48ncÞ þ 577n2c

s
; ðB18Þ

w ¼ 1

40

�
T4
c

3Pc

�
3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sc
nc

�
sc
nc

− 48

�
þ 577

s
: ðB19Þ
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