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We present a method to find anomaly-free gauged Froggatt-Nielsen type models using results from
algebraic geometry. These methods should be of general interest for model building beyond the Standard
Model (SM) when rational charges are required. We consider models with a gauged Uð1Þ flavor symmetry
with one flavon and two Higgs doublets and three right-handed SM singlets to provide three model
examples based on different physical assumptions. The models we study are anomaly-free with no SM
neutral heavy chiral fermions, anomaly-free with SM neutral heavy chiral fermions, and supersymmetric
with SM neutral heavy chiral fermions where the anomalies cancel via the Green-Schwarz mechanism.
With these different models we show how algebraic methods may be used in model building, both to reduce
the charge constraints by calculation of Gröbner bases and to find rational solutions to cubic equations
using Mordell-Weil generators. Using these tools we find three phenomenologically viable models
explaining the observed flavor structure.
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I. INTRODUCTION

The mass spectrum of fermions spans at least 11 orders
of magnitude (from the top quark to the neutrinos) and if all
these masses are to be generated by the Higgs mechanism,
the couplings to the Higgs field must span an equal range.
However, neutrino masses are often assumed to be gen-
erated from a seesaw mechanism [1–4], or more generally,
a Weinberg operator [5]. If we adopt this explanation, the
charged fermion masses still span 6 orders of magnitude. A
famous explanation for this is the Froggatt-Nielsen (FN)
mechanism [6]. This provides an appealing explanation in
terms of suppression factors ðhSi=ΛFNÞn, where ΛFN is the
scale of integrated out physics, hSi the vacuum expectation
value of the “flavon” which breaks a new Uð1Þ gauge1

symmetry and n depends on the charges of the fields under
this new symmetry. A similar idea was also developed
independently by Bijnens and Wetterich in [7] but with
heavy scalar fields instead of the heavy fermions used in
[6]. Throughout the paper we will use the term FN-
mechanism independent of the origin of the suppression
factors. In addition to the FN-mechanism, we will consider

a two Higgs doublet model (2HDM), see [8] and the review
[9], where both Higgs fields are in general charged under
the new Uð1Þ group.
The main objective of this paper is to show how

algebraic and Diophantine geometry provides powerful
tools for finding rational flavon charges of the fermions and
Higgs fields under this new Uð1Þ symmetry. The Standard
Model gauge group is thus extended to SUð3ÞC × SUð2ÞL×
Uð1ÞY ×Uð1Þ0, where Uð1Þ0 denotes the new flavor de-
pendent symmetry. Since the Uð1Þ0 symmetry is local the
flavon charges have to cancel the triangle anomalies
[10–14] of this gauge group, in addition to providing
phenomenologically viable suppression factors for the fer-
mion masses and reproducing the mixing matrices for the
fermions. On top of this, we also want the flavon charges to
be rational. Demanding rational charges is a significant
challenge, since this then becomes related to Hilbert’s tenth
problem [15] which is known to have no general solution
[16]. We proceed in this manner with a simple motivation.
Since the twoUð1Þ gauge groups we know exist,Uð1ÞY and
Uð1ÞEM, have rationally quantized charges, it is natural to
assume that any new Uð1Þ should behave similarly.
One of the best motivations for a 2HDM as an extension

of the SM is its occurrence in supersymmetry (SUSY).
However, vanishing anomalies and the Froggatt-Nielsen
mechanism is contradictory in the SUSY setting [17,18].
Therefore we instead invoke the Green-Schwarz mecha-
nism [19], which is a string theoretic completion, to deal
with anomaly cancellation in the case of SUSY.
We have constructed a series of model examples to show

how the algebraic methods may be used. These models
have different mechanisms for anomaly cancellation and
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1The original FN-mechanism assumes that the symmetry is a
global one, but here we will assume that it is local.
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different phenomenological constraints imposed (we always
demand recreation of the charged fermion masses and the
quark mixing, Cabibo-Kobayashi-Masakava (CKM),
matrix):

(i) (Sections III and V) Here we study a 2HDM with
three right-handed SM-neutral fermions where all
anomalies vanish and neutrino masses are generated
via the Weinberg operator.

(ii) (Section VI) 2HDM particle content with three right-
handed neutrinos where all anomaly coefficients
vanish by the stated particle content, except the
Uð1Þ0 −Uð1Þ0 − Uð1Þ0 and graviton-graviton-Uð1Þ0
anomalies, which are assumed to vanish by
SM-neutral fermion content. The neutrino masses
are generated by a type-I seesaw mechanism.

(iii) (Section VII) Minimal supersymmetry with three
right-handed neutrinos where the anomalies cancel
via the Green-Schwarz mechanism and the neu-
trino masses are again generated by a type-I seesaw
mechanism.

The paper is organized as follows. In Sec. II we review
the Froggatt-Nielsen mechanism and derive the constraints
from anomaly cancellation and flavor phenomenology.
Next, in Sec. III we introduce the first model example
and show how algebraic geometry naturally enters. Some
aspects of algebraic geometry is discussed in Sec. IV and
the model example is then continued in Sec. V. The two
other model examples are given in Secs. VI and VII. Finally
Sec. VIII concludes the paper.

II. GAUGED FROGGATT-NIELSEN
MECHANISM IN 2HDMS

Let the SM gauge group be extended with a flavor
dependent Uð1Þ symmetry denoted Uð1Þ0. We assume that
all fermions and bothHiggs fields are charged under this new
symmetry and call this charge flavon charge. Moreover, we
assume that this symmetry is spontaneously broken when
a complex scalar S, the flavon, with flavon charge−1, gets a
vacuum expectation value (VEV). Just above the energy
scale hSi, it is assumed that there exists many heavy
vectorlike fermion singlets, called FN-fermions, with mass
∼ΛFN. At energies above hSi the observed fermions are
effectivelymassless and theYukawa couplingswe observe in
experiments are determined by physics at this scalewhere the
heavy FN-fermions get their mass via a Higgs mechanism
with a neutral scalarΦ0. The different flavor properties of the
fermions at the electroweak scale are encoded in different
powers of the symmetry breaking parameter ϵ ¼ hSi=ΛFN ≈
0.2, which, following Froggatt and Nielsen [6], is chosen to
fit the Wolfenstein parametrization [20] of the CKMmatrix.
The powers of ϵ are then given by the number of flavon
insertions needed for Uð1Þ0 invariance.
Assuming a 2HDM, the left-handed fermion fields we

have are fQi
L; ðUi

RÞc; ðDi
RÞc; Li

L; ðEi
RÞcg, where i ¼ 1, 2, 3

is the flavor index and ð·Þc denotes charge conjugation.

In addition we also have the two Higgs fields fΦ1;Φ2g.
We denote the flavon charges of these fields by Qi, ui, di,
Li, ei and H1;2 respectively. Let us already here note that
we will discuss physics at two different scales; the
electroweak scale and the large ΛFN scale. In general these
scales could be many orders of magnitude apart and one
should therefore compare the physics at these scales using
renormalization group evolution. This is, however, beyond
the scope of the current paper. In any case, we do not expect
large effects from this since the number of flavon insertions
depends logarithmically on the masses.
The Yukawa Lagrangian in a general 2HDM is given by

−LY ¼ Q̄LΦ̃1YU
1 URþ Q̄LΦ1YD

1 DRþ L̄LΦ1YL
1ER

þ Q̄LΦ̃2YU
2 URþ Q̄LΦ2YD

2 DRþ L̄LΦ2YL
2ERþH:c:;

ð1Þ

where Φ̃ ¼ iσ2Φ�. As this Lagrangian stands, it is difficult
to implement the Froggatt-Nielsen mechanism since we do
not know a priori which of the Higgs fields provides the
dominating mass contribution to each fermion. To circum-
vent this, and to remove flavor changing neutral currents
(FCNCs) at tree level, we impose aZ2 symmetry [21]. As is
well known, there are four different “Types” ofZ2 symmetry
as given in Table I with the corresponding Z2 charges.

2

When the physics at the ΛFN scale is integrated out,
the Yukawa couplings at the electroweak scale may be
expressed as

ðYU
a ÞijQ̄i

LΦ̃aU
j
R → ðgUa Þij

� hSi
ΛFN

�jQiþujþHaj
Q̄i

LΦ̃aU
j
R

ðYD
a ÞijQ̄i

LΦaD
j
R → ðgDa Þij

� hSi
ΛFN

�jQiþdj−Haj
Q̄i

LΦaD
j
R

ðYL
a ÞijL̄i

LΦaE
j
R → ðgLa Þij

� hSi
ΛFN

�jLiþej−Haj
L̄i
LΦaE

j
R; ð2Þ

where the ðgFa Þij couplings are assumed to be ∼Oð1Þ as in
[6], with F ¼ U, D, L and a ¼ 1, 2. The moduli in the

TABLE I. Different types of Z2 charge assignments for a
2HDM, the left-handed doublets QL and LL are assigned “þ” in
all cases.

Z2 symmetry Φ1 Φ2 UR DR ER

Type I (SM like) þ − − − −
Type II (MSSM like) þ − − þ þ
Type III/Y (flipped) þ − − þ −
Type IV/X (lepton specific) þ − − − þ

2In the models with right-handed neutrinosNR, we assume that
they have the same charges as UR. In principle there are four
more types for these models; the ones where NR has the opposite
charge.
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exponents reflect the fact that we may choose either S or S�
to balance the flavon charges of the operators.
From the above structure of the Yukawa matrices, one

must extract the masses and mixings. This is as usual done
via biunitary transformations. Let us begin with the quark
sector, assume that to each of the Yukawa matrices there is
only one Higgs field providing the dominant mass contri-
bution. Then the Yukawa matrices may be written as YU

ij ¼
gUijϵ

jQiþujþHaj and YD
ij ¼ gDijϵ

jQiþdj−Hbj, where a; b ∈ f1; 2g
are fixed. These matrices may now be written as

YU ¼ ðVU
L Þ†DUVU

R

YD ¼ ðVD
L Þ†DDVD

R ; ð3Þ

whereDF, F ¼ U,D are diagonal matrices. The philosophy
of the FN-mechanism is that the magnitudes of the masses
and mixings should solely depend on the ϵ parameters and
thus one can take all the prefactors g to be of order 1. For this
to work one assumes that all the exponents in the Yukawa
couplings are ordered3 such that

jQi þ uj þHaj ≥ jQiþ1 þ uj þHaj;
jQi þ ui þHaj ≥ jQiþ1 þ uiþ1 þHaj;
jQi þ dj −Haj ≥ jQiþ1 þ dj −Haj;
jQi þ di −Haj ≥ jQiþ1 þ diþ1 −Haj: ð4Þ

Under these assumptions it is possible to diagonalize the
Yukawa matrices analytically to leading order in ϵ, as shown
in [6], giving

ðVU
L Þij ∼ ϵjQi−Qjj; ðVU

R Þij ∼ ϵjui−ujj

ðVD
L Þij ∼ ϵjQi−Qjj; ðVD

R Þij ∼ ϵjdi−djj ð5Þ

and the diagonal elements of the mass matrices are then
given by

ðDUÞii ∼ ϵjQiþuiþHajðDDÞii ∼ ϵjQiþdi−Haj ð6Þ

i.e., the diagonal entries of Y. It then follows that the CKM
matrix is given by

ðVCKMÞij ¼ ðVU
L ÞikðVD†

L Þkj ∼ ϵjQi−Qjj; ð7Þ

wherewe note that the mixing is to leading order determined
by the flavon charges of the doublets. For definiteness we
will later assumewithout loss of generality that these charges
are ordered, Qi ≥ Qiþ1.
A completely analogous calculation may be performed in

the lepton sector once the mass matrix for the neutrinos is

specified yielding then also the mixing matrix for neutrinos,
the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix.

A. Neutrino masses

In this paper we consider two ways of generating neutrino
masses: directly via the Weinberg operator allowed by the
FN-mechanism or via a type-I seesaw mechanism. Of
course, when the right-handed fields in a type-I seesaw
model are integrated out one obtains a Weinberg operator,
but we still have to distinguish between these two cases. To
complete the symmetries between quarks and leptons,
the neutrinos should have right-handed chiral partners. If
the neutrino masses are generated by a Weinberg operator
created solely by the FN-mechanism, then the right-handed
fields have nothing to do with the mass generation so they
only contribute to anomaly cancellation. Imposing a type-I
seesaw is more restrictive; not only must the Yukawa
couplings now bemade gauge invariant, but the right-handed
neutrinos must also effectively have Majorana masses. We
will describe this in detail below.
Let us start with the case when the Weinberg operator is

generated directly from the FN-mechanism. To the
Lagrangian in Eq. (1) we must then add terms of the form

−Lð5Þ
ν ¼ 1

2

ðκabÞij
ΛFN

ðΦ̃†
aLc

L
jÞðΦ̃†

bL
i
LÞ þ H:c:; ð8Þ

where a; b ∈ f1; 2g. Imposing a Z2 symmetry restricts this
term to a ¼ b, but both Higgs fields may still contribute.
To generate this operator via the FN-mechanism the

flavon charge in each of the two parentheses must be an
integer4 so that the middle transition in the generating
diagram, labeled χ in Fig. 1, is made by an uncharged
Majorana fermion. The couplings at the electroweak scale
may now be expressed as

ðκaaÞij → ðκνaaÞij
� hSi
ΛFN

�jLiþHajþjLjþHaj
; ð9Þ

FIG. 1. A diagram generating the ij element of the Weinberg
operator, χ is a Majorana fermion with mass ∼ΛFN. Here the four-
component spinor Feynman rules from Ref. [23] are used.

3This is a crucial point and leads to that type-II 2HDM are
preferred as shown in Sec. II C.

4It is sometimes stated in the literature that it is enough for
them to be half integers [22], but in a UV completion with
vectorlike fermions the chiralities will not add up unless the
flavon charge is an integer.
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where a ¼ 1, 2 (i.e., we assume a Z2 symmetry), both the
moduli have to be integers and ðκνaaÞij ∼Oð1Þ in the
FN-spirit.
We assume here that the Majorana fermion χ is one of

the FN-fermions so that it also has a mass ∼ΛFN. For this
operator to not only account for the hierarchies but also the
overall smallness of the neutrino masses, ΛFN has to be of
the order 1014 GeV. Otherwise the Li and Ha charges have
to be increased accordingly.
The flavon VEV, hSi, must be of the same order as ΛFN

and thus the mass of the Z0 boson associated with Uð1Þ0
must also be very large (if it is not extremely weakly
coupled). This is readily seen from the relation

mZ0 ≈ gZ0 hSi; ð10Þ
where gZ0 is the gauge coupling of the Z0. For this type of
model, Z0 phenomenology is therefore not interesting,
either the Z0 boson is so massive that its effects are
unobservable, or if its mass scale is reachable by today’s
experiments, it has to be so weakly coupled that its effects
would still be unobservable.
If we instead want to use a type-I seesaw mechanism

to generate the neutrino masses, we have to introduce the
three SUð2ÞL singlet fields Ni

R, i ¼ 1, 2, 3, where we
denote the flavon charge of the left-handed field ðNi

RÞc by
νi. To the Lagrangian in Eq. (1) we must then add the terms

−LN ¼ L̄LΦ̃1YN
1 NR þ L̄LΦ̃2YN

2 NR þ 1

2
MRNc

RNR þ H:c:

ð11Þ
and if a Z2 symmetry is imposed it will only be one of the
Yukawa terms that generates Dirac masses.
The FN-mechanism for the Yukawa terms works the

same way as for the terms in Eq. (2), so we have

ðYN
a Þij → ðgNa Þij

� hSi
ΛFN

�jLiþνjþHaj ð12Þ

with ðgNa Þij ∼Oð1Þ. The Majorana masses for the right-
handed fields may also be generated by the FN-mechanism:

1

2
ðMRÞijNc

R
iNj

R →
1

2
ΛFNðgRÞij

� hSi
ΛFN

�jνijþjνjj
Nc

R
iNj

R; ð13Þ

where ðgRÞij ∼Oð1Þ and both jνij and jνjj have to be
integers so that a diagram similar to Fig. 1 may be drawn
with an uncharged Majorana fermion doing the transition in
the middle of the diagram.
With the Dirac masses given by mD ¼ ðva=

ffiffiffi
2

p ÞYN
a and

theMajorana massesMR as just discussed, the light physical
neutrino masses are given by (assuming mD ≪ MR)

mν ¼ −mDðMRÞ−1mT
D: ð14Þ

Since MR ∼ ΛFN, we have mν ∼ v2=ΛFN, so that, just as in
the case with the Weinberg operator, ΛFN must be of order

1014 GeV to account for the smallness of the neutrinomasses
(unless jνij þ jνjj ∼ 20).

B. Anomaly cancellation

An important aspect of a gauged Froggatt-Nielsen
mechanism is that the flavon charges not only have to
fit with the phenomenological constraints, but also have to
satisfy anomaly constraints. For the gauge group SUð3ÞC ×
SUð2ÞL ×Uð1ÞY × Uð1Þ0 together with gravity, there are
six triangle diagrams whose contributions do not cancel
trivially. In the following, let AXYZ ¼ 1

2
tr½TXfTY; TZg�,

where TX are the generators of the gauge group X in the
fundamental representation. For hypercharge we adopt
the normalization that Y ¼ 2ðQ − T3Þ. The six anomaly
constraints involving the Uð1Þ0 charges are then given by

A11010 ¼ 2
X3
j¼1

ðQ2
j − 2u2j þ d2j − L2

j þ e2jÞ ¼ 0

A1110 ¼
2

3

X3
j¼1

ðQj þ 8uj þ 2dj þ 3Lj þ 6ejÞ ¼ 0

A3310 ¼
1

2

X3
j¼1

ð2Qj þ uj þ djÞ ¼ 0

A2210 ¼
1

2

X3
j¼1

ð3Qj þ LjÞ ¼ 0

A101010 ¼
X3
j¼1

ð6Q3
j þ 3u3j þ 3d3j þ 2L3

j þ e3j þ ν3jÞ ¼ 0

Agg10 ¼
X3
j¼1

ð6Qj þ 3uj þ 3dj þ 2Lj þ ej þ νjÞ ¼ 0;

ð15Þ
whereAgg10 is from the triangle diagram with two gravitons
and one Uð1Þ0 boson. Note that the gravitational anomaly
may be written as Agg10 ¼ 6A3310 þ

P
3
j¼1ð2Lj þ ej þ νjÞ

so when implemented later we only need to care about the
leptonic part.

C. Sum rules for FN-constraints

In this section we will derive a set of sum rules that show
how the Froggatt-Nielsen constraints for each imposed Z2

symmetry are related to the anomaly constraints. If these
rules are not satisfied, there will not exist an anomaly-free
charge assignment satisfying the imposed FN-constraints.
This generalizes some of the results in [17,18] where SUSY
was considered to more general 2HDMs. In addition, we
show that these rules imply that the type-II symmetry is
favored by the FN-mechanism since the other symmetries
will lead to skewed Yukawa matrices with large off-
diagonal elements. This is problematic since in the FN-
mechanism, it is assumed that the diagonal elements in the
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Yukawa matrices directly gives the masses and large off-
diagonal elements will spoil the diagonalization such that
this is no longer the case.
Let us start with a type-II symmetry and denote by

fnu; nc; nt; nd; ns; nb; ne; nμ; nτg the signed number of
ϵ-factors suppressing the masses, e.g., the up quark mass
is suppressed by ϵjnuj. With a type-II symmetry, we know
that nu ¼ Q1 þ u1 þH2 and so on. Now, using the two sets
of fermions that couple to the same Higgs field, which in
this case are the down-type quarks and e, μ, τ-leptons, we
obtain the following sum rule:

nd þ ns þ nb − ne − nμ − nτ

¼
X3
j¼1

ðQj þ dj − Lj − ejÞ

¼ 8

3
A3310 −

1

4
A1110 −A2210 ¼ 0: ð16Þ

Similarly in the type-Y (flipped) case, using the fermions
that couple to the same Higgs field, i.e. the up-type quarks
and e, μ, τ-leptons, we obtain the following rule:

nu þ nc þ nt þ ne þ nμ þ nτ

¼
X3
j¼1

ðQj þ uj þ Lj þ ejÞ

¼ −
2

3
A3310 þ

1

4
A1110 þA2210 ¼ 0: ð17Þ

With type-X (lepton specific) symmetry it is the two sets
of quarks that couple to the same Higgs field, this yields the
rule:

nu þ nc þ nt þ nd þ ns þ nb

¼
X3
j¼1

ð2Qj þ uj þ djÞ ¼ 2A3310 ¼ 0: ð18Þ

Finally, for type-I (SM-like) symmetry, all three rules,
Eqs. (16)–(18), have to be satisfied. Two of the constraints
above imply the third, so in practice, the SM-like 2HDM
only gets two constraints from the sum rules and not three.
The sum rules that do not have to be satisfied for a given

Z2 symmetry still affect the flavon charges since they
specify the charges of the Higgs fields. For example, given
a type-II model, Eq. (18) gives

nu þ nc þ nt þ ne þ nμ þ nτ

¼ 2A3310 þ 3ðH2 −H1Þ
¼ 3ðH2 −H1Þ ∈ Z; ð19Þ

where Z denotes the integers. The same constraint is of
course obtained from Eq. (17). This means that H2 −H1 is
specified by the suppression factors. In addition we see that
H2 −H1 ∈ Z=3 so that this difference may be an integer
depending on the suppression factors.

As promised above, we will now argue that these sum
rules imply that type-II symmetry is favored by the FN-
mechanism. The reason is simple, it is all due to the minus
signs on the left-hand side in Eq. (16) between the down-
quarks and the e, μ, τ-leptons. These minus signs allow for
nd, ns, nb, ne, nμ, nτ > 0 and still satisfying the sum rule,
while for the other rules, at least one of the n’s has to be
smaller than zero. When this happens, the Yukawa matrices
are prone to be skewed with off-diagonal elements breaking
the ϵ-ordering assumed when diagonalizing the mass matri-
ces (more specifically jQi þ uj þHaj ≥ jQiþ1 þ uj þHaj
is broken if Qi þ uj þHa < 0 for ordered Qi). As a
consequence, the fermion masses will no longer correspond
to the diagonal elements. In other words, the idea behind the
FN-mechanism does not apply and we therefore consider
these situations disfavored. Inwhat follows,wewill therefore
always assume a type-II symmetry when we impose the
FN-constraints. For simplicity we will also assume that
tan β ¼ 1. Other values of tan β can easily be incorporated
by reducing nd, ns, nb, ne, nμ, nτ accordingly.
Adding neutrino Yukawa couplings provides additional

sum rules, but the conclusion above is unaffected by this.

III. ANOMALY-FREE MODEL EXAMPLE

We now consider a type-II 2HDM with tan β ¼ 1 and
neutrino masses generated via the Weinberg operator.
As already mentioned, we assume three right-handed
SM-neutral fermions in addition to the normal 2HDM
particle content and they are assumed to have flavon
charges νi. The FN-constraints we impose are

YU
2 ∼

0
B@

ϵ7 ϵ5 ϵ3

ϵ6 ϵ4 ϵ2

ϵ4 ϵ2 ϵ0

1
CA; YD

1 ∼

0
B@

ϵ7 ϵ6 ϵ6

ϵ6 ϵ5 ϵ5

ϵ4 ϵ3 ϵ3

1
CA;

YL
1 ∼

0
B@

ϵ8 � �
� ϵ4 ϵ3

� ϵ4 ϵ3

1
CA ð20Þ

for the Yukawa matrices and

κ11 ∼

0
B@

� � �
� ϵ0 ϵ0

� ϵ0 ϵ0

1
CA ð21Þ

for the Weinberg operator generated with the Φ1-field
5

where * denotes an element we do not determine a priori.
The ϵ-suppression of the masses may be read off from the

5In principle one could also include a Weinberg operator with
Φ2, but for this case there exist no rational solutions for the flavon
charges. Similarly any rational solutions do not exist if we try to
include Dirac or Majorana masses for the right-handed SM-
neutral fermions.
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diagonal and the off-diagonal elements of the quark
Yukawa matrices guarantees a CKM matrix on the form

VCKM ∼

0
B@

1 ϵ ϵ3

ϵ 1 ϵ2

ϵ3 ϵ2 1

1
CA ð22Þ

while the off-diagonal elements in the lepton Yukawamatrix
and the Weinberg operator guarantees large νμ − ντ mixing
(assuming normal neutrino mass hierarchy). When writing
down the constraints for YD

1 and YL
1 we have made sure that

the sum rule for type-II models, Eq. (16), is satisfied.
Even though it is not necessary for this model, since we

have either an extremely massive or weakly coupled Z0, we
may remove mixing between Uð1ÞY and Uð1Þ0 in the
massless limit by adding

X3
j¼1

ð2Qj − 4uj þ 2dj − 2Lj þ 2ejÞ ¼ 0 ð23Þ

to the list of constraints. This is just the trace of the
hypercharge and flavon charge generators.
All the phenomenological constraints, Eqs. (20), (21) and

(23), and the anomaly conditions, Eq. (15), are summarized
in the following system of polynomial equations:

X3
j¼1

ðQ2
j −2u2j þd2j −L2

j þe2jÞ ¼ 0

X3
j¼1

ðQjþ8ujþ2djþ3Ljþ6ejÞ ¼ 0

X3
j¼1

ð2QjþujþdjÞ ¼ 0

X3
j¼1

ð3QjþLjÞ ¼ 0

X3
j¼1

ð6Q3
j þ3u3j þ3d3j þ2L3

j þe3j þ ν3jÞ ¼ 0

X3
j¼1

ð2Ljþejþ νjÞ ¼ 0

X3
j¼1

ð2Qj−4ujþ2dj−2Ljþ2ejÞ ¼ 0

Q3þu3þH2 ¼ 0; Q2þu2þH2 ¼ 4; Q1þu1þH2 ¼ 7

Q3þd3−H1 ¼ 3; Q2þd2−H1 ¼ 5; Q1þd1−H1 ¼ 7

L3þ e3−H1 ¼ 3; L2þe2−H1 ¼ 4; L1þe1−H1 ¼ 8

Q1−Q2 ¼ 1; Q2−Q3 ¼ 2

L2−L3 ¼ 0; L2þH1 ¼ 0: ð24Þ

To find flavon charges that satisfy this system we will
proceed by using Gröbner bases and methods from
Diophantine geometry.

IV. ALGEBRAIC GEOMETRY

In this section we discuss some general aspects of
algebraic geometry and give some results useful for finding
rational charges. A more detailed, but still short, description
may be found in [24].
The first tool we want to mention is the key notion of

computational algebraic geometry, that of Gröbner bases.
The Gröbner basis of a system of equations may be thought
of as the most reduced version of the system, similar to
putting a linear system of equations on echelon form. As for
a linear system on echelon form, a Gröbner basis with a
given lexicographic ordering has the property that once the
last equation is solved, all other equations may be solved by
back-substitution. Another useful property is that a system
has no solution if and only if 1 is in the Gröbner basis.
As for calculating the Gröbner basis in practice, the

exact method is in general of no interest for such applied
problems we study here, so one can without worry use it
as a black-box command in e.g. Sage [25] or Macaulay2 [26]
(it is also implemented in some general purpose programs
such as Maple [27] and Mathematica [28]).
The set of solutions to a system of polynomials is called

a variety. If the variety is zero dimensional, i.e., consists of
points, then the cubic and quadratic equations from the
anomaly conditions make it unlikely that these points
would be rational. To find rational points, it is therefore
in general best to choose the number of linear constraints to
implement such that the variety becomes one dimensional,
i.e., a curve.6 There is a rich literature on finding rational
points on algebraic curves, from which we will discuss a
few of the results below.
Let C be a curve with rational coefficients defined by a

polynomial equation Pðx; yÞ ¼ 0, we call this an affine
curve and we denote the set of rational points CðQÞ, where
Q denotes the rational numbers. The corresponding pro-
jective curve is defined by ZdegPPðX=Z; Y=ZÞ, such that all
terms in the polynomial have the same total degree in X, Y,
Z, and we assume without loss of generality (see [29],
Sec, 7.5, Theorem 3) that it is smooth. Smooth curves
satisfy the following trichotomy classified by the genus g:

(i) g ¼ 0:
Here we have two choices: either CðQÞ ¼ =0 or

CðQÞ is nonempty which means that C is isomor-
phic over Q to the projective line P1. Any such
isomorphism defines a parametrization of CðQÞ in

6At the same time, if it turns out that this curve is linear in one
of the charges and has no dependence on the others, then one can
add one more linear constraint giving a point solution. We will
see two such special cases below.
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terms of rational functions in one variable, which is
easily computable. For example, all rational points
on the unit circle x2 þ y2 ¼ 1 are given by

ðxðtÞ; yðtÞÞ ¼
�
1 − t2

1þ t2
;

2t
1þ t2

�
ð25Þ

for t ∈ P1ðQÞ ¼ Q ∪ f∞g.
(ii) g ¼ 1:

For this case we have the following theorem:
Theorem.—Mordell-Weil: For any Abelian variety the

set of K-rational points forms a finitely generated group.
Proof.—For the original proof for elliptic curves by

Mordell, see [30], and for the generalization to Abelian
varieties by Weil, see [31]. ▪
For K ¼ Q this means that the only genus one curves

with rational points are the elliptic curves.
(iii) g ≥ 2:

For these higher genus curves, Mordell [30] con-
jectured and Falting [32] later proved that the set of
K-rational points is finite.

For genus zero curves, the rational parametrization (if it
exists) is easily obtained using the programs we have
already mentioned. There are also well-developed methods
to find integer solutions, see Refs. [33,34].
In the case of genus one curves, we know by the

Mordell-Weil theorem that the set of rational points on
an elliptic curve form a finitely generated Abelian group,
denoted EðQÞ. The structure theorem then tells us that

EðQÞ ¼ EðQÞtors ⊕ ZP1 ⊕ … ⊕ ZPr; ð26Þ

where EðQÞtors is the finite subgroup of EðQÞ consisting of
all elements of finite order and r is the rank of EðQÞ. There
is no known algorithm to determine the rank r or to find the
Mordell-Weil generators P1;…; Pr in general.
For curves of genus at least 2 it is harder to find rational

points. However, point search might turn out to be more
successful than for elliptic curves since the rational points
are expected to have smaller height for curves with higher
genus [35]. Here the height of a point PðX∶Y∶ZÞ, where X,
Y and Z are integers with no common factors, is given
by maxfjXj; jYj; jZjg.
In our type of models we have one cubic ðA101010 Þ and

one quadratic ðA11010 Þ equation while the rest are linear.
The typical degree of the variety is therefore 6. However,
given additional fermions only charged under Uð1Þ0 and
not under the SM groups, A11010 will still depend only on
the SM fields whereas A101010 depends on the additional
fields. In such a case the Gröbner basis may decouple into
two parts that can be solved independently if there are
enough linear constraints. Thus, A11010 may be solved
independently from A101010 and we expect a solution of
degree at most 3 for the latter one. Similarly if the cubic
constraint is not applied we expect a solution of degree 2 at

most. As a curve of degree 3 (2) has at most genus 1 (0), the
above methods are typically enough to now go back and
solve our system in Eq. (24).

V. ANOMALY-FREE MODEL EXAMPLE,
CONTINUED

Using Sage we find that the Gröbner basis for the system
in Eq. (24) is given by

Q1 − 8=27 ¼ 0; Q2 þ 19=27 ¼ 0; Q3 þ 73=27 ¼ 0;

u1 − 26=27 ¼ 0; u2 þ 28=27 ¼ 0; u3 þ 82=27 ¼ 0;

d1 − 34=9 ¼ 0; d2 − 25=9 ¼ 0; d3 − 25=9 ¼ 0;

L1 − 94=27 ¼ 0; L2 − 79=27 ¼ 0; L3 − 79=27 ¼ 0;

e1 − 43=27 ¼ 0; e2 þ 50=27 ¼ 0; e3 þ 77=27 ¼ 0;

H1 þ 79=27 ¼ 0; H2 − 155=27 ¼ 0; ð27Þ

and

ν1 þ ν2 þ ν3 þ 140=9 ¼ 0;

ν22 · ν3 þ 140=9 · ν22 þ ν2 · ν23 þ 280=9 · ν2 · ν3

þ 19600=81 · ν2 þ 140=9 · ν23 þ 19600=81 · ν3

þ 95036=81 ¼ 0: ð28Þ

In this case the Gröbner basis has decoupled into two parts,
as discussed above, with the flavon charges of the three
right-handed singlets determined by the cubic and gravi-
tational anomalies whereas the flavon charges of all the
SM fields are determined by the other anomalies and the
FN-constraints. The only connection between the two is
that the flavon charges of the SM fields feed into the
numerical constants in Eq. (28). All flavon charges can thus
be directly read off from the Gröbner basis except those of
the three right-handed singlets. Note that H2 −H1 ¼
26=3 ∉ Z so the initially imposed type-II Z2-symmetry
is in this case a residual effect from Uð1Þ0 invariance. It
should also be noted that if the nonmixing constraint
Eq. (23) is not applied, then this would lead to one of
the charges in Eq. (27) to be left free, the solution being
given by a genus zero curve, and the other charges would
be linear functions of it.
To find a complete set of rational charges, we have to

solve the equations for the νi’s. To do this, we begin to
study the cubic equation in Eq. (28). This is a smooth curve
of degree 3 so its genus is 1 and thereby it is an elliptic
curve. We may thus hope to calculate the Mordell-Weil
generators. The starting point is to write the curve on
Weierstrass form. To do this we first write the curve on its
projective form by introducing the homogenizing variable
h. Next we map the projective version according to
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ðν2∶ν3∶hÞ ↦ ðX∶Y∶ZÞ

¼
�
h∶ − ν3 − h∶

81

95036
ν2 þ

81

95036
ν3

�
: ð29Þ

Given the form of Eq. (28) this mapping can always be
found. Finally, changing variables to x ¼ X=Z and y ¼
Y=Z gives the curve on Weierstrass form:

E∶ y2 þ 2xyþ 95036

81
y ¼ x3 þ 19519

81
x2 þ 12449716

729
x:

ð30Þ

We do not find rational solutions to this curve directly, but
after doing two-descent in Sage, it is found that this curve
has rank 1 which means that the set of rational points is
given by

EðQÞ ¼ EðQÞtors ⊕ ZP1: ð31Þ

Explicitly we find

EðQÞtors ¼ fð0∶ − 95036=81∶1Þ; ð0∶0∶1Þ; ð0∶1∶0Þg
P1 ¼ ð2041940=81∶323674124=81∶1Þ ð32Þ

and by mapping the point P1 back to the original curve in
Eq. (28), by inverting Eq. (29) such that ν3 ¼ − XþY

X and
ν2 ¼ 95036

81
Z
X − ν3, we get

ðν2; ν3Þ ¼
�
30795

193
;−

18344

115

�
: ð33Þ

The last charge is now simply determined by

ν1 ¼ −
140

9
− ν2 − ν3 ¼ −

3116597

199755
: ð34Þ

Out of all the points generated by P1 this one has the
smallest height we have found.
To summarize the results in this section, the complete set

of flavon charges for this model is shown in Table II and the
Yukawa matrices and mixings they produce are

YU
2 ∼

0
B@

ϵ7 ϵ5 ϵ3

ϵ6 ϵ4 ϵ2

ϵ4 ϵ2 ϵ0

1
CA; YD

1 ∼

0
B@

ϵ7 ϵ6 ϵ6

ϵ6 ϵ5 ϵ5

ϵ4 ϵ3 ϵ3

1
CA

VCKM ∼

0
B@

1 ϵ ϵ3

ϵ 1 ϵ2

ϵ3 ϵ2 1

1
CA YL

1 ∼

0
B@

ϵ8 0 0

0 ϵ4 ϵ3

0 ϵ4 ϵ3

1
CA

κ11 ∼

0
B@

0 0 0

0 1 1

0 1 1

1
CA UPMNS ∼

0
B@

1 0 0

0 1 1

0 1 1

1
CA: ð35Þ

As can be seen from the resulting matrices, all elements
which were left undetermined turn out to be zero due to
Uð1Þ0 invariance. This also means that in the resulting
PMNS matrix, there is no neutrino oscillation with the first
generation. Apart from that, these matrices reproduce all
observed flavor phenomenology.

VI. MODELS REQUIRING NEW CHIRAL
FERMIONS

Assuming that the A101010 and Agg10 anomalies vanish is
equivalent to assuming that there either are no unknown
SM-neutral fermions, or that the unknown SM-neutral
fermions cancel the anomalies independently. However,
since we in reality know nothing about SM-neutral fer-
mions, it is reasonable to claim thatA101010 andAgg10 cannot
be used to constrain the flavon charges [36]. For the theory
to still be anomaly-free, we assume that the SM-neutral
sector is such that these two anomalies vanish.
We again assume the SM fermion content with a type-II

2HDM and in addition three right-handed neutrinos NR.
The additional freedom from not imposing the A101010 and
Agg10 anomalies is used to impose a type-I seesaw mecha-
nism to generate the neutrino masses where we assume that
NR only couples to Φ2 in Eq. (11). For the quarks and
leptons we impose the same Yukawa matrices as in the
anomaly-free model:

YU
2 ∼

0
B@

ϵ7 ϵ5 ϵ3

ϵ6 ϵ4 ϵ2

ϵ4 ϵ2 ϵ0

1
CA; YD

1 ∼

0
B@

ϵ7 ϵ6 ϵ6

ϵ6 ϵ5 ϵ5

ϵ4 ϵ3 ϵ3

1
CA;

YL
1 ∼

0
B@

ϵ8 � �
� ϵ4 ϵ3

� ϵ4 ϵ3

1
CA ð36Þ

and for the neutrinos we impose

YN
2 ∼

0
B@

� � �
ϵ 1 1

ϵ 1 1

1
CA; MR ∼ ΛFN

0
B@

ϵ2 ϵ ϵ

ϵ 1 1

ϵ 1 1

1
CA: ð37Þ

TABLE II. An example of rational charges satisfying Eq. (24).

Generation i Qi ui di Li ei νi

1 8
27

26
27

34
9

94
27

43
27 − 3116597

199755

2 − 19
27

− 28
27

25
9

79
27 − 50

27
30795
193

3 − 73
27

− 82
27

25
9

79
27

− 77
27

− 18344
115

Higgs charges: H1 ¼ − 79
27 H2 ¼ 155

27
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All this is summarized in the constraints below where
we have again imposed vanishing mixing between Uð1Þ0
and Uð1ÞY [Eq. (23)]:

X3
j¼1

ðQ2
j −2u2j þd2j −L2

j þe2jÞ ¼ 0

X3
j¼1

ðQjþ8ujþ2djþ3Ljþ6ejÞ ¼ 0

X3
j¼1

ð2QjþujþdjÞ ¼ 0

X3
j¼1

ð3QjþLjÞ ¼ 0

X3
j¼1

ð2Qj−4ujþ2dj−2Ljþ2ejÞ ¼ 0

Q3þu3þH2 ¼ 0; Q2þu2þH2 ¼ 4; Q1þu1þH2 ¼ 7

Q3þd3−H1 ¼ 3; Q2þd2−H1 ¼ 5; Q1þd1−H1 ¼ 7

L3þ e3−H1 ¼ 3; L2þe2−H1 ¼ 4; L1þe1−H1 ¼ 8

Q1−Q2 ¼ 1; Q2−Q3 ¼ 2

L2−L3 ¼ 0; L2þ ν2þH2 ¼ 0;

ν1 ¼ 1; ν2 ¼ 0; ν3 ¼ 0 ð38Þ

which has the Gröbner basis

Q1 − 274=135 ¼ 0; Q2 − 139=135 ¼ 0;

Q3 þ 131=135 ¼ 0; u1 − 364=135 ¼ 0;

u2 − 94=135 ¼ 0; u3 þ 176=135 ¼ 0;

d1 þ 64=45 ¼ 0; d2 þ 109=45 ¼ 0;

d3 þ 109=45 ¼ 0; L1 þ 232=135 ¼ 0;

L2 þ 307=135 ¼ 0; L3 þ 307=135 ¼ 0;

e1 − 449=135 ¼ 0; e2 þ 16=135 ¼ 0;

e3 þ 151=135 ¼ 0; ν1 − 1 ¼ 0; ν2 ¼ 0;

ν3 ¼ 0; H1 þ 863=135 ¼ 0;

H2 − 307=135 ¼ 0; ð39Þ

where we see that all charges are directly determined.
Again, note that H2 −H1 ¼ 26=3 ∉ Z so the imposed
type-II Z2-symmetry is a residual fromUð1Þ0 invariance. In
addition, the elements that have been left unconstrained in
Eqs. (36) and (37) turn out to be zero.
Using the seesaw mechanism, the light neutrino mass

matrix becomes

mν ∼
hΦ2i2
ΛFN

0
B@

0 0 0

0 1 1

0 1 1

1
CA ð40Þ

which yields one massless neutrino and large νμ − ντ
mixing assuming normal hierarchy.

VII. SUPERSYMMETRIC MODEL EXAMPLE

Using the Froggatt-Nielsen mechanism together with
supersymmetry is not a straightforward extension of what
has been done above, in particular, we start by recalling
that supersymmetry and anomaly cancellation is contra-
dictory within the Froggatt-Nielsen framework [17,18].
To see this, we start with the superpotential from

minimal supersymmetric SM [37] with right-handed
neutrinos:

W ¼ YU
ijU

c
jQi ·Hu − YD

ijD
c
jQi ·Hd − YL

ijE
c
jLi ·Hd

þ YN
ijN

c
jLi ·Hu þ

1

2
MijNc

i N
c
j þ μHu ·Hd; ð41Þ

where all fields are now superfields and there is no “+H.c.”
as in the SM since supersymmetry invariance demands W
to be holomorphic in each of the fields. That is, for a
superfield Ψ, W is either a function of Ψ or Ψ†, not both.
This is important in the context of the Froggatt-Nielsen
mechanism. In the previous cases we always had the
choice of inserting S or S� to balance the flavon charges,
whilst now we may only use one of them. We choose
to work with S with flavon charge -1 following Ref. [38].
The flavon charges of the left-handed superfields
fQi;Uc

i ; D
c
i ; Li; Ec

i ; N
c
i ; Hu;Hdg are denoted as fQi; ui; di;

Li; ei; νi; Hu;Hdg. Using the Froggatt-Nielsen mechanism
the Yukawa matrices become

YU
ij ¼ gUij

� hSi
ΛFN

�
QiþujþHu

; YD
ij ¼ gDij

� hSi
ΛFN

�
QiþdjþHd

;

YL
ij ¼ gLij

� hSi
ΛFN

�
LiþejþHd

YN
ij ¼ gNij

� hSi
ΛFN

�
LiþνjþHu

;

Mij ¼ gRij

� hSi
ΛFN

�
νiþνj

: ð42Þ

Note that this means that in the supersymmetric case,
the definitions of the suppression factors nu etc., are
slightly different compared to earlier and now instead
given by Eq. (42).
Imposing supersymmetry also affects the triangle

anomalies since there will now be Higgsino and flavino
fields contributing. The anomaly coefficients are now

ANOMALY-FREE MODEL BUILDING WITH ALGEBRAIC GEOMETRY PHYS. REV. D 100, 055032 (2019)

055032-9



A0
3310 ¼ A3310

A0
2210 ¼

1

2
ðHu þHdÞ þA2210

A0
1110 ¼ 2ðHu þHdÞ þA1110

A0
11010 ¼ 2ðH2

u −H2
dÞ þA11010

A0
101010 ¼ 2ðH3

u þH3
dÞ þ S3 þA101010 þASM−neutral

101010

A0
gg10 ¼ 2ðHu þHdÞ þ SþAgg10 þASM−neutral

gg10 ; ð43Þ

where S ¼ −1 is the charge of the flavon superfield
(assumed to be left handed).
We impose the following ϵ-structure for the couplings in

the superpotential:

YU ∼

0
B@

ϵ7 ϵ4 ϵ3

ϵ6 ϵ3 ϵ2

ϵ4 ϵ1 ϵ0

1
CA; YD ∼

0
B@

ϵ7 ϵ6 ϵ5

ϵ6 ϵ5 ϵ4

ϵ4 ϵ3 ϵ2

1
CA;

YL ∼

0
B@

ϵ8 ϵ5 ϵ4

ϵ7 ϵ4 ϵ3

ϵ7 ϵ4 ϵ3

1
CA M ∼ ΛFN

0
B@

ϵ2 ϵ ϵ

ϵ 1 1

ϵ 1 1

1
CA;

YN ∼

0
B@

ϵ2 ϵ ϵ

ϵ 1 1

ϵ 1 1

1
CA; ð44Þ

where it should be noted that, for reasons that will become
clear below, the suppression factors for the c and b quark
Yukawa couplings has been changed compared to earlier.
In addition, we find that it is now also possible to completely
determine the Yukawamatrices for the leptons such that they
also give a PMNS matrix with three-generation mixing.
Using the suppression factors nu etc., as defined by

Eq. (42), together with the anomaly conditions gives the
following two supersymmetric versions of the sum rules:

nu þ nc þ nt þ nd þ ns þ nb ¼ 2A0
3310 þ 3ðHu þHdÞ

ð45Þ
and

nd þ ns þ nb − ne − nμ − nτ

¼ Hu þHd −
�
1

4
A0

1110 þA0
2210 −

8

3
A0

3310

�
: ð46Þ

If the anomalies vanish, Eq. (45) together with Eq. (44)
imply that Hu þHd ¼ 8. On the other hand, vanishing
anomalies together with Eqs. (46) and (44) imply that
HuþHd¼−1 which directly contradictsHuþHd¼8. This
means that the Froggatt-Nielsen mechanism, vanishing
anomalies and supersymmetry may not be joined together.
To circumvent this, we may assume that the anomaly

coefficients are nonzero but that there exists a string
theoretic UV completion of the theory where the anomalies

cancel via the Green-Schwarz mechanism [19]. For this to
work we need to balance the anomaly coefficients and the
so-called Kac-Moody levels kG (where G labels the gauge
group) below the compactification scale according to

A0
1110

k1
¼ A0

2210

k2
¼ A0

3310

k3
¼ A0

101010

3k10
¼ A0

gg10

24
: ð47Þ

Since theA0
11010 anomaly cannot be canceled by the Green-

Schwarz mechanism we have to impose A0
11010 ¼ 0.

To obtain useful constraints out of Eq. (47) we make the
standard assumption of coupling unification at the com-
pactification scale ([38–41]), which with our normalization
of hypercharge means that k2 ¼ k3 and k1=k2 ¼ 20=3.
Moreover, we assume that there are SM-neutral contribu-
tions to A0

101010 and A0
gg10 so that Eq. (47) is satisfied. The

constraints on the flavon charges using the Green-Schwarz
mechanism are thus

A0
2210 ¼ A0

3310

A0
2210 ¼

3

20
A0

1110

A0
11010 ¼ 0: ð48Þ

This directly implies that 1
4
A1110

0 þA2210 − 8
3
A3310

0 ¼ 0,
which together with the suppression factors ni from Eq. (44)
gives Hu þHd ¼ −1. In turn, this means that the μ-term in
the superpotential has to vanish. We note in the passing that
thismeans that the so calledμ-problemmay thenbe solvedby
the Giudice-Masiero mechanism [42].
All the constraints are summarized in the following

system of equations:

X3
j¼1

ðQ2
j −2u2j þd2j −L2

j þe2jÞþH2
u−H2

d ¼ 0

1

2

�X3
j¼1

ð3QjþLjÞþHuþHd

�
−

3

20

�
2

3

X3
j¼1

ðQjþ8uj

þ2djþ3Ljþ6ejÞþ2ðHuþHdÞ
�
¼ 0

X3
j¼1

ð2QjþujþdjÞ−
X3
j¼1

ð3QjþLjÞ−Hu−Hd¼ 0

Q3þu3þHu ¼ 0; Q2þu2þHu ¼ 3; Q1þu1þHu ¼ 7

Q3þd3þHd ¼ 2; Q2þd2þHd¼ 5 Q1þd1þHd¼ 7

L3þe3þHd ¼ 3; L2þe2þHd ¼ 4; L1þe1þHd ¼ 8

Q1−Q2¼ 1; Q2−Q3 ¼ 2

L3þν3þHu¼ 0; L1−L2 ¼ 1; L2−L3¼ 0

ν1 ¼ 1; ν2¼ 0; ν3¼ 0 ð49Þ

where we no longer have the freedom to remove the
Uð1ÞY −Uð1Þ0 mixing in the massless limit. This system
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has a Gröbner basis defining a variety of just one point,
which is given in Table III.
Using a type-I seesaw mechanism, the light physical

neutrino masses and mixings become

mν ∼
1

Λ2
FN

0
B@

ϵ2 ϵ ϵ

ϵ 1 1

ϵ 1 1

1
CA; UPMNS ∼

0
B@

1 ϵ ϵ

ϵ 1 1

ϵ 1 1

1
CA:

ð50Þ
This model reproduces all the fermion masses and mixings,
including neutrino oscillations in three generations.

VIII. SUMMARY AND CONCLUSIONS

Understanding the flavor structure in the Standard Model
is one of the big open questions in modern particle physics.
An attractive way to explain this structure is the Froggatt-
Nielsen mechanism. The new Uð1Þ charges, flavon charge,
in this mechanism must satisfy both anomaly and phe-
nomenological constraints. To find rational charges satisfy-
ing these, we have in this paper introduced methods from

algebraic geometry. Especially useful is the Gröbner basis
which sees and eliminates all relations among the con-
straints so that the system is put on its most simple and
reduced form. Moreover, we discussed in detail how to deal
with the case when the Gröbner basis still contains a cubic
constraint and show how to find rational charges using
Mordell-Weil generators.
We have also found that the Froggatt-Nielsen constraints

for the suppression of the masses are related to linear
combinations of the anomaly constraints which we sum-
marize in a set of sum rules. From these rules we conclude
that the type-II (MSSM like) 2HDM is the natural setup to
avoid skewed Yukawa matrices. This especially means that
the type-I model, and in extension, the Standard Model, is
disfavored in this setting. At the same time, 2HDM where
the doublets have different charge under a Uð1Þ symmetry
may possess an axion à la Weinberg and Wilczek [43,44],
however, we postpone this to a later paper [45].
To conclude, using methods from algebraic geometry to

study anomaly free theories, with vanishing anomaly
conditions or Green-Schwarz cancellation, has proven to
be very useful and should be of general interest in model
building.
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