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Recent neutrino oscillation experiments suggest that the Pontecorvo-Maki-Nakagawa-Sakata matrix in
the lepton sector has a CP violating phase like the Cabibbo-Kobayashi-Maskawa matrix in the quark sector.
However, the origins of these phases in both matrices are not clarified by now. Although complex Yukawa
couplings could induce these phases, the phases remain as free parameters of the model even in that case. If
the CP symmetry is considered to be spontaneously broken, they are expected to be determined by some
physics at a much lower energy scale than the Planck scale. We study such a possibility in a framework of
Pati-Salam-type unification. We also discuss other phenomenological issues in it.
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I. INTRODUCTION

A CP violation in a quark sector has been confirmed to be
explained by a Cabibbo-Kobayashi-Maskawa (CKM) phase
through experiments of the B meson system. However, its
origin is still not known now. Although the CKM phase can
be derived from complex Yukawa couplings of quarks [1],
the CP symmetry is considered to be explicitly broken in
such a case, and then the CKM phase remains as a free
parameter of the model. Even if its origin could be explained
in some physics at the Planck scale, it seems to be difficult to
confirm it through experiments. As another problem related
to the CP violation, we have a strong CP problem [2]. The
experimental bound of the electric dipole moment of a
neutron suggests that 8 < 10~'° should be satisfied [3],
where 6 is defined as 6 = Ocp + arg(det M, M) for up-
and down-type quark mass matrices M, and M. Since a
QCD parameter @ycp and the second term caused from the
quark masses are irrelevant to each other, the required
smallness of 0 seems to be unnatural, which is called the
strong CP problem in the standard model (SM).

One of the solutions for this problem is known to be
presented by the Peccei-Qiunn (PQ) mechanism [4]. Since
its validity could be examined through the existence of a
light pseudoscalar called axion [5-7], an axion search is
now performed in various experiments [8]. As another
solution for the strong CP problem, the Nelson-Barr (NB)
model is known [9]. In this scenario, the CP symmetry is
assumed to be an exact symmetry and then Ogcp = 0 is
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satisfied. If quark mass matrices take a special form based
on some symmetry to satisfy arg(det M, M ) =0, 6 =0
could be realized at least at a tree level even after the
spontaneous CP violation. On the other hand, this sponta-
neous CP violation could give a CP phase in the CKM
matrix. In this point, the scenario is interesting since it
could explain an origin of the CP violation at a much lower
energy scale than the Planck scale. Moreover, if a CP
breaking sector couples also with leptons, a CP phase in the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [10],
whose existence is suggested through the long baseline
neutrino oscillation experiments such as NOvA and T2K,
might be explained by the same source as the quark sector.

A minimal simple example of the NB-type model has
been proposed by Bento, Branco and Parada (BBP) [11]. In
this model, extra heavy vectorlike down-type quarks are
introduced, and a Z, symmetry is imposed on the model
which controls the down-type quark mass matrix so as not
to bring about a contribution to @ through arg(det M, M)
after the spontaneous CP violation. If we impose a global
U(1) symmetry instead of the Z, symmetry and assign its
charge to these extra heavy quarks, it is easy to find that the
required form of the mass matrix could be realized in the
same way. In such a case, interestingly enough, the model
has a similar structure to an invisible axion model by Kim-
Shifman-Vainstein-Zakharov [6], which solves the strong
CP problem through the PQ mechanism. If the introduced
global U(1) works as the PQ symmetry, the contribution to
0 through radiative corrections to arg(det M, M) could be
erased out. In that case, one of the problems in the NB
model which is pointed out in [12] could disappear. In this
paper, we study this scenario in a Pati-Salam-type unified
model, in which the CP phases in the CKM matrix and the
PMNS matrix could be related.

The remaining part of the paper is organized as follows.
In Sec. II, we introduce our model and discuss a possible
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origin of CP phases in both the CKM and PMNS matrices.
The generation of small neutrino masses is also addressed.
We additionally examine a possible spontaneous CP
violation in the model. In Sec. IIl, we discuss several
phenomenological issues in the model. Section IV is
devoted to the summary of the paper.

I1. ORIGIN OF CP VIOLATION
A. A Pati-Salam-type unified model

We consider a unification model of quarks and leptons
via Pati and Salam [13]. The gauge symmetry is taken to be
SU(4) x SU(2) x U(1)y, in which the forth color is
identified with a lepton. Fermion contents and their
representations under this gauge group are assumed to be

f1,(4,2,0), hg(4.1,1/2),

ki (4,1,-1/2), (1)
where i is the generation index (i = 1, 2, 3). As they are
easily found, these contain all ordinary quarks and leptons.
We also introduce additional vectorlike colored fermions
Fpr(4,1,—1/2), and n triplet fermions X (1,3,0) where
a =1 —n, and they are defined as

L X Vax
27 - (sz —2%,,) @

On the other hand, scalar contents and their representations
are taken to be

®(4,1,1/2),
o(1,1,0),

Y(4,1,1/2), $(1.2.-1/2),  n(1,2,-1/2),
S(1,1,0),  s(1,1,0). 3)

In addition to this structure, we impose a global U(1) x Zg symmetry. Its charge is assigned to these fields as follows:

Sfro hr, kg, =
= (2,2), n=(-11),

(07 1)9 FLy:> (0,7),

Fr=(2,1), Zg = (1.1), S=1(0,6),
® = (0,4), (

Y. 4= (0,0), s=(01). (4)
We also assume that CP is an exact symmetry of the model. Although £ and 7 might be considered needless in the model
for the explanation of features shown through several experiments which cannot be explained in the SM framework,' we

start our discussion in these field contents.
If we adopt these field contents, Yukawa couplings invariant under the imposed symmetry are written as

—Ly = yif1,dhg, + y?,-h,t?)kze, + YiSF kg, + x0*F Fg +y5,0"E% g, +Hec., (5)
where ¢ = iz,¢p*. On the other hand, scalar potential is expressed as

V =m3(S'S) + mi(c'o) + m3(s's) + ks(STS)? + k,(676)? + k,(575)? + k5,(STS)(676) + ky6(s75) (67 0)
+ k55 (STS)(s7s) + ko (670) (97 ) + K5y (STS) (D) + kg (s75)(97) + Koy (07 0) (1) + K5, (STS) (")
+ Ko (s75) (0"n) + g (D7) + g (n'n) + 41 (@7 D) + Ao (n'n)* + 23(dT ) (n'n) + 24(d"n) (" @)
+ m (@T®) + my(PTY) + £ (@10)? + LH(WE)? + £5(@TD) (PTY) + {4(01) (P @)
+ (8,070 + EsSTS 4 LosTs + Ly + En'n) (@TD + W) 4V, (S, 87,676, 5Ts, T, WD, ¢ p.n'n),  (6)

where V, contains potential terms which are invariant under the symmetry mentioned above, but it violates the S number
conservation. Since CP is assumed to be exact, all coupling constants are real. If ® and W get vacuum expectation values
(VEVs) such as (®) = (¥) = (0,0,0,A)” for example,” the gauge symmetry is broken to the one of the SM:

(@).{*F)

SUM4)x SUQR)x U(l)y —" SUB)cxSU2), x U(1)y. (7)

'If the axion is identified with the dark matter, they might be needless. However, we would like to consider much wider possibilities
because of reasons which are addressed later.
2(®) = (¥) is assumed just for simplicity.
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The weak hypercharge U(1),, whose charge is normalized as
Opm = %3 + Y, is obtained as a linear combination of a
diagonal generator T';5 of SU(4) and a charge X of U(1)y as

2
Y:—T15 +X,

V6

where T :ﬁdiag(l, 1,1,—3). We note that the imposed

(8)

global U(1) symmetry remains unbroken but Zg is broken to
Z, at this stage. All fermions remain massless since they have
no Yukawa couplings only with ® and V.

After this symmetry breaking, each fermion is decom-
posed to the contents of the SM, such as

©)

where g, and 7 are SU(2), doublet quarks and leptons;
and ug,, dg,, and ey, are singlet quarks and charged leptons,
respectively. The vectorlike fermions F; » are decomposed
as (Dp g, Epg). If we use these decomposed fermions,
Yukawa couplings in Eq. (5) are expressed as’

fL,»:(CIL,-’fLi)’ hRi:(uRi’NRi)’ kRi:(dRi’eRi)’

—Ly = Y4y, dur, + y5ar,ddr, + (vPS + 5P S*)Dydg,
+xp6*Dy Dy + 461, $Ng, + yl?jfLigbeRj
( S +5]ES*)EL8R,- + xEG*ELER

—+ 7/2{,0 zRquu —+ H.C., (10)

where the Yukawa coupling constants are expected to
satisfy the conditions

k _— yd — e
Yij = Yij = Yij»

X =Xp = Xg,

h U _ U
Yij = Yij = Vij»

(11)

at a unification scale A. After the spontaneous breaking
of SU(4) via (®) and (¥), new Yukawa couplings are
expected to be induced effectively as invariant ones under
the remaining symmetry,4

L= (yNS+ VS + -i+a-ﬁ N$ N

y IA lA R; R;

LSt 2 S*Z _
+hiaXfL,ZRa'l+ b; A+b A Dy dy,

S2 s*2 B
+ (Ci_"‘ci_)ELeR,- +H.C.,

A A (12)

3W_e note that a nonrenormalizable operator such as
S*(WF,)(®kg,), which is invariant under the imposed sym-
metry, induces the Yukawa terms S*DLdR and S*E; ep,.

“It should be noted that the Yukawa term S*N§ N g, can be
induced by a nonrenormalizable operator S* ((I) hg.)(Phg.)
invariant under the imposed symmetry, for example.

where we list the terms up to dimension five. The couplings
yY and 7V are assumed to be diagonal. We also note that
there is a nonrenormalizable dimension five operator
s % (¢'n)? as an invariant one. It plays a crucial role in
the small neutrino mass generation, as seen later.

In this effective model, we consider symmetry breaking
due to VEVs of the singlet scalars o, S, and s, such as>

(6) = we™, (S) = ue®, (s) =wve¥.  (13)

They could also break the CP symmetry spontaneously.
Although we will discuss whether this spontaneous CP
violation could be realistic or not in the present model later,
we assume it for a while. Here we note that for DLdR,.,
Epeg, and N°Ng, in Eqs. (10) and (12) there are con-
tributions from the dimension four and five operators. We
can expect that the former ones give the dominant con-
tribution as long as v < u is satisfied at least. We suppose
such a situation and take account of these contributions
only in the following study.

After this symmetry breaking, the potential for the
remaining scalars ¢» and 5 can be written as

V= mi(#'p) + my(n'n) + 4 ($1)* + A (n'n)?
+ A3(¢Td) (") + Aa(dTn) (n p) + %5 [(¢'n)% +H.cl,

(14)

where 5 is defined as A5 = /15  and it is real.’ The scalar
masses are shifted through the symmetry breaking effect as

Km/,w2 + K&/,uz + st,vz + 24_,“(/,/\
KogW? + Kgyut® + Kgyv? + 28, A%

+ o+

(15)

Since m, and m,, are supposed to take much smaller values
than A, serious fine tunings are required. However, we do
not treat this hierarchy problem in the present study and
just assume that both m, and m, are of O(1) TeV. The
coupling constants 4; are also related to the ones at high
energy regions through threshold corrections at each
symmetry breaking scale [14].

An interesting feature of the present model is that the
spontaneous CP violation through Eq. (13) could derive
both CP phases in the CKM matrix and the PMNS matrix,
keeping @ = 0. In the next part, we discuss how the CP
phases in both CKM and PMNS matrices are induced.

>The global symmetry U(1) is broken to Z, by these VEVs.
The Z, guarantees the stability of DM as discussed later.

®The CP phase y can be removed by the field redefinition of .
It changes h;, in Eq. (12) to h;e 5.
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B. A CP phase in the CKM matrix

The CP symmetry is assumed to be exact in the model
and then all the coupling constants in the Lagrangian are
real. Thus, we cannot expect any origin of CP violation in
the up-type quark sector, which has no extended structure
compared with the SM. Since the up-sector mass matrix
my; = yi;(¢) is real, they can be diagonalized by orthogo-
nal transformations u), = Ofu; and ufk = ORug. In the
present effective model, on the other hand, we find that the
down-type quark sector has the same structure as the BBP
model [11]. The BBP model is an extension of the SM by
extra colored vectorlike down-type heavy quarks (D;, D)
and a singlet complex scalar S. We can apply their
discussion to the present model to show how the CP phase
could be induced in the CKM matrix. Although the Z,
symmetry is imposed to control the mass matrix in their
model, the global U(1) symmetry in Eq. (4) could play the
same role as it in the present model. Moreover, since this
U(1) is chiral and has a color anomaly, it can play a role as
the PQ symmetry, which has a domain wall number one as
in the Kim-Shifman-Vainstein-Zakharov model [6]. As a
result, a Nambu-Goldstone boson produced as a result of its
spontaneous breaking through the VEV (o) could work as
an axion to solve the strong CP problem without inducing
the domain wall problem [15]. On the other hand, since the
axion phenomenology constrains a breaking scale of this
symmetry, we have to fix the scale w to be [16]

10° GeV < w < 10'? GeV. (16)

The Yukawa couplings of the down-type quarks shown
in Eq. (10) derive a 4 x 4 mass matrix M, as

(@,,.D )(m?’ | )(dR> (17)

e ]:7 HKp Dpg ’
Wherg mé; = yd (@), F4 = (yPue” + yfue‘i/’)_, and pp =
xpwe”. Due to the PQ mechanism, 6= 0qycp +

arg(det M, M) = 0 is satisfied via the axion even after
we take account of radiative corrections including the
phases caused by the spontaneous CP violation. Next
we see that this phase can generate the CKM phase
following the BBP model.

We consider the diagonalization of a matrix M d./\/ljl by a
unitary matrix such as

A B mamat md Fdt At
(e 0) Gt st 2220 ) (50 )
m? 0
= , 18
(" ) (18)

where a 3 x 3 matrix m? is diagonal in which the generation
indices are abbreviated. Equation (18) requires

mem® = ATm2A + C*M2C,
Fim? = B'm?A + D"M3C,
ppiyy + FIFY = Btm?B + D'M?D. (19)
If ppul, + F4F4 is much larger than each component of
Fém?, which means u, w > (¢), we find that B, C, and D
can be approximated as
Fdyydi

pppp + FOF

AmdFdi

; FV L
uphp + FOF

D~1,
(20)

which guarantee the approximate unitarity of the matrix A.
In such a case, it is also easy to find that

1

A‘lmzA = mdm”” -
poipy + FUFE

(mdfd*)(f‘dde).
(21

The right-hand side is an effective mass matrix of the
ordinary down-type quarks which are derived through
mixing with the extra heavy quarks. Since the second term
can have complex phases in off-diagonal components as
long as yP # $P is satisfied, the matrix A could be complex.
Moreover, if ppu;, < FAF is satisfied, the complex
phase in A could have a substantial magnitude since the
second term is comparable with the first term. Since the
CKM matrix is determined as Vcxy = OFTA, the CP
phase of Vxy is caused by the phase of A. Here, we have
to note that whether such phases could be physical or not is
dependent on the flavor structure of Yukawa couplings y¢,
yP, and $°. It should also be noted that the matrix A needs
to take an almost diagonal form as long as there is no
correlation between A and O since Vi gy has a nearly
diagonal form. It may be instructive to show how the
physical phase could be induced through this mechanism
using a concrete example. We give such an example in the
Appendix.

C. Neutrino masses and the PMNS matrix

In the lepton sector, we can treat the charged lepton
sector in the same way as the down-type quark sector. In
fact, the Yukawa couplings in Eq. (10) induce the charged
lepton mass matrix as follows,

i ()
eri-Lp ]_-; g Ep )

where m¢; = y¢(#), F¢ = (yiue” + yfue™), and pp =
xgwe”. Since the mass matrix takes the same form as the
one of the down-type quarks (18), the diagonalization
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FIG. 1.
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Left: A diagram for the neutrino mass generation due to the type I seesaw in the minimal model. Right: A one-loop diagram for

the neutrino mass generation due to the scotogenic type III seesaw in the extended model.

matrix A for the above charged lepton mass matrix could be
complex, and it should satisfy the relation

1

AViA = memet - —
HEHE + FeFe

(mF)(Fem?),
23)

2 2

where M~ corresponds to the diagonalized mass matrix m
in Eq. (18). As long as ,uE,sz < FeFe is satisfied, non-
negligible CP phases could be expected in A in the same
way as the down-type quark sector.

On the other hand, small neutrino masses are expected to
be produced not only by the type I seesaw [17] but also
by the scotogenic type III seesaw [18] in this model. In fact,
the lepton sector of the model has the structure in which
the scotogenic type Il seesaw mechanism could work, as
found from the terms contained in Eqs. (10) and (12).
Diagrams which contribute to the neutrino mass generation
are shown in Fig. 1.

1. Neutrino masses due to the type I seesaw

The singlet fermions Ng get Majorana mass via the
VEV (S). On the other hand, they have Yukawa couplings
with the doublet leptons and the ordinary Higgs doublet
scalar ¢. Thus, the ordinary type I seesaw makes neutrinos
vy, massive through the diagram shown in the left of Fig. 1.
The neutrino mass matrix caused by this can be written as

9,y ) ()

Since u > (¢) is supposed in this model, the contribution
to neutrino masses from this diagram is estimated as

= Zy’.’ VY - <¢>2 -
- ik jkyivuezp +5)§(Vue—z/) :

(a)
M (25)

The neutrino Yukawa couplings y%, satisfy the same
relation as the Yukawa couplings of the up-type quarks
as found in Eq. (11). Since A is expected to take an almost
diagonal form as A, the PMINS matrix is considered to have
a similar form to the CKM matrix. This means that other

contributions to the neutrino masses are indispensable
for the explanation of large flavor mixing required by
the neutrino oscillation data. This is one of the reasons why
we consider the extended structure with 7 and X . These
fields could give additional contributions to the neutrino
masses in the following way.

2. Neutrino masses due to the scotogenic
type I1I seesaw

As found in Eq. (12), £ has Yukawa couplings with ;.
However, since ¢ has no coupling with these and # is
assumed to have no VEV, neutrino masses via X are not
generated at a tree level but are generated at a one-loop level.
The coupling % (7$)> + H.c. brings about a small mass
difference between the real and imaginary components of 7°.
As its result, the one-loop diagram shown in the right of
Fig. 1 gives a contribution to the neutrino masses. It can be
estimated as

MWD =

L

HZZ hiahja/15 <¢>2€_ip

2
pr 32 Mza
M,

x [r

M2
Righ igAs (¢ ~ip
E / 52 e In
—1 3271' MZ

L MM
M:-M% M)

2

Mg,
2 b

M;

(26)

where Ms =ysw and M3 =m} + (A3 + A4)(¢)*. The
second similarity is satisfied for M, = O(1) TeV since w
is much larger than a TeV scale as discussed in the previous
part. Although neutrino mass eigenvalues are determined

through M7, = /\/l )+ Ml i /\/l “) should be sufficiently

small compared w1th M ij ) for large flavor mixings. If we
consider that this matrix is diagonalized by a unitary matrix
U as U' MYU = M998 the PMNS matrix is obtained as
Vemns = ATU which could have a Dirac phase and two
Majorana phases. An example of Vpyns obtained through
this framework in a simple model is given in the Appendix.

Next, we address the constraint on the relevant param-
eters caused by the neutrino oscillation data. Since M (@
should be a subdominant contribution to the neutrino
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masses, we have to extend the model at least with two
triplet fermions (ny = 2) for the explanation of the neutrino
oscillation data. In order to estimate the required magnitude
of the neutrino Yukawa couplings in such a case, we
suppose, for simplicity and definiteness, the tribimaximal
flavor structure for #,, as [19]

hel = 0’ h,ul = hrl = hl; heZ = hﬂZ = _h7:2 = h2v

(27)
and also diagonal y;; such as y; = y{6;; with y] <y; < y§.7
We also assume y}', = 0 and 7' = 0, for simplicity. Under
this assumption, if the normal hierarchy for the neutrino

masses is assumed, squared mass differences required by
the neutrino oscillation data suggest [20]

102\ [/ Ms

W ~93 x 1073 !
e ( 25 ) (1010 GeV)

(% (10 Gev
44 %107 My, )|

102\ /[ Ms
W ~93x 107 2 ),
27X ( 2 ) (10'0 Gev>

M
2 292 %1077 [ — ),
Vi =g <109 GeV

M
2 292 x 1077 [ —D2 ),
Yo <7 X 10° GeV

— MN;
Y2 < 1.0x 1075 <m> (28)

where My, , = 3, u and My, = yYu, and M, = 1 TeV is
also assumed.

Finally, it may be useful to present a remark on the
extension by the vectorlike fermions. Although these
fermions are introduced to the down sector in the above
discussion, the CKM phase could be derived in the same
way even if we introduce them to the up sector. However,
the situation could be largely changed for the CP phases in
the PMNS matrix and the small neutrino mass generation.
The present choice seems to be crucial for the present
scenario. It could also play an important role when we
consider an embedding of the model into a fundamental
model at the Planck scale region.8

D. Spontaneous CP violation

In the previous part, we just assume that Eq. (13) is
realized as a potential minimum. Here, we discuss in what

"This assumption is adopted due to the relation (11) to the up-
type quarks which is caused by the SU(4) symmetry.

The model might be embedded into an effective model derived
by a suitable compactification of the Eg x Ef superstring [21].

situation the spontaneous CP violation could occur in a
realistic way in the present model. The condition required
for the spontaneous CP violation has been studied in detail
in [22]. If we follow their results, the VEVs of ¢ is found
not to break the CP symmetry spontaneously, and then
x = 0. The reason is that the spurions for it cannot be
introduced since the imposed global U(1) symmetry is
assumed to be exact except for the color anomaly effect.
On the other hand, we can introduce the spurions for §
which has no global U(1) charge. In fact, if we introduce
the terms such as §* and S? which break a U(1) symmetry
corresponding to the S number, a nonzero p could appear as
a potential minimum.’
The relevant potential is found from Eq. (6) to be

Vep = m3(S'S) + m2(6'0) + k5(STS)? + k,(076)?
+ k5,(S7S)(670) + V), (29)

where m2 = m2 + ¢{,A* (a = S,6)and M2 > 0and {, < 0
are assumed since we suppose that the potential minimum
is fixed as a result of the SU(4) breaking. As examples, we
consider two cases for V, in (29) such as'’

() V), = a(S* + S™) + p? (8 + S™),
(ii) Vp = a(S* + S™) + B(S? + §?)(c76).  (30)

Here, we confine our study to the situation where the VEVs
u and w are determined by a part of Vp except for V. It
could be realized for kg > a and |m%| > |4?| in the case (i)
and also for kg> a and || <1 in the case (ii). The
potential minimum could be found for sufficiently small
k5| in both cases:

512
2 mg 2 mg

=-_5, =-_C, 31
(s ol (31)

and also the CP phase is determined as

2 2
. pw
W, (]1) COS Zp = —4

(i) cos2p =— >
au

(32)
in each case. These examples show that the spontaneous
CP violation could occur through the scalar S as long as
suitable values of the parameters are chosen. In fact, for
example, if y? = —4au? is satisfied for a < 1 and || < u?,
the maximum CP phase p~7 could be realized in the
case (i). We should note that these conditions on a and p?
are consistent with the requirement for which u and w are
determined as Eq. (31). In the case (ii), the maximum CP

"We do not consider such terms for s in the present study.
'We note that terms proportional to S? are induced through the
SU(4) breaking from an operator ®"WS?, which is invariant
under the imposed symmetry.
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phase is obtained for pw? ~ 4au?, which is consistent with
the determination of u and w as found from Eq. (31). As a
result of this symmetry breaking, the mass of S is fixed
as mg, = \/4kgu.

On the other hand, in order for this breaking to cause
large CP phases in both the CKM and PMNS matrices,

the conditions ppu}, < FOF and ppul < F¢F¢* should
be satisfied as discussed before. They are supposed to
require

u>w, (33)

as long as the relevant Yukawa couplings have a similar
magnitude. This condition can be easily satisfied for
suitable parameters as found from Eq. (31). Although the
tuning of parameters is necessary, the present scenario is
found to work as long as the scalar potential takes a
suitable form. We can expect that the required CP
violation is induced in both the quark and lepton sectors
based on the same origin.

III. PHENOMENOLOGY

In the previous part, we addressed that the CP problem in
the SM could be solved in this model. In this section, we
order several discussions and comments on other phenom-
enological issues.

A. Inflation

The model has candidates for the inflaton, such as ¢
and S. They can have nonminimal couplings with the Ricci
scalar R [23]:

552 2 2
7(5 + S™)|R. (34)

1 1 .
§§GGTUR, 5 §SIS}S+

Although the real and imaginary components of ¢ have
the same coupling &,, only the real part of S could have
a nonzero coupling %fSIZQR in the case & = &, where
S= %(SR +iS;) and & = &, + &, . If we suppose that a
coupling ¢ takes a sufficiently large value in such a case,
inflation via S is expected to occur in the same way as

the Higgs inflation [24]. A nice feature in this scenario is

that the dangerous unitarity violation caused by a higher
My

¢
but could be suppressed at least up to an inflation scale

My
7 [26].

The potential of the inflaton can be expressed in the
Einstein frame as

order mixing between Sk and S; [25] is not induced at

K 1 2
Vem {E(S%—FS%)—MZ} L)
(1+M_§1)

Since the canonically normalized inflaton y is defined as

d 1 SZ 6252 1/2
T 1ULS o RCY
Ro14oE\ o My M
pl

x and S are related each other as S o« exp \/ELM at a large
pl

2
field region S% > % In that region, the potential of y
KSMgl
4&
The slow roll parameters for y can be expressed as

becomes constant V= as long as Sp > S is satisfied.

M2 (VN2 3 1% 1
—P(ZE) = 5 ]’]EM%I—E:—— (37)
2 \Vg 4N? V. N

e

m
1

by using the e-foldings number N,. If we take N, = 60, we

obtain the spectral index n; = 0.97 and the tensor-to-scalar

ratio » = 3.3 x 1073, On the other hand, since the ampli-
Ve

tude of scalar perturbation is given as Ag = 5,4 and the
pl

CMB observation constrains it as Ag = 2.4 x 107 at k, =
0.002 Mpc™! [27], k¢ has to satisfy kg = 4.7 x 107192 for
N, = 60. Using this constraint, the inflaton mass is found
to be determined as

3 u
=43x10"0( 2% | (—=5—=—=) GeV. (38
S x (103 107 Gev ) O¢V- (38)

The inflaton mass should be fixed in a consistent way with
Egs. (16) and (33). We also note that the assumed vacuum
with the spontaneous CP violation could be consistently
realized for suitable parameters in this inflation framework.

The reheating after the end of inflation is expected to
be caused by the inflaton decay to the singlet neutrino
pairs N;N; through the couplings in Eq. (12). In the case
yY > 3V, which is assumed in this study, a dominant
process is S — N3N;. Since singlet fermions N; interact
with other fields only through the neutrino Yukawa
couplings, except for the couplings with § and S*,
instantaneous reheating is expected to occur for the case
Mg, > 2My, and H ~I'g 2 T'y,, where I'y and Iy, are the
decay width of Sz — N;N; and N5 — £;¢", respectively.”
If we take account of these conditions which may be
expressed as |/Ks > yY and 2,/ksy) 2 y4?, the reheating
temperature 7 could be bounded as'

"Here, we do not consider a possibility for nonthermal
leptogenesis which could be expected to occur for the
case 'y, > I'g [28].

The restoration of the PQ symmetry could occur in the
reheating process depending on the parameters. However, since
the domain wall number is one in this model, no domain wall
problem is induced even if the PQ symmetry is restored.
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FIG. 2. Left panel: A typical solution of the Boltzmann equations for Y, and Yy,.
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Their equilibrium values Yy and YN are also

plotted in the same panel. While Y, is found to follow Ye Jatz>04,Y ~, keeps a constant value until N starts decaymg Right panel:

The evolution of the lepton number asymmetry Y, generated through the out-of-equilibrium decay of N;. Horizontal dotted lines show
the value of Y; required in this model to realize the baryon number asymmetry in the Universe [20].

Tr~1.6x 1034 (yYu

csx10n () () ey (39)
103 10" GeV '

Although this shows that Tz > My (=5u) could be
satisfied for suitable parameters, N; is not expected
to be thermalized as a relativistic particle since the
Yukawa coupling y{ of N, is supposed to be very small.
Fortunately, it could be expected to reach the thermal
equilibrium through the scattering process N3N; — NN,
mediated by the scalar S before it becomes nonrelativistic
(T' < My,). This allows the present model to generate the
lepton number asymmetry sufficiently through the out-of-
equilibrium decay of Ny, although the Yukawa coupling y{
of Ny is very small. We discuss this possibility in the
next part.

)1/2

B. Leptogenesis

The model has two possible decay processes N| — ;"
and X, — #;n" which could contribute to the generation of
the lepton number asymmetry since these processes violate
the lepton number. However, X, has the SU(2) gauge
interaction so that its out-of-equilibrium decay is impos-
sible, at least before the electroweak symmetry breaking.
On the other hand, as addressed above, N; could reach
the equilibrium abundance through the scattering mediated
by Sk even if its neutrino Yukawa coupling y/ is very
small. In that case, its decay could generate the lepton
number asymmetry through the out-of-equilibrium decay
at T < My,. As long as the couplings y} or 7" between
the inflaton and N; have sufficient magnitude, such as
Wy 25 2 10° 3, the equilibrium number den51ty of
N, can be easily reahzed atT > My, as shown below. 5 0n
the other hand, since the mass of N, is generated through

"We should recall that y}, = 0 and ) = 0 are assumed.

the Yukawa coupling (y¥S + yVS*)N¢N;, N; cannot be
light if we take account of the values of y" and " mentioned
above. In fact, under the constraints (16) and (33), the mass
of N, has to be M, > 107 GeV at least.

In order to check whether this scenario works, we present
a typical solution of the Boltzmann equations for Y, and
MN‘) in the left panel of Fig. 2.
Here, Yy, is defined as Yy = n% with the N; number
density ny, and the entropy density s. In this calculation, as
an example, we assume u = 2 X 10'2 GeV and & =500,
and then the inflaton mass is fixed as mg, = 4.3 X
10'9 GeV. Taking account of the constraints in Eq. (28),
we fix other relevant parameters at the following values'

Yy, as functions of z(=

yW=1072, 3V =102, 3V
¥4 =28x1073, y5y =107, » =10".

— 10—0.5yg\/
(40)

Since mg, > 2M ), is satisfied, N3 is allowed to be
produced through the inflaton decay Sp — N3;N;. The
following N; decay N; — Z;¢p" caused by the coupling
¥4 is considered to be a substantial process for the thermal-
ization. Thus, the initial value of Yy, is fixed as the one
produced through this inflaton decay assuming the instan-
taneous reheating. The figure shows that Y reaches the
equilibrium value Y ]e\?l around z ~ 1 for the assumed value

of 3V and leaves its equilibrium value at z > 1, where the
out-of-equilibrium decay could generate the lepton number
asymmetry."”

"“These values of ¥¥ require some overall suppression effect
compared with the Yukawa couplings of the up-type quarks in
Eq (11). We just assume it 1r1 this setting.

“For a smaller value of § ¥V or a larger value of y%, Yy, cannot
reach an equilibrium value qu for z < 1, although Yy, keeps a
constant value in the same way as the one in the left panel of

Fig. 2. A larger value of j) realizes Yy, = Yy atan earlier stage.
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Y __-=" 0

1x

FIG. 3. The N; decay diagrams which contribute to the
generation of the lepton number asymmetry. The interference
between them causes the CP asymmetry e¢.

The generated lepton number asymmetry through the NV
decay is converted to the baryon number asymmetry
through the sphaleron process as in the usual leptogenesis
[29,30]. In the present model, the CP asymmetry ¢ for the
decay N; — £¢" [31] is dominantly caused by an inter-
ference between a tree diagram and a one-loop diagram
mediated by N3 which are shown in Fig. 3. Under the
assumption given in Eq. (27), it can be estimated as

D(Ny = £¢") —=T(N§ = £¢)
(N, = ¢¢7) + T(N¢ = £¢)

b g 8 2
_ L Im(3 5 fyiie IZ)ZF(MNs)
8z (i) M3,

where F(x) is defined as

e =

Flx) = ﬁ<1 —(14%) ln]¥>. (42)

In the following analysis, we assume sin(—2p) = 1 which
makes ¢ maximal.

If N, is in the thermal equilibrium at z < 1, the out-of-
equilibrium decay of N; could start at z ~ 1 and the lepton
number asymmetry is effectively generated at z > 1. By
introducing an efficiency factor for the washout of the
generated lepton number asymmetry as k, the lepton
number asymmetry Y;, which is defined as ¥, ="t by
using a net lepton number density n;, is roughly estimated
as ¥, = exYy | ;. It suggests that &2 8x 107" is

necessary to realize a value Y, > 2.5 x 107? at a sphaleron
decoupling temperature in order to produce the sufficient
baryon number asymmetry in the Universe for Yf\,ql =

3.1 x 1072, Since y¥ is supposed to be very small in this
model, N; is considered to start its substantial decay at a
later stage, such as z > 1, where the washout caused by N3

and X, could be largely Boltzmann suppressed as long as
My, My,

My, * My,
all lepton number asymmetry generated there could be kept

> | are satisfied. Thus, in such a case, the almost

TABLE 1. The CP asymmetry ¢ and the generated baryon
number asymmetry Yjp for the parameters in Eq. (40) with
u=2x10" GeV and ¢ =500, which realize the spectrum
méi > My, > My, > My, . The Yukawa couplings A, of X;,
are determined through the neutrino oscillation conditions (28) by
assuming the values of |s| and My, ,.

My, s hy hy le] Yp

3My, 107" 37x1072 13x1072 9.6x 1078 9.5x 107"
3My, 10719 6.6 x 1072 2.4 x 1072 9.6 x 107* 9.4 x 107!
3My, 1072 1.2x 107" 42x1072 9.6 x 107% 7.2 x 107"
5My, 107'° 8.4 %1072 3.0x 1072 9.6 x 1078 9.4 x 107"

10M y, 10719 1.2x 1071 42x 1072 9.6 x 1078 9.4 x 107!

and the sufficient lepton number asymmetry is expected to
be generated through the out-of-equilibrium decay of N;.

In the right panel of Fig. 2, we present the evolution of
the lepton number asymmetry Y; generated through the
out-of-equilibrium decay of N, using the same parameters
given in Eq. (40), which can prepare an initial value
Yy, (1) 2 Yy (1) as shown in the left panel. In this analysis
of Boltzmann equations, we fully take account of the
washout processes and use the neutrino Yukawa couplings
hy , which are fixed by taking account of the condition (28)
with M, =10° GeV, My , =3My,, and |is| = 107"
The small neutrino Yukawa coupling y4 makes the N,
decay be delayed until the temperature where the washout
processes could be frozen out due to the Boltzmann
suppression. This feature can be found in the behavior
of Yy and Y, in the right panel. As its result, almost all the
lepton number asymmetry generated through the out-of-
equilibrium N; decay could be converted to the baryon
number asymmetry in the Universe as discussed above. The
model is found to present a successful leptogenesis
framework. Results of the analysis for several parameter
settings are also listed in Table 1.

Here, we order a few remarks related to these results.
First, since a smaller |As| makes £, larger through the
neutrino mass condition (28) for the fixed My, ,, the washout
processes mediated by X, , are considered to suppress the
generation of the lepton number asymmetry at an early stage
where it is not frozen out. Second, the N; mass seems to be
bounded as M, > 10° GeV in the present model in order to
produce the required baryon number asymmetry. This bound
is similar to the one given in [32]. Third, for the present
parameter settings, w > 10'© GeV seems to be required to
avoid the washout of the generated lepton number asym-
metry, which is consistent with the requirement from the PQ
symmetry breaking scale. Finally, the coexistence of the
couplings y¥ and ¥V, such as y¥ # 7V in Eq. (12), is crucial
for the leptogenesis. We should recall that the same feature is
required in the explanation of the CKM phase through the
mass matrix (17).
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C. Dark matter

The model has three dark matter (DM) candidates, that
is, the axion, the neutral component of X, and the lightest
neutral component of z. The axion could explain the
required DM abundance as long as w=~10'> GeV is
satisfied [16]. The latter two have odd parity of the remnant
Z, of the global U(1) symmetry, which makes them stable
and then DM candidates. However, X0 is supposed to have
a large mass so that it cannot be DM in the present model.'
On the other hand, # is assumed to have a mass of
O(1) TeV as discussed in the neutrino mass generation.
In that case, the lightest neutral component of 7 can be DM.
Moreover, even if the VEV w is not large enough to
guarantee the sufficient axion density for the explanation
of the DM energy density, the thermal relics of #° could
explain it as long as the quartic couplings 454 in Eq. (14)
take suitable values [33,34]. As a result, the breaking scale
w of the PQ symmetry could be free from the explanation of
the DM energy density in this model.

D. Quark and lepton mass hierarchy

Yukawa coupling constants for quarks and leptons are
related to each other by Eq. (11) ata SU(4) breaking scale A.
On the other hand, their weak scale values, which determine
mass eigenvalues of the quarks and the leptons, are fixed
through the renormalization group equations taking them as
the initial values. It can bring about a difference of a factor
three due to the color effect between quarks and leptons. The
mass difference between the down-type quarks and the
charged leptons seems to be partially explained by this
effect, but it is not satisfactory. Even if corrections caused by
the mixing with heavy fermions in these sectors are taken
into account, this situation is not improved and then some
new ingredients are needed to be introduced for it.

On the other hand, in the up-type quarks and the
neutrinos, several additional parameters related to the
neutrino mass generation could give a different feature
in these sectors. Especially since neutrino masses are
determined by the type III seesaw contribution, the relation
among the Yukawa couplings of quarks and leptons at the
high energy scale does not directly affect their mass
matrices. These features could make the large difference
found in the CKM and PMNS matrices be consistently
realized in the present unification scheme. Since details
depend on the model parameters, and this issue is beyond
the scope of present study, we will not discuss it further
here and leave it to future study. Finally, it may be useful to
note the fact that the present unification scheme could make
the leptogenesis work well. A requirement that the third
generation Yukawa coupling of the up-quark sector
should be much larger than others brings about the relation

'*The DM study in the cases where < has a mass of O(1) TeV
can be found in [18].

¥{, < ¥4 in the neutrino sector, which plays a crucial role

in the present leptogenesis scenario as shown in the
above study.

IV. SUMMARY

We proposed a model which gives the origin of the CP
violation at an intermediate scale. In this model, the CP
symmetry is supposed to be spontaneously broken, but it
does not cause the strong CP problem and 6 = 0 is kept
even if the radiative corrections are taken into account. We
showed that such a model could be realized in a Pati-Salam-
type unification model, in which CP phases in both the
CKM and PMNS matrices are derived from the same
source. Neutrino masses are generated in a hybrid way by
the tree level type I seesaw and the one-loop type III
seesaw. The required baryon number asymmetry can be
produced through the leptogenesis. The out-of-equilibrium
decay of N, occurs at a later stage where the washout
effects are almost frozen out. As a result, the generated
lepton number asymmetry could be effectively converted to
the baryon number asymmetry. This feature comes from the
present unification based on the fact that the top Yukawa
coupling is much larger than others. The model has two
DM candidates and the dominant DM is fixed depending
on the intermediate symmetry breaking scale. Since the
axion needs not to be DM, the PQ symmetry breaking scale
can be free from the condition for the DM energy density
realization. We also note a possibility such that the model
might be derived as the low energy effective model of the
Eg x Eg superstring. It will be discussed elsewhere.
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APPENDIX: EXAMPLES OF THE CKM MATRIX
AND THE PMNS MATRIX

In this Appendix, we present a simple example which
could bring about a phase in the CKM matrix. We assume
the relevant couplings y?, y, and 7 to be written as'’

et & xél
yi=c|l & & y& |,
e 1 -1
P = (a1, a3, a3), P = (b1, by, b3),  (Al)

A similar Yukawa coupling matrix for the down-type quarks
has been considered in a different context [35]. There is no
background to explain its hierarchical structure in the present
model.
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by using real constants a;, b;, ¢, and x, y. As long as € satisfies € < 1, the down-type quark mass matrix m?(=y?(¢)) has
hierarchical mass eigenvalues. Here, we introduce X;; and Y;; whose definition is given as

(ay + by)? + (a3 + bs) pipj + {axbs + bybs + (ayb3 + asby) cos 2p} (p; + P]>
(12 —+ 03 —+ b2 + b2 + 2((12[72 + a:;b;) COS 2p
V. — (ayb3 — azby)(p; — p;) sin2p
Y ad + a3+ b3 + b3 + 2(ayby + azbs) cos2p’

Xij=1+pip;+

where p; is fixed as p; = x, p, =y, and p3 = —1. If we define R;; and 6;; by using these quantities as

P Y;;
RU X2 + Y,z y tan@,»j = X—], (A3)

the component of Eq. (23) is found to be expressed as
(A_lmzA)ij = C2<$>2€inijeia[j7 (Ad)
where pf, < F4F? is assumed. ¢;; is defined as
2

_ .6 _ 4 _ _ _ .5 _ _ .3 _ _
€ =€, €en=¢, e3=1 €ep=€1=€, €3=€1=¢€, €3=cp=c. (AS)

By solving Eq. (A4), we find that A is approximately written as

_ 30 Xos 0 _Xi3 o
! A A (|0’|2Xn ¢ |‘1\3X33)
2 Xy i0
A ~ A 1 ﬂ, \a\ng; e ) (A6)
X 2 X, —if
13 13 23 i 1
|a* X3 |a X33

where the constants A, «, and @ are defined as

_ X12X33 - X13X23e_i(923+9]2—9]3)
X2 X33 — X%3

, A= |a

e, O=arg(a)+ 0y + 01,0 (A7)

This expression shows that A could have a nontrivial phase which gives the origin of the CKM phase as long as
a,by — azb, # 0 and x # y are satisfied. If the diagonalization matrix O for the mass matrix of the up-type quarks takes an
almost diagonal form, an interesting matrix could be obtained as the CKM matrix, such as V iy = A. In this case, the mass
eigenvalues for the down-type quarks are obtained as

N ]
33

XZ X2 1/2 »
{2t (=32 -2) } e (a8)
33

A diagonalization matrix A for the charged lepton mass matrix takes the same form as A as a result of the Pati-Salam
SU(4) symmetry in the model. However, since the Yukawa couplings which induce the neutrino mass matrix could be
irrelevant to the ones in the up-type quarks as discussed in the text, the large mixing in the PMNS matrix could be obtained
if large flavor mixings are realized in the neutrino mass matrix. If we use the assumption in Eq. (27), the PMNS matrix in
this example is found to be written as
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1 1

w2-4 7

Vens = | 22 (-1-224p22) (1
1 %12 1

7+ 5°2%) v

X2

22— ¢ and the Majorana phases are not taken
la|* X33

where f =

(1+2) L
—2=p2) FUP2) | +0(). (A9)

into account.
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