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In the wake of new scalar searches at the LHC in various channels, it is interesting to investigate the
sacrosanctity of the constraints on the masses and couplings of the heavier scalars in a two-Higgs-doublet
model (2HDM). We consider the effects of new physics beyond a 2HDM encoded in terms of bosonic
dim-6 operators. Although these constraints are mostly immune to such new physics, we demonstrate that,
for a specific class of bosonic operators, the constraints on the masses of the exotic scalars from cascade
decays can get substantially relaxed. We present such effects for both degenerate and hierarchical mass
spectra of the heavier scalars in 2HDM. Some decay channels of the new scalars vanish at the alignment
limit in the tree-level 2HDM. But the inclusion of dim-6 terms can lead to significant cross sections for such
processes. It is also pointed out that the observation of such processes can no longer rule out the alignment
limit if such dim-6 operators are present.
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I. INTRODUCTION

Even after the discovery of a Higgs boson [1,2] whose
characteristics resemble that of the standard model (SM)
Higgs, the dynamics of electroweak symmetry breaking
and the structure of the scalar sector remains an open
question. The noncancellation of quadratic divergence of
Higgs mass under the framework of SM has motivated a
plethora of beyond-standard model (BSM) theories for
decades. The two-Higgs-doublet model (2HDM) is an
archetype of an extended scalar sector, theoretically well
motivated from the viewpoint of supersymmetry, composite
Higgs models, etc. For example, in supersymmetric models
[3] the motivation behind a second Higgs doublet is
twofold: first to cancel chiral anomalies created by the
superpartners of such scalars and second from the require-
ment of the superpotential to be holomorphic. 2HDMs
arising in the framework of composite Higgs [4,5], little
Higgs [6], and twin Higgs [7] have also been studied in the
literature. Even keeping the hierarchy problem aside, it is
often deployed to explain issues of electroweak baryogenesis
[8,9], flavor anomalies [10,11], neutrino mass [12,13], dark
matter [14], etc.
In light of measurements of the signal strengths of the

observed Higgs, any model with a scalar sector beyond the

SMmust contain a CP-even neutral scalar whose couplings
are aligned to that of the SM Higgs boson. Such an
alignment can be realized when the new scalars which
mix with the SM-like Higgs are decoupled from the mass
spectrum of SM à la Applequist-Carrazone [15,16]. The
“alignment without decoupling” scenario becomes viable
only for models with additional scalar doublets [16–22].
In such cases, the scalars can have masses below a TeV, i.e.,
well within the reach of the LHC. Thus, along with the
signal strengths of the SM-like Higgs, the direct bounds on
the masses of exotic scalars also play a pivotal role in
constraining the parameter space of the 2HDM. Such
bounds also depend on the specifications of the Yukawa
sector of the models. Nonobservation of such new scalars
rules out a significant region of parameter space in the
alignment without decoupling scenarios. Also, some decay
channels involving exotic scalars remain absent at the
alignment limit in a CP-conserving 2HDM [23]. If the
LHC discovers any new scalar state in one of these channels,
the interpretation involving a CP-conserving 2HDM would
readily imply a deviation from the alignment limit.
If new physics beyond 2HDM exists as a decoupled

sector from the mass scale of the 2HDM, the effects of such
new physics can be encoded in the higher-dimensional
operators in an effective theory where the fields of the
2HDM constitute the low-energy spectrum [24–26]. Such
an effective theory is dubbed as the two-Higgs-doublet
model effective field theory (2HDMEFT) in the literature.
Several aspects of such effective theories for various
extended scalar sectors have been addressed in the literature
[27–31]. A complete basis of the 6-dim operators in
2HDMEFT has been introduced only recently [26]. It has
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also been shown that such 6-dim operators are capable of
masking the true alignment limit in a 2HDM, by modifying
various decay channels of the SM-like Higgs boson [32].
In the present paper, we have investigated the role of such
6-dim terms while extracting the LHC constraints on the
masses of the new scalars in a 2HDM.We consider different
mass spectra of these new scalars allowed from the theoretical
constraints andmeasurements of the oblique parameters. The
constraints ensuing from different searches for the heavy
scalars at the LHC and possible deviations in the presence of
6-dim terms have been illustrated.
In Sec. II, we briefly review the theoretical framework of

a general 2HDM. In Sec. III, we discuss the theoretical as
well as phenomenological constraints on the parameter
space of a 2HDM relevant to this work. In Sec. IV, we
introduce the 6-dim terms that have been considered in this
work, along with the modified couplings of the scalars.
In Sec. V, we present the benchmark scenarios to illustrate
the effect of such 6-dim terms on the parameter space of the
2HDM and eventually conclude in Sec. VI.

II. 2HDM: A REVIEW

The two scalar doublets are defined as

φI ¼
� ϕþ

I
1ffiffi
2

p ðvI þ ρIÞ þ iηI

�
; ð2:1Þ

with I ¼ 1, 2. Here ϕ�
I , ρI , ηI , and vI denote the charged,

neutral CP-even and neutral CP-odd degrees of freedom
(DOF), and the vacuum expectation value (VEV) of the Ith
doublet, respectively.
Before spontaneous symmetry breaking (SSB), the tree-

level 2HDM Lagrangian, augmented with 6-dim operators,
assumes the form

L ¼ Lkin þ LYuk − Vðφ1;φ2Þ þ L6; ð2:2Þ

where

Lkin ¼ −
1

4

X
X¼Ga;Wi;B

XμνXμν þ
X
I¼1;2

jDμφIj2 þ
X

ψ¼Q;L;u;d;l

ψ̄ iDψ ;

LYuk ¼
X
I¼1;2

Ye
I l̄eφI þ

X
I¼1;2

Yd
I q̄dφI þ

X
I¼1;2

Yu
I q̄uφ̃I;

Vðφ1;φ2Þ ¼ m2
11jφ1j2 þm2

22jφ2j2 − ðμ2φ†
1φ2 þ H:c:Þ þ λ1jφ1j4 þ λ2jφ2j4 þ λ3jφ1j2jφ2j2

þ λ4jφ†
1φ2j2 þ

��
λ5
2
φ†
1φ2 þ λ6jφ1j2 þ λ7jφ2j2

�
φ†
1φ2 þ H:c:

�
;

L6 ¼
X
i

ciOi=f2: ð2:3Þ

Here, ci is the Wilson coefficient of the 6-dim operator Oi,
and f is the scale of new physics beyond the tree-level
2HDM. The terms proportional to λ6;7 are called “hard-Z2

violating,” because they lead to a quadratically divergent
amplitude for φ1 ↔ φ2 transition [33] and they also lead to
CP violation in the scalar sector when they attain complex
values [34]. But it is possible to realize the CP-conserving
limit with nonzero values of λ6;7 as well [23]. In this paper,
we contain our discussion to the CP-conserving 2HDM,
and we take λ6;7 ¼ 0. The electroweak symmetry is broken
by the VEVs, namely, v1 and v2 corresponding to the two
doublets φ1;2, respectively. This leads to the mixing of
similar types of degrees of freedom pertaining to φ1;2. In
the CP-conserving case, the mass matrices of the neutral
CP-even and -odd scalars and the charged scalars are
diagonalized by the following field rotations:�

H

h

�
¼ RðαÞ

�
ρ1

ρ2

�
;

�
W�

L

H�

�
¼ RðβÞ

�
ϕ�
1

ϕ�
2

�
;

�
ZL

A

�
¼ RðβÞ

�
η1

η2

�
: ð2:4Þ

Here,

RðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
: ð2:5Þ

h and H are the neutral CP-even physical DOF, whereas
A and H� are the neutral CP-odd and charged DOF,
respectively. As can be seen from Eq. (2.4), β is the mixing
angle of the charged and CP-odd sectors, and it is given
by β ¼ tan−1ðv2=v1Þ. α is the mixing angle of the CP-even
neutral scalars and can be expressed as

α ¼ sin−1
"

M2
ρ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
ρ12Þ2 þ ðM2

ρ11 −m2
hÞ2

q
#
; ð2:6Þ

with M2
ρ being the mass-squared matrix in the neutral

CP-even sector. In this paper, we assume h to be the
SM-like Higgs with a mass of mh ∼ 125.09 GeV and
mH > mh. The case of an additional CP-even scalar in a
2HDM with a mass lower than the SM-like Higgs has
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been explored in the literature as well [20]. It was shown
that the tree-level Higgs-mediated flavor-changing neutral
currents appear in models where more than one scalar
doublet gives mass to the same kind of SM fermions
[35,36]. Such a situation can be avoided under the
framework of various discrete symmetries, for example,
a Z2 symmetry [35,36]. There are four possible ways in
which such a Z2 charge assignment of the SM fermions can
be done, namely, the type-I (Yu

1 ¼ Yd
1 ¼ Ye

1 ¼ 0), type-II
(Yu

1 ¼ Yd
2 ¼ Ye

2 ¼ 0), type-III (Yu
1 ¼ Yd

2 ¼ Ye
1 ¼ 0), and

type-IV (Yu
1 ¼ Yd

1 ¼ Ye
2 ¼ 0) cases. The type-II scenario

is also dubbed as the minimal supersymmetric standard
model–like case due to similarity in the Yukawa sectors.
Types III and IV are sometimes also referred to as flipped
and lepton-specific scenarios, respectively. Because of
the rotation in the scalar sector following Eq. (2.4), the
couplings of the SM gauge bosons and fermions to the
SM-like Higgs boson are rescaled compared to the corre-
sponding SM values. After SSB, the Yukawa sector of the
2HDM can be written as

−LYuk ¼
1ffiffiffi
2

p ðκDsβ−α þ ρDcβ−αÞD̄Dhþ 1ffiffiffi
2

p ðκDcβ−α − ρDsβ−αÞD̄DH þ 1ffiffiffi
2

p ðκUsβ−α þ ρUcβ−αÞŪUh

þ 1ffiffiffi
2

p ðκUcβ−α − ρUsβ−αÞŪUH þ 1ffiffiffi
2

p ðκLsβ−α − ρLcβ−αÞL̄Lhþ 1ffiffiffi
2

p ðκLcβ−α − ρLsβ−αÞL̄LH

−
iffiffiffi
2

p Ūγ5ρUUAþ iffiffiffi
2

p D̄γ5ρDDAþ iffiffiffi
2

p L̄γ5ρLLAþ ðŪðVCKMρDPR − ρUVCKMPLÞDHþ

þ ν̄ρLPRLHþ þ H:c:Þ; ð2:7Þ

with κf ¼
ffiffiffi
2

p
Mf=v for f ¼ U, D, L and ρU;D;L are

defined in Table I. U,D, L, and ν represent the up-type and
down-type quarks, charged leptons, and neutrinos in their
mass bases, respectively. The generation indices of the
fermionic fields have been suppressed in Eq. (2.7). As
mentioned earlier, the measurement of the signal strengths
of the SM-like Higgs at the LHC demands that the
properties of one of the neutral CP-even neutral scalars,
here h, should closely resemble that of the SM Higgs.
As Eq. (2.7) indicates, this is satisfied at the vicinity of the
so-called “alignment limit,” i.e., cosðβ − αÞ → 0. Thus,
the current measurements of Higgs signal strengths have
pushed the 2HDMs close to the alignment limit [19,20,
37,38]. The measurements of the Higgs signal strengths
dictate that for type-II 2HDM, at tan β ∼ 1, the constraint
on cosðβ − αÞ is given by −0.05 ≲ cosðβ − αÞ≲ 0.15 at
95% C.L. The allowed region becomes even smaller for
higher values of tan β. The situation for types III and IVare
quite similar to that of a type-II 2HDM. This constraint is
comparably relaxed in a type-I 2HDM, where the allowed
range is j cosðβ − αÞj ≲ 0.4. As we are working under the
assumption of a CP-even vacuum of the 2HDM potential,
vertices like AWW andAZZ are not present at the tree level.
Among the tree-level scalar-gauge couplings which are
important for the cascade decays of the new scalars, AZh

and H�hW∓ are proportional to cosðβ − αÞ, whereas AZH
andH�HW∓ are proportional to sinðβ − αÞ. It is possible to
realize an exact alignment in the multi-Higgs-doublet
models in the framework of certain additional symmetries
of the 2HDM potential [39–43].
It is evident from Eqs. (2.7) that, when tan β ≳ 1, the hbb

coupling multiplier deviates significantly from unity in a
type-II 2HDM. For such values of tan β, the branching
ratio Brðh → bb̄Þ as well as the production of h in both gg
and bb̄ fusion substantially increases. It is mainly due to
themeasurement of the processes like gg → γγ, bb̄,VV� and
Vh → bb̄, that the parameter space of a type-II 2HDM in the
cosðβ − αÞ − tan β plane is quite strongly constrained. The
impact of the measurement of the Higgs signal strengths in
each individual search channel on the cosðβ − αÞ − tan β
plane has been discussed in Ref. [44]. It should bementioned
that the coupling multipliers of the SM-like Higgs also
become close to unity when sinðβ þ αÞ ¼ 1, i.e., at the
so-called “wrong-sign Yukawa” limit [45] for a type-II, -III,
and -IV 2HDM. Though, with better measurement of the
processes like Vh → bb̄, h → γγ, ϒγ [46,47], the fate of the
wrong-sign Yukawa region will be decided in the near future.
It is also clear from Eq. (2.7) that, though the coupling

multipliers of the SM-like Higgs become unity at the align-
ment limit, the couplings of the exotic Higgses with SM
fermions can be nonzero. The HVV coupling becomes
identically zero at the alignment limit, protecting the align-
ment limit against measurements like gg → H → WW, ZZ.
Though the couplings of H and A with SM fermions do not
vanish at cosðβ − αÞ ¼ 0. Thus, it is possible to constrain
the parameter space of the type-II 2HDM even at the
alignment limit from the nonobservation of the heavier
scalars [23] in processes like gg=bb̄ → H=A → ττ̄, γγ,

TABLE I. Coupling multipliers for Yukawa interactions in
2HDM

Type I Type II Type III Type IV

ρD κD cot β −κD tan β −κD tan β κD cot β
ρU κU cot β κU cot β κU cot β κU cot β
ρL κL cot β −κL tan β κL cot β −κL tan β
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gg → H → hh, etc. Both ATLAS and CMS are involved in
numerous dedicated searches of these kinds, for instance,
Ref. [48–52], resulting in significant constraints on the
2HDM parameter space.
Different kinds of mass spectra of the new scalars in

a 2HDMcan lead to quite a rich phenomenology at the LHC.
In addition to the regular search channels consisting of a pair
of SM particles as mentioned earlier, exotic states decaying
into one another can also provide strong constraints on
2HDM parameter space. At this point, we define mA ¼
mH ¼ mH� as the “degenerate” case and the case when any
of the three exotic scalars is more massive than the other two
as the “hierarchical” case. The constraints from the decay of
the new scalars into SM particles are significantly relaxed in
the hierarchical scenario compared to the degenerate case
[38]. But for the hierarchical spectrum of new scalars, the
channels like HðAÞ → ZAðHÞ dominate the total decay
width of such states, leading to new bounds on the parameter
space which are not applicable for the degenerate case.
A hierarchical spectrum such as mA > mH ∼mH� ∼ v can
lead to a first-order electroweak phase transition providing
an explanation for the matter-antimatter asymmetry, with
A → ZH being its smoking gun signature at the LHC
[53,54]. In general, the importance of Higgs cascade decays
as the possible probes of an extended scalar sector have been
discussed in the literature [55–60], and A → ZH decay is
dubbed as a “golden channel” in this context [61].

III. CONSTRAINTS ON 2HDM
PARAMETER SPACE

We work with the 2HDM parameters in the physical
basis which consists of fmh;mH;mA;mH� ; tanβ; cosðβ−αÞ;
m2

12;λ6;λ7;vg. Along with mh¼125.09GeV, v¼246GeV,
and λ6;7 ¼ 0, we are left with six free parameters. The
conversion between the generic and physical basis can be
found in, for instance, Refs. [16,59]. The theoretical
constraints are discussed below.

(i) Vacuum stability.—The stability of the electroweak
(EW) level is ensured if [16]

λ1 > 0; λ2 > 0;

λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λ3 þ λ4 − jλ5j > −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
:

ð3:1Þ
It can be shown that, at the alignment limit, the first
two conditions are satisfied ifm2

12 ¼ m2
Hsβcβ. Along

with that, the last two criteria are satisfied if m2
hþ

m2
H�−m2

H>0 andm2
h þm2

A −m2
H > 0, respectively.

This means that for degenerate masses of the new
scalars the last two criteria are automatically sat-
isfied if the first two are satisfied. For the hierar-
chical mass spectrum, the mass of the exotic scalars
cannot be arbitrarily different.

(ii) Perturbativity.—The perturbativity of the quartic
couplings is satisfied if jλij≲ 4π. At the alignment
limit, this implies that, for tβ≳1, jm2

12−m2
Hsβcβj≲v2.

(iii) Unitarity.—Tree-level unitarity of the S matrix
requires the eigenvalues of the 2 → 2 scattering
matrix to be less than 8π. At the alignment limit
for m2

12 ∼m2
Hsβcβ, this implies that the differences

between the masses of the new scalars have to
be ≲v.

(iv) Oblique parameters.—The new scalars in 2HDM
contribute to the oblique parameters through their
couplings to the massive gauge bosons [62–67].
At the alignment limit, such contributions to the T
parameter assume the form

ΔT ¼ g2

64π2m2
W
ðFðm2

H� ; m2
AÞ þ Fðm2

H� ; m2
HÞ

− Fðm2
A;m

2
HÞÞ; ð3:2Þ

with

Fða; bÞ ¼ aþ b
2

−
ab

a − b
ln

�
a
b

�
ða ≠ bÞ

¼ 0 ða ¼ bÞ:

As Eq. (3.2) suggests, this anomalous contribution
to the T parameter vanishes at the limit mH� ¼ mA or
mH� ¼ mH. However, substantially away from the align-
ment limit, this does not hold for the entire range
of mA. As mentioned earlier, the measurements of the
Higgs signal strengths imply that the maximum values
of cosðβ − αÞ can be attained in a type-I 2HDM,
j cosðβ − αÞj≲ 0.4. For the remaining three types of
Yukawa structure, j cosðβ − αÞj ≲ 0.1. We have checked
that the limits mH ¼ mH� and mA ¼ mH� ensure that the
contribution to the T parameter remains in the experimen-
tally allowed range at 95% C.L. even when we consider
small deviations from the alignment limit, cosðβ − αÞ≲
0.1. For cosðβ − αÞ ∼ 0.4, even for mH ¼ mH� ¼
300 GeV, mA ≳ 480 GeV is ruled out from the measure-
ment of the T parameter.
LEP searches put a constraint on the mass of the charged

scalar as mH� ≳ 72 GeV (80 GeV) for a type-I (II) 2HDM
[68]. Also, the searches for Z → AH → ττ̄ττ̄ lead to the
constraint mH þmA ≳ 208 GeV [69]. The charged scalar
mediates flavor-violating processes such as Bd → Xsγ,
Bs → μþμ−, Bþ

d → τþν, etc., which in turn lead to con-
straints on m�

H [70–72]. The measurement of the width of
Bd → Xsγ leads to the most stringent constraint on the
charged scalar mass for a type-II 2HDM, mHþ ≳ 580 GeV,
almost independent of the value of tan β [72]. For a type-I
2HDM, the constraint from meson decays is comparatively
less stringent and depends rather strongly on tan β. For
tan β ∼ 1.5, the constraint ismHþ ≳ 200 GeV [72]. Based on
the similarity in couplings of the scalars to the quarks,
the constraints on a charged scalar mass for a type-I
and -II 2HDM can also be used for type-IV and -III cases,
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respectively, though we do not consider this as a hard bound
for our purpose as it can be ameliorated in several extensions
of 2HDM [73]. Moreover, the mass differences of the three
exotic scalars are constrained from the measurement of the
oblique parameters [62]. For cosðβ − αÞ ¼ 0, the contribu-
tions of the new scalars to the S and T parameters do not
depend upon m2

12 or tan β. For a fixed value of mH, the
constraints from precision tests are satisfied only ifmH ∼mA
or mH ∼mH�. As mentioned earlier, the measurements of
the signal strengths of the SM-like Higgs boson constrain
the value of cosðβ − αÞ to be close to zero, especially for a
type-II, -III, and -IV 2HDM. Thus, while working with the
hierarchical spectrum of the new scalars, we take cosðβ − αÞ
to be close to zero. But for the degenerate spectrum of exotic
scalars, we consider a possible large deviation from the
alignment limit while we present the excluded region on the
cosðβ − αÞ − tan β plane. In this paper, we have considered
the constraints due to the nonobservation of the processes:
gg → H → ZZ [48], gg → H → hh [49], gg → HðAÞ →
AðH=hÞZ [50], and gg=bb̄ → H=A → ττ̄ [51,52].

IV. COUPLINGS OF THE HEAVIER
SCALARS IN 2HDMEFT

We contain our discussion only to the bosonic operators
of 2HDMEFT for simplicity. The phenomenology of the
fermionic dim-6 terms will be reported elsewhere. As
discussed in Ref. [32], the measurement of EW oblique
parameters, triple gauge boson vertices, and Higgs signal
strengths constrains the bosonic operators other than type
φ4D2 at Oð10−3Þ. Moreover, some of the φ4D2 type of
operators violate the T parameter at the tree level, and the
corresponding Wilson coefficients are rather small. Thus,
we have considered only the operators of type φ4D2 which
do not contribute to the T parameter in the tree level [26]:

OH1 ¼ ð∂μjφ1j2Þ2;
OH2 ¼ ð∂μjφ2j2Þ2;
OH12 ¼ ð∂μðφ†

1φ2 þ H:c:ÞÞ2;
OH1H2 ¼ ∂μjφ1j2∂μjφ2j2;
OH1H12 ¼ ∂μjφ1j2∂μðφ†

1φ2 þ H:c:Þ;
OH2H12 ¼ ∂μjφ2j2∂μðφ†

1φ2 þ H:c:Þ: ð4:1Þ

In the presence of such operators, the nondiagonal kinetic
terms arise after SSB [26]. In order to get rid of such terms,
one needs to rescale the neutral CP-even DOF, i.e., ρ1 and
ρ2. This implies that the physical neutral CP-even scalars
in the presence of these operators are rescaled compared to
the tree-level 2HDM:

h → ð1 − x1Þhþ yH;

H → ð1 − x2ÞH þ yh: ð4:2Þ

x1, x2, and y can be written in terms of the Wilson
coefficients of the operators appearing in Eq. (4.1) and
the scale of new physics beyond the 2HDM. The analytical
forms of x1, x2, and y can be found in Appendix A. In
our convention, the Wilson coefficient of an operator Oi
is given as ci, which includes the symmetry factors.
Equation (4.2) dictates that any coupling involving at least
one h or H field is modified compared to the 2HDM at the
tree level. For example,

κ0hff ¼ ð1 − x1Þκhff þ yκHff; ð4:3Þ

κ0Hff ¼ ð1 − x2ÞκHff þ yκhff; ð4:4Þ

κ0hVV ¼ ð1 − x1Þ sinðβ − αÞ þ y cosðβ − αÞ; ð4:5Þ

κ0HVV ¼ ð1 − x2Þ cosðβ − αÞ þ y sinðβ − αÞ; ð4:6Þ

κ0AZh ¼ ð1 − x1ÞκAZh þ yκAZH; ð4:7Þ

κ0AZH ¼ ð1 − x2ÞκAZH þ yκAZh: ð4:8Þ

Equations (4.4) and (4.6) affect decay processes like
H → ττ̄ and H → ZZ, which are particularly important
in the degenerate case. Similarly, the decay widthsHðAÞ →
ZAðHÞ, which become relevant in the hierarchical scenar-
ios, are changed according to Eq. (4.8). What is more
interesting, processes, which apparently look unaffected
by the rescaling of fields, such as gg → A → ττ̄, are also
changed. It is due to the fact that away from the alignment
limit, for a large range of values of mA and tan β, BrðA →
ZhÞ is quite significant. The change in BrðA → ZhÞ
according to Eq. (4.7) in turn modifies BrðA → ττ̄Þ.
Even the change in h → ff̄ can be important for bounds
on the heavier scalars. For example, the search for A → Zh
assumes that the Higgs in the final state further decays into
a pair of b-tagged jets [50]. Moreover, the coupling multi-
pliers of the SM-like Higgs also modify upon the inclusion
of dim-6 operators compared to the tree-level 2HDM
according to Eqs. (4.3) and (4.5). Thus, the allowed param-
eter space changes in the cosðβ − αÞ − tan β plane [32].
Many of the sum rules involving various gauge cou-

plings, which hold in the 2HDM at the tree level, are no
longer valid in the presence of 6-dim operators [4]. These
sum rules can play an important role in deciphering new
physics beyond the 2HDM. For instance, in the 2HDM
at the tree level, the sum rule κ2hVV þ κ2HVV ¼ 1 holds true,
but in the presence of the dim-6 termsmentioned in Eq. (4.1),
κ2hVVþκ2HVV¼1–2ðx1s2β−αþx2c2β−αþ2ycβ−αsβ−αÞ. If another
CP-even neutral scalar H is discovered after hð125Þ, the
measurement of its decay width and BrðH → WWÞ will
facilitate the verification of such a sum rule. A deviation
from κ2hVV þ κ2HVV ¼ 1 will point to a departure from the
CP-conserving 2HDM. If κ2hVV þ κ2HVV < 1, then it may
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indicate towards a CP-violating 2HDM or CP-conserving
N-Higgs-doublet-model (N > 2). But such an interpretation
does not hold if there are more than one neutral BSM scalars
with degenerate masses or masses the same as the SM-like
Higgs. Anyway, even the dim-6 operators in 2HDMEFT
can lead to κ2hVV þ κ2HVV < 1. On contrary, neither a
CP-violating 2HDM nor N-Higgs-doublet-model can lead
to κ2hVV þ κ2HVV > 1, though such a scenario can be inter-
preted in terms of the dim-6 terms of 2HDMEFT. At the
CP-conserving limit with λ6;7 ≠ 0, the similar argument for
a tree-level 2HDMisvalid in this context,whereas, in general,
λ6;7 ≠ 0 will follow the argument for a CP-violating 2HDM.

V. BENCHMARK SCENARIOS

Following the discussions in Sec. III, in the context of
oblique parameters, for the hierarchical mass spectrum,
we consider either mA ¼ mH� or mH ¼ mH�. The limit
mA ¼ mH is highly constrained from the measurement of S,
T parameters, and the decays ofH and A into each other are
kinematically forbidden.
So the mass spectra under scrutiny for the hierarchical

case are [59]

C1∶ mA ¼ mH� > mH; C2∶ mA > mH ¼ mH� ;

C3∶ mA ¼ mH� < mH; C4∶ mA < mH ¼ mH� :

ð5:1Þ
For the hierarchical case, we have studied the bounds on
the mA ¼ mH plane for tan β ¼ 1.5 and cosðβ − αÞ ¼ 0
with and without considering the dim-6 terms.
On the other hand, for the degenerate mass spectrum

(mH ¼ mA ¼ mH�), new scalars can no longer decay into
each other, thus making the SM decay channels of these
scalars H → ZZ, ττ̄, bb̄, A → Zh, ττ̄ more important.
We have studied the change in the constraints due to the
inclusion of dim-6 operators on the cosðβ − αÞ −mA plane.
We define the benchmark for the degenerate case as

C5∶ mH ¼ mA ¼ mH� ; tan β ¼ 1.5: ð5:2Þ
As mentioned earlier, λ6;7 ¼ 0 for both degenerate and
hierarchical cases. Also, the quadratic mass parameter is
taken to bem2

12 ¼ m2
Hsβcβ following the discussions on the

theoretical constraints in Sec. III. For both the hierarchical
and degenerate cases, the bounds on the 2HDM at the tree
level are compared with a specific case of 2HDMEFTwith
the following values of the Wilson coefficients and the new
physics scale [32]:

BP1∶ cH1 ¼ −1; cH2 ¼ 1.5;

cH12 ¼ cH1H2 ¼ cH1H12 ¼ cH2H12 ¼ 0;

f ¼ 1 TeV: ð5:3Þ
The theoretical constraints such as perturbativity and

stability do not change upon the inclusion of bosonic

operators considered in this paper, as these operators do
not modify the 2HDM scalar potential. However, they can
lead to additional contributions in the S matrix for 2 → 2
scattering of bosonic states. Implementing these changes in
2HDMC-1.7.0 [74], we have checked that, for the 2HDMEFT
benchmark scenario BP1, there are no significant mod-
ifications of the allowed parameter space for

ffiffiffî
s

p
∼ few TeV

while f ¼ 1 TeV. Similar conclusions were obtained for a
composite 2HDM based on SOð6Þ=SOð4Þ × SOð2Þ [75].
The branching ratios of various scalars in the 2HDM at

the tree level, as well as in the presence of the 6-dim
operators, have been calculated with 2HDMC-1.7.0 [74] after
incorporating the modified couplings. The production cross
section of the neutral scalars has been computed up to next-
to-next-to-leading order in QCD using SusHi-1.6.1 [76]. As
mentioned earlier, the constraints on the cosðβ − αÞ − tan β
plane from the measurement of signal strengths of hð125Þ
change in the presence of the dim-6 operators. For instance,
in a type-II 2HDM for tan β ¼ 1.5, the allowed range of
cosðβ − αÞ in the 2HDM is ½−0.05; 0.12�, which changes in
BP1 of 2HDMEFT to ½−0.02; 0.11� [32]. The allowed
range of cosðβ − αÞ changes for the other types of Yukawa
couplings as well, but the exact tree-level alignment limit
cosðβ − αÞ ¼ 0 is allowed in all these cases for tan β ¼ 1.5.
The constraints on the mA −mH plane from various

exotic Higgs search channels are elucidated in Figs. 1–4
corresponding to the mass spectra C1, C2, C3, and C4,
respectively. In Fig. 1, the appreciable change from the tree-
level 2HDM scenario takes place only for type-I and type-
IV Yukawa couplings. Moreover, it can be seen that the
characteristics of the type-I and -IV 2HDM are similar in
this context, as is the case for type II and type III. This
pattern can be attributed to the similarity in the couplings of
the new scalars with the SM quarks, following Eq. (2.7),
which dictate their production cross sections at the LHC.
The most significant search channel in the context of the
mass spectra C1 is A → ZHðbb̄Þ. For all four Yukawa
types, the change in BrðH → bb̄Þ can be substantially
different in 2HDMEFT compared to a tree-level 2HDM,
though BrðA → ZHÞ does not change significantly. This
happens because a key decay channel ofH, i.e.,H → WW,
becomes viable in BP1 of 2HDMEFT, which is absent
in the tree-level 2HDM at cosðβ − αÞ ¼ 0. For example,
with mA ¼ 400 GeV and mH ¼ 300 GeV, BrðH → bb̄Þ
becomes ∼0.45 in BP1 of 2HDMEFT compared to its
value ∼0.73 in the tree-level 2HDM. Such a reduction in
BrðH → bb̄Þ is compensated by the newly viable channel
H → WW. This leads to a reduced value of A → ZHðbb̄Þ
and, eventually, to a more relaxed constraint on mH.
Compared to type-I and -IV 2HDMs, BrðH → bb̄Þ is larger
for type-II and -III Yukawas even in the tree-level scenario.
Thus, the percentage change in BrðH → bb̄Þ is much lower
for types II and III compared to types I and IV. So the change
in the excluded region from the nonobservation of A → ZH
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is larger in types I and IVcompared to types II and III.A → ττ̄
rules out a region of parameter spacewhere the on-shell decay
A → ZH is not allowed. As Eq. (2.7) suggests, BrðA → ττ̄Þ
attains the smallest value for the type-III case among all the
Yukawa types. In both types I and III, the Aττ̄ coupling is
proportional to cot β as opposed to tan β in types II and IV.
BrðA → ττ̄Þ is even smaller in a type-III 2HDM compared to
a type-I 2HDM, because BrðA → bb̄Þ becomes larger in the
latter case. On the inclusion of the dim-6 operators, the region

excluded from gg → A → ττ̄ is not significantly altered for
the type-I, -II, and -IV cases.
In the context of Yukawa types, a similar pattern in the

excluded region can be seen for mass spectra C2 as
depicted in Fig. 2. It can also be seen that the excluded
region from A → ZH is small in case C2 compared to C1.
For mass spectrum C2, the decay channel A → W�H∓
becomes kinematically viable and has a branching ratio
almost similar to that of A → ZH. However, the branching

(a) (b)

(c) (d)

FIG. 1. The effect of the φ4D2 type of operators for mass spectrum C1. Only the colored regions are kinematically viable. The gray
regions with the dashed and solid boundaries are ruled out from gg → A → ZHðbb̄Þ [50] in a 2HDM and BP1 of 2HDMEFT,
respectively. The brown regions with the dashed and solid boundaries are ruled out from gg → A → ττ̄ [51] in a 2HDM and BP1 of
2HDMEFT, respectively. The meshed blue region is disfavored from the theoretical constraints, viz. stability, perturbativity, and
unitarity.
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ratios of H are the same in cases C1 and C2. This, along
with BrðA → ZHÞjC1 ≳ 2 × BrðA → ZHÞjC2, dictates that
the excluded region for C1 is larger than that in C2. As the
branching ratios of H in cases C1 and C2 are the same
in both a 2HDM and 2HDMEFT, the patterns of deviation
in terms of different Yukawa couplings are similar for C1
and C2. The changes in the branching ratios have been
illustrated in Figs. 8 and 9 in Appendix B.
H → ZAðbb̄Þ can rule out a significant area of parameter

space on the mA −mH plane for cases C3 and C4. The
excluded region in case C4 does not show a substantial
change upon the inclusion of dim-6 terms as in C1 or C2.

This happens because BrðA → bb̄Þ remains almost the
same in a 2HDM and 2HDMEFT. It changes only by
≲10% due to a small nonzero value of BrðA → ZhÞ in
BP1 of 2HDMEFT. As opposed to 2HDMEFT, for
cosðβ − αÞ ¼ 0, A → Zh is absent in the 2HDM at the
tree level. So the constraints on mA from H → ZA can be
relaxed at most by ∼19 GeV for types I and IV for C4
around mH ∼ 795 GeV, a region which is already disfa-
vored from the criteria of stability and unitarity. It can be
seen that a significant area is ruled out from H → WW for
mH ≲ 350 GeV and mH −mA ≲ 90 GeV if the 6-dim
operators are included. H → WW is otherwise absent in

(a) (b)

(c) (d)

FIG. 2. The effect of the φ4D2 type of operators for mass spectrum C2. Color coding is the same as in Fig. 1.
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the alignment limit irrespective of the mass spectrum of
the new scalars. H → tt̄ becomes dominant if mH ≳
2mt ∼ 350 GeV. For mH ≲ 350 GeV, BrðH → ZAÞ
becomes substantial if mH −mA ≳ 90 GeV. Thus, the area
disfavored by H → WW is confined to a small strip close
to themH ∼mA line as shown in Fig. 4. A similar effect can
be seen in Fig. 3 for the case C3. The appearance of such
an exclusion region originates from the fact that, in the
presence of the 6-dim terms, the coupling multiplier κHVV
does not vanish at cosðβ − αÞ ¼ 0 as opposed to the

tree-level 2HDM. The region ruled out from H → ττ̄
overlaps with that for H → WW in 2HDMEFT in most
of the cases. However, for type-I and -III 2HDMs, the
constraint from H → ττ̄ appears to be relaxed compared to
the two other types. It can also be seen that the region
excluded from H → ZA is smaller for C3 compared to C4
even in a 2HDM at tree level. This occurs because the
decay channel H → W�H∓ becomes kinematically viable
forC3 and BrðH → W�H∓Þ ∼ BrðH → ZAÞ. This leads to
a smaller cross section in the channel gg → H → ZA and,

(a) (b)

(c) (d)

FIG. 3. The effect of the φ4D2 type of operators for mass spectrum C3. The gray regions with the dashed and solid boundaries
are ruled out from gg → H → ZAðbb̄Þ [50] in a 2HDM and BP1 of 2HDMEFT, respectively. The brown regions with the dashed and
solid boundaries are ruled out from gg → H → ττ̄ [51] in a 2HDM and BP1 of 2HDMEFT, respectively. The green region is disfavored
from the nonobservation of gg → H → ZZ [48] inBP1 of 2HDMEFT, which is absent in the 2HDM at the tree level for cosðβ − αÞ ¼ 0.
The rest of the color coding is the same as in Fig. 1.
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hence, a relaxed constraint on mA for C3 compared to the
case C4 even in a tree-level 2HDM.
Till now, we have discussed the changes in the excluded

region on the mA −mH plane at a low value of tan β.
At large tan β, i.e., tan β ≳ 10, exotic decays such as
H → ZA; A → ZH become negligible even in the hierar-
chical scenarios, and gg=bb̄ → H=A → ττ̄ leads to the only
relevant constraint. This can be read off Eq. (2.7). In such
cases, for cosðβ − αÞ ¼ 0, the constraints on mH or mA are
altered at the most by ∼5 GeV.
In Fig. 5(a), we have depicted the constraints on the

cosðβ − αÞ −mA plane due to the nonobservation of H
and A in the degenerate mass scenario for a type-II 2HDM.
As mentioned earlier, the exotic decay channels like

HðAÞ → AðHÞZ, etc., are absent in such a case. It can
be seen from Eq. (2.7) that couplings like HVV, AZh,
etc., vanish at the exact alignment limit in a 2HDM at the
tree level [23]. Thus, the nonobservation of H → ZZ or
A → Zh cannot rule out cosðβ − αÞ ¼ 0 irrespective of the
value of mA. This also implies that the discovery of a new
scalar in the VV or Zh final states would rule out the exact
alignment limit in the framework of a CP-conserving
2HDM. Though it is not the case if the 6-dim terms are
also present, as those can lead to a nonvanishing contri-
bution to such decay channels. It can be seen from Fig. 5(a)
that, in a 2HDM augmented with the φ4D2 kind of
operators, the bounds from H → ZZ, A → ττ̄; Zh modify
in comparison to a 2HDM at the tree level. H → ZZ can

(a) (b)

(c) (d)

FIG. 4. The effect of the φ4D2 type of operators for mass spectrum C4. Color coding is the same as in Fig. 3.
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become nonvanishing, ruling out a range of values of
mH even at cosðβ − αÞ ¼ 0. There is an overall leftward
shift in the region ruled out by A → ττ̄ which can be
followed from Eqs. (2.7) and (4.2). For example, the values
mH ∼ 210–355 GeV and mA ∼ 300–340 GeV can be
excluded from H → ZZ and A → Zh, respectively, at
95% C.L. even in the alignment limit. In Fig. 5(b), we
have shown the cross section of H and A via the gluon
fusion times the branching ratios in the channels ZZ and
Zh at the alignment limit in the presence of the higher-
dimensional operators. The value of σ × Br for H → ZZ
reaches ∼0.30 pb in the range mH ¼ 200–344 GeV.
For A → Zh it can reach up to 1.5 pb in the range
mA ∼ 280–330 GeV. For a 2HDM at the tree level, such
processes would not at all exist in the alignment limit.
It is to be noted that, according to Eq. (2.7), for a

particular value of j cosðβ − αÞj and tan β ≳ 1, the hbb̄
coupling multiplier is more pronounced in the negative
direction of cosðβ − αÞ, compared to the positive direction.
This effect also propagates in the gluon-fusion cross
section of H. Thus, the area on the cosðβ − αÞ −mA plane
ruled out by gg → H → ZZ is larger on the negative
cosðβ − αÞ direction. The relevant branching ratios of
the heavy scalars have been presented in Appendix B.
InFig. 6,wehave shown the change in the excluded region

from various searches of the new scalars on the mH − tan β
plane. Here, cosðβ − αÞ ¼ 0.1 and mA ¼ mH� ¼ mH þ
100 GeV. So, this is essentially a hierarchical mass scenario
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FIG. 5. The effect of the φ4D2 type of operators for C5 in a type-II 2HDM. (a) The blue regions with the dashed and solid boundaries
are ruled out from H → ZZ [48], the pink regions with the dashed and solid boundaries are ruled out from A → ττ [51], and the purple
regions with the dashed and solid boundaries are ruled out from A → Zh [50] in a 2HDM and BP1 of 2HDMEFT, respectively. (b) The
solid blue (red) line represents σ × Br for gg → H → ZZ [48] (gg → A → Zh [50]) at the alignment limit in the presence of the 6-dim
operators mentioned in BP1. The experimental upper limits to the σ × Br corresponding to the two processes are also shown as dotted
lines in the same color.

FIG. 6. The effect of the φ4D2 type of operators on the mH −
tan β plane in a type-II 2HDM. The regions are excluded from
gg → H → ZZ (gray) [48], gg → A → ZH (purple) [50], gg →
A → Zh (red) [50], gg → A → ττ̄ (green) [51], bb̄ → A → ττ̄
(brown) [51], and bb̄ → H → ττ̄ (blue) [51,52]. In the case of
2HDMEFT (dashed lines), the bounds from A → ZH and
H → ZZ are different compared to a 2HDM at tree level (solid
lines).
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where the exotic decay channel A → ZH plays a significant
role at lower values of tan β. For a type-II 2HDM, both hbb̄
and hττ̄ couplings grow with increasing tan β. Thus, in
Fig. 6, higher values of tan β are mostly ruled out from the
measurements of bb̄ → H → ττ̄. On introduction of the
6-dim terms, the region excluded from H → ZZ increases,
whereas that from A → ZH shrinks. For instance, in
2HDMEFT the values mH ≈ 464–686 GeV can be ruled
out for tan β ≲ 1.5. Moreover, the excluded region becomes
larger in the direction of tan β for mH ≈ 254–464 GeV.

So far, we have considered the phenomenology of
only the neutral scalars. Now we comment on a few effects
of the 6-dim terms in 2HDMEFT on the decay modes of
the charged scalars. We calculate the production cross
section of the charged scalar following Ref. [77] as was
recommended in Ref. [78]. For mH� > mt, the key pro-
duction channel of H� is through the process pp → H�t.
TheH�tb coupling multiplier depends on the value of tan β
and the top and bottom quark masses. Following the tan β
dependence of σðH�tÞ, we rescale σðH�tÞ at tan β ¼ 30

FIG. 7. The effect of 6-dim terms in a type-II 2HDM on (a) σðH�tÞBrðH� → hW�Þ for case C1, (b) σðH�tÞBrðH� → hW�Þ for case
C4, (c) σðH�tÞBrðH� → HW�Þ for case C1, and (d) σðH�tÞBrðH� → tb̄Þ for case C1. The solid and dotted lines correspond to the
same values of σ × Br in a 2HDM at tree level and in BP1 of 2HDMEFT, respectively. The density plots depict the values of the
corresponding σ × Br in the log scale at the LHC with

ffiffiffi
s

p ¼ 14 TeV.
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with the appropriate numerical factor to obtain the cross
sections at tan β ¼ 1.5 based on Figs. 3 and 10 of Ref. [77].
The traditional search channels of a charged Higgs boson
consider the decays Hþ → τ̄ντ, tb̄ [79–81], etc. Pertaining
to different mass spectra of the 2HDM, the cascade decay
channels with other Higgses as intermediate states can be
interesting; the bounds on charged Higgs mass can be
relaxed significantly [58,82]. In Fig. 7, we have shown the
contours of σðH�tÞBrðH� → hW�Þ in BP1 of 2HDMEFT
for the 2HDM mass spectrum corresponding to cases C1
and C4 as discussed earlier. BrðH� → HW�Þ can change
for the mass spectrum C1 and can be followed from
Fig. 7(c). The decay channels consisting of SM fermions,
such as Hþ → tb̄, τ̄ντ, cs̄, etc., become quite important at
higher values of tan β. In Fig. 7(d),wehave shown the change
in σ × Br with the decay channelHþ → tb̄, though the value
of σ × Br in this channel is around one order smaller
compared to the current LHC bound on such a process.
The coupling multiplier κH�tb ∝ ðmt tan βPL þmb

cot βPRÞ, and thus it reaches its minimum around
tan β ∼ 6–8. Thus, the production cross section of H�
associated with a top quark becomes quite small for such
values of tan β. So we work only in scenarios when tanβ∼1
and tan β ∼Oð10Þ. We have not considered the case of
mH� ≲mt when the key production mode of the charged
scalar is pp → tt̄ with one of the tops in the final state
decaying through t → bWþ and another one via t̄ → b̄H−.
For these values of mH� , bosonic decay channels of H�,
such as H� → hW�, HW�, are kinematically forbidden,
unless one considersmH < mh, which is not the case for us.
As mentioned earlier, the coupling H�hW∓ vanishes

at the alignment limit in a 2HDM. But in the presence of
the 6-dim terms with the Wilson coefficients as in BP1 of
2HDMEFT, the channelH� → hW� can become significant
following Eqs. (4.2). For the mass spectrum in case C3,
the cross section in the channel σðH�tÞBrðH� → hW�Þ can
go up to ∼25 fb for mH� ∼ 250 GeV at the LHC withffiffiffi
s

p ¼ 14 TeV. The dependence of the cross section in this
channel onmH� for all four hierarchical mass spectra can be
followed from Appendix C.
The couplings of hð125Þ will be even more precisely

measured in future experiments. For instance, the coupling
multipliers κhγγ and κhWW are to be measured with an
accuracy of ∼5%–7% and ∼4%–6%, respectively, at the
HL-LHC with luminosity ∼3 ab−1 [83]. It can push a
2HDM, especially the ones with type-II, -III, and -IV
Yukawa couplings, further close to cosðβ − αÞ ¼ 0.
However, the contributions of dim-6 terms to the signal
strengths of hð125Þ do not decrease with the same scale.
As was also discussed in Ref. [32], even at the exact limit
cosðβ − αÞ ¼ 0, the effects of the dim-6 terms in masking
the true alignment limit can be rather significant. Thus,
even at the limit when the couplings of hð125Þ are exactly
at par with the SM expectations, the heavier scalars are

not decoupled from the rest of the particle spectrum.
This remarkable feature can also be interpreted as the
violation of the sum rules involving the couplings of the
CP-evenHiggses in a 2HDMextendedwith dim-6operators.
In this paper, we have demonstrated several cases where
the cross sections of certain decay channels of the heavier
scalars are significant in the presence of 6-dim terms at
cosðβ − αÞ ¼ 0. This leads to an interesting possibility of
detecting the heavier scalars in these channels at the
HL-LHC, even if hð125Þ exactly resembles the SM Higgs.

VI. SUMMARY AND DISCUSSIONS

In the context of the searches for new scalars at the
LHC, it is an interesting possibility that the exotic scalars
in a 2HDM exist below the TeV scale, pertaining to the
so-called alignment-without-decoupling scenario. A study
in 2HDMEFT becomes relevant in this case. Such an
approach is appealing, because it allows us to study the
constraints in the 2HDM parameter space while remaining
agnostic about any new physics beyond the 2HDM. In this
paper, we have confined our discussion to the bosonic
operators of 2HDMEFT. The changes in the constraints on
the masses of the exotic scalars of a 2HDM are studied in
the presence of 6-dim operators of type φ4D2, because the
other bosonic operators are quite constrained from electro-
weak precision tests.
We consider both degenerate and hierarchical mass

spectra of the new scalars in this purpose and show the
changes in the constraints for all four Yukawa types. The
theoretical constraints, such as stability, perturbativity,
and unitarity, as well as the measurement of the oblique
parameters, restrict the mass differences of such scalars.
In light of that, one can narrow down four types of the mass
spectrum in the hierarchical case. We notice that in a couple
of such cases, dubbed as C1 and C2 in the text, the
constraints on the mA −mH plane can be significantly
relaxed in the presence of certain 6-dim operators of type
φ4D2. For example, in case C2 with cosðβ − αÞ ¼ 0,
tan β ¼ 1.5, and type-I Yukawa coupling, the upper limit
on mH reduces to ∼196 GeV in BP1 of 2HDMEFT from
∼300 GeV, which is the case for a 2HDM at tree level.
Such changes are always more pronounced for type-I
and -IV 2HDMs compared to types II and III.
At cosðβ − αÞ ¼ 0, processes such asH → ZZ, A → Zh,

etc., vanish for a 2HDM at the tree level, which is not the
case if dim-6 operators are present. A nonzero value for
BrðH → WWÞ reduces the value of BrðH → bb̄Þ, which
brings down the cross section for the process pp → A →
ZHðbb̄Þ, thus relaxing the constraint on mH. Such changes
are not significant at higher values of tan β irrespective of
the mass spectrum under consideration. This happens
because the SM fermionic decay modes of the heavier
scalars dominate for higher values of tan β and the appear-
ance of new bosonic decay channels cannot change the
key decay channels involving SM fermions significantly.
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For the degenerate case, we notice that, for our chosen
benchmark scenario, the region excluded from the non-
observation of H and A becomes larger in 2HDMEFT
compared to a 2HDM at the tree level. It is also seen that,
aswas discussed above, a certainmass range formHð¼mAÞ is
ruled out even for cosðβ − αÞ ¼ 0 from processes like
H → WW, A → Zh, which usually vanish in a 2HDM at
tree level. We have also shown in Fig. 7 the change in σ × Br
for various decay channels of the charged scalar in
2HDMEFT compared to a 2HDM at the tree level at the
LHC with

ffiffiffi
s

p ¼ 14 TeV.
The key reason for the change in the constraints on

2HDM parameter space upon including dim-6 operators
of type φ4D2 lies in the redefinition of the CP-even
Higgs fields, h, and H. This way the coupling multipliers
involving the CP-even scalars are rescaled compared to
the 2HDM at the tree level and lead to a change in the
branching ratios of all the processes which involve h andH.
It leads to the departure of the “true” alignment limit from
its tree-level 2HDM counterpart, i.e., cosðβ − αÞ ¼ 0. As
the projected accuracy of the hð125Þ coupling measurement
at a future version of the LHC, such as the HL-LHC, is at
the level≲5%–6%, 2HDMs might get further pushed to the
alignment limit. Thus, in the presence of dim-6 operators,
even if the couplings of hð125Þ turn out to be completely
aligned with the SM Higgs, the heavier scalars in a 2HDM
with masses ≲TeV still do not decouple from the SM
sector; i.e., their discovery might still be viable. As
mentioned earlier, some cascade-type decay channels of
the heavier scalars vanish at the alignment limit in the tree-
level 2HDM. It implies that the discovery of a new scalar
in such a channel would perhaps rule out the alignment
limit in a CP-conserving 2HDM. But if dim-6 operators are

present, even if a new scalar is discovered in such channels,
it will no longer rule out the alignment limit.
In the case of the discovery of the new Higgs(es), the

verification of the sum rules involving their coupling
multipliers can provide useful information about the nature
of the extended Higgs sector. In 2HDMEFT, the redefini-
tion of the CP-even Higgs fields due to φ4D2 operators
also implies that the sum rules involving these scalars are
modified in a certain way. We have discussed how the
measurement of sum rules can help distinguish between
various options beyond a CP-even 2HDM.
If new scalars are discovered at the LHC in the near

future, the correlation of their signal strengths in different
channels will be important to determine the exact nature
of the underlying scalar sector. In this context, 2HDMEFT
can be an efficient framework in quantifying the departure
from the tree-level 2HDM in various channels, providing
an opportunity to narrow down the possible UV-complete
scenarios.
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APPENDIX A: FIELD REDEFINITION

The redefinition of the physical CP-even neutral scalars
in 2HDMEFT compared to a 2HDM at the tree level is
given by Eq. (4.2) along with

x1 ¼
v2

f2

�
cH1c2βs

2
α þ cH2c2αs2β þ

1

8
cH1H2s2αs2β þ cH12

�
c2αc2β þ s2αs2β −

1

4
s2αs2β

�

þ cH1H12cβsα

�
sαsβ −

1

2
cαcβ

�
þ cH2H12cαsβ

�
cαcβ −

1

2
sαsβ

��
;

x2 ¼
v2

f2

�
cH1c2βc

2
α þ cH2s2αs2β þ

1

8
cH1H2s2αs2β þ cH12

�
s2αc2β þ c2αs2β −

1

4
s2αs2β

�

þ cH1H12cβcα

�
cαsβ −

1

2
sαcβ

�
þ cH2H12sαsβ

�
sαcβ −

1

2
cαsβ

��
;

y ¼ v2

f2

�
1

2
cH1s2αc2β −

1

2
cH2s2αs2β −

1

8
cH1H2c2αs2β −

1

2
cH12

�
c2βs2α þ

1

2
c2αs2β

�

þ 1

4
cH1H12ðs2αs2β − c2αc2βÞ −

1

4
cH2H12ðs2αs2β þ c2αs2βÞ

�
: ðA1Þ
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APPENDIX B: BRANCHING RATIOS IN
2HDM VS 2HDMEFT

The key branching ratios ofH and A have been shown in
Figs. 8 and 9 with type-I and -II Yukawas for mass spectra
C1 and C2. When mAðHÞ ≳ 2mt, the channel AðHÞ → tt̄
becomes viable in all the cases. While showing the
branching ratios for A we assume mH¼mH� ¼130GeV,
and while showing the same for H we take mA ¼ mHþ
100 GeV. For both these cases, we take cosðβ − αÞ ¼ 0
and tan β ¼ 1.5. BrðA → tt̄Þ attains values up to ∼0.4
and ∼0.19 for cases C1 and C2, respectively. In C2,
BrðA → H�W∓Þ ≳ 0.8 for both type-I and -II 2HDMs,

whereas this process is absent for the caseC1. This leads to
much lower values of BrðA → ZHÞ in C2 compared to C1,
which can be seen from Figs. 8(a) and 8(b). Hence, the
nonobservation of A → ZH rules out a larger region of
parameter space in the case C1 compared to C2 even in a
tree-level 2HDM, which can be seen from Figs. 1 and 2.
From Figs. 8(a) and 8(c), it can be seen that BrðA → ττ̄Þ
is larger for a type-II 2HDM compared to type I. Thus,
the nonobservation of A → ττ̄ rules out a larger region
for a type-II 2HDM, as can be seen from, for example,
Figs. 1(a) and 1(b). Figure 9(a) shows that BrðH → WWÞ
can attain values up to ∼0.5 for a type-I 2HDM for case C1
at cosðβ − αÞ ¼ 0 in the presence of a 6-dim term, whereas

(a) (b)

(c) (d)

FIG. 8. The branching ratios of A in various channels for the hierarchical cases for cosðβ − αÞ ¼ 0 and tan β ¼ 1.5. Dashed and solid
lines represent the case of a 2HDM at tree level and BP1 of 2HDMEFT, respectively.
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it is vanishing in a tree-level 2HDM. In contrary, as can be
seen from Fig. 9(b), the corresponding value for a type-II
2HDM can only go up to ∼0.3. The branching ratios of H
for case C2 are exactly the same as in the case C1. Such
nonzero branching ratios of H → WW lead to a low
value of BrðH → bb̄Þ and eventually a lower value of
A → ZHðbb̄Þ compared to a 2HDM at the tree level, which
explains the relaxed constraints on mH as illustrated in
Figs. 1 and 2 on the mA −mH plane. Such branching ratios
in type-III and -IV 2HDMs can also be followed from
Figs. 8 and 9 along with Eq. (2.7), exploiting the patterns
of couplings across Yukawa types. It can be seen that the
constraints for a type-I Yukawa resemble that for type IV,

whereas the constraints on a type-II 2HDM are similar to
that in the type-III case. The branching ratios for H →
ZZ; ττ̄ and A → Zh in the degenerate benchmark scenario
C5 has been shown in Fig. 10.

APPENDIX C: H� → hW� CROSS SECTION
AT cos (β−α)= 0

The cross sections in the channel pp → H� → hW�
for different hierarchical mass spectra and type-II
Yukawa couplings have been presented in Fig. 11. For
cosðβ − αÞ ¼ 0, in a 2HDM at the tree level, such a process
is absent. But in the presence of the 6-dim operators, the

(a) (b)

FIG. 9. The branching ratios of H in various channels for the hierarchical case C1 for cosðβ − αÞ ¼ 0 and tan β ¼ 1.5. Dashed and
solid lines represent the case of a 2HDM at tree level and BP1 of 2HDMEFT, respectively.

(a) (b) (c)

FIG. 10. The branching ratios ofH and A in various channels which constrain the parameter space on the cosðβ − αÞ −mA plane in the
degenerate case C5 for a type-II 2HDM. In all three figures, the solid and dashed lines represent the corresponding branching ratios in a
2HDM at the tree level and BP1 of 2HDMEFT, respectively.
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cross section for this process can go up to ∼25 fb depend-
ing on the mass spectrum of heavy scalars in the 2HDM. It
can be noticed that the cross section in this channel attains
significantly higher values for the cases C1, C2, and C3

compared toC4. ForC4, the channelH� → AW� becomes
kinematically accessible, thus lowering the value of
BrðH� → hW�Þ, leading to a lesser cross section com-
pared to the other cases.

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[3] P. Fayet, Phys. Lett. B 64, 159 (1976).
[4] J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra, and

A. Wulzer, Nucl. Phys. B853, 1 (2011).

[5] S. De Curtis, S. Moretti, K. Yagyu, and E. Yildirim, Eur.
Phys. J. C 77, 513 (2017).

[6] M. Schmaltz, D. Stolarski, and J. Thaler, J. High Energy
Phys. 09 (2010) 018.

[7] J. H. Yu, J. High Energy Phys. 12 (2016) 143.
[8] M. Trodden, Rev. Mod. Phys. 71, 1463 (1999).

(a) (b)

(c) (d)

FIG. 11. σðH�tÞBrðH� → hW�Þ in the alignment limit, in the presence of the 6-dim terms at the LHC with
ffiffiffi
s

p ¼ 14 TeV in a type-II
2HDM.

RELAXED CONSTRAINTS ON THE HEAVY SCALAR MASSES … PHYS. REV. D 100, 055016 (2019)

055016-17

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/0370-2693(76)90319-1
https://doi.org/10.1016/j.nuclphysb.2011.07.008
https://doi.org/10.1140/epjc/s10052-017-5082-4
https://doi.org/10.1140/epjc/s10052-017-5082-4
https://doi.org/10.1007/JHEP09(2010)018
https://doi.org/10.1007/JHEP09(2010)018
https://doi.org/10.1007/JHEP12(2016)143
https://doi.org/10.1103/RevModPhys.71.1463


[9] J. M. Cline, K. Kainulainen, and M. Trott, J. High Energy
Phys. 11 (2011) 089.

[10] A. Crivellin, C. Greub, and A. Kokulu, Phys. Rev. D 86,
054014 (2012).

[11] A. Crivellin, D. Müller, and C. Wiegand, J. High Energy
Phys. 06 (2019) 119.

[12] E. Ma, Phys. Rev. D 73, 077301 (2006).
[13] M. D. Campos, D. Cogollo, M. Lindner, T. Melo, F. S.

Queiroz, and W. Rodejohann, J. High Energy Phys. 08
(2017) 092.

[14] R. Barbieri, L. J. Hall, and V. S. Rychkov, Phys. Rev. D 74,
015007 (2006).

[15] H. Georgi and D. V. Nanopoulos, Phys. Lett. B 82, 95
(1979).

[16] J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019
(2003).

[17] A. Delgado, G. Nardini, and M. Quiros, J. High Energy
Phys. 07 (2013) 054.

[18] M. Carena, I. Low, N. R. Shah, and C. E. M.Wagner, J. High
Energy Phys. 04 (2014) 015.

[19] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, and S. Kraml,
Phys. Rev. D 92, 075004 (2015).

[20] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, and S. Kraml,
Phys. Rev. D 93, 035027 (2016).

[21] H. E. Haber, arXiv:1401.0152.
[22] H. E. Haber, arXiv:1805.05754.
[23] B. Grzadkowski, H. E. Haber, O. M. Ogreid, and P. Osland,

J. High Energy Phys. 12 (2018) 056.
[24] J. L. Diaz-Cruz, J. Hernandez-Sanchez, and J. J. Toscano,

Phys. Lett. B 512, 339 (2001).
[25] A. Crivellin, M. Ghezzi, and M. Procura, J. High Energy

Phys. 09 (2016) 160.
[26] S. Karmakar and S. Rakshit, J. High Energy Phys. 10 (2017)

048.
[27] M. Chala, G. Durieux, C. Grojean, L. de Lima, and O.

Matsedonskyi, J. High Energy Phys. 06 (2017) 088.
[28] Y. Kikuta, Y. Okada, and Y. Yamamoto, Phys. Rev. D 85,

075021 (2012).
[29] Y. Kikuta and Y. Yamamoto, Eur. Phys. J. C 76, 297

(2016).
[30] N. Fonseca, R. Zukanovich Funchal, A. Lessa, and L.

Lopez-Honorez, J. High Energy Phys. 06 (2015) 154.
[31] A. Banerjee, G. Bhattacharyya, and N. Kumar, Phys. Rev. D

99, 035028 (2019).
[32] S. Karmakar and S. Rakshit, J. High Energy Phys. 09 (2018)

142.
[33] I. F. Ginzburg and M. Krawczyk, Phys. Rev. D 72, 115013

(2005).
[34] A.W. El Kaffas, P. Osland, and O. M. Ogreid, Nonlinear

Phenom. Complex Syst. 10, 347 (2007).
[35] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958

(1977).
[36] E. A. Paschos, Phys. Rev. D 15, 1966 (1977).
[37] J. Gu, H. Li, Z. Liu, S. Su, and W. Su, J. High Energy Phys.

12 (2017) 153.
[38] G. C. Dorsch, S. J. Huber, K. Mimasu, and J. M. No, Phys.

Rev. D 93, 115033 (2016).
[39] P. S. Bhupal Dev and A. Pilaftsis, J. High Energy Phys. 12

(2014) 024; 11 (2015) 147(E).
[40] A. Pilaftsis, Phys. Rev. D 93, 075012 (2016).

[41] D. Das, U. K. Dey, and P. B. Pal, Phys. Rev. D 96, 031701
(2017).

[42] K. Benakli, Y. Chen, and G. Lafforgue-Marmet, Eur. Phys.
J. C 79, 172 (2019).

[43] S. Pramanick and A. Raychaudhuri, J. High Energy Phys.
01 (2018) 011.

[44] N. Craig, J. Galloway, and S. Thomas, arXiv:1305.2424.
[45] P. M. Ferreira, R. Guedes, J. F. Gunion, H. E. Haber, M. O.

P. Sampaio, and R. Santos, arXiv:1410.1926.
[46] T. Modak, J. C. Romao, S. Sadhukhan, J. P. Silva, and R.

Srivastava, Phys. Rev. D 94, 075017 (2016).
[47] P. M. Ferreira, J. F. Gunion, H. E. Haber, and R. Santos,

Phys. Rev. D 89, 115003 (2014).
[48] ATLAS Collaboration, CERN Report No. ATLAS-CONF-

2017-055, 2017.
[49] A. M. Sirunyan et al. (CMS Collaboration), Phys. Lett. B

788, 7 (2019).
[50] ATLAS Collaboration, CERN Report No. ATLAS-CONF-

2016-015, 2016.
[51] ATLAS Collaboration, CERN Report No. ATLAS-CONF-

2017-050, 2017.
[52] CMS Collaboration, CERN Report No. CMS-PAS-HIG-14-

029, 2015.
[53] G. C. Dorsch, S. J. Huber, K. Mimasu, and J. M. No, Phys.

Rev. Lett. 113, 211802 (2014).
[54] G. C. Dorsch, S. J. Huber, and J. M. No, J. High Energy

Phys. 10 (2013) 029.
[55] C. Gao, M. A. Luty, M. Mulhearn, N. A. Neill, and Z. Wang,

Phys. Rev. D 97, 075040 (2018).
[56] M. Bauer, M. Carena, and K. Gemmler, J. High Energy

Phys. 11 (2015) 016.
[57] F. Kling, A. Pyarelal, and S. Su, J. High Energy Phys. 11

(2015) 051.
[58] B. Coleppa, F. Kling, and S. Su, J. High Energy Phys. 12

(2014) 148.
[59] F. Kling, J. M. No, and S. Su, J. High Energy Phys. 09

(2016) 093.
[60] A. Adhikary, S. Banerjee, R. K. Barman, and B.

Bhattacherjee, arXiv:1812.05640.
[61] F. Kling, H. Li, A. Pyarelal, H. Song, and S. Su, J. High

Energy Phys. 06 (2019) 031.
[62] J.-M. Gerard and M. Herquet, Phys. Rev. Lett. 98, 251802

(2007).
[63] S. de Visscher, J. M. Gerard, M. Herquet, V. Lemaitre, and

F. Maltoni, J. High Energy Phys. 08 (2009) 042.
[64] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland,

J. Phys. G 35, 075001 (2008).
[65] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, Nucl.

Phys. B801, 81 (2008).
[66] H. E. Haber and D. O’Neil, Phys. Rev. D 83, 055017 (2011).
[67] H. J. He, N. Polonsky, and S. f. Su, Phys. Rev. D 64, 053004

(2001).
[68] G. Abbiendi et al. (ALEPH, DELPHI, L3, OPAL, and LEP

Collaborations), Eur. Phys. J. C 73, 2463 (2013).
[69] S. Schael et al. (ALEPH, DELPHI, L3, and OPAL Collab-

orations and LEP Working Group for Higgs Boson
Searches), Eur. Phys. J. C 47, 547 (2006).

[70] F. Mahmoudi and O. Stäl, Phys. Rev. D 81, 035016 (2010).
[71] O. Eberhardt, U. Nierste, and M. Wiebusch, J. High Energy

Phys. 07 (2013) 118.

SIDDHARTHA KARMAKAR and SUBHENDU RAKSHIT PHYS. REV. D 100, 055016 (2019)

055016-18

https://doi.org/10.1007/JHEP11(2011)089
https://doi.org/10.1007/JHEP11(2011)089
https://doi.org/10.1103/PhysRevD.86.054014
https://doi.org/10.1103/PhysRevD.86.054014
https://doi.org/10.1007/JHEP06(2019)119
https://doi.org/10.1007/JHEP06(2019)119
https://doi.org/10.1103/PhysRevD.73.077301
https://doi.org/10.1007/JHEP08(2017)092
https://doi.org/10.1007/JHEP08(2017)092
https://doi.org/10.1103/PhysRevD.74.015007
https://doi.org/10.1103/PhysRevD.74.015007
https://doi.org/10.1016/0370-2693(79)90433-7
https://doi.org/10.1016/0370-2693(79)90433-7
https://doi.org/10.1103/PhysRevD.67.075019
https://doi.org/10.1103/PhysRevD.67.075019
https://doi.org/10.1007/JHEP07(2013)054
https://doi.org/10.1007/JHEP07(2013)054
https://doi.org/10.1007/JHEP04(2014)015
https://doi.org/10.1007/JHEP04(2014)015
https://doi.org/10.1103/PhysRevD.92.075004
https://doi.org/10.1103/PhysRevD.93.035027
http://arXiv.org/abs/1401.0152
http://arXiv.org/abs/1805.05754
https://doi.org/10.1007/JHEP12(2018)056
https://doi.org/10.1016/S0370-2693(01)00703-1
https://doi.org/10.1007/JHEP09(2016)160
https://doi.org/10.1007/JHEP09(2016)160
https://doi.org/10.1007/JHEP10(2017)048
https://doi.org/10.1007/JHEP10(2017)048
https://doi.org/10.1007/JHEP06(2017)088
https://doi.org/10.1103/PhysRevD.85.075021
https://doi.org/10.1103/PhysRevD.85.075021
https://doi.org/10.1140/epjc/s10052-016-4128-3
https://doi.org/10.1140/epjc/s10052-016-4128-3
https://doi.org/10.1007/JHEP06(2015)154
https://doi.org/10.1103/PhysRevD.99.035028
https://doi.org/10.1103/PhysRevD.99.035028
https://doi.org/10.1007/JHEP09(2018)142
https://doi.org/10.1007/JHEP09(2018)142
https://doi.org/10.1103/PhysRevD.72.115013
https://doi.org/10.1103/PhysRevD.72.115013
https://doi.org/10.1103/PhysRevD.15.1958
https://doi.org/10.1103/PhysRevD.15.1958
https://doi.org/10.1103/PhysRevD.15.1966
https://doi.org/10.1007/JHEP12(2017)153
https://doi.org/10.1007/JHEP12(2017)153
https://doi.org/10.1103/PhysRevD.93.115033
https://doi.org/10.1103/PhysRevD.93.115033
https://doi.org/10.1007/JHEP12(2014)024
https://doi.org/10.1007/JHEP12(2014)024
https://doi.org/10.1007/JHEP11(2015)147
https://doi.org/10.1103/PhysRevD.93.075012
https://doi.org/10.1103/PhysRevD.96.031701
https://doi.org/10.1103/PhysRevD.96.031701
https://doi.org/10.1140/epjc/s10052-019-6676-9
https://doi.org/10.1140/epjc/s10052-019-6676-9
https://doi.org/10.1007/JHEP01(2018)011
https://doi.org/10.1007/JHEP01(2018)011
http://arXiv.org/abs/1305.2424
http://arXiv.org/abs/1410.1926
https://doi.org/10.1103/PhysRevD.94.075017
https://doi.org/10.1103/PhysRevD.89.115003
https://doi.org/10.1016/j.physletb.2018.10.056
https://doi.org/10.1016/j.physletb.2018.10.056
https://doi.org/10.1103/PhysRevLett.113.211802
https://doi.org/10.1103/PhysRevLett.113.211802
https://doi.org/10.1007/JHEP10(2013)029
https://doi.org/10.1007/JHEP10(2013)029
https://doi.org/10.1103/PhysRevD.97.075040
https://doi.org/10.1007/JHEP11(2015)016
https://doi.org/10.1007/JHEP11(2015)016
https://doi.org/10.1007/JHEP11(2015)051
https://doi.org/10.1007/JHEP11(2015)051
https://doi.org/10.1007/JHEP12(2014)148
https://doi.org/10.1007/JHEP12(2014)148
https://doi.org/10.1007/JHEP09(2016)093
https://doi.org/10.1007/JHEP09(2016)093
http://arXiv.org/abs/1812.05640
https://doi.org/10.1007/JHEP06(2019)031
https://doi.org/10.1007/JHEP06(2019)031
https://doi.org/10.1103/PhysRevLett.98.251802
https://doi.org/10.1103/PhysRevLett.98.251802
https://doi.org/10.1088/1126-6708/2009/08/042
https://doi.org/10.1088/0954-3899/35/7/075001
https://doi.org/10.1016/j.nuclphysb.2008.04.019
https://doi.org/10.1016/j.nuclphysb.2008.04.019
https://doi.org/10.1103/PhysRevD.83.055017
https://doi.org/10.1103/PhysRevD.64.053004
https://doi.org/10.1103/PhysRevD.64.053004
https://doi.org/10.1140/epjc/s10052-013-2463-1
https://doi.org/10.1140/epjc/s2006-02569-7
https://doi.org/10.1103/PhysRevD.81.035016
https://doi.org/10.1007/JHEP07(2013)118
https://doi.org/10.1007/JHEP07(2013)118


[72] M. Misiak and M. Steinhauser, Eur. Phys. J. C 77, 201
(2017).

[73] T. Han, T. Li, S. Su, and L. T. Wang, J. High Energy Phys.
11 (2013) 053.

[74] D. Eriksson, J. Rathsman, and O. Stäl, Comput. Phys.
Commun. 181, 189 (2010).

[75] S. De Curtis, S. Moretti, K. Yagyu, and E. Yildirim, Phys.
Rev. D 94, 055017 (2016).

[76] R. V. Harlander, S. Liebler, and H. Mantler, Comput. Phys.
Commun. 184, 1605 (2013).

[77] M. Flechl, R. Klees, M. Kramer, M. Spira, and M. Ubiali,
Phys. Rev. D 91, 075015 (2015).

[78] S. Heinemeyer et al. (LHC Higgs Cross Section Working
Group), arXiv:1307.1347.

[79] M. Aaboud et al. (ATLAS Collaboration), Phys. Lett. B
759, 555 (2016).

[80] CMS Collaboration, CERN Report No. CMS-PAS-HIG-16-
031, 2016.

[81] ATLAS Collaboration, CERN Report No. ATLAS-CONF-
2016-089, 2016.

[82] A. Arhrib, R. Benbrik, and S. Moretti, Eur. Phys. J. C 77,
621 (2017).

[83] ATLAS Collaboration, CERN Report No. ATL-PHYS-
PUB-2018-054, 2018.

RELAXED CONSTRAINTS ON THE HEAVY SCALAR MASSES … PHYS. REV. D 100, 055016 (2019)

055016-19

https://doi.org/10.1140/epjc/s10052-017-4776-y
https://doi.org/10.1140/epjc/s10052-017-4776-y
https://doi.org/10.1007/JHEP11(2013)053
https://doi.org/10.1007/JHEP11(2013)053
https://doi.org/10.1016/j.cpc.2009.09.011
https://doi.org/10.1016/j.cpc.2009.09.011
https://doi.org/10.1103/PhysRevD.94.055017
https://doi.org/10.1103/PhysRevD.94.055017
https://doi.org/10.1016/j.cpc.2013.02.006
https://doi.org/10.1016/j.cpc.2013.02.006
https://doi.org/10.1103/PhysRevD.91.075015
http://arXiv.org/abs/1307.1347
https://doi.org/10.1016/j.physletb.2016.06.017
https://doi.org/10.1016/j.physletb.2016.06.017
https://doi.org/10.1140/epjc/s10052-017-5197-7
https://doi.org/10.1140/epjc/s10052-017-5197-7

