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We propose a supersymmetric extension of the anomalyfree and three families nonuniversal U(1)
model, with the inclusion of four Higgs doublets and four Higgs singlets. The quark sector is extended by
adding three exotic quark singlets, while the lepton sector includes two exotic charged lepton singlets, three
right-handed neutrinos and three sterile Majorana neutrinos to obtain the fermionic mass spectrum. By
implementing an additional Z, symmetry, the Yukawa coupling terms are suited in such a way that the
fermion mass hierarchy is obtained without fine-tuning. The effective mass matrix for SM neutrinos is fitted
to current neutrino oscillation data to check the consistency of the model with experimental evidence,
obtaining that the normal-ordering scheme is preferred over the inverse ones. The electron and up, down
and strange quarks are massless at tree level, but they get masses through radiative correction at one loop
level coming from the sleptons and Higgsinos contributions. We show that the model predicts a like-Higgs
SM mass at electroweak scale by using the VEV according to the symmetry breaking and fermion masses.
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I. INTRODUCTION

Regardless the success of the Standard Model of
electroweak interactions (SM) [1] in explaining the exper-
imental data, it is considered an incomplete model since
some features remain satisfactorily unexplained. Among
them, there is the fermion mass hierarchy problem as well
as naturalness problem; both have motivated many exten-
sions of the SM, or even complete new theories. In the case
of supersymmetry, it is the model which best explains
the Higgs mass naturalness thanks to the exact cancellation
of the quadratic divergences between contributions of
particles and superpartners in the Higgs mass radiative
corrections, providing a finite mass value for the particle.

When considering the minimal supersymmetric Standard
Model (MSSM) superpotential, there exists a masslike
parameter for the bilinear superfields coupling called u,
which is responsible of the Higgs and Higgsino masses.
This parameter is expected to be at the order of SUSY
breaking scale to provide Higgsino masses. However, the
lightest Higgs mass is at the electroweak scale. Thus, it
can not provide the correct neutralino masses and a
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phenomenological Higgs mass in accordance with the data
presented by ATLAS and CMS experiments [2]. Additional
to the above, the unexplained origin of this kind of coupling
is what constitutes the p-problem [3].

The next to minimal supersymmetric models (NMSSM)
present an elegant solution to this problem [4] by intro-
ducing new scalar singlet field. Consequently, trilinear
couplings f(g?ﬁ(?) can be generated in such a way that a
bilinear term, yq?b a) arises when the singlet scalar field
acquires a vacuum expectation value (VEV) at the SUSY
breaking scale. On the other hand, when including new
fields in the theory, the Higgs and Higgsinos mass matrices
are changed through new coupling constants, allowing the
explanation of these masses in accordance to experimental
data or collider constraints.

Looking back to the MSSM, it is known that the lightest
Higgs mass can be approximated to m3 ~ m% cos®2f3 +
Am2, where Am3 comes from the 1-loop corrections due to
the top quark and stops contributions [5]. Then, if we
consider a big value for tan f, Am,zl must be at the same
order of the tree level contribution, and stop particles
should have a big mass values in order to get a 125 GeV
Higgs mass. Nevertheless, in extensions of the MSSM the
radiative corrections due to stop particles would not be
necessary for explaining the Am? term. This may come
from a seesaw mechanism that creates an explicit depend-
ence on the scalar singlet VEV [6]. Furthermore, if the
scalar singlets come as part of a U(1)y extended gauge
symmetry (USSM) [7], the respective D-term may give a
new contribution to the lightest mass at tree level, causing
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the new mass eigenstate to be sharing the functional form of
a SM-like Higgs boson.

The extensions of MSSM have other motivations. There
are more scalar particles which can be searched in collider
experiments, for instance a dark matter candidate [8].
Likewise, they can explain the small deviation of Higgs
couplings to fermions, which turn out to be proportional to
particle masses, as it has been found in experiments for tau
lepton, top, and bottom quarks.

The MSSM is a two Higgs doublets anomalyfree theory,
where the different hypercharge values allows to each
Higgs doublet to couple with different kind of quarks,
forbidding flavor changing neutral currents (FCNC). In
order to extend the scalar doublets content without induc-
ing any chiral anomaly, the minimum amount of them
would be four. However, while a Yukawa linear combina-
tion can be diagonalized through a rotation, making it
proportional to the particle mass, the other linear combi-
nation would not be diagonal, generating then the FCNC
[9]. On the other hand, from the LHC it is known the upper
bound for the fch vertex [10] which can be explained, as
new physics at tree level, from a model with multiple Higgs
doublets. For this reason a SUSY theory with FNCN is still
phenomenological relevant.

In the present work, it is done a SUSY extension of the three
family U(1)y anomaly free model [11]. The nonsupersym-
metric model can explain the fermion mass hierarchy, as well
as mixing angles for the Cabibbo-Kobayashi-Maskawa [12]
and Pontecorvo-Maki-Nakagawa-Sakata matrices [13] just
by using two Higgs doublets and a scalar singlet field which
breaks the U (1), symmetry giving masses to exotic particles.
A singlet scalar field without vacuum expectation value
(VEV) is required for giving masses to light fermions.
Then for the corresponding SUSY extension, the scalar sector
has to be doubled with different X-charge in such a way that
the anomaly induced by Higgsinos are canceled and the
model would be anomalyfree. After symmetry breaking, the

|

mass matrices for the scalar, vector, and fermion sector are
constructed. Furthermore, from the scalar CP-even mass
matrix it is found that the theory is compatible with a
125 GeV mass for the lightest scalar particle, which we
identify as the discovered Higgs boson in LHC. When
considering the scalar CP-odd mass matrix, two would-be
Goldstone bosons associated to the Z and Z’ particles are
found. The rest of mass eigenstates are found to be above
the electroweak scale. Likewise, from the charged scalar
bosons another would-be Goldstone boson is found,
associated to the W+ gauge bosons. In the present model,
the masses of electron, quark up, and quark down are zero.
Then we consider the SUSY contributions to the self-
energies in order to generate the masses at one loop level.

II. GENERAL REMARKS OF THE MODEL

The nonsupersymmetric version of the model gives a
scenario for solving the fermion mass hierarchy problem
(FMH) with no need of unpleasant fine tunings on the
Yukawa coupling constants [14]. The way that such
problem is addressed relies in having two Higgs doublets
®, and ®,; the FMH is understood partially from the
VEV hierarchy among the two doublets. Also, with the
help of the set configuration of the U(1)y charges for all
particles, the couplings allowed by the gauge symmetry
give a natural scenario for exhibiting the FMH. The
inclusion of a parity symmetry Z, helps in avoiding
Yukawa terms in the Lagrangian that spoil the natural
scenario wanted [15]. The new gauge symmetry exten-
sion comes in general with chiral anomalies, which have
to be canceled in order to guarantee the renormalizability
of the theory. In the model found in the literature [11], it
was done by choosing the set configuration of U(1)y
charges for all fermions [16], such that the following
anomaly equations were canceled:

[SUG)PU()y = Ac =Y Xo, = > X,
0 0

[SUQR),PU()y = A =) X, +3) Xg,
3 (¢

(U, PU()x = Ay =Y [¥2 Xy, +3Y3, Xg ] = > [Y2 Xy, +3Y% Xo,]

‘.0 2.0
U(1),[Uy]? = Ay = Z[Y&X% +3Y0, X3 ] - Z[YkagR +3Y0,X3,]
‘.0 2.0
U] = Ax =Y X3, +3X3,] = > X3, +3X5,]
Z.0 .0
[Grav]?U(1)x = Ag = > _[X,, +3Xg,] = Y [Xs, +3Xg,]. (1)
Z.0 .0
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TABLE L. Scalar content of the model, nonuniversal X quantum
number, Z, parity, and hypercharge.

TABLE II. Fermion content of the Abelian extension, nonuni-
versal X quantum number, and parity Z,.

Higgs scalar doublets X+ Y Higgs scalar singlets X+ Y

Left-handed fermions ~ X*  Right-handed fermions  X*

. by +5T L bty -5t 0
@, = (il|+vl+i’7|) V2
¥? .
R ot +¥5~ +1 5 = tits - 0
@, = (ﬁ2+z,~2+iﬁ2 V2
~ \/i A~ A~
. R+, +if) 25t —1 ar Syl 415t 0
& = ( V2 ) Y=
~ ¢1—, ~ ~
R o) +iify -5 -1 o — Setile +%57 0
&) = ( % ) %
-1
$>

where subscripts Q and / account for quarks and leptons,
respectively. Moreover, subscripts L and R correspond to
left-handed and right-handed chiralities, respectively.
Exotic fermions were also included in the model for
accomplishing a free anomaly model, in the way that
new degrees of freedom enter into the Eq. (1). Thus, there is
a bigger set of U(1)y charges than the SM particles for
fulfilling both anomaly cancellation and FMH. In the quark
sector, an up-like quark 7" and two down-like quarks, J !
and 72, come into the bargain. The additional particles in
the lepton sector are two charged leptons, £ and &; three
Dirac right handed neutrinos, v4, z/,‘e, and vg; and three
Majorana neutrinos A }g”. The majorana particles do not
contribute to the anomaly equations, but they were included
for giving masses to neutrinos through inverse seesaw
mechanism (ISS) [17], according to neutrino oscillation
experiments which give information about squared mass
differences and mixing angles. For breaking the new
symmetry into the SM gauge symmetry, an scalar singlet
x was added with a VEV around the TeV scale. Therefore,
the model contains the following spontaneous symmetry
breaking chain:

SUB3)e ® SU(2), ® U(1)y ® U(1)x—
SU(3)c ® SU2), ® U(1)y—SUB)c ® U(l).  (2)

Because the lightest fermions, electron, down quark, and
up quark, did not acquire masses at tree level, another scalar
singlet ¢ had to be included for giving masses to such
particles through radiative corrections. However, in the
SUSY version of the model this scalar field is still present
but now the corresponding superpartners of the particles
inside the loop represent an additional SUSY contribution
to their masses.

For the minimal supersymmetric extension, all fields are
upgraded to superfields; we denote a superfield with a hat
symbol, as usual. The number of scalar particles has to be
doubled in comparison to the non-SUSY version, otherwise

SM quarks

Al il +57t ale o4t
e (al )L e —24-
AD i? 0~ azc’ —25+
a1 = <212>L P e
a-(5), " E W

), dif +Y

SM leptons
e _ e 0+ pee i
o ( e >L 7 —Y”
P (,;u ) ot pre 4
L — ﬁy . ézc +4/3-
o ( hid ) 1t ohe +sm
fl‘ = 77 ATC _
v )L er +4/3
Non-SM quarks
T, 4 e iy
1 0" Tt 15t
L 0* 752 st
Non-SM leptons

EL —1* E‘z +%+
SL —%+ é‘z +1+

Majorana fermions N}gz“% 0-

the model would be anomalous due to Higgsinos.
Therefore, new added fields are ®, &5, 7, and ¢’. The
introduced scalar fields have the same hypercharge and X
charges as the nonprimed partners, but with opposite sign
to secure anomaly cancellation. For getting the right masses
of the gauge bosons in the SM, the following condition
must be imposed on the VEVs of the Higgs doublets,

\/v% + 13 + v + v% = v =246 GeV. (3)

The bosonic and fermonic content of the model explored
in this paper is shown in the Tables I and II, respectively.

III. SCALAR AND GAUGE BOSON SECTOR

The Lagrangian for the scalar sector that describes the
minimal supersymetric extension to the U(1)y model in
the literature is given by the addition of a F-terms potential,
a D-terms potential and a soft-supersymetry breaking
potential. The F-terms were obtained from the following
superpotential:

Wy = - & D) — pu, ®yd, — '3 — 4,86
+ /lldA)'lé)zé" + ﬂQ(i)/qu)l(F. (4)
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which is obtained according to the symmetry properties of the scalar superfields given in Table I. Thus, the F-terms potential
for scalar fields reads

Vi =i (Q[® + O D)) + 3 (D3P, + O D) + 43 (xy +2*%) + +uz(o*c +0"0)

+ (Ble @@L + ABle ;@@ > + 23 (DiD, + @) Do + 3(P[®, + D) ®)o* 6 — Ay, D} D0
— A @ @0’ — Aot @ @0 — Jopty ®IP1 0 — Aypipe; QD] — Jopt e, @iP] + Hoe.) (5)

On the other hand the D-terms potential, consequence of gauge symmetry, turns out to be

Vp

g
=3 (|0]®,2 + |07 D, 2 + | D 2 + | D, 2 + | @) D, 2 + | D, 2 — @)D, ]2 — | @] 2|5 ]
) . _
+ g 3 g (®]D, + O}D, — |/ D] — ] D})?
gX2T It 1 + T &/ 1 %, 1 /*/2
+7 3(q>1q>1 - q>1)+§(<1>2(1>2_<1>2q>2)_§(1)( X)) - 3(0 c—0"0d) (6)

where the last term corresponds to the D-term associated to the U(1)y gauge symmetry and has a very important role for
giving the lightest Higgs boson a mass around 125 GeV. This will be treated later. Finally, the soft supersymmetry breaking

potential turns out to be

Vot = _mZ(D'I'q)l -

+ D‘llelj(q)/lq)j) +ﬂ22€t/(q)/lq)j) J’_/")()((Z)() +/"aa(60-)

2v/2

12 It

mEOT @) — m3DI®, — mEDY Oy — miyy = miy Ty —mio'o —mie’o

ﬂlq)] (I)zdl - ZZCDQ’ CI)IG

+—5- (ke @ Doy — ky® Dy + ks ® Dy — ky ) Dyy™*) + Hoc!] (7)
|
where the last terms, proportional to the coupling constants , Lo, 9% v A3 o2
named ki, k,, ks, and k,, break also softly the parity  "'H1 +§(g +97)Cew +& 9 ex - ”“_+ 2 = 0
symmetry. These trilinear terms avoid the massless feature 1 2 2
of some scalar particles, as we will show later. It is  mj, _§( +9%)Cew _%CX Fai oy +31 =0
important to mention that the soft supersymmetry breaking
potential also includes bilinear terms for sfermions and R P g% v’z A,
gauginos. Nonetheless, since those terms are not required ~ "'H2 +§ (9" +97)Cew + 18X _”221)_2 + K= 0
for our calculations we have decided that it is not necessary | 5 2
to present them in the current work. Then, by adding all mpy ——(¢* + ¢°)Cpw — g—cX - MZU_/Z +22=0
contributions, the scalar potential for the Higgs bosons 8 18 v, 2
reads 2 v
Mf—l—gcx—,uﬂ—}{:0
v
Vi =Vr+Vp+ Vi (8) “
v
M/2 X _ 0’ (9)

When considering the potential V it can be seen that,
before including soft SUSY breaking, particles within the
fields ®; and <I>§, i = 1,2, are expected to have the same
mass u; due to the absence of mixing terms. Then, with the
inclusion of a soft breaking potential, m?, m/? terms arise
and the diagonal entn’es change according to the effective
parameters m3,, = mj + i and mfz, = m? + 3, ensuring
that different Higgs doublets have now different mass
eigenvalues. This is also exhibited by the scalar singlets,
where diagonal entries are written in terms of the effective
parameters M; = m + p; and M} = m} 4 ;. The fol-
lowing minima conditions for the Higgs potential have to
be fulfilled:

X
18 Xy v},

2 2
where we also defined CEW =02 + 03 — v — v

— 2 2 _ 2 _ 2 _ 2
Cx = 2v1 + v5 — 20] vz—i—v vy.

and

A. CP-even masses

Taking the VEV for all scalar fields, we get the mass
matrices for the different Higgs boson particles, that also
respect the minima conditions, Eq. (9). The 125 GeV Higgs
boson is a CP-even scalar, and it must be obtained from the
diagonalization of the following 6 x 6 mass matrix in the

(hy by b, 15,8, 8, 8, &) Dasis:
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(10)

- 2 2 .
2 _ vofie 4 Vi /M e
fagvy — 34+ 5 —fagv1v) = Sfogviva +53 —fag010h +525010)
2 _ Uhfu | v ’ 192, 1 1o o fok
* Sagvf — o0 =+ 20, —fagV102 + 347020 fagVhvy +75

11
ot (1)
19Y2%2 2

n _ Vifu
flgvz - 9/,

3 2
2 _onifu v,
* * f19U2 9v, + 20,

UZﬂzz

* * *

The mixings between scalar doublets and singlets are written in the 4 x 4 M, matrix and it is given by:

(kayvy — gxv10,) (—kyvy + gz v1v})

o=

1
9
§ (kyy — gy v v))—
% (=kyvy + %9%(”2”})

1 / 1.2 .7,/
§(k401 —zngz%)

(A = dopav) =555 (Mg vy + dopigvh)

(Aop1 v + Aipsv2) (A0 = Apah)
| (12)
( (/11”1 — Aipv1)

Aopy vy 4 A, vh)

£y 2 §\~ 5
2 e

(/12”1 — Aoy v) (/11/42”1 + Aoty 01)

Finally, the mixing matrix between Higgs singlets, M, is written in the following equation

2

2 2
9 2 Vb _ ko _% 578
s U T2, T o, Ul =
9 V2 Ul ks
k + g 7
M 18 )( 20}, 9
& —
* *
* *

Aimed in giving shorter expressions we have defined the

2
*g + £ g% with n an integer, f1; =
ks” + kyvy, ko3 = kovi vy — k3| )

coefficients f,, =

kyv, — kv, for =
and kiy = —kyvivy + k400, and the sigma masses M, =
2 (u2+m32) —%(21}% + 03 —=20F — v — vy +v}) and M, =

L+ m2) 4 054 03— 207 02 4 17)

In order to diagonalize the CP-even Higgs mass matrix
given in Eq. (10) we make use of perturbation theory by
implementing a seesaw mechanism which requires then to
specify a hierarchy among the parameters present in the
different blocks. First, we suppose their order of magnitude
such that they obey O(M¢:) > O(M ) > O(M;,) which
implies a hierarchy among the different parameters in the
potentials [Eq. (8)]. To have a correct phenomenological
theory we assume p,, . figo. My, My 3> piyy, pioy > kv >

GV, V 0 GR VYV 5 Gx U,V gx Uy 0, where i =1, 2, 3, 4 and
j =1, 2. Therefore, the conditions for implementing a
seesaw mechanism are fulfilled which leads to a block
diagonal mass matrix made of two independent 4 x 4
matrices. Additionally, as the rank of M, is 8, all mass

0 0
0 0 (13)
M2 52 (2 42 Yoo
6+I(U1+7)2) _T
* M? + (1) + )

[

eigenstates are massive. Considering that a Higgs singlet
has not been observed in the experiments, it would be
expected for them to acquire mass at high energy scale,
supporting our hierarchy choice and implying that v, and
v, should be at least at the TeV scale, thus they satisty v,,
v, > v, v}, where j = 1, 2. Additional to our assumptions,
a small program in C++ was written to find the parameter
region in which a 125(GeV) value match the lightest
eigenvalue using a simple Monte Carlo exploration. It
was found that k; ~ 103, 0 < 4;,4; < 103, uyq, pp > 10%,
Hyys Moo My M, > 108, and v,, v), > 103, which in fact
satisfy the considered parameter hierarchy. The singlet
VEVs lower bound are fixed in such a way that guarantees
a lightest eigenvalue coming from a scalar doublets

mixture.
. M 0
i, ~ < m > ’
0 Mg
My, = My, — My:MZ M],

’Q’/Mhh' (14)
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Since the matrix rank for M, is 4, all Higgs particles are
massive and acquire their tree level masses through My,
then they receive small contributions coming from the
seesaw rotation (M ;M 5_51 M ,Tlé:), which can be neglected due
to the parameters’ order of magnitude. As a result we can
assume that M, ~ M,,,. In this way it is possible to get an
expression for the heaviest singlet Higgs particles by the
diagonalization of the 4 x 4 decoupled matrix which in fact

|

Q

isa 2 x 2 block diagonal one since the singlets does not mix
among them. We are considering that the heaviest particles
must depend on y,,, , 4, M ;, and M, which are the biggest
parameters in the theory; while for the two lightest of these
singlets depend then on v,, 1;}’(, k;, and A, with the condition
that the sum must reconstruct the original trace. In this way
we can get the tree level approximation of these eigenvalues
which can be written as:

_gﬂlvz(kzv} - k]'l)){) + 1/11//2(/(41))( — k3l))/()

2
m%zS ng (0)2( + U)lfz) 9

2

’

/
Uy Uy

(15)

1 1
i = (M3 + M2) + 1 (03 + 08) + 503 + 7)) - \/u:;, - (002 M2) + 3 B0% +8) - BT+ 7))

2

1 1 2
mis = (M2 + M2) + (0 + of) + B3+ 0P)] + \/ﬂfm - ((M% +M2) + B0+ of) - B3 + v?)]) (16)

Since the singlet ¢ acquire a null vacuum expectation
value there is not a minimum condition which relates M,
M., and p,, as it happened with the other scalar particles.
In fact, there is more freedom for making a hierarchy choice
among them. However, this particles are expected to a
reside at an unreachable energy scale for the current
experiments and does not represent the main focus of this
work; even though they have an important role in fermion
mass generation as it will be shown later. For finding
corresponding M, eigenvalues we took the following
approach. We consider that at least one of the Higgs
particles must be proportional to the electroweak VEVs
such that it can be identified as the SM Higgs particle.
Therefore, the other three must be heavy and functions of
the SSB parameters and 1, y», and k;; reason for which
we took a small doublet’s VEV limit (v, v,, v}, v5 — 0),
and it is found that the matrix rank decreases to 3. In fact, it
means that there is an eigenvalue which depends entirely on
the EW VEVs and it can be identified as a SM Higgs
particle. Furthermore, when considering this limit we are
able to get the next two heavy states by discarding the
additive terms proportional to those VEV. As a result, the
matrix M reduces to the following form:

2 / 2
Mt _Hu
2 v 2 0 0
2
T ()
, 2 v
My(v;, v; = 0) = , X (17)
2 v 2
2
A

[
Therefore, we find two decoupled 2 x 2 matrices with
determinant equal to zero, arising the two heaviest states.
Then, in the tree level the eigenvalues are given by:

v} + v v} + 0%
2 .2 U 1 2 2 2 2
Mmys ~ 11y My, = Hap .

18
s (18)

vy

At this point, there are only two CP-even particles for
which one of them must be the like-Higgs SM.
Returning to the original mass matrix M, (11), it is
known that eigenvalues are roots of the characteristic
polynomial. In our case, the polynomial is a fourth
degree one. It can be solved analytically by using a
general solution given by Ferrari’s method [18]. It is
worth to notice that by taking the small VEV limit in
the corresponding two general solutions, accounting for
the two heavy eigenstates, the eigenvalues in Eq. (18)
are reproduced. On the other hand, the smaller value
acquired by the general solution would correspond to
the SM-like Higgs particle but the resulting expression
for the latter is too complicated by using this method,
requiring then a different approach for obtain it. How-
ever, by taking again the small VEV limit mentioned
before and taking into account the chosen hierarchy,
now the dominant terms are proportional to k; and it
results in the following expression.

27)2<1]1U2(k11))/( — kz’l})() + Ullvlz(k37})( — k4’l])/())
(vt + o) (v3 + vF)

2 N
my, ~

(19)
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Finally we focus on the lightest CP-even Higgs particle, which so far in our approximation became massless, but must
match the 125 GeV observed one. For starting, we considered the determinant of the 4 x 4 matrix given by Eq. (11) only

taking into account the dominant terms which are proportional to p?,u3,. It reads:

2592

+ 2(9(92 + g/2) + Sgg() (U% - U/12>(U% - 1}/22

2,2 2 2 2
. I8y v — v v5— v
Der(Fty) < 552 |k, = k) (002 +7) 4 163) VL= 4 002 4 ) 4 4y 2120

2 /2)2

(AR%)
2 _ /2)2

v v
)+ g = ko) (00 +.7) + 163) VLS

(AN%) 172
02 — 22 02— 2 (02 — o2
00+ )+ 4 200 4 )+ ag D= Y], 20
172 172

The lightest Higgs mass eigenvalue is found by dividing
this determinant by the other three found mass eigenvalues
given by Egs. (18)—(19), which can be written as

2 2 2 2N\2
%11 z9%((2”1 + 05 = 20 = 05)
9(v? + 03 + v + 07

(¢ + )0} + 03 = o = 22

21
4(v} + v3 + v + v3) 1)
~ 12 )
Now, if we define the angles tan’ = ;,];izzz, tan f; = Z—,t,

and tan /3, = - then the lightest scalar mass acquires the
2

following form

- 4 g
m7, = m%(cos? 25 + Yy (cos2f3; +c0s2$3,)?)

~ m%cos’ 2 + Am?. (22)

So in fact, when we consider the theory with additional
scalar singlets and D-term, the correction term Am% can be
at the same order of tree level, and its experimental value
can be explained with NMSSM and USSM. An interesting
fact arises from the approximated expression for the lightest
CP-even particle. Its tree level mass does not depend on the
new physic’s energy scale, given by v, and v,. Additionally
the u;; and p,, factors canceled out due to the seesaw
mechanism, making an eigenvalue depending only on the
electroweak scale VEV’s, as it is expected.

As it will be shown later and has been already men-
tioned, the VEV should fulfill »3 + v} + v3 + 0% =
2462 GeV2. Then, for instance, it is found that a
125 GeV Higgs boson can be reached for values of
gx = 1.06g, and a large list of possible values for v; and
v}. For example considering v; = 195, v, = 138, v} = 52,
vh =20, and gx = 0.71 a 125 GeV Higgs boson is found.

In Fig. 1 we plot v vs gy by using the expression in the
Eq. (21) for the like-Higgs SM at 95% of C.L. with
125.3 + 0.4 GeV. We take v, proportional to the top quark
mass, v’z at an intermediate value between the bottom quark

— SRy _ .2
and tau lepton masses, and v, = /0> — v} — 0¥ — V2.

This was done for v/ since it is not restricted directly by
the fermion mass hierarchy (FMH). The exploration in the
parameter space was done by using the Monte Carlo
method for generating randomly the values of v}, v5,
and gy. For addressing the fermion mass hierarchy, the
domains of v; and v were [170 GeV,200 GeV] and
[3 GeV,7 GeV], respectively. A VEV is determined by
the condition (3), thus o) = /0> — v} —v3 —v7. The
remaining VEV could run freely, which means the its
domain was 0 < v, <246 GeV. Last by not least, the
coupling parameter gy was explored in the domain [0, 1].

A similar plot is given in the Fig. 2, where the parameter
space of v, vs gy is explored within the experimental
constraints at 95% of confidence level. This is shown
because v, is also not constrained by FMH.

A clear dependence of the mass of the lightest CP-even
particle with

lez + 0/22 — 02— 0,2

1}2

cos2f =

is found in the Eq. (22). In the Fig. 3, the parameter space
cos2p vs gy is explored. Negative values are found for

0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1
100 v bew v b e b v by v b e by by 100
80
o 60
>
-]
E -
s 404
20
0 I” i .IIIIIIIIIIIIIIIIIIIIIIIIIIII
06 065 07 075 08 085 09 09 1
Ox
FIG. 1. Region in the parameter space v vs gx with a Higgs

mass of 125.3 & 0.4 GeV at 95% of C.L.
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' 140 140
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110 n TTTT | TTTT | TTTT | TTTT | TTTT | TTTT | TTTT | TTTT . 110

06 065 07 075 08 08 09 09 1
9gx

FIG. 2. Region in the parameter space v, vs gy with a Higgs
mass of 125.3 £ 0.4 GeV at 95% of C.L.

cos 23 because nonprimed VEV happened to be greater
than the primed ones. This behavior lies in two causes: One
of them is the imposition of the FMH, where the top quark
mass (~v) is bigger then the bottom quark mass (xv}) then
vy > vh. On the other hand, all along the mass expression
[better seen on Eq. (21)] there are quadratic differences
between nonprimed and primed VEVs. For obtaining
considerable contributions to get the 125 GeV mass, those
differences have to be relatively big. Thus v, v, > v/, v} is
preferred. As gy gets bigger, smaller differences on the
VEVs are needed. Thus |cos 2ﬁ| approaches to smaller
values.

065 07 075 08 08 0,9 0,95 1
0,7 e b b b e Lo Lo 19,7
0,75 0,75
0,8 0,8
]
N7 0,85
v: -
g
0,9 0,9
0,95 0,95
-1 ] I T I TTT | T | 1T | 7T | 7T -1
065 07 075 08 08 09 095 1
Ox
FIG.3. Region in the parameter space cos 23 vs gy with a Higgs

mass of 125.3 + 0.4 GeV at 95% of C.L.

B. CP-odd masses

The mass matrix for the CP-odd particles must contain
the would-be Goldstone bosons to give masses to the Z,
and Z,. Such matrix in the basis (n;.%}.1.15.,. ¢,
{5, C0) is given in the next equation:

e

M,,, contains the mixings between the CP-odd part of
doublets and it can be written as

Mnn Mmf
My My

1

3 (23)

2 2
ML futs an Sfie 0
20, 9v, 2 9
ELo_ futh Sox
* 2 ! - ! 0 b=t
v 97 9
M,, = (24)
nm 2 . 2
% " HpY _ fu Ha
20, 9v, 2
2 /
Hply [V
: : Y
2 2

The matrix accounting for the mixings between the CP-odd parts of the doublets and the singlets is M, ., and it turns out

to be
—kovy  —kjvy ﬁg (Aopia vy — Apvh) - ﬁg (Ap10y + Aapgh)
™ 1| —ksvy  —kytt —ﬁg(%/ﬁ”’z + Aifis02) 2%5(31/12”2 Av,) 25)
YO kK ——(/12/12111 + Aips07) ﬁ(ﬂlﬂﬂh — o))
k3o kv 2—\/5(12#11)1 —Avy) L\f( K2V} + Aoks01)

The mixings between the CP-odd part of the singlets, which are responsible of the would-be Goldstone boson due to the

U(1)y symmetry breaking, are given by:
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vy, ko kv v) @
2v, 9v, 2
X v, kv vy k]
M, — 20, 9,
&=
* *
* *

Being M2 and M?? the same coefficients defined in the
scalar CP-even mass matrix. The rank of the matrix M,,
turns out to be 4, so we can be sure that there are two null
eigenvalues, corresponding to the would-be Goldstone
bosons needed. It is important to notice that structure of
this matrix is different from M, but it preserves the same
scale structure. That is to say, My, ~ i, Uss. V. V), and
M,y ~ Hiis Boo, 3, v; which fulfill the conditions for a
seesaw mechanism, M, > M,,, M, .. When the rotation
is done, the matrix reads:

_ M 0
M, = ( m ), (27)
|
V2 + 2
_ y TV
mg,s =0, mz6 ~ ,u%( UXU)/(

0 0
2 0 0
, (26)
M2+ 3 (v} + v3) tee
2
x M2+ 5 (03 + o)
Mrm = Mrm - M%MEQIM;(' (28)

It is worth noticing that this matrix has a big dependence on
the parity breaking terms k;, i = 1, 2, 3, 4.

If we consider the limit in which these couplings go to
zero, k; — 0 the mixing matrix M, vanishes resulting in a
2 x 2 isolated singlet mixing matrix M, (k; — 0) contain-
ing the U(1)y would-be Goldstone boson and the heaviest
pseudoscalar particle predicted by the model. The two mass
eigenstates are written as:

1
myy = (Mg +MZ) + 2 (B0} + 05) + 2 (03 + 0P)] - \/ui‘m

1
- (a2 2+ 3 B0% + 8) = BT+ o))

2

1 1 2
miy = (M2 -+ M2) + 2 B0} + 08) + 503 + oP)] + \/ﬂi‘m - ((M,% +M2) + B0+ of) - R0 + v?)]) (29)

In contrast, the 4 x 4 matrix has a rank of 3 ensuring the
existence of the would-be Goldstone boson due to SU(2) x
U(1) symmetry breaking. The scheme for getting an
expression for the eigenvalues is the same we used for
the CP-even mass matrix. First, by considering the small
VEV limit we can write the matrix as:

2 2
i 1

Fuli Ao
2 vy 2 0 0
ﬂ2 v
i x g 00
/ _ 1
Mnn(vi’ vy =~ 0) - v 2 (30)
* * ”zoﬁ H3o
vy 2
2 )

leading to 2 heavy eigenstates which at tree level can be
written as:

2 ”
2 ) Vit 2

2 ”% + ”/22
me, ~
3~ HT .

Mya ~ My

(31)

v1v) vy}

Finally for the lightest massive CP-odd particle it was
used a small VEV limit for the general solution of the
quartic equation given by Ferrari’s method [18]. Having a
massless state allows us to reduce the characteristic poly-
nomial to a third grade one. Ferrari’s solutions implies the
cubic general solution, and through this general expressions
the lighest CP-odd Higgs particles can be written as

) sz(vlvz(klv)’( —kyv,) + V)05 (ksv, — kqv)))

m2, &
” (vt +v7)(v3 + v%)

. (32)
The other mass corresponds to the would-be Goldstone
boson associated with Z*

mZ, = 0. (33)
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C. Charged scalar bosons

In the case of the charged components of the scalar fields, the corresponding mass matrix must contain a would-be

Goldstone boson that gives mass to the W#* gauge boson. The mass matrix in the basis (¢, ¢\, ¢35, ") reads
? 2 1
mn‘h,ﬂn—‘lz o)+, %1}11}2+§f1k ﬁvl”&“/@”l”’z
2
< m¢| + L'un — 34303 %v’lvz — 1 A3va0] v 05+ 3 far
Me = . (34)
192,72 g 2
* * ms, + 2 ﬂzz 2417 7”2”/2 + Uy
2
* * * m22—|—”/422— 1230}
where we have defined
2 2
g 2 2 27}2 g 2”2
m?l:z(vll + 05 —v3) - —flk’ mlcfzz( + v =% fzzn
2 2 /
) 2 _ 2 20, 9 (2,2 2 2”1
ms, = Z(Uﬁ +oy —vy) - —flk’ mg; = 1(7)1 + vy — vf) opr 2 (35)
2

The rank of the mass matrix for charged Higgs bosons is
3, so there is one would-be Goldstone boson that gives
masses to the W** gauge boson. The procedure for
obtaining the mass eigenvalues is straightforward. We
perform a small VEV limit to get the heavy eigenvalues.
The would-be Goldstone boson is ensured by the vanishing
determinant and the lightest massive eigenvalue is found by
taking a small VEV approximation in Ferrari’s general
solution for a cubic polynomial, giving the following
expressions:

méviv =0,
mzi ~ zvz(vll}z(kly sz ) + v Uz(k';’l) k41))/(>) ’
H, (v + v)(v3 + v7)
2 ”
2 vy + vy
ms,, & _
Hzi :ull ’UIU]
2
2 , V3t
My X K 01, (36)

D. Gauge boson masses

As consequence of the inclusion of the symmetry U(1)y,
there is a new gauge boson B), which has to be included in
the covariant derivate.

. Y .
D, =0, —igWiT, - lg/EBﬂ — igyB,. (37)
Therefore the gauge boson masses are determined by
the interaction terms, which are present in the scalar kinetic
terms of the scalar fields. On one hand, the charged
bosons Wi = (W) F W2)/v2 acquire standard model

like masses My =%. The neutral gauge bosons
(W3, B,.B,) make up a squared-mass matrix after SSB

given by:

| gv* —ggvt  =3ggxv*(1 + cos® )
M: = i B J*v? 2 gxv*(1 + cos? B) ,
* * 59%[V2 + (1 4 3 cos? p)v?]

where we have defined:

v? = v} 4 03 + 0 4 07 (38)
_VATE v
VATV

V2=l + o7 (40)

Despite in this model we have four Higgs doublets, it
recreates the same mass structure found in [11] when
adopting the definitions Eqgs. (38)—(40). Nevertheless, it
means that the neutral boson mass eigenvalues had been
already determined, and they are given by

M, =0, (41)
qgu
My~ ——— 42
z 2 cos By (42)
Vv
MZ/ %gXS X, (43)

where tan y, = %, as it was defined in the Standard Model.
A mixing between the three neutral gauge bosons exist and
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it is exhibited by the following expression for the mass
eigenstates:

A, sin Oy, cos By, 0
Ziy, | = | cosOycosl; —sinbBycosl; sinby
Zy, —cosOysinf;  sinfysinf,  cosfy
W
x| B, |, (44)
B

where 0, is a small mixing angle between the Z and Z’
bosons such that in the limit 8, — 0 the standard model
gauge bosons are recovered with an isolated Z' boson as
Z, = Z and Z, — Z', such mixing angle is approximately
given by:

. 29)( COSGW MZ 2
sin@y, = (1 + cos? g) X8 <— . (45)
z 3g MZ/ (

1. LHC constraints on the Z' mass

From the interaction terms of standard model fermions
with the B), gauge boson and using the mixing between the
Z and Z' particles, one can derive the Feynman rules for
fermions interacting with the massive boson Z;,. Taking
into account the charge quantities of particles shown in
Table II, the U(1)y interaction sector of standard model
fermions is shown in the following lines. For quarks we
have

gy _ 20y _. .
Linop = ?Xuly"PLulBl’l + —3X 'y Pru'B,,
9x 9% G up i
+5 'y PLd' B~ d'y" Prd'B.

where Finstein notation convention is adopted with

i =1,2,3. We also recall that P, x = IJFTVS are the chirality
projectors. In the case of the charged leptons, we have the

following interaction Lagrangian:

4
‘Cint,eB’ = _%éeyﬂPReeBl/d - g%éﬂyﬂPRe”B;

4
— gx€y'PLe"B), — % e'y'Pre'B),

Once we have the corresponding Feynman rules, the
cross section for the pp — Z' — []~ process was calcu-
lated and it is given by:

do__ K(M)3 Y PG (46)

dMdy  24zM

where M = M rf is the final state invariant mass, y is the
rapidity, K(M)~ 1.3 resumes all leading order QED

corrections and NLO QCD corrections, P = s%/[(s —
MZ)? + M2,T2,] with \/s the collider CM energy together
with M, and I' standing for the Z’' mass and total decay
width respectively and G = XaXp[fq/a(xa)fq/p(xp) +
fq/8(xg)f4/a(x4)] contains the parton distribution func-
tions (PDF) f(x) being x the momentum fraction. In the
simulation, the ratio I',; /M, was set to 0.01 which allows
us to consider the narrow width approximation (NWA) for
approximating the cross section to:

o(pp = ff) =o(pp — Z)BR(Z' - ff).  (47)

In the case of leptons, the pp collision is based on a CM
energy of /s =14 TeV and a 36.1 fb~! luminosity in
agreement with ATLAS detector parameters. Furthermore,
leptons have to be isolated inside a cone of angular radius
AR = 0.5 in addition to a required transverse energy E; >
20 GeV and a || < 2.5 pseudorapidity. The results of the
total cross section for the /™[~ pair production as a function
of M, are shown in Fig. 4.

Once the Z’ is discovered at LHC through the DY
process, it is of great importance to establish the Z — Z’
mixing which turns out to be model dependent. The current
analysis is based on pp collisions with CM energy of /s =
13 TeV collected by ATLAS (36.1 fb~!) and CMS
(35.9 fb~!) at LHC. In particular, the process pp — Z' —
W+ W~ is considered where the coupling Z'W+W~ is only
possible by the sin 8, mixing of Z — Z’. Consequently, by
considering again the NWA the diboson production can be
approximated to

o(pp = WrW~) =o6(pp > Z)BR(Z - WtW~) (48)

ATLAS Preliminary Vs=13 TeV, Lix=36.1 fb!

—®— Non-universal Z'

B --- Expected limit -
2 [ Expected £ 16
0 Expected+ 26
a — Observed limit
2
‘,.°\ 0,01 —|
N
A
a
e -
&
x
-]

0,0001 —

Mz(TeV)

FIG. 4. Observed and expected 90% C.L upper limits for total
cross section of dilepton production with ATLAS data [19]. It is
compared with calculated cross section for Z' production times
the branching ratio of the indicated decay.
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CMS Preliminary VS=13TeV, Lw=35.9 fb*

] —®— Data

b . 10
B 30
Expected

— Non universalZ'

olmol I T T T T I T T T T I T T T T I T T T T I
2 3 4 5 6
Mz' (TeV)
FIG. 5. Observed and expected 95% C.L upper limits for total

cross section of diboson production with CMS data. It is
compared with calculated cross section for Z' production times
the branching ratio of the indicated decay.

where the expression for the partial width of Z’ - W W~
is given by

a M \4 MZ 3/2
™ =_"cot?6,M ,(_z> (1—4 W)
Z 48 VEE\ My, M,

My\2 My \*] .
x [HZ()(M—Z) +12<MZ> }smzez (49)

with sin @, defined in Eq. (45).
Therefore, the model was implemented in MADGRAPHS_
aMC@NLO together with PYTHIA 6 and Delphes 3 for studying

ATLAS Preliminary Vs=13 TeV, Lix=36.1 fb'!

100 4
4 —®— Data
—+—— Expected
10 E . lop
- y 30
2 N Non universal Z'
A 4
N 0,1
A -
& ]
8 4
& 0,01
x ]
-]
0,001 -
Olmol T 1 I T 7T T T I T T T T I T T 1 T l T T T 7T I T T L) I T T
1 2 3 4 5 6
Mz'(TeV)

FIG. 6. Observed and expected 95% C.L upper limits for total
cross section of diboson production with ATLAS data [22]. It is
compared with calculated cross section for Z' production times
the branching ratio of the indicated decay.

the process at leading order by assuming the relevant
parameters as gy = 0.63 and cosf = 0.81. Both of them
correspond nearly to the smallest values found in the
Monte Carlo simulation; specially required for the mixing
angle 6, to soften experimental bounds on the Z’' mass.
A comparison among the total cross section of the process
and the available CMS [20] and ATLAS [21] data on
WT W~ pair production is shown in Figs. 5 and 6.

The intercept between the curve obtained for the non-
universal Z’' decaying into W W~ and the 3¢ upper limit
given by CMS data shown in Fig. 5, indicates a exclusion
limit for a new massive boson of M, > 5 TeV, in contrast
with ATLAS upper limits in Fig. 6, which provides a
stronger constraint of M, > 5.9 TeV

IV. FERMION SECTOR

A. Quark sector
According to the SU(2), ® U(1)y, @ U(1)y ® Z, sym-
metry, the most general Yukawa superpotencial for the
quark superfields is given by:

Wo = 41 ®hi203° + 47 ®1hT203° + g7 D hikage
— il + 4} dyhy, TG + 3 b 13T
— OIS TY - GO TI + TN T
- ~A7 4 h;?abj IZC + ’ZA’LJE /h;z/uf‘ic + j i‘}héajaic

+ 7,8 ke (50)
where j =1, 2, 3 labels the down type singlet quarks,
k = 1, 3 labels the first and third quark doublets, and a = 1,
2 is the index of the exotic J§ and J{* quarks. It can be
seen that this general superpotential match the nonsuper-
symmetrical one given in Ref. [11] if we promote the
conjugate Higgs fields ¢; = io,¢; to the independent ones
@’ required for a suitable anomaly cancellation. As a
consequence, taking the VEV of all scalar fields, the quark
mass matrices at tree level have an identical structure to its
non-SUSY counterpart, as it can be seen in the following
equations. For the up quark sector has

M M
My = ( U UT) (51)
Mry My
where
| 0 héivz 0
MU = 72 0 h%i’l]l 0 s
Wy 0 /L)
1uY1 1u Y1
1 hérvz
Myr =—z| hiv |, (52)
\/z 1T
0
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v v
My, =—%(0 h 0), My =—%qg,, (53
TU \/§ < x'u T \/zg)(T ( )
and for the down quark, the matrices can be written as
Mp, M
My = < D DJ) (54)
M;p M,
where
0 0 0
1}/
Mp = —22 o o0 o0 [,
Wa M W
(e
Mps =5 vy hapvy |
0 0
112
v g)(.] g){]
MJD:<O 0 O), Mj:—)( . (55)
V2\g 93

It is worthwhile to notice that uplike quarks acquire mass
from ®; Higgs fields while the downlike quarks do it from
the @/ ones. Since the matrix structure is identical to its
non-SUSY counterpart, the same analysis and eigenvalues
gotten in [11] can be done, taking care now that the
downlike eigenvalues are coupled to primed Higgs VEV.
The mass expressions can be approximated to:

1 Ui = 2,

m2 =0, m2=—v )
270 (gpr) + ()
1
mt = LIORLR + 2P
1
mi =3 v (gr)? + (h,)%)- (56)

The hierarchy between top and charm masses comes from
the seesaw rotation with the heavy 7 quark, which can be
observed from the Yukawa coupling differences for the
charm quark mass. From the charm and top quarks physical
masses it is known that "r:l—j ~7 x 1073 which in terms of

Yukawa couplings reads:

h32g,r — hiph?,
2 2 )2 3? 2 33)2 57)
(gyr)” + (h3,)* 4/ () + (hyy)

7x 1073 ~

To get an estimate of the above expression considering
the mass hierarchy we can consider Yukawa couplings
(gy7)% (h,)%, (I,)?, and (h3;)* of order 1 which implies
a phenomenologically viable relation among Yukawas:

141072 % hi2g,r — Wiph2,. (58)

For the down-quarks, the mass expressions can be
approximated to:

m% =0, m2 =0,
1
i = LRl + G2 + G
1 1
mil = B 1);2((9;](})27 m32 = B 9;2((953)2' (59)

The m2, m?, and m? masses are equal to zero but they
can be obtained by radiative corrections taking into account
the SUSY contribution due to the respective superpartners
as we will show later. According to the above expressions,
it is the scalar particle ¢»; which gives mass to the top and
charm quarks through v; and similarly ¢/, provides a mass
value for the bottom quark. However the mass difference
between charm and top quarks is fully dependent on the
Yukawa couplings values which allows us to assume v; &
m, and v}, ~ my,. Looking at the exotic sector, they are
governed entirely by the values of v, and v}, whose values
are expected to be at least in the TeV scale. Furthermore, it
agrees with recent experimental results which exclude
exotic quarks with masses bellow 800 GeV [23].

B. Lepton sector

Analogously, the lepton superpotential corresponds to
the non-SUSY Yukawa Lagrangian; the fields are promoted
to superfields and the conjugate Higgs fields promoted to
the primed ones. Then the superpotential reads as follows

Wy = 7@, 01 — 2] ®LhbL e — 27 DLhs e
PO, E 1 By
—Eppp&i + ELig,€L — ErueEs
g 1. .
+ 2y TN+ ENlLCMijN]LC

A ¢ X AL Cuanc
+ ELJI’[; pei’ + SLUIh;/”elzL,

(60)
where p = e, i, g = e, u, 7, ¥ = e, 7 and i, j label the right
handed and Majorana neutrinos. The superpotential pre-
sented in the Eq. (60) generates the same mass matrix
structure as well for the neutral and charged leptons when
the VEV is taken by the fields, compared to the non-
SUSY model.

1. Charged leptons masses at tree level

The mass matrix for the charged leptons follows also the
same structure as the one obtained in the nonsupersym-
metrical model. It is shown right ahead:
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0  hfd, 0 oy 0

| 0 M, 0 hi oy 0

Mg = ﬁ h3ev)y 0 h3tv) 0 0
0 0 0 g)(’EU)I( —HE
0 0 0 —He Gyely

(61)

Just as it happened in the old model, the electron remains
massless at tree level. Therefore radiative corrections must
be employed to explain the mass feature of such particle.
The mass eigenvalues at leading order are given by:

] €,
mE= 0. =SBl + ()

1
mt = (P + ()

m% = % ;/E”)I(Z’ mk: = %gﬁgvz. (62)

Despite V/, also gives mass to the bottom quark, it is a
good result that it also gives mass to the charged leptons
since they are of the same scale order. So, in agreement
with the particle physical mass values the ratio between p
and 7 lepton masses is approximately 0.14, leaving us with

the following relation among Yukawa couplings:

(h3)” + (Ha,)”

0.14 ~ > 5
(h3)* + (h%)

(63)

2. Neutrino masses at tree level

As for neutrinos, the mass matrix involves the Dirac
and Majorana terms in order to provide a mass spectrum

via the inverse seesaw mechanism (ISS). In the basis

(v], 1€ Nt C), such matrix reads:

0 mb 0
My - mp 0 ME s (64)
0 M, M,

where the block matrices constituting the neutrino mass
matrix are given by:

ee ep et
h 2u h2v h2v

’
U ep o ut ij — 2% w\ij
mp =—= h21/ h2v h2v ’ (MD) J=—= (h)( ) !,
2 2
v2 0 0 0 v2
1
(M) = > Mij. (65)

For the ISS to work, the assumption on small Majorana
coupling constants is made, mp > M,,. Therefore, it can
be shown that the matrix M, can be approximately block
diagonalized:

my; 0
\/gsMp\/ss ~ < feh ) (66)

0 mheavy

where  mygn = mp,(Mp)~'My(Mp)~'mp is the 3 x3
mass matrix for the light neutrinos and it must explain
the observed mixing parameters in the PMNS matrix. The
rotation matrix Vg can be calculated by:

(e 7)oy ) (V)
Vss = . 8= :

(67)
Lastly, the my,,,, matrix involves the mixings of the exotic
neutral leptons, and it is given by:

0 ML
mheavy ~ ( P ) . (68)
My M,y

Since the same structure as the non-SUSY model is
followed also by the sector of neutral leptons, the same
constraints are applied for the Yukawa parameters for
explaining the quadratic difference of masses Am? and
mixing angles in the neutrino oscillation [24]. The param-
eter values are then shown in [11].

C. Fermion masses at one loop level

As it was seen in the previous section, the electron and
the up, down and strange quarks turned out to be massless
at tree level. However, since the physical mass of these
particles is considerably small in comparison with the other
particles and the model energy scale, they are expected to
acquire a finite mass value through radiative corrections. In
fact, it is performed via 6 and &’ superfields couplings, as it
is shown in Figs. 7, 9, and 8, which allows the transition
between SM fermions and the exotic ones resulting in a
nonzero value for their masses.

Considering first the electron mass, the vertices are
generated by the following parts of the superpotential
and the soft-breaking potential terms:

W¢ = /11(1),1(1)20', - ,uz,&’&
W, = E 6herer + 230 he £ (69)

where r = e, 7 and the couplings 1, h¢*, and hS. are
dimensionless Yukawa coupling constants, but 1, and s,
are mass unit parameters from the scalar potential.
Considering the Fig. 7, the non-SUSY contributions are
given by:

s =L v dughi
2471113) — 16”2\/5 M,

my, my
— 7
© (ME ’ME) 0)

with
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(¢2)
|

FIG. 7. One loop corrections to the leptons due to exotic fermions, sfermions, and Higgsinos.

(¢|’n)

(¢:1)

FIG. 8. One loop corrections to the quark up due to scalar singlets, exotic quarks, squarks, and Higgsinos.

(1)

|
4
/_L‘\

d’ i Jte

FIG. 9. One loop corrections to the quarks down and strange due to scalar singlets, exotic quarks, squarks, and Higgsinos.

1
CO(ﬁ117rh2> - ~ ~ ~
(1= m3)(1 = i3) (m7 = i3)
e 527 (72
X |mymsLn -2 + s Ln(im3)
2
- rh%Ln(rhz)} .

where M, is the exotic charged fermion mass, m), is the
corresponding neutral scalar field mass related with the Ci>'1
superfield, m., is the scalar field mass corresponding to the
¢ superfield and C; is the Veltmann-Passarino function
evaluated for p?> = 0 given by Eq. (71). In the radiative
(71) correction calculation, a rotation to the mass eigenstate
basis for the exotic fermion was not done by assuming a
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mixing angle which suppresses the mixing among them,
even though, in the SUSY contribution the rotation matrix
is written explicitly because those zero tree level mass
terms prevent the implementation of a renormalization
scheme. It implies the presence of divergences in the B

|

1
272
32ﬂ\/_n1k

1}22”“3)([) = O)

Veltmann-Passarino function which are cancelled out by
the super GIM mechanism resulting then in finite mass
terms and a renormalizable theory. Therefore, the super-
symmetric contributions to the radiative correction are
given by:

Z Z 20 78 700 78 g he P s,

« |:(rhak+mhl)2c <ﬁ1h1

Mj, M,

where L, are the charged left sleptons mass eigenstates,

ZZ(“ )k is the rotation matrix that connects & (o) with its
mass eigenstates with eigenvalues m,; which are running

inside the loop. Zfin and Z;*" are the rotation matrices
which connect the exotic sleptons £, £ with the slepton
mass eigenstates L, inside the loop. =V5, =5 are defined as
dimensionless parameters. Additional contributions may
come from charged currents into the loop, which involves
charginos and neutral sleptons.

The up quark radiative correction is analogous to the
electron case but the Yukawa couplings indices and particle
masses inside the loop have to be fixed in both SUSY
and non-SUSY correction. In accordance to Fig. 8, the

|

1
327 \/_

v} ka(l’z =0)=

6k> + M By (0, iy, My, ) + 2 Bo(0, )y, M) (72)

n

following terms coming from the superpotential and the
soft breaking potential has to be considered:

Wo = T80k + g} d,nl, TS

Ve = 4@ @0' + He. W, = L d,6.  (73)
According to the Fig. 8 the SUSY and non-SUSY

contributions are given in Eqgs. (74) and (75), respectively:

ZZT " ZT kTR R,

s

5 {(m6+mhz)2c (ﬁm i’

MZ

0 ~
Ty MT” g

where My is the T exotic quark mass and k = 1,3... T, are
the squark mass eigenstates, 7y, the corresponding mass
eigenvalue, and Z;; the associated rotation matrix which is
relating the states 7, and T¢ with the mass eigenstates.
Same as the electron radiative correction, a suppression
angle is considered in such a way that the rotation matrix is
not written explicitly in the non-SUSY correction and
likewise is assumed for SUSY contributions due to the
quadratic divergences.

Finally, for the downlike quarks it is needed to write
corrections which provide the down and strange quarks
masses given that the mass matrix which only provides a
tree level mass to the bottom quark. Hence, the Feynman
rules are constructed by considering the following terms
coming from the superpotential and the soft breaking
potential according to Fig. 9.

1=k \P7 = 2 ’ '
~ 16z \/_ MT My Mr
(74)
) + 5By (0, iy, My, ) + i By (0, iy, MT)} (75)
|
Wo = Tiehd) + gL @ hla T + 3 ¢'2h3 T
(76)
W,y = & b6 — pu,6'6 (77)
Viott = EZq)IZq)la (78)

Therefore, the SUSY and non-SUSY corrections can be

written as:
/
JC mhl ms
My M4)

(79)

—1 o) AD)h
167[2 \/E MJa

v (p? =0) =
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1 1)/ 10 2 Jac a ) .
VS (p? =0) = _W_IZ SN"Z 75 (0 = 80 (1 = 252 ) ks Rl
V2 S
(Mg + 1105, (), g o i i i
X |: MZD : CO (MDq ’ MD[[) + th»lma(lZBO (O’ mGk’ MDq) + mD_kBO(O’ mhl+lma(lZ ’ MDq) ) (80)

The module function is used in the index [/ because when
[ =1, the scalar particle at the top of the diagram is ¢, but
when [ =2 the required scalar particle is ¢;, which
corresponds to a / + 1mod(2) function, returning the value
“1” as required. §;; is the usual Kronecker delta with [ = 1,
2 denoting the Higgs(ino) particle inside the loop, j = 1, 2,
3 runs for the left-handed quarks uf;, J¢ indicates the exotic
down-like quarks contribution which in this case the index
a can take the values a = 1, 2. A(/) is a function such that
(1) = 2, and A(2) = 4,. Additionally, m,, correspond to
the scalar mass particle associated with the superfields o,
and @, for =1, 2, respectively and D, are the right-
handed down-like squarks mass eigenstates. When [ = 1
the radiative corrections X;; generates the matrix elements
in the down mass matrix which produces the down quark
mass, similarly the case [ = 2 produces the strange quark
mass.

V. DISCUSSION AND CONCLUSIONS

The model studied here is the supersymmetric extension
of the three families U(1)y model [11]. The SUSY exten-
sion requires four Higgs doublets and four scalar singlets in
order to not induce chiral anomalies and giving mass to
quarks, charged leptons and neutrinos. Additionally, the
singlets generate the mass for exotic fermions and break the
U(1)y gauge symmetry. An interesting prediction of this
extension is that there are tree level flavor changing neutral
currents.

In both versions of the model, SUSY and non SUSY, the
lightest particles (electron and up, down and strange
quarks) are massless at tree level. However, in the super-
symmetric model they acquire a mass value via radiative
corrections through inert singlets into the loop after U(1)y
and electroweak symmetry breaking.

By implementing a seesaw mechanism among the singlet
and doublet Higgs fields, together with the D-terms
corresponding to the U(1)y, a Am3 is found at tree level
and it turns out to be at the order of the MSSM contribution.
The lightest scalar particle is identified as the Higgs boson
and its mass is obtained at the order of 125 GeV. In fact, we
show in Figs. 1 and 2 the region in the parameter space )
vs gx and v, vs gy which is compatible with a 125.3 GeV
Higgs boson at 95% of C.L., where the VEVs v, and v}, are

|

fixed around the mass of the top quark and the bottom
quark, respectively. As a result, we found that the coupling
constant gy, regarding to the U(1), symmetry, takes values
between 0.63 and 1 for 112 < v,(GeV) < 180 and 0 <
v}(GeV) < 81. Thus, values below 0.63 for gy are exclu-
ded. Even more, if we take the LHC exclusion bounds on
dilepton production, which gave m, > 8 TeV, it implies
from the expression for this gauge boson mass [Eq. (43)]
that the VEVs v, ~ v/, should be greater than 37 TeV.

The parameter space cos2f vs gy was explored and
negative values are found for cos2f because nonprimed
VEV happened to be greater than the primed ones. This
behavior lies in the fact that top quark mass (~v;) is bigger
than the bottom quark mass (~v5). On the other hand, in the
mass expression for my, Eq. (21), there are quadratic
differences between nonprimed and primed VEVs so vy,
vy > v}, v, is preferred. Thus the allowed region is 0.38 <
cosﬁ < 1.

Last but not less important, the model also predicts five
CP-even, four CP-odd and three charged Higgs particles
with a mass above the TeV scale. The would-be Goldstone
bosons corresponding to Z,, Wff and Z, are also found.

APPENDIX: SCHEME FOR OBTAINING THE
SCALAR PARTICLE MASS EXPRESSIONS

For the CP-even particles an additional first step was
made, which is to perform a seesaw like rotation, taking
into account that the mixing in M are small compared to
the ones in M ;. With that approximation, the matrix M), is
transformed to a block diagonal form:

My, — (VA)TM, Vi ~ ( ) (A1)

where My, = My, — My:Mz!M].. Vi rotates the matrix,

1 e
Vs = < )
-o" 1,
with ®" = M¢(M¢)~". The heavy remaining block com-

ponent, M, is a block diagonal 4 x 4 matrix, and therefore
its eigenvalues can be obtained trivially.

(A2)
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