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In this paper, we consider an electrodynamics of higher derivatives coupled to a Lorentz-violating
background tensor. Specifically, we are interested in a dimension-five term of the CPT-odd sector of the

nonminimal Standard Model extension. By a particular choice of the operator k̂AF, we obtain a higher-
derivative version of the Carroll-Field-Jackiw (CFJ) term, 1

2
ϵκλμνAλDκ□Fμν, with a Lorentz-violating

background vector Dκ. This modification is subject to being investigated. We calculate the propagator of
the theory and from its poles, we analyze the dispersion relations of the isotropic and anisotropic sectors.
We verify that classical causality is valid for all parameter choices, but that unitarity of the theory is
generally not assured. The latter is found to break down for certain configurations of the background field
and momentum. In an analog way, we also study a dimension-five anisotropic higher-derivative CFJ term,
which is written as ϵκλμνAλTκðT · ∂Þ2Fμν and is directly linked to the photon sector of Myers-Pospelov
theory. Within the second model, purely timelike and spacelike Tκ are considered. For the timelike choice,
one mode is causal, whereas the other is noncausal. Unitarity is conserved, in general, as long as the
energy stays real—even for the noncausal mode. For the spacelike scenario, causality is violated when the
propagation direction lies within certain regimes. However, there are particular configurations preserving
unitarity and strong numerical indications exist that unitarity is guaranteed for all purely spacelike
configurations. The results improve our understanding of nonminimal CPT-odd extensions of the
electromagnetic sector.

DOI: 10.1103/PhysRevD.100.055036

I. INTRODUCTION

The minimal Standard Model extension (SME), which
was proposed by Kostelecký and Samuel in 1998 [1,2],
shares various established properties with the Standard
Model (SM) such as power-counting renormalizability,
energy-momentum conservation, and gauge invariance.
However, it does not preserve Lorentz symmetry and,
beyond that, it can violate CPT symmetry [3]. The SME
is an effective field-theory framework obtained from the
SM including additional terms composed of observer
Lorentz-invariant contractions of the physical SM fields

and fixed background tensors. Studies based on the SME
have been carried out to look for Lorentz-violating (LV)
effects and to develop a precision program that may allow us
to examine the limitation of Lorentz symmetry in various
physical interactions. In this sense, a large number of
investigations has been realized in the context of the fermion
sector [4–6], CPT symmetry violation [7], the electromag-
netic CPT-odd sector [8–10], the electromagnetic CPT-
even sector [11,12], photon-fermion interactions [13–15],
and radiative corrections [16–18]. Phenomenological and
theoretical developments focusing on LV contributions of
mass dimensions three and four have been continuously
undertaken in the latest years. As a result, there is now a large
number of tight constraints on Lorentz violation, mainly in
the photon and lepton sectors [19].
To enable theoretical predictions of quantum-gravity

effects at energies much smaller than the Planck scale,
we must assume that such a fundamental theory has a
perturbative expansion in terms of the dimensionless ratio
E=MQG. Here, E is the energy of some experiment of
interest and MQG is the mass scale where the full theory of
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quantum gravity must be considered to describe the physics
as a whole. The latter is expected to be related to the
Planck mass; at least it is supposed to lie in its vicinity:
MQG ≃MPl. In configuration space, a single power of
energy corresponds to a spacetime derivative that occurs in
an appropriate field operator. Based on the existence of
such an asymptotic expansion, the SM described by the
Lagrange density Lsm can be interpreted as a zeroth-order
contribution of this series. The SM depends on a range of
different mass scales such as the electron mass me, the
proton massmp or the electroweak mass scaleMew. In what
follows, wewill chooseMew as its characteristic mass scale.
The difference between the minimal SME and the SM is

that the former involves Lorentz-violating controlling coef-
ficients that are either of mass dimension 1 or dimensionless.
They are contracted with field operators of mass dimension

three and four, respectively (incorporated in Lð3;4Þ
sme ).

1 For
dimensional reasons and to take into account a suppression
of Lorentz violation by the scale MQG, the dimension-four
coefficients could be formed via appropriate constant ratios
such as Mew=MQG. These contributions do not rise with
energy, which is why formally they also must be considered
as of zeroth order. The properties of the dimension-three
coefficients are peculiar in this sense. Following the previous
arguments, they should be of order −1, i.e., they ought to
have a dependence of the form MQG=E. Hence, they are
expected to be suppressed for increasing energies, but for
energies small enough, they would be large due to the
occurrence of the quantum-gravity mass scale in the numer-
ator. Obviously, there is no experimental evidence for
Lorentz violation that big, whereupon these terms must
be suppressed in a different manner.
Taking into account contributions that grow with energy,

naturally leads us to power-counting nonrenormalizable
theories. There may be Lorentz-invariant terms (contained

in δLðdÞ
LI ) that are suppressed by a mass scale M not

necessarily related to the Planck mass. As these terms
are Lorentz invariant, their origin might lie in a regime
different from that of Planck-scale physics. They are also
known to improve the ultraviolet behavior of theories,
which was certainly one of the main motivations for
exploring such terms (see below).
In the latest years, an interplay between Lorentz viola-

tion and theories endowed with higher derivatives has taken
place. Indeed, Lorentz violation can incorporate operators
of higher mass dimensions, which may include higher-
derivative terms. The number of such contributions is
infinite in contrast to the minimal LV extensions.
Nonminimal versions of the SME were developed for both
the photon [20] and the fermion sector [21,22]. The

Lorentz-violating contributions are supposedly suppressed
by powers of the Planck scale and are comprised by the

Lagrange density δLðdÞ
sme of the nonminimal SME. So we

can write the asymptotic series in the form

LQG ¼ Lsm þ δLð3Þ
sme þ δLð4Þ

sme

þ
X∞
d≥5

½δLðdÞ
LI þ δLðdÞ

sme� þ δLother; ð1aÞ

Lsm ¼ Lsmðme;mp;Mew;…Þ; ð1bÞ

δLð3Þ
sme ⊃ MQGnXÔ

ð3Þ
X ; δLð4Þ

sme ⊃
Mew

MQG
nXÔð4Þ

X ; ð1cÞ

δLðdÞ
LI ⊃

1

Md−4 Ô
ðdÞ; δLðdÞ

sme ⊃
1

Md−4
QG

nXÔðdÞ
X : ð1dÞ

Here, we also stated the general structure of individual
terms. A generic dimensionless background tensor with a set
X of Lorentz indices is indicated by nX where ÔX is a field
operator with the same set of Lorentz indices. The mass
dimension of the background has been extracted explicitly
to show the dependence on the scales MQG and M. The
remaining Lagrange density δLother contains all additional
contributions that have not been taken into account pre-
viously. These could be nonperturbative in nature.
According to the perturbative series of Eq. (A1), the

nonminimal SME is a natural extension of the higher-
derivative Lorentz-invariant contributions in the same sense
as the minimal SME is an extension of the SM. Searching
for physics beyond the SM via an effective theory, there is
a priori no reason why such nonminimal terms should be
discarded. Interpreting these terms as theories that are valid
within a certain energy range only, power-counting non-
renormalizability is not considered to be a problem.
Because of the arguments explained above, individual

terms have an energy dependence of the form ðE=MQGÞd−4
and ðE=MÞd−4, respectively. Nonminimal contributions
grow with energy, i.e., after a certain point they dominate
the minimal ones. Therefore, they might be essential in
experiments involving particles of high energies, e.g.,
cosmic rays. From the theoretical perspective, fundamental
properties such as causality, stability, and unitarity could be
investigated in the high-energy regime where the higher-
derivative field operators become dominant. In what follows,
we will state several examples for nonrenormalizable exten-
sions of electrodynamics that are Lorentz invariant.
The first example of an extended electrodynamics

including higher derivatives was proposed in 1942 by
Podolsky [23]. He initially studied the Lorentz- and
gauge-invariant dimension-six term, θ2∂αFαβ∂λFλ

β, with
the Podolsky parameter θ of mass dimension −1. This
theory exhibits two dispersion relations, the usual one

1The standard notation employed is to indicate the mass
dimensions d of the corresponding field operators as indices
in parentheses.
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of Maxwell theory and a massive mode that renders the
self-energy of a pointlike charge finite. However, at the
quantum level, the massive mode produces ghosts [24].
The gauge-fixing condition for this extension can be
adapted to be compatible with the 2 degrees of freedom
of the photon and the 3 additional ones connected to the
massive mode [25]. Further developments [26,27] in
Podolsky’s theory deserve to be mentioned including
investigations of a dimension-six quantum electrodynamics
in (1þ 1) spacetime dimensions [28].
Another relevant extension of Maxwell theory with

higher derivatives is Lee-Wick electrodynamics, described
by the dimension-six term Fμν∂α∂αFμν [29]. This theory
also implies a finite self-energy for a pointlike charge in
(1þ 3) spacetime dimensions. It provides a bilinear con-
tribution to the Maxwell Lagrangian that is similar to the
Podolsky term but with opposite sign. This term causes
energy instabilities at the classical level and negative-norm
states in the Hilbert space at the quantum level. Lee and
Wick introduced a mechanism to preserve unitarity by
removing all states with negative norm from the Hilbert
space. Ten years ago, this theory received attention again
with the proposal of the Lee-Wick Standard Model [30],
which is based on a non-Abelian gauge structure free of
quadratic divergences. The Lee-Wick Standard Model has
had a big impact and is applied in both theory and
phenomenology [31]. In this context, general investigations
of LVextensions are found in [32] as well as applications to
the self-energy and interaction of pointlike and spatially
extended sources [33–36]. General considerations of the
pole structure and perturbative unitarity of these classes of
theories can be found in [37].
As we explained above, theories of higher derivatives and

higher-derivative electrodynamics, in particular, can be
endowed with Lorentz-violating contributions. It is impor-
tant to mention that special choices of nonminimal operators
were proposed and investigated [38–41] where some
works such as [42] even involve Hořava-Lifshitz gravity.
Nonminimal theories containing higher-dimensional cou-
plings can also be constructed without introducing higher
derivatives (beyond those contained inside the field strength
tensor). Such couplings were considered and constrained
initially in [43,44] and have been proposed recently in
broader scenarios [45,46], also including photon-photon
scattering [47], electroweak interactions [48], nuclear chiral
interactions [49], scalar electrodynamics [50], and scattering
processes of electrons and positrons [51].
Another motivation to studying higher-derivative Lorentz-

violating terms are noncommutative spacetime theories.
These are based on commutation relations for spacetime
coordinates of the form ½xμ; xν� ¼ θμν. The object θμν is
fixed with respect to particle Lorentz transformations and is
interpreted as an observer tensor giving rise to preferred
spacetime directions. Due to dimensional reasons,
½θμν� ¼ −2, whereupon it is inevitable that this object must

be linked to terms of the nonminimal SME. This property
was shown explicitly in [52] by applying the Seiberg-Witten
map to translate a noncommutative field theory into a
commutative field theory of modified photons.
Lately, modified higher-derivative LV terms have been

generated in other ways via quantum corrections to the
photon effective action in a scenario with a nonminimal
coupling between fermions and photons [53,54] as well as
in supersymmetric theories [55,56]. Recently, dimension-
five terms of Myers-Pospelov type have been investigated
in the context of black-body radiation [57] and emission of
electromagnetic and gravitational waves [58]. Higher-
derivative applications to gamma rays have also been
taken into consideration [59]. Not so long ago, we
addressed a CPT-even, dimension-six, higher-derivative
electrodynamics, composed of an anisotropic Podolsky
term, ∂σFσβ∂λFλαDβα, and an anisotropic Lee-Wick term,
Fμν∂α∂βFμνDαβ, respectively, with Dαβ representing a LV
rank-2 background field. Both models can be mapped onto
dimension-six terms of the electromagnetic sector within
the SME. We obtained the associated gauge propagators
and examined the dispersion relations for several back-
ground tensor configurations. We found that both models
exhibit both causal and noncausal as well as both unitary
and nonunitary modes [60].
To improve our understanding of higher-derivative

Lorentz-violating extensions of the photon sector, it is
now reasonable to pursue similar investigations of a CPT-
odd theory. Therefore, in the present work, we study
Maxwell electrodynamics modified by a CPT-odd,
dimension-five nonminimal SME term. In Sec. II, we
consider a configuration composed of a fixed background
field Dκ where the additional four-derivatives are con-
tracted with the metric tensor, i.e., ϵκλμνAλDκ□Fμν. The
gauge propagator is derived and the dispersion relations
are obtained from its pole structure. Causality and
unitarity of the modes are analyzed subsequently. In
Sec. III, we analyze an alternative configuration com-
posed of a fixed background field Tκ partially contracted
with additional four-derivatives, that is, ϵκλμνAλTκ

ðT ·∂Þ2Fμν. Similar investigations are performed for this
more sophisticated modification that is linked to the
photon sector of Myers-Pospelov theory. Finally, we
conclude on our findings in Sec. IV. Studies that are
not directly connected to the modifications proposed
are relegated to the Appendixes A and B. Natural units
will be used with ℏ ¼ c ¼ 1, unless otherwise stated.

II. MAXWELL ELECTRODYNAMICS
MODIFIED BY A CPT-ODD DIMENSION-FIVE

HIGHER-DERIVATIVE TERM: A SIMPLE MODEL

The Lagrange density for the nonminimal SME photon
sector [20] is written in a way similar to that of the minimal
sector:

MAXWELL ELECTRODYNAMICS MODIFIED BY A CPT-ODD … PHYS. REV. D 100, 055036 (2019)

055036-3



Lγ ¼ −
1

4
FμνFμν þ 1

2
ϵκλμνAλðk̂AFÞκFμν −

1

2
Fκλðk̂FÞκλμνFμν;

ð2Þ

with the Uð1Þ gauge field Aμ and the associated field
strength tensor Fμν ¼ ∂μAν − ∂νAμ. The four-dimensional
Levi-Civita symbol is denoted by ϵμνρσ where we use the
convention ϵ0123 ¼ 1. All fields are defined in Minkowski
spacetime with metric tensor ðημνÞ ¼ diagð1;−1;−1;−1Þ.
The operators ðk̂AFÞκ and ðk̂FÞκλμν now represent the
nonminimal versions of the corresponding minimal coef-
ficients ðkAFÞκ and ðkFÞκλμν. They involve terms of higher
derivatives and are given by the following infinite CPT-odd
and CPT-even operator series:

ðk̂AFÞκ ¼
X
dodd

ðkðdÞAFÞ
α1…αðd−3Þ
κ ∂α1…∂αðd−3Þ ; ð3aÞ

ðk̂FÞκλμν ¼
X
deven

ðkðdÞF Þκλμνα1…αðd−4Þ∂α1…∂αðd−4Þ : ð3bÞ

Each controlling coefficient is labeled by the mass
dimension d of the associated field operator and the
Lorentz indices αi are associated with the spacetime
derivatives. In this work, we are interested in investigating
the CPT-odd, dimension-five extension of the electromag-
netic sector that is specifically represented by the Carroll-
Field-Jackiw-like (CFJ-like) term of the Lagrange density:

1

2
ϵκλμνAλðk̂AFÞκFμν: ð4Þ

The background field is a third-rank observer Lorentz
tensor whose general structure is

ðk̂AFÞκ ¼ ðkð5ÞAFÞα1α2κ ∂α1∂α2 : ð5Þ

As a first investigation, we consider the special case

ðk̂AFÞκ ¼ D̃κXα1α2∂α1∂α2 ; ð6Þ

with a Lorentz-violating four-vector D̃κ. The tensor struc-
ture is chosen such that the vector properties of ðk̂AFÞκ are
described by the preferred spacetime direction D̃κ, whereas
the nonminimal sector is separately parametrized by the
symmetric tensor Xμν. Thus, the Maxwell-Carroll-Field-
Jackiw-like (MCFJ-like) Lagrange density to be studied is

L¼−
1

4
FμνFμνþ1

2
ϵκλμνAλD̃κXα1α2∂α1∂α2Fμνþ

1

2ξ
ð∂μAμÞ2;

ð7Þ

with gauge fixing parameter ξ, i.e., the final term is
included to fix the gauge. We can consider an observer

frame where Xμν is diagonal. In this context, the simplest
case is that of a tensor Xμν with equal spacelike coefficients.
Then Xμν is composed of a traceless part X̄μν and a part
with nonvanishing trace that must be proportional to the
Minkowski metric tensor:

Xμν ¼ αtrX̄μν þ αημν; ð8aÞ

X̄μν ¼ diagð1; 1=3; 1=3; 1=3Þμν ¼ 1

3
½4ξμξν − ημν�; ð8bÞ

with the preferred purely timelike direction ðξμÞ ¼
ð1; 0; 0; 0Þ and parameters αtr, α suitably chosen.2 As the
traceless part involves two preferred directions ξμ and D̃μ,
its investigation is probably more complicated than that of
the contribution proportional to the trace. Therefore, we
leave the analysis of the traceless part for the future and
choose αtr ¼ 0 so that D̃κXα1α2∂α1∂α2 ¼ Dκ□, with the
d’Alembertian □≡ ∂μ∂μ and the redefined background
vector Dκ ≡ αD̃κ. Thus, the LV background is

ðk̂AFÞκ ¼ D̃κ□; ð8cÞ

and the new Lagrange density has the form

L ¼ −
1

4
FμνFμν þ 1

2
ϵκλμνDκAλ□Fμν þ

1

2ξ
ð∂μAμÞ2: ð9Þ

By performing suitable partial integrations and neglecting
boundary terms, the latter can be written as

L ¼ 1

2
AμOμνAν; ð10aÞ

with the differential operator

Oμν ¼ □

�
Θμν − 2Lμν −

1

ξ
Ωμν

�
; ð10bÞ

sandwiched in between two vector fields. Here we intro-
duced the symmetric transversal and longitudinal projec-
tors, Θμν and Ωμν, respectively:

Θμν ≡ ημν −Ωμν; Ωμν ≡ ∂μ∂ν

□
; ð11Þ

while the Lorentz-violating part is described by the anti-
symmetric and dimensionless operator,

Lμν ≡ ϵμνκλDκ∂λ: ð12Þ

Now we intend to evaluate the propagator of the theory,
i.e., we should find the Green’s function Δαβ, which

2Here we simply adopt the notation used in the CPT-even
photon sector where the single coefficient κtr is linked to a
symmetric, traceless matrix, as well.
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is the inverse of the differential operator Oμν, from the
condition

OμσΔσ
ν ¼ ημν: ð13Þ

For the inverse to be found, we use a suitable basis of tensor
operators, a procedure that turned out to be successful in
several theoretical scenarios [61,62]. Thus, we propose the
following Ansatz:

Δσ
ν ¼ aΘσ

ν þ bLσ
ν þ cΩσ

ν þ dDσDν þ eðDσ∂ν þDν∂σÞ;
ð14Þ

where the parameters a…e are expected to be scalar
operators. The algebra of the individual tensor operators
is displayed in Table I. We also use the definition

ρ≡Dμ∂μ; ð15Þ

and, for brevity, define the tensor

Γμσ ≡ LμνLν
σ

¼ ðDμ∂σ þDσ∂μÞρ −DμDσ□

þ ðD2
□ − ρ2ÞΘμσ − ρ2Ωμσ; ð16Þ

which originates from the contraction of two Levi-Civita
symbols. Starting from the tensor equation (13), after
performing some simplifications, we have

Θμσ þΩμσ ¼! □
�
½a − 4ðD2

□ − ρ2Þb�Θμσ þ 2ðb − aÞLμσ

−
�
−4ρ2bþ c

ξ
þ
�
1þ 1

ξ

�
ρe

�
Ωμσ

þ ðdþ 4□bÞDμDσ þ ðe − 4ρbÞDμ∂σ

−
�
4ρbþ

�
1þ 1

ξ

�
ρ

□
dþ 1

ξ
e

�
Dσ∂μ

�
:

ð17Þ

By comparing both sides of Eq. (17) to each other, the
following differential operators are obtained:

a ¼ b
2
¼ 1

⊠ ; ð18aÞ

c ¼ −
�
ξ

□
þ 4ρ2

⊠
�
; ð18bÞ

d ¼ −
4□

⊠ ; e ¼ 4ρ

⊠ ; ð18cÞ

⊠ ¼ □½1þ 4ðρ2 −D2□Þ�: ð18dÞ

Thus, the inverse of Oμν is

Δσν ¼
1

⊠
�
ησν þ 2Lσν −

�⊠ξ

□
þ 1þ 4ρ2

�
Ωσν

− 4□DσDν þ 4ρ½Dσ∂ν þDν∂σ�
�
: ð19Þ

The form of the propagator in momentum space follows
from the latter result by carrying out the substitution
∂μ ¼ −ipμ with the four-momentum pμ, so that

ΔμσðpÞ ¼
−i

p2ð1þ 4ϒðpÞÞ
�
ημσ − 2iϵμσκλDκpλ

− ½1 − 4ðD · pÞ2 þ ξð1þ 4ϒðpÞÞ�pμpσ

p2

þ 4p2DμDσ − 4ðD · pÞ½Dμpσ þDσpμ�
�
;

ð20aÞ

with

ϒðpÞ ¼ D2p2 − ðD · pÞ2: ð20bÞ

A prefactor of i has been added to match the conventions
for the photon propagator for zero Lorentz violation in [63].
Several remarks are in order. First, in Appendix A we
present the propagator of MCFJ theory in Lorenz gauge,
showing that the latter and Eq. (20) are linked to each other
by a simple replacement. Second, the propagator (20) is

TABLE I. Closed algebra of tensor operators.

Θσ
ν Lσ

ν Ωσ
ν Lν

σ DσDν Dσ∂ν Dν∂σ

Θμσ Θμν Lμν 0 Lνμ DμDν − ρDν∂μ=□ Dμ∂ν − Ωμνρ 0
Lσμ Lνμ −Γνμ 0 Γνμ 0 0 0
Lμσ Lμν Γνμ 0 −Γνμ 0 0 0
Ωμσ 0 0 Ωμν 0 ρDν∂μ=□ Ωμνρ Dν∂μ

DμDσ DμDν − ρDμ∂ν=□ 0 ρDμ∂ν=□ 0 D2DμDν D2Dμ∂ν ρDμDν

Dμ∂σ 0 0 Dμ∂ν 0 ρDμDν ρDμ∂ν □DμDν

Dσ∂μ Dν∂μ − ρΩμν 0 ρΩμν 0 D2Dν∂μ □D2Ωμν ρDν∂μ
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transverse, except for a piece that depends on the gauge-
fixing parameter:

ΔμσðpÞpσ ¼ iξ
pμ

p2
: ð21Þ

Third, note that contributions of the form ϒðpÞ (with the
four-momentum replaced by the four-velocity uμ) appear in
the context of certain classical Lagrangians associated with
the SME, especially in those that arise for the b coefficients
(connected to Finsler b space) [64]. In Euclidean space, this
quantity corresponds to the Gramian of the two vectors that
appear in the expression. As there is a connection between
the CPT-odd electromagnetic sector and the b coefficients
of the fermionic sector, such quantities are expected to
appear. The structure of ϒðpÞ was also observed in the
graviton propagator evaluated in the context of the linear-
ized Einstein-Hilbert gravity (without torsion) modified by
a spontaneous violation of Lorentz symmetry. The latter is
induced by the bumblebee field [65,66] using generalized
versions of the Barnes-Rivers spin operator basis [67–69].
Finally, note that ϒðpÞ is a dimensionless function, as the
mass dimension of pμ cancels the inverse mass dimension
of Dμ.
Fourth, it is interesting to recall that the propagator (20a)

has an antisymmetric term, proportional to the projector
Lμσ while the other pieces are symmetric with respect to
the interchanges μ → σ, σ → μ. The Feynman propagator3

is defined by the vacuum expectation value of the time-
ordered product of field operators evaluated at distinct
spacetime points,

iðDFÞαβðx − yÞ≡ h0jTðAαðxÞAβðyÞÞj0i: ð22Þ

The Fourier transform of the latter is symmetric with
respect to the combination of interchanging its indices
and pμ ↦ −pμ. The antisymmetric piece of the propagator
(20a) appears in CPT-odd electrodynamics, e.g., in the
MCFJ model or Chern-Simons theory in (1þ 2) dimen-
sions. But this piece does not mean that the propagator
loses its symmetry. Indeed, the propagator continues being
symmetric with regards to the two simultaneous operations
mentioned before.

A. Dispersion relations

The poles of the propagator provide two dispersion
equations for this model,

p2 ¼ 0; ð23aÞ

1þ 4½D2p2 − ðD · pÞ2� ¼ 0; ð23bÞ

as usual in theories with higher-dimensional operators. The
first one corresponds to the typical Maxwell pole, which
also appears in the Podolsky and Lee-Wick models as well
as in the corresponding anisotropic LV versions [60]. The
second equation contains information on the higher-
derivative dimension-five term. It is reasonable to compare
it to the dispersion equation obtained for the dimension-
three MCFJ theory (see Eq. (25) in the first paper of [8]),
given in terms of the CFJ background vector ðkAFÞμ:

p4 þ p2k2AF − ðkAF · pÞ2 ¼ 0: ð24Þ

The latter is a quartic-order dispersion equation, whereas
Eq. (23b) is simpler (only of second order). Such a
comparison reveals that the present dimension-five
MCFJ-like theory is totally distinct from the dimension-
three MCFJ model. The less involved dispersion equation
can be ascribed to the simple structure of the background
tensor that we have chosen in Eq. (6).
We will analyze the dispersion relations (DRs) for several

configurations of the LV background where it makes sense
to distinguish between purely timelike and spacelike pre-
ferred directions. If a DR does not approach the limit of
standard electromagnetic waves for zero Lorentz violation,
it will be called “exotic.” The latter are not necessarily
unphysical, but they decouple in the low-energy regime.
Dispersion laws whose group/front velocities are singular or
exceed the value 1 will be referred to as “spurious.” For a
purely timelike background, Dγ ¼ ðD0; 0Þγ , we have

p2 ¼ D2
0

4
; ð25Þ

which does not correspond to a propagating mode. It is a
nonphysical DR, as it does not represent a relation
between energy and momentum. Thus, there is no propa-
gating mode associated with a timelike background
vector. This property is an important difference between
the dimension-five model under consideration and MCFJ
theory. The latter exhibits a DR associated with a timelike
background vector. However, this timelike sector is
plagued by consistency problems [8].
Now, for a purely spacelike background, Dγ ¼ ð0;DÞγ ,

the corresponding DR is

p0 ¼
1

jDj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ D2p2 − ðD · pÞ2

r
¼ 1

jDj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ jD × pj2

r
;

ð26Þ

which can also be written as

p0 ¼
1

jDj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ D2p2sin2α

r
; ð27aÞ

3Note that we did not determine the Feynman propagator here,
as the latter requires the definition of a suitable pole structure. The
Feynman propagator is mentioned to emphasize the symmetries
that must be the same as those of the Green’s function.
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with the angle α enclosed by D and p:

D · p ¼ jDjjpj cos α: ð27bÞ

This is a DR that is compatible with the propagation of
signals, whose properties need to be examined. In the
current section, we are especially interested in classical
causality that is characterized by the behavior of the group
and front velocity ugr and ufr, respectively, where [70]

ugr ≡ ∂p0

∂p ; ufr ≡ lim
jpj↦∞

p0

jpj : ð28Þ

Classical causality is established as long as both ugr ≡
jugrj ≤ 1 and ufr ≤ 1. We now evaluate these characteristic
velocities for DR (26). The front velocity is

ufr ¼ lim
jpj↦∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4D2p2
þ sin2α

s
¼ sin α; ð29Þ

as α ∈ ½0; π�. Furthermore, we investigate the behavior of
the group velocity:

ugr ¼
D2p −DðD · pÞ

jDj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ jD × pj2

p ; ð30Þ

whose magnitude is

ugr ¼
jD × pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4þ jD × pj2
p ¼ sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð4x2Þ þ sin2α
p ; ð31Þ

where x≡ jDjjpj is a dimensionless parameter. Large
momenta correspond to large x. Hence,

lim
jpj↦∞

ugr ¼ lim
x↦∞

ugr ¼ 1; ð32Þ

independently of the angle α. As ugr ≤ 1 and ufr ≤ 1,
classical causality is established for the whole range of LV
coefficients and momenta. Figure 1 presents the behavior of
the magnitude of the group velocity. The graph shows a
monotonically increasing group velocity that reaches the
asymptotic value 1, which is a behavior in accordance with
causality. It shares this property with the spacelike sector
of MCFJ theory where classical causality is guaranteed, as
well (see first paper of [9]). The mode obtained here is
exotic in the sense that it does not propagate when Lorentz
violation goes to zero. Hence, it does not approach the
standard DR in this limit. The mode must be understood
as a high-energy effect that propagates in a well-behaved
manner for large momenta.

B. Unitarity

The next step is to study unitarity at tree level, which is
performed by means of the saturated propagator SP [71].
The latter is a scalar quantity that is implemented by
contracting the propagator with external physical currents
Jμ as follows:

SP≡ JμiΔμνJν: ð33Þ

The current Jμ is assumed to be real and satisfies the
conservation law ∂μJμ ¼ 0, which in momentum space
reads pμJμ ¼ 0. In accordance with this method, unitarity
is assured whenever the imaginary part of the residue of the
saturation SP (evaluated at the poles of the propagator) is
non-negative. A way of carrying out the calculation is to
determine the eigenvalues of the propagator matrix, evalu-
ated at their own poles with current conservation taken
into account. For the propagator found in Eq. (20), the
saturation is

SP ¼ −i
�

J2 þ 4p2ðJ ·DÞ2
p2½1þ 4ðD2p2 − ðD · pÞ2Þ�

�
; ð34Þ

where JμLμαJα ¼ −iJμϵμακλJαDκpλ ¼ 0. Contracting the
propagator with two equal conserved currents corresponds
to getting rid of all gauge-dependent (and therefore,
unhysical) contributions. These usually are terms that
involve four-momenta with free indices corresponding to
the indices of the Green’s function. Although the term Lμα

does not have this structure, it vanishes when coupled to
two external conserved currents due to its antisymmetry.
Hence, the only Lorentz-violating contributions of the
propagator that have an impact on unitarity (based on
our criterion) are the denominators and the symmetric term,

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6
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x

gr

FIG. 1. Magnitude of the group velocity of Eq. (31) for the
spacelike case with α ¼ 0 (black, plain), α ¼ π=40 (red, dashed),
α ¼ π=10 (blue, dotted), α ¼ π=4 (green, dashed-dotted), and
α ¼ π=2 (orange, long dashes).
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DμDν, formed from a combination of two preferred
spacetime directions.
Now, for the Maxwell pole, p2 ¼ 0, the residue of the

saturation is

ResðSPÞjp2¼0 ¼ −i
�

J2

1 − 4ðD · pÞ2
�				

p2¼0

: ð35Þ

At the pole p2 ¼ 0 it holds that p2
0 ¼ p2. From the law of

current conservation we obtain p0J0 ¼ p · J. Therefore, we
can cast the corresponding imaginary part into the form

Im½ResðSPÞjp2¼0� ¼
1

1 − 4ðD0jpj −D · pÞ2
jp × Jj2
jpj2 ≥ 0:

ð36Þ

For any background, Dμ ¼ ðD0;DÞμ, the imaginary part of
the saturation (36) is non-negative for small momenta, but
becomes negative as the momentum increases. For a
timelike configuration, Dμ ¼ ðD0; 0Þμ, and for a spacelike
configuration, Dμ ¼ ð0;DÞμ, the quantity (36) becomes
negative for 1=4 < D2

0jpj2 and 1=4 < ðD · pÞ2, respec-
tively. So, unitarity is not assured at the pole p2 ¼ 0 for
all configurations possible.
For the second DR, Eq. (23b), it only makes sense to

examine the spacelike configuration, Dμ ¼ ð0;DÞμ, where

p2 ¼ 1 − 4ðD · pÞ2
4D2

: ð37Þ

It is reasonable to write the saturation as

SP ¼ −i
�

J2 þ 4p2ðD · JÞ2
p2½1 − 4ðD2p2 − ðD · pÞ2Þ�

�

¼ i

p2 − 1−4ðD·pÞ2
4D2

�
J2

4D2p2
þ ðD · JÞ2

D2

�
: ð38Þ

Its residue at this pole is

ResðSPÞj
p2¼1−4ðD·pÞ2

4D2

¼ i

�
J2

1 − 4ðD · pÞ2 þ
ðD · JÞ2
D2

�
: ð39Þ

Due to current conservation, J0 ¼ ðp · JÞ=p0, the four-
current squared can be cast into

J2 ¼ −
J2½1þ 4ðD × pÞ2� − 4D2ðJ · pÞ2

1þ 4ðD × pÞ2

¼ −
J2½1 − 4ðD · pÞ2� þ 4D2½J2p2 − ðJ · pÞ2�

1þ 4ðD × pÞ2 : ð40Þ

In the standard case, current conservation implies that
J2 < 0, i.e., any physical four-current is spacelike.
However, this property does not necessarily hold in
Lorentz-violating theories, anymore—as shown by
Eq. (40). Inserting this result into Eq. (39) leads to the
residue

ResðSPÞ
			
p2¼1−4ðD·pÞ2

4D2

¼ i
D2

�
−4D4ðJ × pÞ2 þ ð1 − 4ðD · pÞ2Þ½4ðD · JÞ2ðD × pÞ2 − ðD × JÞ2�

ð1 − 4ðD · pÞ2Þ½1þ 4ðD × pÞ2�
�
: ð41Þ

There are configurations for which the imaginary part of
the latter is positive. For example, we can choose p parallel
to J, whereby Eq. (41) reduces to

ResðSPÞj
p2¼1−4ðD·pÞ2

4D2
;pkJ ¼ i

�
−

J2

1þ 4ðD × pÞ2 þ
ðD · JÞ2
D2

�
:

ð42Þ

The first (negative) term can be suppressed for large
momenta as long as D∦p. As the second (positive)
contribution does not depend on the momentum, the
imaginary part of the residue can be positive for large
enough momenta. Hence, there are configurations of back-
ground field, large momenta, and external current for which
unitarity is valid. This behavior is in accordance with the
previous interpretation that the mode is exotic and must
be interpreted as a high-energy effect. In a more specific

way, if θ is the angle between D and J, we have ðD · JÞ2 ¼
D2J2cos2θ and ðD × pÞ2 ¼ D2p2sin2θ. Thus, the residue
(42) reads

ResðSPÞ
			
p2¼1−4ðD·pÞ2

4D2
;pkJ

¼ i

�
−

J2

1þ 4D2p2sin2θ
þ J2cos2θ

�

¼ iJ2sin2θ

�
4ðD · pÞ2 − 1

4ðD × pÞ2 þ 1

�
; ð43Þ

whose imaginary part is positive for

ðD · pÞ2 > 1

4
: ð44Þ

The latter condition assures unitarity. A more general case
to be investigated is D⊥p with p∦J, for which D · p ¼ 0
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and ðD × pÞ2 ¼ D2p2. To examine it, we exploit observer
rotation invariance and employ the following coordinate
system:

D ¼ jDjx̂; p ¼ jpjŷ; J · ẑ ¼ jJj cos α; ð45Þ

in which

D · J ¼ jJjjDj sin α cosϕ; ð46aÞ

J · p ¼ jJjjpj sin α sinϕ; ð46bÞ

where ϕ is the angle between the x axis and the projection
of the vector J in the x-y plane.4 For this configuration, the
residue (41) can be expressed as

ResðSPÞ
			
p2¼1−4ðD·pÞ2

4D2

¼ −iJ2
�ð1þ 4D2p2Þcos2αþ sin2αsin2ϕ

1þ 4D2p2

�
: ð47Þ

The imaginary part of the latter is always negative, which
demonstrates unitarity violation for any choice of the
momentum and the angles. A similar investigation for
J⊥p yields a residue whose imaginary part can be either
positive or negative, also providing unitarity violation in
some situations.
To summarize, while causality is assured for any

configuration of the purely spacelike background, unitarity
can hold, but does not do so necessarily. In the next section
we will examine a more involved version of this first
higher-derivative model.

III. MAXWELL ELECTRODYNAMICS MODIFIED
BY A CPT-ODD DIMENSION-FIVE HIGHER-
DERIVATIVE TERM: A SECOND MODEL

In the last section, we have examined a CPT-odd,
dimension-five, nonminimal extension of the electromag-
netic sector, specifically represented by the CFJ-like
Lagrange density

1

2
ϵκλμνAλðk̂AFÞκFμν; ð48Þ

where the background vector field ðk̂AFÞκ was written
according to Eq. (8c). As a second possibility, we propose
the more sophisticated choice

ðk̂AFÞκ ¼ ðkð5ÞAFÞα1α2κ ∂α1∂α2 ¼ TκTα1Tα2∂α1∂α2 ¼ TκðT · ∂Þ2;
ð49Þ

where Tκ is a Lorentz-violating four-vector whose mass
dimension is

½Tκ� ¼ −1=3; ð50Þ

or equivalently ½T3
κ � ¼ −1. In contrast to the theory studied

before, the vectorlike background field is now also con-
tracted with the additional derivatives. This structure
is supposed to render the properties of the current theory
more involved than those of the previously studied one.
Modifying Maxwell’s theory by including this term into its
Lagrange density, leads to a higher-derivative (dimension-
five) anisotropic MCFJ-like theory described by

L ¼ −
1

4
FμνFμν þ 1

2
ϵκλμνAλTκðT · ∂Þ2Fμν þ

1

2ξ
ð∂μAμÞ2:

ð51Þ

In Appendix B we establish the connection between the
modifications given by Eqs. (9), (51) and the very general
compilation of Lorentz-violating contributions listed in
[46]. Now, the latter Lagrangian can also be written as

L ¼ 1

2
AμΞμνAν; ð52aÞ

with the operator

Ξμν ¼ □Θμν − 2L̃μν −
1

ξ
□Ωμν; ð52bÞ

sandwiched between two gauge fields. Note that Eq. (51)
is directly linked to the photon sector of Myers-Pospelov
theory (cf. the first paper of [38]). The latter was initially
constructed as a prototype of higher-derivative Lorentz-
violating theories and includes dimension-five modifica-
tions of scalars, Dirac fermions, and photons. In [40,41],
certain properties of its photon sector are the focus. Our
Eq. (51) corresponds to the theory studied in the latter
references for the correspondence Tμ ¼ g1=3nμ (with their
coupling constant g and preferred direction nμ) and the
choice ξ ¼ −1 of the gauge fixing parameter.
Reference [40] is primarily dedicated to studying classical
causality. Unitarity is analyzed in [41] for a lightlike
background vector Tμ based on the validity of the optical
theorem at tree level. In what follows, we intend to discuss
additional aspects of classical causality of this particular
theory. Furthermore, the forthcoming investigation of
unitarity is new in the sense that it relies on a different
technique (investigation of the residues of the saturated
propagator) and it is carried out for different sectors of the
theory (timelike and spacelike preferred directions Tμ).
Now, comparing the operator Ξμν of (52b) to that of

Eq. (10b), it is no longer possible to extract a d'Alembertian
from it. The projectors Θμν, Ωμν are given as before by

4Note that there is no connection between the x axis used here
and the variable x employed previously, e.g., in Eq. (31).
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Eq. (11) and the Lorentz-violating antisymmetric operator
now reads

L̃μν ¼ ϵμκλνTκðT · ∂Þ2∂λ: ð53Þ

To determine the propagator of the theory given by
Eq. (51), we propose the following Ansatz:

Δμ
α ¼ aΘμ

α þ bL̃μ
α þ cΩμ

α þ eTμTα þ fðTμ∂α þ Tα∂μÞ;
ð54Þ

that must satisfy the identity

ΞνμΔμ
α ¼ ηνα: ð55Þ

The algebra of the tensor operators Θνμ, L̃μν, Ωνμ, TνTμ,
Tν∂μ, and Tμ∂ν is the same as that presented in Table I with
the replacement Dμ → Tμ to be performed. For brevity, we
introduce

ρ≡ Tμ∂μ; ð56aÞ

Γ̃αν ≡ L̃νμL̃μ
α

¼ −½TαTν□ − ðTν∂α þ Tα∂νÞρ
þ ðρ2 − T2

□ÞΘνα þΩναρ
2�ρ4: ð56bÞ

To find the scalar operators a…f, we start from the
tensor equation (55) and employ the algebra of the tensor
operators as before. The calculation is completely analo-
gous. After performing some algebraic simplifications,
we obtain

a ¼ □

Λ
; b ¼ 2

□
a; c ¼ −

ξ

□
− 4

ρ6

□Λ
;

e ¼ −4
ρ4

Λ
; f ¼ 4

ρ5

□Λ
; ð57aÞ

where

Λ ¼ □
2 þ 4ðρ2 − T2

□Þρ4: ð57bÞ

The form of the propagator in momentum space is

ΔμαðpÞ ¼
−i

p2fp4 þ 4½T2p2 − ðT · pÞ2�ðT · pÞ4g

×

�
p4ημα − 2ip2ðT · pÞ2εμκλαTκpλ

þ fð1þ ξÞ½4ðT · pÞ6 − p4� − 4ξT2p2ðT · pÞ4g
×
pμpα

p2
þ 4p2ðT · pÞ4TμTα

− 4ðT · pÞ5ðTμpα þ TαpμÞ
�
: ð58Þ

As before, the parts of the propagator independent of the
gauge-fixing parameter are transversal, i.e., the result of
Eq. (21) can be carried over. Taking into account the
correspondence Tμ ¼ g1=3nμ and the choice ξ ¼ −1, we
found that our Δμα=i of Eq. (58) corresponds to Eq. (72)
of [40].

A. Dispersion relations

As observed in the first model, the propagator poles
provide two dispersion equations, namely

p2 ¼ 0; ð59aÞ

p4 þ 4½T2p2 − ðT · pÞ2�ðT · pÞ4 ¼ 0: ð59bÞ

The first again corresponds to the usual Maxwell pole,
while the second involves LV modifications caused by the
higher-derivative term. We will analyze the second
dispersion equation for two configurations of the LV
background, which exhibit preferred directions in a space-
time modified by Lorentz violation. We need to notice that
the dispersion equation (59b) is different from Eq. (23b), as
it still makes sense when the LV coefficient vanishes,
whereas expression (23b) does not. Hence, the classifica-
tion “exotic” will be not used here. A DR originating from
Eq. (59b) can be named spurious, when it exhibits
unphysical behavior, or unconventional, when it is well
behaved. For a purely timelike background, Tγ ¼ ðT0; 0Þγ ,
we have

p�
0 ¼ jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 ∓ 2T3
0jpj

q ; ð60Þ

which is equal to Eq. (19) in [40]. In contrast to the first
model, there are now two distinct modified modes. The
notation ⊕ =⊖ refers to the mode with the plus and minus
sign label, respectively. The energy is well defined for the
mode ⊖, but not for the mode ⊕, for which it is only
meaningful as long as jpj < 1=ð2T3

0Þ. Furthermore, a sign
change of the controlling coefficient T0 simply inter-
changes the two DRs. Hence, without restriction of general-
ity, we assume a non-negative coefficient: T0 ≥ 0.
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On the other hand, for a purely spacelike background,
Tγ ¼ ð0;TÞγ , the corresponding DR is

p̃�
0 ¼ jpj



1þ 2jTj6jpj2cos4α

� 2jTj3jpjcos3α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jTj6jpj2cos2αþ 1

q �
1=2

; ð61aÞ

with the angle α enclosed by T and p:

T · p ¼ jTjjpj cos α: ð61bÞ

The latter is confirmed by Eq. (29) in [40] when the
appropriate replacements are carried out. Recall that
ðT · pÞ3, ðT · pÞ4T2, have mass dimension equal to 2, while
ðT · pÞ2T4 is dimensionless. It is possible to show that the
energy (61a) is real for any absolute value of the background
vector and direction relative to p, that is, p̃2

0 > 0. Besides,
the DR of the mode⊕ is mapped to that of the mode⊖ and
vice versa when the direction of T is reversed, i.e., when
T ↦ −T or α ↦ π − α. When electromagnetic waves
propagate along a direction perpendicular to T, Lorentz
violation does not have any effect and the DR is standard. In
the suitable momentum range, Eqs. (60) and (61a) represent
DRs compatible with a propagation of signals.
As before, we investigate classical causality via the

group and front velocity ugr and ufr, respectively, defined in
Eq. (28). We now evaluate these characteristic velocities for
DRs originating from the dispersion equation (59b). On the
one hand, we compute the front velocity for DR (60). For
the mode⊕, the latter is not defined, as the energy becomes
complex for momenta beyond 1=ð2T3

0Þ. For the mode ⊖,
we obtain

u−fr ¼ lim
jpj↦∞

p−
0

jpj ¼ lim
jpj↦∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2T3

0jpj
q ¼ 0: ð62Þ

On the other hand, we evaluate the group velocity:

u�
gr ¼

∂p�
0

∂p ¼ 1 ∓ T3
0jpj

ð1 ∓ 2T3
0jpjÞ3=2

p
jpj ; ð63Þ

whose absolute values read (cf. also Eq. (21) in [40])

uþgr ¼
1 − T3

0jpj
ð1 − 2T3

0jpjÞ3=2
				
jpj<1=ð2T3

0
Þ
;

u−gr ¼
1þ T3

0jpj
ð1þ 2T3

0jpjÞ3=2
; ð64Þ

where uþgr only makes sense for the range of momenta
jpj < 1=ð2T3

0Þ, which is the same range that assures real
energies for this mode. The behavior of u�gr is depicted in

Fig. 2. The large-momentum limit of the group velocity for
the mode ⊖ is simply given by

lim
jpj↦∞

u−gr ¼ 0: ð65Þ

The results for the front and group velocity indicate that
signals do not propagate for large momenta. Furthermore,
u−gr is well behaved for all momenta, whereas uþgr exhibits
a singularity at jpj ¼ 1=ð2T3

0Þ. For jpj > 0, classical
causality breaks down for this mode. Thus, the mode ⊕
must be considered as spurious. The mode ⊖ is neither
spurious nor exotic, but it is, indeed, an unconventional
mode that does not propagate for large momenta.
The next step is to investigate the properties of DR (61a).

The associated front velocity is calculated as

u�fr ¼ lim
jpj↦∞

p̃�
0

jpj
¼ lim

jpj↦∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jTj6jpj2cos4α� 2jTj6jpj2cos4α

q
; ð66Þ

which provides

uþfr ¼ lim
jpj↦∞

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jTj6jpj2cos4α

q
¼ ∞; u−fr ¼ 1; ð67Þ

independently of the choice of T. Hence, the front velocity
is divergent for the mode ⊕, which again indicates a
breakdown of classical causality for this mode, whereby it
is spurious. In contrast to that, the front velocity for the
mode ⊖ is well behaved. What remains to be done is to
study the properties of the group velocity:
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FIG. 2. Group velocity (64) for the mode ⊕ (blue, plain) and
the mode ⊖ (red, dashed) as a function of T3

0jpj≡ x.
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u�
gr ¼

∂p̃�
0

∂p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT · pÞ2T4

p
½pþ 4ðT · pÞ3T2T� � ðT · pÞ2T½3þ 4ðT · pÞ2T4�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðT · pÞ2T4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ 2ðT · pÞ4T2 � 2ðT · pÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT · pÞ2T4

pq : ð68Þ

whose absolute value is

u�gr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½4x3cos4αþ 3xcos2α�2 þ ðx2=4Þsin2ð2αÞ þ 1� UðxÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2cos2α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2cos4αþ 1� 2xcos3α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2cos2α

pp ; ð69aÞ

where jTj3jpj≡ x and

UðxÞ ¼ 2xcos3α½ð2þ 4x2cos2αÞ2 − 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2cos2α

p
: ð69bÞ

The plots shown in Fig. 3 illustrate the behavior of the
group velocity for the unconventional modes ⊕ and ⊖
for different angles. For the mode ⊕, the norm of the
group velocity is equal to 1 for x ¼ 0 and can be either
larger or smaller than 1 for x > 0. For α ∈ ½0; π=2Þ, it
steadily becomes larger for x > 0, which implies cau-
sality violation. For α ∈ ðπ=2; πÞ, it falls below 1 for
x > 0. In this regime, it has a minimum for a certain
value of x and increases again whereupon it approaches
1 from below in the limit of large momenta. This
behavior is compatible with classical causality. For
α ¼ π, the group velocity decreases monotonically with
x until it reaches zero. Finally, the group velocity
corresponds to the standard result ugr ¼ 1 when
α ¼ π=2, as the dispersion relation is not modified in
this case. The general behavior of the mode ⊖ is
analogous when α is replaced by π − α. Hence, the
mode ⊕ cannot propagate for large momenta when the

momentum points in a direction opposite to T and a
similar behavior occurs for the mode ⊖ when the
momentum is parallel to T. Thus, these results seem
to show that the mode ⊕ preserves classical causality
for T · p ≤ 0, whereas ⊖ exhibits this property for
T · p ≥ 0. To conclude, the mode ⊕ is spurious for
any choice of α due to Eq. (67), whereas ⊖ is only
spurious for T · p ≤ 0.

B. Unitarity

The analysis of unitarity at tree level follows the same
procedure applied in Sec. II B. For the propagator found in
Eq. (58), the saturation is

SP ¼ −i
�

p2J2 þ 4ðT · pÞ4ðT · JÞ2
p4 þ 4½T2p2 − ðT · pÞ2�ðT · pÞ4

�
: ð70Þ
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FIG. 3. Group velocity of Eq. (70) for the mode ⊕ for α ¼ 0 (black, plain), α ¼ 2π=5 (red, dashed), α ¼ π=2 (blue, dotted),
α ¼ 9π=10 (green, dashed-dotted), and α ¼ π (orange, long dashes) (a) Corresponding result for the mode ⊖ for α ¼ 0 (black, plain),
α ¼ π=10 (red, dashed), α ¼ π=2 (blue, dotted), α ¼ 3π=5 (green, dashed-dotted), and α ¼ 9π=10 (orange, long dashes) (b).
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In contrast to the first model, the Maxwell pole cancels in
the saturated propagator. For the timelike configuration,
Tγ ¼ ðT0; 0Þγ , the DR is given by Eq. (60). Then, the
saturated propagator is

SPjtimelike ¼ −i
�

p2J2 þ 4T6
0p

4
0J

2
0

ð1 − 4T6
0p

2Þðp2 − p2þÞðp2 − p2
−Þ
�
; ð71aÞ

where

p2
�≡p2

0�−p2¼ p2

1∓2T3
0jpj

−p2¼� 2T3
0jpj3

1∓2T3
0jpj

: ð71bÞ

We deduce that p2þ only makes sense for jpj < 1=ð2T3
0Þ

where it is larger than zero. Besides, we observe that
p2
− ≤ 0 for all values of jpj. Apart from that, we have the

useful relation

p2þ − p2
− ¼ 4T3

0jpj3
1 − 4T6

0p
2
: ð72Þ

The physical four-current squared can be conveniently
expressed in the form

J2 ¼ −
1

p2
0�

½ðJ × pÞ2 þ p2
�J

2�: ð73Þ

Note that p2
− ≤ 0 according to Eq. (71b), which does not

render the four-current squared negative for all configura-
tions possible. Now, we use Eq. (73) to write the residues
for both poles as

ResðSPÞjp2¼p2
�

¼ � i
p2
0�

�
p2
�ðJ × pÞ2 þ p4

�J
2 − 4T6

0p
4
0�ðJ · pÞ2

4T3
0jpj3

�
:

ð74Þ

This expression is involved and can be better analyzed
for some special configurations. For the particular case
Jkp, we obtain ðJ × pÞ2 ¼ 0 and J · p ¼ jJjjpj. Thus, the
residue (74) is

ResðSPjp2¼p2
�
Þ ¼ �ip2

0�J
2

�ðp4
�=p

4
0�Þ − 4T6

0p
2

4T3
0jpj3

�
; ð75Þ

which leads to a vanishing result when we take into account
that

p2
�

p2
0�

¼ �2T3
0jpj: ð76Þ

Avanishing residue means that the corresponding pole does
not contribute to physical observables, which is a situation

compatible with unitarity. Another particular configuration
is J⊥p for which ðJ × pÞ2 ¼ J2p2 and J · p ¼ 0. In this
case, the residue (74) reduces to

ResðSPjp2¼p2
�
Þ ¼ �i

p2
�

p2
0�

J2
�
p2 þ p2

�
4T3

0jpj3
�
; ð77Þ

which can be simplified as

ResðSPjp2¼p2
�
Þ ¼ i

J2

2

�
1

1 ∓ 2T3
0jpj

�
: ð78Þ

The latter result confirms unitarity for both modes as far as
the associated DRs are real, which requires jpj < 1=ð2T3

0Þ.
Alternatively, the residue (74) can be expressed as

ResðSPÞjp2¼p2
�
¼ ∓i

p2
�J

2 þ ð2T3
0p

2
0�J0Þ2

4ðT0jp3jÞ3

¼ i
2

ðJ1Þ2 þ ðJ2Þ2
1 ∓ 2T3

0jp3j ; ð79Þ

which holds in an observer frame where the three-
momentum points along the third axis: p ¼ ð0; 0; p3Þ.
Due to observer Lorentz invariance and isotropy of the
theory considered, such a choice does not restrict general-
ity, confirming the particular results obtained for Jkp and
J⊥p. For the mode ⊕, the imaginary part of the residue is
non-negative for jpj < 1=ð2T3

0Þ, assuring unitarity in the
momentum range in which DR (60) is real. But unitarity of
this mode is violated for jpj ≥ 1=ð2T3

0Þ, when the energy
associated becomes complex. This is an expected break-
down, therefore.
The imaginary part of the residue is manifestly non-

negative for the mode ⊖, ensuring unitarity for the full
momentum range. These properties are in accordance with
the observations made in Sec. III A and Fig. 2. In contrast to
⊕, the mode⊖ is well behaved with respect to both classical
causality and unitarity at tree level. However, it is interesting
to mention that a breakdown of classical causality does not
necessarily imply unitarity violation, as can be seen for the
spurious mode ⊕ where jpj ∈ ½0; 1=ð2T3

0ÞÞ.
For the purely spacelike choice, Tγ ¼ ð0;TÞγ , the

saturated propagator is

SPjspacelike ¼ −i
�
p2J2 þ 4ðT · pÞ4ðT · JÞ2
ðp2 − p̃2þÞðp2 − p̃2

−Þ
�
; ð80aÞ

where in the same manner as before, we introduce the
auxiliary quantities

p̃2
�≡ p̃2

0�−p2¼2ðT ·pÞ3
�
ðT ·pÞT2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðT ·pÞ2T4

q �
:

ð80bÞ
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The four-current squared can be written as in Eq. (73) with
the replacements p0� ↦ p̃0� and p� ↦ p̃�. We observe
that p̃2þ ≤ 0 for T · p ≤ 0 and p̃2

− < 0 for T · p ≥ 0.
Therefore, the standard condition J2 < 0 for a conserved
current does again not necessarily hold in the Lorentz-
violating context. Based on this result, we write the residues
of the two poles in the form

ResðSPÞjp2¼p̃2
�

¼ � i
p̃2
0�

�
p̃2
�ðJ × pÞ2 þ p̃4

�J
2 − 4p̃2

0�ðT · pÞ4ðT · JÞ2
4ðT · pÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT · pÞ2T4

p �
:

ð81Þ

The latter can also be cast into

ResðSPÞjp2¼p̃2
�
¼ i

�
N�

2p̃2
0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT · pÞ2T4

p �
; ð82aÞ

with

N� ¼∓ f2ðT · pÞðT · JÞ2p2 þ 4ðT · pÞ4ðT · JÞ2ϒ�
− 2J2ϒ2

�ðT · pÞ3 −ϒ�ðJ × pÞ2g; ð82bÞ

N� ¼∓ f2ðT · pÞ½p2ðT · JÞ2 − J2ðT · pÞ2�
−ϒ�½4ðT · pÞ4ðJ × TÞ2 þ ðJ × pÞ2�g; ð82cÞ

and

ϒ� ¼ ðT · pÞT2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT · pÞ2T4

q
: ð82dÞ

Although the residue of Eq. (82a) does not look that
involved, an analysis of this expression turned out to be
challenging. Based on the new quantities of Eq. (82d), the
modified DRs can be expressed in a short manner via

p̃2
0 ¼ p2 þ 2ðT · pÞ3ϒ�: ð83Þ

A further useful relation in this context is

ϒ2
� ¼ 1þ 2ðT · pÞT2

�
ðT · pÞT2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT · pÞ2T4

q �
¼ 1þ 2ðT · pÞT2ϒ�: ð84Þ

According to our criterion, unitarity is guaranteed as long
as N� ≥ 0. The second contribution of N� is manifestly
non-negative due to �ϒ� > 0. However, the first is not.
For the configurations Jkp and T⊥p, the first term simply
vanishes, i.e., unitarity can be demonstrated quickly for
these special cases. In particular, the imaginary part of the
residue for Jkp is

Im½ResðSPÞjp2¼p̃2
�
� ¼ � 2ϒ�ðT · pÞ4ðJ × TÞ2

p̃2
0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT · pÞ2T4

p ≥ 0: ð85Þ

Specifically for the situation T⊥p, DR (84) recovers
the usual Maxwell DR and ϒ� ¼ 1, so that the residue
simply yields

Im½ResðSPÞjp2¼0� ¼
jJ × pj2
2p2

≥ 0: ð86Þ

The origin of the factor of 2 in the denominator is due to the
existence of two distinct DRs for nonzero Lorentz violation
and configurations other than T⊥p. When both merge for
vanishing Lorentz violation, each contributes the above
value to the residue providing its standard result.
In contrast, for most other choices, an evaluation of the

inequality N� ≥ 0 seems to be highly involved. What can
be done, is to employ observer rotational invariance and to
choose a coordinate system such that the momentum points
along the third axis and T, J lie in the plane spanned by the
first and third axes. So we consider

p¼

0
B@

0

0

jpj

1
CA; T¼ jTj

0
B@

sinα

0

cosα

1
CA; J¼ jJj

0
B@

sinθ

0

cosθ

1
CA;

ð87Þ

with α ∈ ½0; 2π� and θ ∈ ½0; 2π�. Inserting these represen-
tations into the left-hand side of N� ≥ 0, we obtain

N�
J2p2

≡ g�ðξ; θ; αÞ ≥ 0; ð88aÞ

g�ðξ;θ;αÞ
¼�4ξ3ð1þ sin2αÞðsinθ− sinαcosθÞ2

þ½4ξ2ðsinθ− sinαcosθÞ2þ sin2θ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1þ sin2αÞ2ξ2

q
�ξ½ð2þ cos2αÞsin2θ−2sinαsinð2θÞ�; ð88bÞ

with

ξ≡ jpjjTj3: ð88cÞ

The left-hand side of the new inequality are functions of
ξ ≥ 0 and the two angles α, θ. It is challenging to prove that
g�ðξ; θ; αÞ is non-negative for general ξ and angles. Plots
of these functions for a given choice of ξ are presented
in Fig. 4. According to the plots, both functions most
probably do not provide negative values. Numerical inves-
tigations allow for determining the zeros of g�ð1; θ; αÞ;
cf. Fig. 5. There are no isolated zeros, but they lie along
certain lines. Evaluating the first and second derivatives at
these points, indicates that they are local minima. Minima
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other than those were not found. Hence, there are strong
numerical indications that g�ð1; θ; αÞ are non-negative.
Analog results can be obtained for ξ ≠ 1, ensuring unitarity
for such more general configurations of the purely space-
like case.

IV. CONCLUSIONS AND FINAL REMARKS

We analyzed Maxwell’s electrodynamics modified by
dimension-five and CPT-odd higher-derivative terms that
are part of the photon sector of the nonminimal Standard
Model extension. The first dimension-five term to be
addressed was a kind of higher-derivative CFJ-like con-
tribution. The propagator of the theory was computed by
means of the algebra for the tensor operators involved.
Based on this result, modifications of the properties of
wave propagation due to the presence Lorentz violation
were investigated.
The analysis of the dispersion relations obtained from the

propagator poles revealed that signals do not propagate at
all for the purely timelike sector. The modes of the purely
spacelike sector decouple from the theory for low energies
and only propagate in the high-energy regime. For this
sector, classical causality is preserved for any choice of

background coefficients. Furthermore, unitarity at tree level
was examined by contracting the propagator with con-
served currents and studying the pole structure of the
resulting expression. It was found that unitarity can be
preserved in some special cases. In general, however, the
dispersion relations describe nonunitary modes. This
propagator possesses some analogy with that of MCFJ
theory, which was shown in Appendix A. But the
dispersion relations and the related physics of these two
models differ from each other.
The second dimension-five term examined was an

anisotropic higher-derivative CFJ-like contribution that
can be identified with the photon sector of Myers-
Pospelov theory. The propagator was again computed
and the dispersion relations were obtained from it for a
purely timelike and a purely spacelike background vector
field. For the timelike background, one mode was found
to be unphysical, whereas the second generally obeys
classical causality and unitarity, as shown in Eq. (79).
For the spacelike configuration, there are two modes as
well. One mode is causal when the propagation direction
encloses an angle α ∈ ½0; π=2� with the spacelike preferred
direction and noncausal for complementary angles. The
other mode is noncausal for all angles α. However,

FIG. 5. Functions g�ð1; θ; αÞ of Eq. (88b) in the regime α, θ ∈ ½0; π� for the mode⊕ (a) and⊖ (b). The zeros obtained numerically lie
along the plain, blue lines.

FIG. 4. Functions g�ð1; θ; αÞ of Eq. (88b) for the mode ⊕ (a) and ⊖ (b).
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numerical investigations indicate that unitarity is preserved
for a large subset of configurations within this scenario (in
spite of causality violation).
The results of this paper complement our findings for

nonminimal CPT-even extensions of the electromagnetic
sector considered in [60]. In general, the studies performed
for the CPT-odd extensions were easier from a technical
point of view in comparison to their CPT-even counter-
parts. Furthermore, our results reveal that a breakdown of
classical causality does not necessarily imply unitarity
violation at tree level. Indeed, with regard to our results
and those of [41], we can safely conclude that the photon
sector of Myers-Pospelov theory is well behaved with
respect to unitarity for a large number of parameter
choices—at least based on the criteria studied in the current
work and in [41]. This is the case even for the modes that
violate causality. It is also known that a violation of
classical causality does not always yield a violation of
causality at the microscopic level, as was demonstrated for
particular minimal models; cf. [72]. Therefore, noncausal
modes in this sense can still be of interest.
On the other hand, the fate of nonunitary modes is

uncertain, as long as contributions of even higher mass
dimensions that may cure this malign behavior are not
taken into account. Another point connected with quanti-
zation and unitarity of this theory is how to suitably fix the
gauge for addressing the additional degrees of freedom that
usually appear in higher-derivative theories. Such cases can
require a nonstandard gauge fixing condition. Another
question to be tackled is if there is an analog of the
Lee-Wick mechanism that allows us to preserve unitarity
by decoupling the ghost modes and removing the negative-
norm states from the asymptotic Hilbert space, even in the
sectors plagued by nonunitarity behavior. One possibility
of exploring this issue is to couple the higher-derivative
electrodynamics to fermions and to use the optical theorem,
as carried out in Ref. [73].
CJF theory, which is CPT-odd and of dimension three, is

considered as a prototype Lorentz-violating modification of
the photon sector that has been of great interest over the
past 30 years. As its properties have already been studied in
great detail, it was a natural step to look at its higher-
dimensional versions of which the photon sector of Myers-
Pospelov theory is one possible extension. We argued at
the beginning that dimension-three modifications are sup-
pressed for high energies, whereas the dimension-five
terms studied here gain importance in this regime. The
results of the paper indicate which sectors of the theory
should be disregarded and which are suitable for quantiza-
tion and phenomenological studies. Because of the argu-
ments mentioned before, it may be worthwhile to consider
modified particle-physics processes in the unitary sectors.

An analysis of cosmic-ray data is likely to lead to an
additional number of tight constraints on Lorentz violation
that complement the already existing dimension-five pho-
ton sector bounds in the data tables [19].
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APPENDIX A: COMPARISON TO PROPAGATOR
OF MCFJ THEORY

It would be interesting to compare the propagator (20)
with that of MCFJ theory, which will be carried out in the
current section. The MCFJ Lagrange density is

LMCFJ ¼ −
1

4
FαβFαβ −

1

4
εβαρφVβAαFρφ þ

1

2ξ
ð∂μAμÞ2;

ðA1Þ

where Vβ is the CFJ vector background and the last term is
included to fix the gauge. Such a Lagrange density can be
written as

LMCFJ ¼
1

2
Aβ⊞βαAα; ðA2aÞ

⊞βα¼□Θβα−
1

ξ
□ΩβαþSβα; Sβα¼ εβαφρVφ∂ρ; ðA2bÞ

with the projectors of Eq. (11). Using an algebra similar to
that of Table I, one obtains the following propagator:

Δαν ¼
1

□½□2 − ðV2
□ − λ2Þ�

× ½□2Θαν − fξ½□2 − ðV2□ − λ2Þ� þ λ2gΩαν

−□ðSαν þ VαVνÞ þ λðVα∂ν þ Vν∂αÞ�; ðA3Þ

with λ≡ Vμ∂μ. In momentum space, the latter is
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ΔανðpÞ ¼ −
i

p2½p4 − ðV · pÞ2 þ V2p2�
�
p4ΘανðpÞ − fξ½p4 − ððV · pÞ2 − V2p2Þ� − ðV · pÞ2gpαpν

p2

þ p2SανðpÞ þ p2VαVν − ðV · pÞðVαpν þ VνpαÞ
�
; ðA4aÞ

ΔανðpÞ ¼ −
i
p2

�
1 −

ðV · pÞ2
p4

þ V2p2

p4

�−1�
ηαν −

�
1 −

ðV · pÞ2
p4

þ ξ

�
1 −

ðV · pÞ2
p4

þ V2p2

p4

��
pαpν

p2

þ SανðpÞ
p2

þ VαVν

p2
−
V · p
p4

ðVαpν þ VνpαÞ
�
: ðA4bÞ

The replacement

Vμ

p2
↦ 2Dμ; ðA5Þ

implies

1 −
ðV · pÞ2

p4
þ V2p2

p4
↦ 1 − 4ðD · pÞ2 þ 4D2p2; ðA6aÞ

SανðpÞ
p2

↦ 2LβαðpÞ; ðA6bÞ

which, inserted into Eq. (A4a), leads to the propagator (20)
of the first dimension-five model examined. Furthermore,
this propagator, as it stands, corresponds to Eq. (3.3) of the
first paper of Ref. [9] for Vμ ↦ mkμ, ξ ↦ −ξ and nμ ↦ pμ,
with an appropriate choice of the prefactor. Here, m is the
Chern-Simons mass and nμ a fixed four-vector used in their
axial gauge fixing condition.

APPENDIX B: MAPPING TO THE
NONMINIMAL SME

The modifications that we considered in this paper are
as follows:

L1 ¼
1

2
ϵκλμνDκAλ□Fμν; ðB1aÞ

L2 ¼
1

2
ϵκλμνAλTκðT · ∂Þ2Fμν; ðB1bÞ

with the vector-valued background fields Dμ and Tμ. We
would like to map these Lagrangians onto those presented
in [46]. As the related field operators are of mass dimension

five, the correct Lagrangian must be Lð5Þ
A of their Table III

with the observer tensor kð5Þαϱλμν. The pieces antisymmetric
in ϱ, λ and μ, ν contribute only. By performing a partial

integration and neglecting the surface terms, Lð5Þ
A can be

brought into a form more suitable for us:

Lð5Þ
A ¼ −

1

4
kð5ÞαϱλμνFϱλ∂αFμν

¼ −
1

2
kð5Þαϱλμν∂ϱAλ∂αFμν

¼ 1

2
kð5ÞαϱλμνAλ∂ϱ∂αFμν: ðB2Þ

Comparing the latter to the previous Lagrange densities
leads to the correspondences

kð5Þαϱλμν ¼ ηαϱεκλμνDκ; ðB3aÞ

kð5Þαϱλμν ¼ TαTϱεκλμνTκ; ðB3bÞ

for L1 and L2, respectively. We see that both are symmetric
in α, ϱ due to the symmetry of the two spacetime
derivatives. The problem is that the tensors are not anti-
symmetric in ρ, λ. Hence, they should be antisymmetrized
by hand. For example, for the first Lagrangian, we obtain

kð5Þαϱλμν ¼ 1

2
½ηαϱεκλμνDκ − ηαλεκϱμνDκ�: ðB4Þ

Inserting the latter into Lð5Þ
A after performing the partial

integration leads to

Lð5Þ
A ¼ 1

4
½ηαϱεκλμνDκ − ηαλεκϱμνDκ�Aλ∂ϱ∂αFμν

¼ 1

4
½εκλμνDκAλ□Fμν − εκϱμνDκAλ∂ϱ∂λFμν�

¼ 1

4
½εκλμνDκAλ□Fμν − 2DκAλ∂λ∂ϱF̃κϱ�; ðB5Þ

with the dual electromagnetic field strength tensor F̃μν.
The second contribution vanishes due to the homogenous
Maxwell equations ∂ϱF̃ϱκ ¼ 0 that are still valid in the
presence of Lorentz violation. Hence, it is not necessary to
antisymmetrize the tensors in ϱ, λ by hand, whereby the
mappings of Eqs. (B3) are valid as they stand. The same
argument holds for the second modification.
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