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Gravity induced neutrino-antineutrino oscillations are studied in the context of one- and two-flavor
scenarios. This allows one to investigate the particle-antiparticle correlations in two and four level systems,
respectively. Flavor entropy is used to probe the entanglement in the system. The well known witnesses of
nonclassicality such as Mermin and Svetlichny inequalities are investigated. Since the extent of neutrino-
antineutrino oscillation is governed by the strength of the gravitational field, the behavior of nonclassicality
shows interesting features as one varies the strength of the gravitational field. Specifically, the suppression
of the entanglement with the increase of the gravitational field is observed which is witnessed in the form of
decrease in the flavor entropy of the system. The features of the Mermin and the Svetlichny inequalities
allow one to make statements about the degeneracy of neutrino mass eigenstates.
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I. INTRODUCTION

The phenomenon of neutrino oscillation is well known
and establishes the nonzero mass of neutrinos. This idea
was first introduced by Pontecorvo to explain the solar
neutrino problem and later experimentally confirmed by
Super-Kamiokande [1] and Sudbury Neutrino Observatory
(SNO) [2]. Till date, several experiments using solar,
atmospheric, reactor and accelerator neutrinos have ana-
lyzed the data to calculate the oscillation parameters such as
mixing angles and mass squared differences. Some of the
upcoming experiments are planning to resolve some
queries in neutrino sector like, CP-violating phase [3],
type of mass hierarchy, absolute mass scale of neutrinos [4]
and existence of sterile neutrinos.
The effect of gravitational field on neutrino oscillation

was also studied [5]. It was shown that while a nonzero
(Majorana) mass of neutrinos is required for the neutrino-
antineutrino mixing, for oscillation between neutrino and
antineutrino (or their mass eigenstates) to occur, their
energies must be split. This splitting of energy due to
gravitational effect, “gravitational Zeeman effect”, also
gives rise to the effective charge-parity-time reversal
violation, as the effective masses (pertaining to the mass

eigenstates) are different [6]. Hence, along with the lepton
number violation in the neutrino sector (due to Majorana
mass), gravitational Zeeman effect leads to neutrino and
antineutrino oscillation. In fact, gravitational Zeeman effect
has many other consequences, e.g., neutrino asymmetry,
baryogenesis, experimental tests of curvature couplings of
spinors, etc., [7–11]. Moreover, the geometric phase in
neutrinos has been a part of various studies in this context
[12–17]. It is well known that the neutrinos propagating in a
varying magnetic field acquire a geometric phase [18].
However, the Zeeman-like splitting was also shown to give
rise to a geometric phase where the space-time curvature
plays the role of the magnetic field [19].
Gravitational field alsomodifies the mixing. In absence of

gravity, this mixing is passive in the sense that the value of
mixing angle is always π=4. The effect of gravity leads to
active mixing, which depends on the strength of charge-
parity-time reversal violation being determined by the
strength of gravity itself. The gravity induced neutrino-
antineutrino mixing also affects the flavor oscillations,
thereby leading to modified neutrino oscillation even in
the flavor sector. This naturally invites the investigation of
different aspects of neutrino oscillations. In this direction, the
present work is devoted to analyzing the neutrino-antineu-
trino mixing using various tools of quantum foundations.
Among the celebrated notions of quantum foundations

are realism and locality. The former says that the existence
of an observable quantity does not depend on the observer,
while the latter holds that the information cannot reach
instantaneously from one point of space to another. These
two concepts were used by J. Bell to develop the famous
Bell inequity (BI) [20], the violation of which rules out the
hypothesis of the hidden variable theory as an alternative of
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quantum mechanics. The Bell type inequalities have been a
subject matter of various works, for example, in optical and
electronic systems [21–24], in particle physics systems
such as mesons [25,26] and neutrinos [27–35]. A time
analog of the Bell inequality, known as Legget-Garg
inequality has gained a lot of attention recently [36,37].
The various avatars of Bell inequality have been developed
to the study of nonlocality in multipartite (more than two)
systems, such as Mermin and Svetlichny inequalities. Such
manifestation of BI becomes important, for example, when
dealing with the three flavors neutrino oscillation.
In this work, we explore various spatial quantum

correlations in neutrinos propagating and oscillating in
curved spacetimes. We have considered one- and two-
flavor neutrino cases, which lead to two- and four-level
systems of neutrino-antineutrino oscillation, respectively.
To study the correlation measures, the idea of mode
entanglement is used [38], as discussed ahead.
The plan of this paper is as follows. In Sec. II we briefly

review the gravitational Zeeman effect. This is followed by
a discussion of quantum correlations in one- and two-flavor
neutrino scenarios in Sec. III. Section IV is devoted to the
summary and conclusion.

II. GRAVITATIONAL “ZEEMAN EFFECT”

Dirac equation in the presence of background gravita-
tional fields, in a local inertial coordinate, reduces as (see,
e.g., [6,39–41])

½iγμ∂μ −mþ iγμAg
μ þ γμγ5Bg

μ�ψ ¼ 0; ð1Þ

where Ag
μ and Bg

μ are the gravitational 4-vector potentials
(gravitational coupling with the spinor), m is the mass of
spinor, and γ5 ¼ γ5 ¼ iγ0γ1γ2γ3 as usual. Here we choose
ℏ ¼ c ¼ 1. For simplicity, in the rest of the discussion we
retain and explore the consequence of the axial-vectorlike
term only in equation which suffices for the present
purpose. Nevertheless, the vectorlike term might be anti-
Hermitian as well in a local coordinate (depending on the
spacetime nature) and can be removed from the total
Lagrangian when added to its complex conjugate part.
This is particularly so for Majorana neutrinos, when
massive neutrinos are most plausibly believed to be
Majorana typed. Nevertheless, such a vectorlike anti-
Hermitian term would not contribute to the effective energy
of the particle with an appropriate definition of dot-product
in curved spacetime [41,42].
Now for the nontrivial solution of ψ , the Hamiltonians of

the spin-up and spin-down particles are given by

ðH þ σ⃗:B⃗gÞ2 ¼ p⃗2 þ Bg
0
2 þm2 − 2Bg

0σ⃗:p⃗; ð2Þ

where Bg
0 is the temporal component of Bg

μ. In the regime of
weak gravity and whenm is much larger than the rest of the
terms in the rhs of Eq. (2), it reduces to

H ¼ −σ⃗:B⃗g �
�
p⃗2 þ Bg

0
2

2m
þm −

Bg
0σ⃗:p⃗
m

�
: ð3Þ

There are two-fold splits in dispersion energy, governed
by two terms associated with the Pauli spin matrix, between
up and down spinors for positive and negative energy
solutions. See Fig. 1 demonstrating the same.
In order to have nonzero Bg

μ, spherical symmetry has to
be broken, hence in Schwarzschild geometry it vanishes. In
the Schwarzschild metric, any possible effect would arise
from Ag

μ, which is removed in the present formalism. Indeed
it is known [43,44] that spin evolution in spherical sym-
metric spacetime could arise only from an imaginary
Lorentz vectorlike term.On the other hand, inKerr geometry
Bg
μ survives. Also it survives in, e.g., early universe under

gravity wave perturbation, Bianchi II, VIII, and IX aniso-
tropic universes. Note that in an expanding universe,
gravitational potential Bg

μ turns to be constant at a given
epoch which could act as a background effect.
In the Kerr-Schild coordinate, after putting ℏ and c

appropriately, the temporal part of Bg
μ reads as

Bg
0 ¼ −

4az

ρ̄2
ffiffiffiffiffiffiffi
2r3

p ℏc
rg

; ð4Þ

where ρ̄2 ¼ 2r2 þ a2 − x2 − y2 − z2; r is the radial coor-
dinate of the system expressed in units of rg, rg ¼ GM=c2;
M and a (varying from −1 to þ1) are, respectively, mass
and dimensionless angular momentum per unit mass of
the black hole; G, c, and ℏ are, respectively, Newton’s
gravitation constant, speed of light, and reduced Planck’s
constant. Naturally, Bg

0 survives (and is varying with space
coordinates) for any spinning black hole leading to gravi-
tational Zeeman effect.
In Bianchi II spacetime with, e.g., equal scale-factors in

all directions, Bg
0 survives as

Bg
0 ¼

4þ 3y2 − 2y
8þ 2y2

ℏc: ð5Þ

FIG. 1. Gravitational “Zeeman-splitting”: Weak gravitational
effect, as given by Eq. (3), is considered for the ease of
demonstration.

DIXIT, NAIKOO, MUKHOPADHYAY, and BANERJEE PHYS. REV. D 100, 055021 (2019)

055021-2



III. QUANTUM CORRELATIONS IN NEUTRINOS

We are going to analyze the neutrino-antineutrino
oscillations in one- and two-flavor scenarios, which can
be viewed as two- and four-level systems, respectively. The
schematic diagram is given in Fig. 2.

A. Neutrino-antineutrino mixing in
single flavor scenario

Let us consider, in Weyl representation, a 2-level system
describing the mixing of neutrino (ψ) and antineutrino (ψc)
[45] in the presence of gravitational coupling. We can
express the states with known mass (but unknown lepton
number states, in the present case spin-states) in terms of
states with known lepton/spin-states or vice versa. This is in
the spirit of mixing in the neutral kaons, differing by two
units of strangeness, whereas for neutrino and antineutrino
it differs by two units of lepton number. The corresponding
mass eigenstates for a particular flavor at t ¼ 0 are [5,6]

jν1ð0Þi ¼ cos θjψcð0Þi þ eiϕ sin θjψð0Þi
jν2ð0Þi ¼ − sin θjψcð0Þi þ eiϕ cos θjψð0Þi; ð6Þ

when

tan θ ¼ m

Bg
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bg
0
2 þm2

p ; ϕ ¼ argð−mÞ; ð7Þ

wherem is the Majorana mass of the neutrino. Note that the
mixing is maximum for Bg

0 ¼ 0. However, at an arbitrary
time t the mass eigenstates are

jν1ðtÞi¼ cosθe−iEψc tjψcð0Þiþeiϕ sinθe−iEψ tjψð0Þi
jν2ðtÞi¼−sinθe−iEψc tjψcð0Þiþeiϕcosθe−iEψ tjψð0Þi; ð8Þ

where the dispersion energies for neutrino and antineutrino,
respectively, due to gravitational Zeeman-splitting, from
Eq. (2) are given by

Eψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗ − B⃗gÞ2 þm2

q
þ Bg

0;

Eψc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗þ B⃗gÞ2 þm2

q
− Bg

0: ð9Þ
For ultra-relativistic neutrinos, m ≪ jp⃗j leading to

Eψ − Eψc ≈ 2ðBg
0 − jB⃗gjÞ, the survival probability of ν1 at

time t can be expressed as

PsðtÞ ¼ 1 − sin22θsin2fðBg
0 − jB⃗gjÞðtÞg: ð10Þ

Note that ðν1ð0Þ; ν2ð0ÞÞ is just the transformed spinor
of original ðψc;ψÞ. In the limit of zero gravitational effect,
i.e., Bg

μ → 0, PsðtÞ → 1. Thus the neutrino-antineutrino
oscillations primarily occur due to nonzero value of the
gravitational potential, when the present analysis is per-
formed for ultra-relativistic neutrinos.
In Fig. 3(a), the survival probability for ν1 ↔ ν2 oscil-

lations is shown as a function of gravitational potential and
the distance (L ≈ ct in ultra relativistic limit1) traveled by the
neutrino/antineutrino. The survival probability can be seen
to approach its maximum value unity as the gravitational
potential increases. This implies that gravity suppresses
the neutrino-antineutrino oscillations for a fixedm. Further,
as noted earlier, the neutrino-antineutrino oscillation
approaches maximum when Bg

0 → 0.

1. von Neumann entropy in oscillation

The neutrino-antineutrino system can be treated as an
effective two qubit system [29,30,38,46] with the following
occupation number representation of states defined in
Eq. (6) as

jν1ð0Þi≡ j10i; jν2ð0Þi≡ j01i:

The notation j10i amounts to asking whether we have a jν1i
state or not. In this notation, one can finally write

jν1ðtÞi ¼ U11ðtÞj10i þ U12ðtÞj01i;
jν2ðtÞi ¼ U21ðtÞj10i þ U22ðtÞj01i; ð11Þ

where the coefficients can be obtained from Eqs. (6)
and (8) as

U11ðtÞ ¼ cos2θe−iEψc t þ sin2θe−iEψ t;

U12ðtÞ ¼ sin θ cos θðe−iEψ t − e−iEψc tÞ;
U21ðtÞ ¼ sin θ cos θðe−iEψ t − e−iEψc tÞ;
U22ðtÞ ¼ sin2θe−iEψc t þ cos2θe−iEψ t:

FIG. 2. Neutrino-antineutrino oscillations in (a) one-flavor, and
(b) two-flavor scenarios.

1Here, entire analysis is performed in local inertial coordinates.
Hence, at each point, all the special relativistic norms are
conveniently satisfied such that at a given local point, Bg

μ appears
as constant background field [5].
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A standard measure of entanglement for pure states, of
form Eq. (11), is given by von Neumann entropy

S ¼ −
X
β¼1;2

jUαβðtÞj2log2jUαβðtÞj2

−
X
β¼1;2

ð1 − jUαβðtÞj2Þlog2ð1 − jUαβðtÞj2Þ: ð12Þ

Here α ¼ 1ð2Þ corresponds to the ν1 (ν2) state. For the
ν1 ↔ ν2 oscillation, Fig. 3(b) shows the variation of S as a
function of Bg

0 and L. The existence of entanglement is
implied by S > 0. The von Neumann entropy, as an
entanglement measure, is suitable for the neutrino system
since it can be expressed in terms of the survival and
transition probabilities, which are experimentally measur-
able quantities [29]. The increase in the gravitational
potential is found to decrease the entanglement in the
neutrino-antineutrino system for a fixed m. Further, the
entropy attains its maximum value when the survival (and
hence transition) probabilities, of neutrino and antineutrino,
are equal.

B. Two-flavor oscillation with
neutrino-antineutrino mixing

In this case, the flavor and mass eigenstates are related
via a unitary matrix T as follows [5]:

0
BBBB@

ψc
e

ψc
μ

ψe

ψμ

1
CCCCA ¼ T

0
BBBB@

χ1

χ2

χ3

χ4

1
CCCCA; ð13Þ

where

T ¼

0
BBBB@

cos θe cosϕ1 − cos θe sinϕ1 − sin θe cosϕ2 sin θe sinϕ2

cos θμ sinϕ1 cos θμ cosϕ1 − sin θμ sinϕ2 − sin θμ cosϕ2

sin θe cosϕ1 − sin θe sinϕ1 cos θe cosϕ2 − cos θe sinϕ2

sin θμ sinϕ1 sin θμ cosϕ1 cos θμ sinϕ2 cos θμ cosϕ2

1
CCCCA: ð14Þ

The mixing angles are related to the masses and the
gravitational scalar potential as [5]

tan θe;μ ¼
me;μ

Bg
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBg

0Þ2 þm2
e;μ

q ; ð15Þ

tanϕ1;2¼
∓ 2meμ

með1;2Þ−mμð1;2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmeð1;2Þ−mμð1;2ÞÞ2þ4m2

eμ

q :

ð16Þ

The masses corresponding to the mass eigenstates are
given as

M1;2¼
1

2

h
ðme1þmμ1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðme1−mμ1Þ2þ4m2

eμ

q i
;

M3;4¼
1

2

h
ðme2þmμ2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðme2−mμ2Þ2þ4m2

eμ

q i
; ð17Þ

with

mðe;μÞ1¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBg

0Þ2þm2
e;μ

q
mðe;μÞ2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBg

0Þ2þm2
e;μ

q
;

ð18Þ

and meμ being the mixing mass.
Now the system of 2-flavor neutrino oscillations under

the influence of neutrino-antineutrino mixing, due to

FIG. 3. Fixed flavor case: (a) Survival probability, and (b) von
Neumann entropy, as functions of gravitational potential and
distance traveled by neutrino/antineutrino, for the massive states
ν1 ↔ ν2 corresponding to neutrino-antineutrino oscillation. The
various parameters used are: m ¼ 5 × 10−3 eV, jB⃗gj ∼ 10−2 eV.
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gravitational field, can be treated as a 4-qubit system. The
occupation number representation can be given as

jψc
ei≡ j1iē ⊗ j0iμ̄ ⊗ j0ie ⊗ j0iμ;

jψc
μi≡ j0iē ⊗ j1iμ̄ ⊗ j0ie ⊗ j0iμ;

jψei≡ j0iē ⊗ j0iμ̄ ⊗ j1ie ⊗ j0iμ;
jψμi≡ j0iē ⊗ j0iμ̄ ⊗ j0ie ⊗ j1iμ: ð19Þ

Further, Mermin inequality is a generalized form of Bell
inequality and its violation indicates the standard nonlocal
correlations existing among different parties in a multipar-
tite system [47]. This means that the probability distribution
P (say for a tripartite system) cannot be written in the local
form

Pða1a2a3Þ ¼
Z

dλρðλÞP1ða1jλÞP2ða2jλÞP3ða3jλÞ; ð20Þ

where λ is the shared local variable and a1, a2, a3
are the outcomes of the measurements. However, this
does not ensure the genuine multipartite nonlocality; i.e.,
if any two subsystems are nonlocally correlated, but
uncorrelated from the third one, Mermin inequality can
still be violated [48,49]. To probe genuine nonlocal
correlations, we make use of the Svetlichny inequality
which is based on hybrid nonlocal-local realism [50] as
follows:

PBða1a2a3Þ ¼
X3
k¼1

Pk

Z
dλρijðλÞPijðaiajjλÞPkðakjλÞ:

ð21Þ

Here the subscript B stands for bipartition sections. For a
4-qubit-system the Mermin (M4) [51] and Svetlichny (S4)
[52] parameters are defined as

M4 ¼ −ABCDþ ðABCD0 þABC0DþAB0CDþA0BCDÞ
þ ðABC0D0 þAB0CD0 þAB0C0DþA0BCD0

þA0BC0DþA0B0CDÞ− ðAB0C0D0 þA0BC0D0

þA0B0CD0 þA0B0C0DÞ−A0B0C0D0; ð22Þ

S4 ¼ ABC0D0 þ AB0CD0 þ A0BCD0 − A0B0C0D0

þ A0B0CD0 þ A0BC0D0 þ AB0C0D0 − AB0C0D0

þ A0B0CDþ A0BC0Dþ AB0C0D − ABCD

þ ABC0Dþ AB0CDþ A0BCD − A0B0C0D: ð23Þ

Here, X and X0 (X ¼ A; B;C;D) are two different meas-
urement settings pertaining to each qubit. The classical
bounds on these parameters are M4 ≤ 4 and S4 ≤ 8. It is
important to note that for the violation ofMermin inequality,
at least one bipartite section must have the nonlocal
correlations, while the Svetlichny inequality will be violated
only when all the parties are nonlocally correlated.
In Fig. 4, the variation of von Neumann entropy (S) is

depicted with respect to the distance L traveled by
neutrinos and the gravitational potential Bg

0. In the two-
flavor case the state of the system has four degrees of
freedom (d.o.f.) to oscillate between. With initial state as
νe, oscillations occur between νe, νμ, ν̄e and ν̄μ flavor
modes of the system. Figure 4(a) depicts the total flavor
entropy with contribution from all the available modes of
oscillation, while in Fig. 4(b) the contribution from particle
and antiparticle modes separately is shown. For the sake of
clarity, we have enhanced the magnitude of S by 10 times
for the antineutrino case. The particle d.o.f. contribute more
to S in comparison to the antiparticle d.o.f. That is, the
neutrino-neutrino flavor mixing is dominating over the
neutrino-antineutrino mixing. A common feature depicted
in Figs. 3 and 4 is that for neutrino-antineutrino oscilla-
tions, S decreases with the increase in Bg

0. However, for
neutrino-neutrino mixing, the increase in Bg

0 does not

FIG. 4. Left panel: The variation of von Neumann entropy for 2-flavor neutrino-antineutrino oscillation with respect to the distance (L)
traveled by neutrinos and the gravitational potential (Bg

0). Right panel: The contributions to flavor entropy from neutrino-neutrino
oscillations depicted by blue (plane) surface and neutrino-antineutrino oscillations shown by pink (meshed) surface, with the magnitude
of S enhanced 10 times in the later case.
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reduce the magnitude of S but increases the frequency of
its oscillation. Figure 5 depicts Mermin and Svetlichny
parameters with respect to L, with Bg

0 ¼ 5 × 10−2 eV. The
violation of the classical bound of M4 indicates the
existence of residual nonlocality in the system. Further,
S4 does not cross the classical bound in our system, thereby
showing the absence of genuine nonlocality. This can be
attributed to equality of the two mass squared differences,
i.e., Δ41 ¼ Δ32 ¼ 0, suppressing the nonlocal correlations
between the degenerate levels ν1 − ν4 and ν2 − ν3.

IV. SUMMARY AND CONCLUSION

Spinors interacting with a background gravitational field
in an arbitrary spacetime are shown to acquire modified
dispersion energy with energies for up and down spinors
split: gravitational Zeeman splitting. It has important
consequences for neutrino mixing and oscillation and, in
general, various quantum correlations. However, for this to
have occurred, at least in local coordinates, the spacetime
should not be spherical symmetric. To have a nontrivial
oscillation phase induced by the gravitational field of, e.g.,
black holes, such that effects due to neutrino mass are not
dominant, the mass of the black hole producing gravita-
tional fields must not be more than a millionth of a solar
mass, hence be primordial in nature. In other words, only
primordial black holes give rise to any practical gravita-
tional Zeeman splitting. However, without gravitational
Zeeman splitting there is no neutrino-antineutrino oscil-
lation even if mixing is nonzero. Moreover, apart from
black hole, there are many other scenarios, e.g., early
universe particularly in the presence of tensor/gravitational
perturbation, where strong gravitational effect leads to
neutrino-antineutrino mixing and oscillation.
There are interesting consequences of the interplay

between the influence of gravity on neutrino-antineutrino
oscillations. Thus, for example, for single-flavor neutrino-
antineutrino oscillations, entanglement is maximum for the
case when the neutrino and antineutrino states are equally
probable. Gravity however suppresses the entanglement
between neutrino and antineutrino states, which is implied
by a decrease in the von Neumann entropy S with the
increase in the gravitation potential Bg

0.
Further, in case of 2-flavor neutrino-antineutrino

oscillations, S is nonzero which indicates absolute entan-
glement in the system. Mermin inequality is violated while
Svetlichny is not, implying that the system is having
absolute nonlocal correlations (nonlocality shared by at
least two parties) but genuine nonlocal correlations (non-
locality shared among all parties) are absent, a consequence
of the degeneracy in the levels ν1 − ν4 and ν2 − ν3.
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