
 

Unified explanation of b → sμ +μ − anomalies, neutrino masses,
and B → πK puzzle

Alakabha Datta* and John Waite†

Department of Physics and Astronomy, 108 Lewis Hall,
University of Mississippi, Oxford, Mississippi 38677-1848, USA

Divya Sachdeva‡

Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India

(Received 21 May 2019; published 13 September 2019)

Anomalies in semileptonic B decays could indicate new physics beyond the standard model (SM). There
is an older puzzle in nonleptonic B → πK decays. The new particles, leptoquarks and diquarks, required to
solve the semileptonic and the nonleptonic puzzles can also generate neutrino masses and mixing at loop
level. We show that a consistent framework to explain the B anomalies and the neutrino masses is possible
and we make predictions for certain rare nonleptonic B decays.
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I. INTRODUCTION

Searching for beyond the SM (BSM) physics has
been the primary focus of the high energy community.
Rare B decays have been widely studied to look for BSM
effects. Because these decays get small SM contributions,
new physics (NP) can compete with the SM and produce
deviations from SM predictions. Over the last few years
measurements in certain B decays have shown deviations
from the SM. These deviations are observed in two
groups—in charged current (CC) processes mediated by
the b → cτ−ν̄ tansitions and in the neutral current (NC) pro-
cesses mediated by b → slþl− transition with l ¼ μ, e.
We will focus here on the NC anomalies although it is
possible that the CC and the NC anomalies are related [1]
but we will not explore that possibility here.
Let us start with the b → slþl− decays which are fertile

grounds to look for new physics effects [2,3]. In b →
sμþμ− transitions there are discrepancies with the SM in a
number of observables in B → K�μþμ− [4–8] and B0

s →
ϕμþμ− [9,10].
There are also measurements that are different from the

SM expectations that involve ratios of b → sμþμ− and b →
seþe− transitions. These measured quantities are tests of

lepton universality violation (LUV) and are defined as
RK ≡ BðBþ → Kþμþμ−Þ=BðBþ → Kþeþe−Þ [11,12] and
RK� ≡ BðB0 → K�0μþμ−Þ=BðB0 → K�0eþe−Þ [13,14].
While the discrepancies in b → sμþμ− can be under-

stood with lepton universal new physics [15], hints of LUV
in RK and R�

K require NP that couple differently to the
lepton generations. Awell-studied scenario is to assume NP
coupling dominantly to the muons though NP coupling to
electrons is not ruled out [16,17]. The b → sμþμ− tran-
sitions are defined via an effective Hamiltonian with vector
and axial vector operators:

Heff ¼ −
αGFffiffiffi
2

p
π
VtbVts�

X
a¼9;10

ðCaOa þ C0
aO0

aÞ;

O9ð10Þ ¼ ½s̄γμPLb�½μ̄γμðγ5Þμ�; ð1Þ

where the Vij are elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix and the primed operators are
obtained by replacing L with R. It is assumed Wilson
coefficients (WCs) include both the SM and NP contribu-
tions: CX ¼ CX;SM þ CX;NP. One now fits to the data to
extract CX;NP. There are several scenarios that give a good
fit to the data and results of recent fits can be found in
Ref. [17–22]. One popular scenario is Cμμ

9;NP ¼ −Cμμ
10;NP

which can arise from the tree-level exchange of leptoquarks
(LQ) or a Z0 which may be heavy [23–26] or light [16,27–
31]. Here we will focus on the LQ solution and there are
three types of LQ that can generate this scenario. These are
the SUð2ÞL-triplet scalar (S3), the SUð2ÞL-singlet vector
(U1), and the SUð2ÞL-triplet vector (U3). We will focus on
the S3 which along with diquarks can be used to generate
neutrino masses at loop level [32,33]. To generate the
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neutrino masses, one can fix the S3 couplings by a fit to the
b → slþl− data and then the diquark couplings are con-
strained from the neutrino parameters. In this paper we
point out that the diquark couplings can be fixed from
nonleptonic B decays and now one can check whether the
correct neutrino masses and mixings are reproduced. We

would like to mention that joint explanation of Rð�Þ
K and Rð�Þ

D
was first pointed out in [1] and later a connection between

Rð�Þ
K or Rð�Þ

D and neutrino masses was discussed in [34–36].
Here, we are anticipating a common framework with
leptoquarks and diquarks that can explain the semileptonic
and nonleptonic B measurements along with the neutrino
masses and mixing.
The observations that we will use for the nonleptonic

decays are the set of B → πK decays. These are penguin
dominated nonleptonic b decays and have been studied
extensively. The decays in the set include Bþ → πþK0

(designated as þ0), Bþ → π0Kþ (0þ), B0 → π−Kþ (−þ),
and B0 → π0K0 (00). Their amplitudes are not indepen-
dent, but obey a quadrilateral isospin relation:

ffiffiffi
2

p
A00 þ A−þ ¼

ffiffiffi
2

p
A0þ þ Aþ0: ð2Þ

Using these decays, nine observables have been measured:
the four branching ratios, the four direct CP asymmetries
ACP, and the mixing-induced indirect CP asymmetry SCP
in B0 → π0K0. Shortly after these measurements were first
made (in the early 2000s), it was noted that there was an
inconsistency among them. This was referred to as the
“B → πK puzzle” [37–40].
Recently the fits were updated [41–43]. In Ref. [41] it

was observed that the key input to understanding the data
was the ratio of the color-suppressed tree amplitude (C0) to
the color-allowed ðT 0Þ amplitude. Theoretically, this ratio is
predicted to be 0.15≲ jC0=T0j≲ 0.5 [44] with a default
value of around 0.2. It was found that for a large
jC0=T 0j ¼ 0.5, the SM can explain the data satisfactorily.
However, with a small, jC0=T 0j ¼ 0.2, the fit to the data has
a p value of 4%, which is poor. Hence, if jC0=T 0j is small,
the SM cannot explain the B → πK puzzle—NP is needed.
The precise statement of the situation is then, the mea-
surements of B → πK decays allow for NP and so in this
paper we will assume there is NP in these decays. There are
two types of NP mediators that one can consider for the
B → πK decays. One is a Z0 boson that has a flavor-
changing coupling to s̄b and also couples to ūu and/or d̄d.
The second option is a diquark that has db and ds couplings
or ub and us couplings. We will focus on the diquark
explanation as the diquarks can contribute to neutrino
masses.
The paper is organized in the following manner. In

Sec. II we describe the setup with leptoquarks and diquarks
that leads to neutrino masses and mixing at the loop level.
In that section we also discuss the low energy constraints

for the leptoquark Yukawa couplings including the b →
slþl− data. In Sec. III we explore the B → πK decays
mediated by the exchange of diquarks and we consider the
constraints on the diquark Yukawa couplings from the B →
πK decays and meson oscillations. In Sec. IV we consider
the collider constraints on the diquark and leptoquarks
coupling and masses and we give a scan of all their
couplings that satisfy all the constraints and generate the
correct neutrino masses and couplings. For a few bench-
mark cases we present explicit expressions for the diquark
and the leptoquark Yukawa couplings and predict the
branching ratios for the rare decays B → ϕπ and
B → ϕϕ. Finally in Sec. V we present our conclusions.

II. COLORED ZEE BABU MODEL

We briefly summarize the main features of the colored
Zee Babu model [32,45] that are central to our idea.
The model includes a scalar leptoquark S3L (with lepton
number 1) of mass mL and a scalar diquark SD of mass mS
transforming as1 ð3; 3;−1=3Þ and2 ð6; 1;−2=3Þ respec-
tively under SM gauge group SUð3Þc × SUð2Þ ×Uð1ÞY
withQ ¼ T3 þ Y. The baryon number of S3L is taken to be
1=3 whereas SD is assigned 2=3. With this assignment of
baryon number, the baryon conservation is automatic and
thus the proton decay is forbidden. The lepton number is
softly broken through a trilinear term thereby generating
Majorana neutrino mass.
With the particle content discussed above, the interaction

Lagrangian is given as

Lint ¼ −Yij
l L

c
i iσ2Q

α
j S

α�
3L − Yij

d d
αc
iRd

β
jRS

αβ�
D

þ μSα�3LS
β�
3LS

αβ
D þ H:c:; ð3Þ

where α; β ¼ r, b, g are SUð3Þc indices, i, j ¼ 1, 2, 3 are
generation indices, the diquark coupling matrix, Yij

d , is a
symmetric complexmatrix whereas the leptoquark coupling
matrix, Yij

l , is a general complex matrix. The leptoquark
couples to leptons and quarks as

ffiffiffi
2

p
νiLujL −

ffiffiffi
2

p
eiLdjLþ

νiLdjL þ eiLujl. Note that, in Eq. (3), we can also have
additional scalar interaction terms (not relevant to our
analysis), such as

λ1Φ†ΦTrðS†3LS3LÞ þ λ2TrðΦ†S3LS
†
3LΦÞ

whereΦ is a Higgs doublet. These terms give rise to splitting
in the mass of S3L particles, comprising three states of
different electric charges −4=3, −1=3, and 2=3, and thus

1The choice ð3; 1;−1=3Þ is also possible as it couples
neutrinos to down-type quarks but will not explain the RK and
R�
K anomaly as this scalar couples up-type quarks to charged

leptons.
2Note that if we had chosen the diquark to be ð3; 1;−2=3Þ, Yd

and, hence, the neutrino mass matrix would be antisymmetric.
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contribute to the oblique corrections [46]. To avoid that, we
assume λ1;2 ¼ 0 such that all S3L particles/states have same
mass, mL. Along with this, there are quartic and quadratic
terms of these scalars. We assume that their coefficients are
adjusted such that only the Higgs doublet gets the vev and
the potential is bounded from below.
The above Lagrangian can generate majorana neutrino

mass at two loop as depicted in the Fig. 1. The resultant
neutrino matrix is given as [32,47]

Mij
ν ¼ 24μYik

l m
kl
d Y

lm
d Ilmmmn

d Ynj
l ; ð4Þ

where Ikl is a loop integral, which in the limit of large
leptoquark and diquark masses simplifies to

Ikl ≃
1

ð4πÞ4
1

m2
L
Ĩ

�
m2

S

m2
L

�
; ð5Þ

with

ĨðrÞ¼
Z

1

0

dx
Z

1−x

0

dy
1

xþyðyþ r−1Þ ln
�

xþ ry
yð1−yÞ

�
; ð6Þ

and md is 3 × 3 diagonal mass matrix for down-type
quarks. Note that we have chosen diagonal bases of the
mass matrix for down-type quarks and charged leptons.
Hence, to obtain the correct masses of neutrino, we need to
diagonalize the mass matrix, Mν by the Pontecorvo-Maki-
Nakagawa-Sakata matrix U as

mν ¼ U†MνU: ð7Þ

The standard parametrization is adopted such that

U ¼

0
BB@

1 0 0

0 c23 s23
0 −s23 c23

1
CCA
0
BB@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CCA

×

0
BB@

c12 s12 0

−s12 c12 0

0 0 1

1
CCA
0
BB@

1 0 0

0 eiα21=2 0

0 0 eiα31=2

1
CCA ð8Þ

where cij and sij represent cos θij and sin θij, respectively.
In the case of Majorana neutrinos, α21 and α31 are the extra

CP phases that cannot be determined by the oscillation
experiments. However, these phases could be sensitive to
the upcoming neutrinoless double beta decay searches.
It should be noted that the mass dimension one param-

eter, μ, is constrained by demanding the perturbativity of
the theory. The trilinear term in the Eq. (3) generates one-
loop corrections to leptoquark and diquark masses. These

corrections (Δm2) are, in general, proportional to μ2

16π2
.

Requiring corrections to be smaller than the corresponding
masses implies μ ≪ 4πmS=L [47]. As various collider
searches, discussed in Sec. V, do not allow the scalar
masses to be smaller than 1 TeV, we take μ from 0.1 to
1 TeV and this choice commensurates with the above
constraints.
Having discussed the details of the model, next we list all

the possible constraints, coming from various experiments
on leptoquark and diquark coupling matrices.

III. LEPTOQUARKS

A. Lepton flavor violation at tree level

Collider searches of leptoquarks indicate that they are
heavy. So we can study their low energy effects by writing
4-Fermi operators of two lepton-two quarks. Using Fierz
rearrangement, we get

Yik
l Y

jn�
l

2m2
L

ðl̄iγμPLljÞðq̄kγμPLqnÞ þ H:c:

as an effective operator where l and q denote leptons and
quarks. These are organized in terms of the four-Fermi
effective interactionswith normalized dimensionlessWilson
coefficients as

Heff ¼
X
ijkn

Yik
l Y

jn�
l

2m2
L

Oijkn ¼
−4GFffiffiffi

2
p

X
ijkn

CijknOijkn:

In Ref. [48], constraints on such operators have been
extensively studied. Keeping in mind that Yij

l should be
able to explain a small neutrino mass, following are the
most crucial operators related to our work:
(1) ðeiγμPLejÞðd̄γμPLdÞ: The μ-e conversion in nuclei

sets a bound on the Wilson coefficient of this
operator, i.e.,

C1211 ¼
���� Y11

l Y21�
l

4
ffiffiffi
2

p
GFm2

L

���� < 8.5 × 10−7: ð9Þ

(2) ðμ̄γμPLeÞðd̄γμPLsÞ: The bound from the decay
K∘ → eþμ− sets a bound on C1212

C1212 ¼
���� Y12

l Y21�
l

4
ffiffiffi
2

p
GFm2

L

���� < 3.0 × 10−7: ð10Þ

FIG. 1. The two loop neutrino mass generated by ð3; 3;−1=3Þ
leptoquark and ð6; 1;−2=3Þ diquark.
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(3) ðνiγμPLνjÞðdkγμPLdlÞ: The constraint on the K
meson decay to pion and neutrinos (νiνj) sets
another bound:

Cij12 ¼
���� Yi1

l Y
j2�
l

4
ffiffiffi
2

p
GFm2

L

���� < 9.4 × 10−6: ð11Þ

Apart from this, we have also taken care of all the relevant
Wilson coefficients mentioned in Ref. [48].

B. Lepton flavor violation radiative decay

The lepton flavor violation radiative decays li → ljγ are
induced at one loop by the exchange of a leptoquark S3L
with the branching ratio [46]

BRðli → ljγÞ ≃
3αχi

256πG2
F

1

m4
L
jðYlY

†
l Þijj2 ð12Þ

where α ¼ e2
4π, χμ ¼ 1, and χτ ¼ 1=5. In the case of a τ

lepton, there are two leptonic modes and hadronic modes
can be approximated by a single partonic mode (with three
colors). Hence there is a factor of 5 difference in μ and the
τ-lepton branching ratio. The current experimental bounds
[49,50] are
(1) BRðμ → eγÞ < 4.2 × 10−13,
(2) BRðτ → μγÞ < 4.4 × 10−8,
(3) BRðτ → eγÞ < 3.3 × 10−8.

C. b → sl+l− anomalies

As discussed in the Introduction one can perform fits to
the b → slþl− data and scenarios in terms of Wilson’s
coefficients that give a good description of the data. In the
above set up, the exchange of the S3L leptoquark at tree
level contributes to the decay b → slþl−, and in particular
generates the scenario Cμμ

9;NP ¼ −Cμμ
10;NP. The effective

Hamiltonian describing the decay is parametrized as

Heff ¼ −
4GFffiffiffi

2
p α

4π
VtbVts�

X
i

CiðμÞOiðμÞ þ H:c:; ð13Þ

where OiðμÞ are effective operators with Wilson
coefficients CiðμÞ renormalized at the scale μ. For the
model under consideration, only the operators Oli

9 ¼
ðs̄γμPLbÞðl̄iγ

μliÞ and Oli
10 ¼ ðs̄γμPLbÞðl̄iγ

μγ5liÞ are
induced. Using Fierz identity, we obtain the following
Wilson coefficients:

Cli
9 ¼ −Cli

10 ¼ −
ffiffiffi
2

p
π

4αGFm2
L

ðYi3
l ÞðYi2�

l Þ
VtbVts�

: ð14Þ

Assuming new physics only in the muon sector, a model
independent analysis on the above operators [17] from the
RK , R�

K , P
0
5 and other observables suggests that

Cμμ
9 ðNPÞ ¼ −0.53� 0.08:

IV. DIQUARK

A. Nonleptonic decays and the B → πK puzzle

In the Standard Model the amplitudes for hadronic B
decays of the type b → qf̄f are generated by the following
effective Hamiltonian:

Hq
eff ¼

GFffiffiffi
2

p
�
VfbV�

fqðc1Oq
1f þ c2O

q
2fÞ−

X10
i¼3

VtbV�
tqctiO

q
i

�

þH:c:; ð15Þ

where the superscript t indicates the internal quark, and f
can be a u or c quark. q can be either a d or an s quark
depending on whether the decay is a ΔS ¼ 0 or ΔS ¼ −1
process. The operators Oq

i are defined as

Oq
f1¼ q̄αγμLfβf̄βγμLbα; Oq

2f ¼ q̄γμLff̄γμLb;

Oq
3;5¼ q̄γμLbq̄0γμLðRÞq0; Oq

4;6¼ q̄αγμLbβq̄0βγ
μLðRÞq0α;

Oq
7;9¼

3

2
q̄γμLbeq0 q̄0γμRðLÞq0;

Oq
8;10¼

3

2
q̄αγμLbβeq0 q̄0βγ

μRðLÞq0α; ð16Þ

where RðLÞ ¼ 1� γ5, and q0 is summed over u, d, s, c,
and b. O2 and O1 are the tree-level and QCD corrected
operators, respectively. O3–6 are the strong gluon induced
penguin operators, and operators O7–10 are due to γ and Z
exchange (electroweak penguins) and “box” diagrams at
loop level. The Wilson coefficients cfi are defined at the
scale μ ≈mb and have been evaluated to next-to-leading
order in QCD. The cti are the regularization scheme
independent values and can be found in Ref. [44].
The diquarks discussed in Sec. II in the context of

neutrino mass generation can contribute to the B → πK
decays and we can write down the new physics operators
that will be generated by a 6 or 3̄ diquark [51]. In the
general case we get the effective Hamiltonian for b quark
decays b → d̄idjdk as

Hd
NP ¼ Xdd̄α;kγμð1þ γ5Þbαd̄β;jγμð1þ γ5Þdβ;i; ð17Þ

where the superscript d in Xd equals 6 or 3̄ corresponding
to the color sextet or the antitriplet diquark. The greek
subscripts represent color and the latin subscripts the flavor.
We have

Xd ¼ −
Yd
i3Y

�d
jk

4m2
S

; ð18Þ

where the Yukawa Y are symmetric for the sextet diquark
and antisymmetric for the antitriplet diquark and we have
assumed the same masses for the diquarks.
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For b decays of the type b → s̄ss the diquark contribu-
tion is tiny as the effective Hamiltonian is proportional to
Yd
22 which vanishes for the 3̄ diquark and is highly

suppressed from K and B mixing for the sextet diquark.
Similarly the b → d̄dd transition is proportional to Yd

11,
which is also small.
For b → sd̄d (b → d̄sd and b → d̄ds) transitions we

have the following Hamiltonian:

Hd
NP ¼ Xds̄αγμð1þ γ5Þbαd̄βγμð1þ γ5Þdβ

þ Xd
Cs̄αγμð1þ γ5Þbβd̄βγμð1þ γ5Þdα; ð19Þ

with

Xd ¼ −
Yd
13Y

�d
12

4m2
S

;

Xd
C ¼ −

Yd
13Y

�d
21

4m2
S

; ð20Þ

and

X3̄ ¼ −X3̄
C;

X6 ¼ X6
C: ð21Þ

We can rewrite the effective Hamiltonian after a color
Fierz transformation as

Hd
NPF ¼ Xid̄βγμð1þ γ5Þbαs̄αγμð1þ γ5Þdβ

þ Xi
Cd̄βγμð1þ γ5Þbβs̄αγμð1 − γ5Þdα: ð22Þ

The only other unsuppressed transition is b → ss̄d
(b → s̄sd and b → s̄ds) which has the effective
Hamiltonian,

Hd
NP ¼ Xds̄αγμð1þ γ5Þbαd̄βγμð1þ γ5Þsβ

þ Xd
Cs̄αγμð1þ γ5Þbβd̄βγμð1þ γ5Þsα; ð23Þ

with

Xd ¼ −
Yd
23Y

�d
12

4m2
S

;

Xd
C ¼ −

Yd
23Y

�d
21

4m2
S

: ð24Þ

In this case at the meson level we can have the decays
B → ϕπ and the annihilation decays B → ϕϕ. These
decays are highly suppressed in the SM and the observance
of these decays could signal the presence of diquarks.

B. Naive B → πK puzzle

We begin by reviewing the B → πK puzzle. As in
Ref. [41] we can analyze the B → πK decays in terms
of topological amplitudes. Including only the leading
diagrams the B → πK amplitudes become

Aþ0 ¼ −P0
tc;ffiffiffi

2
p

A0þ ¼ −T 0eiγ þ P0
tc − P0

EW;

A−þ ¼ −T 0eiγ þ P0
tc;ffiffiffi

2
p

A00 ¼ −P0
tc − P0

EW: ð25Þ

Here, T 0 is the color-allowed tree amplitude, P0
tc is the

gluonic penguin amplitude, and P0
EW is the color-allowed

electroweak penguin amplitude. Furthermore in the SU(3)
limit the T 0 and P0

EW are proportional to each other and so
have the same strong phases. Now consider the direct CP
asymmetries of Bþ → π0Kþ and B0 → π−Kþ. Such CP
asymmetries are generated by the interference of two
amplitudes with nonzero relative weak and strong phases.
In both A0þ and A−þ, T 0�P0

tc interference leads to a direct
CP asymmetry. On the other hand, in A0þ, P0

EW and T 0 have
the same strong phase, P0

EW ∝ T 0, while P0
EW and P0

tc have
the same weak phase (¼ 0), so that P0

EW does not contribute
to the direct CP asymmetry. This means that we
expect ACPðBþ → π0KþÞ ¼ ACPðB0 → π−KþÞ.
The latest B → πK measurements are shown in Table I.

Not only are ACPðBþ → π0KþÞ and ACPðB0 → π−KþÞ not
equal, they are of opposite sign! Experimentally, we have
ðΔACPÞexp ¼ ð12.2� 2.2Þ%. This differs from 0 by 5.5σ.
This is the naive B → πK puzzle.

C. Model-independent new physics formalism

In the general approach of Refs. [53,54], the NP
operators that contribute to the B → πK amplitudes take
the formOij;q

NP ∼ s̄Γibq̄Γjq (q ¼ u, d), where Γi;j represents
Lorentz structures, and color indices are suppressed. The
NP contributions to B → πK are encoded in the matrix
elements hπKjOij;q

NP jBi. In general, each matrix element has
its own NP weak and strong phases.
Note that the strong phases are basically generated by

QCD rescattering from diagrams with the same CKM

TABLE I. Branching ratios, direct CP asymmetries ACP, and
mixing-induced CP asymmetry SCP (if applicable) for the four
B → πK decay modes. The data are taken from Ref. [52].

Mode BR½10−6� ACP SCP

Bþ → πþK0 23.79� 0.75 −0.017� 0.016
Bþ → π0Kþ 12.94� 0.52 0.040� 0.021
B0 → π−Kþ 19.57� 0.53 −0.082� 0.006
B0 → π0K0 9.93� 0.49 −0.01� 0.10 0.57� 0.17

UNIFIED EXPLANATION OF b → sμ−μþ ANOMALIES, NEUTRINO … PHYS. REV. D 100, 055015 (2019)

055015-5



matrix elements. One can argue that the strong phase of
T 0 is expected to be very small since it is due to self-
rescattering. For the same reason, all NP strong phases are
also small, and can be neglected. In this case, many NP
matrix elements can be combined into a single NP
amplitude, with a single weak phase:

X
hπKjOij;q

NP jBi ¼ AqeiΦq : ð26Þ

Here the strong phase is zero. There are two classes of such
NP amplitudes, differing only in their color structure:
s̄αΓibαq̄βΓjqβ and s̄αΓibβq̄βΓjqα (q ¼ u, d). They are

denoted A0;qeiΦ0
q and A0C;qeiΦ0C

q , respectively [54]. Here,
Φ0

q and Φ0C
q are the NP weak phases. In general, A0;q ≠

A0C;q and Φ0
q ≠ Φ0C

q . Note that, despite the “color-

suppressed” index C, the matrix elements A0C;qeiΦ0C
q are

not necessarily smaller than A0;qeiΦ0
q .

There are therefore four NP matrix elements that
contribute to B → πK decays. However, only three combi-
nations appear in the amplitudes:A0;combeiΦ

0 ≡ −A0;ueiΦ0
uþ

A0;deiΦ
0
d , A0C;ueiΦ0C

u , and A0C;deiΦ
0C
d [54]. The B → πK

amplitudes can now be written in terms of the SM
diagrams and these NP matrix elements. Here we neglect
the small SM diagram P0

uc but include the color-suppressed
amplitudes:

Aþ0 ¼ −P0
tc −

1

3
P0C
EW þA0C;deiΦ

0C
d ;

ffiffiffi
2

p
A0þ ¼ P0

tc − T 0eiγ − P0
EW − C0eiγ −

2

3
P0C
EW

þA0;combeiΦ
0 −A0C;ueiΦ0C

u ;

A−þ ¼ P0
tc − T 0eiγ −

2

3
P0C
EW −A0C;ueiΦ0C

u ;

ffiffiffi
2

p
A00 ¼ −P0

tc − P0
EW − C0eiγ −

1

3
P0C
EW þA0;combeiΦ

0

þA0C;deiΦ
0C
d : ð27Þ

We can express the various matrix elements as

A0C;deiΦ
0C
d ¼

ffiffiffi
2

p
hπ0K0jHd

NPFjB0i ¼ hπþK0jHd
NPFjBþi;

A0C;ueiΦ0C
u ¼ −

ffiffiffi
2

p
hπ0KþjHu

NPFjBþi ¼ hπ−KþjHu
NPFjB0i;

A0;combeiΦ
0 ¼

ffiffiffi
2

p
hπ0Kþj½Hu

NP þHd
NP�jBþi

¼
ffiffiffi
2

p
hπ0K0j½Hu

NP þHd
NP�jB0i: ð28Þ

In our model Hu
NP and Hu

NPF are absent while Hd
NP and

Hd
NPF are defined in Eqs. (19) and (22). In the factorization

assumption and using Eqs. (19) and (22) we get the
following results for the nonzero amplitudes:

A0C;deiΦ
0C
d ¼

�
X6−X3̄þX6þX3̄

Nc

�
hπþjd̄βγμð1þ γ5ÞbβjBþi

× hK0js̄αγμð1þ γ5Þdαj0i;

A0;deiΦ
0
d ¼

ffiffiffi
2

p �
X6þX3̄þX6−X3̄

Nc

�

× hKþjs̄βγμð1þ γ5ÞbβjBþi
× hπ0jd̄αγμð1þ γ5Þdαj0i: ð29Þ

In Ref. [55], a different set of NP operators is defined:

P0
EW;NPe

iΦ0
EW ≡A0;ueiΦ0

u −A0;deiΦ
0
d ;

P0
NPe

iΦ0
P ≡ 1

3
A0C;ueiΦ0C

u þ 2

3
A0C;deiΦ

0C
d ;

P0C
EW;NPe

iΦ0C
EW ≡A0C;ueiΦ0C

u −A0C;deiΦ
0C
d : ð30Þ

In this case we have

P0
EW;NPe

iΦ0
EW ≡ −A0;deiΦ

0
d ;

P0
NPe

iΦ0
P ≡ 2

3
A0C;deiΦ

0C
d ¼ −ð2=3ÞP0C

EW;NP

P0C
EW;NPe

iΦ0C
EW ≡ −A0C;deiΦ

0C
d : ð31Þ

We consider two models, the first with

X6 ¼ X3̄: ð32Þ

This leads to P0C
EW;NP=P

0
EW;NP ¼ 1

3
with both amplitudes

having the same weak phase,

P0
EW;NPe

iΦ0
EW ≡ Y6

d13Y
�6
d12

4m2
S

ffiffiffi
2

p
hKþjs̄βγμð1þ γ5ÞbβjBþi

× h0js̄αγμð1þ γ5ÞdαjK0i;

P0
NPe

iΦ0
P ≡ 2

3
A0C;deiΦ

0C
d ¼ −ð2=3ÞP0C

EW;NP;

P0C
EW;NPe

iΦ0C
EW ≡ −A0C;deiΦ

0C
d ¼ P0

EW;NPe
iΦ0

EW=3: ð33Þ

The second model has

X3̄ ¼ 0: ð34Þ

This leads to P0C
EW;NP=P

0
EW;NP ¼ 1, again with both ampli-

tudes having the same weak phase.
A χ2 fit for the new physics within this scenario is

performed to determine the parameters of the model.
The procedure for determining such a fit is as follows.
We define the function
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χ2 ¼
XN
i¼1

�
Oexp −Oth

ΔOexp

�
2

ð35Þ

where Oexp and ΔOexp are the experimentally determined
quantities with their associated uncertainties, respectively,
as listed in Table I. Oth are determined from the model and
are thus functions of the unknown parameters. The goal
from here is to find the values of the parameters that
minimize χ2. There are many programs available to
accomplish this, one of the most widely used is MINUIT

[56], which is used here. The goodness of the fit is
determined by the value of χ2 at the minimum and the
number of degrees of freedom (d.o.f.) in the fit. The d.o.f.
are the number of constraints included in the fit minus the
number of parameters that are fitted. In this case the number
of constraints is 13: the B → πK data, the independent
measurements of β and γ, and the constraints on jC0=T 0j and
jP0C

EW;NP=P
0
EW;NPj. The number of parameters is nine and we

have that the number of d.o.f. are four. A “good” fit is one
where χ2min ≈ d:o:f:, but a better measure is the p value
which gives the probability that the model tested
adequately describes the observations.
The results of the fit for this case are shown in Tables II

and III. Here the p value is 44% for X6 ¼ X3̄, and 43% for
X3̄ ¼ 0, which is not bad (and is far better than that of
the SM).
The SM T 0 diagram involves the tree-level decay

b̄ → ūWþ�ð→ us̄ ¼ KþÞ. The NP P0
EW;NP diagram looks

very similar and is expressed relative to the T 0 diagram.
Within factorization, the SM and NP diagrams involve
AπK ≡ FB→π

0 ð0ÞfK and AKπ ≡ FB→K
0 ð0Þfπ , respectively,

where FB→K;π
0 ð0Þ are form factors and fπ;K are decay

constants. The hadronic factors are similar in size:
jAKπ=AπKj ¼ 0.9� 0.1 [44]. Taking central values for
X6 ¼ X3̄, we have [41]

Φ0 ¼ Arg½Y6
d13Y

�6
d12�����P

0
EW;NP

T 0

���� ≃ 2AKπjX3̄j
AπKðGF=

ffiffiffi
2

p ÞjVub�Vusj
¼ 8.6

19.1

⇒

����Y
6
d13Y

�6
d12

2m2
S

���� ¼ ð3.4� 1.2Þ × 10−3 TeV−2: ð36Þ

For X3̄ ¼ 0 we obtain
����Y

6
d13Y

�6
d12

2m2
S

���� ¼ ð2.6� 1.8Þ × 10−3 TeV−2: ð37Þ

Both models give similar fits and in Fig. 2 we show the
allowed regions of the diquark couplings within a 1σ range
for the first model.

D. Neutral meson mixing

Diquarks, in spite of being charged, through their
coupling to the same generation quarks can mediate the
mixing between neutral mesons at tree level. Following the
convention in [57], the mixing can be depicted as the six
dimension operator:

Omix ¼
Y�ij
d Ykl

d

m2
S

ψ̄k
Rγ

μψ i
Rψ̄

l
Rγμψ

j
R:

The 90% C.L. bounds on the corresponding Wilson
coefficients [57] is then given as

K∘ −K∘
���� Y�11

d Y22
d

4
ffiffiffi
2

p
GFm2

S

���� < 2.9 × 10−8;

B∘
d −B∘

d

���� Y�11
d Y33

d

4
ffiffiffi
2

p
GFm2

S

���� < 7.0 × 10−7;

B∘
s − B∘

s

���� Y�22
d Y33

d

4
ffiffiffi
2

p
GFm2

S

���� < 3.3 × 10−5:

TABLE II. χ2min=d:o:f: and best-fit values of unknown param-
eters for the Diquark model where the fit 1 has X6 ¼ X3̄.
Constraints: B → πK data, measurements of β and γ,
jC0=T 0j ¼ 0.2, jP0C

EW;NP=P
0
EW;NPj ¼ 0.3.

NP fit (1): χ2=d:o:f: ¼ 3.75=4, p value ¼ 0.44

Parameter Best-fit value

γ ð67.5� 3.4Þ°
β ð21.80� 0.68Þ°
Φ0 ð37.0� 12.6Þ°
jT 0j 19.1� 2.8
jP0

tcj 48.7� 1.2
P0
EW;NP 8.6� 2.5

P0C
EW;NP 2.7� 1.1

δP0
tc

ð−4.0� 1.1Þ°
δC0 ð−60.0� 115.6Þ°

FIG. 2. The correlation between
jY12

d j
mS

and
jY13

d j
mS

within 1σ range.
The shaded area corresponds to mass range mS ∈ ½5∶20� TeV.
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V. NUMERICAL ANALYSIS AND DISCUSSION

Before we present the results, we discuss the bounds on
the scalar masses obtained from collider experiments. The
collider experiments provide direct limits on the leptoquark
mass when they decay to leptons and quarks in the final
state. There are many studies in the literature where
different signatures have been discussed [32,58,59]. The
leptoquarks can be pair produced from gg and qq̄ as initial
state or singly produced at hadron colliders via gþ q →
S3L þ lepton. Recent studies at ATLAS [60] and CMS [61]
with 13 TeV data puts a bound on the scalar leptoquark
mass, mL > 1, 1.2 (ATLAS), 0.9 (CMS) TeV when decay
to ue, cμ, and tτ with 100% branching fraction, respec-
tively, at 95% C.L. The previous results [62,63] at 8 TeV
from the search of single leptoquark production are of order
0.65 TeV for final state cμ. Taking a cue from these studies,
we take mL > 1.5 TeV in our analysis.
Similar to the leptoquarks, diquarks can be looked at the

LHC through dijets in the final state. The recent studies at
CMS on dijets’ final states rules out scalar diquarks of mass
smaller than 6 TeV. However, these limits are derived for
E6 diquark which couples with an up-type quark and a

down-type quark [64]. These limits are very sensitive to the
assumptions of decay branching fractions as well as the
flavor dependent coupling strengths. Also, the diquark in
the present work couples only to down-type quarks. This
leads to a decrease in the flux factor and hence the cross
section and thereby the bounds on mS would be lower.
Hence, we take mS ∈ ½5∶20� TeV in our analysis.
With this mass range of scalars, we randomly generate a

sample of diquark couplings satisfying the constraints
discussed in Sec. III. For mS ∈ ½5∶20� TeV, the B → πK
fit requires Y12;13

d to be greater than 0.1. Thus, we generate
these couplings randomly in the range ½0.1∶1�. We fix Y23

d of
the order 10−2 and Y33

d is randomly generated in the range
½10−4∶10−2�. The small value of Y33

d is required to generate a
small neutrino mass because the Y33

d coupling is always
multiplied to the square of a bottom quark mass when mass
matrix, in Eq. (4), is solved. For the remaining Yij

d , i.e.,
Y11;12
d , we scan in the range ½10−5∶1�. Except for Y23

d , other
diquark couplings are assumed complex. It should be noted
that the signs of the couplings are randomly assigned with
equal probabilities being positive or negative in the whole
calculation.

FIG. 3. Parameter space scan in Yij
l -mL plane.

DATTA, WAITE, and SACHDEVA PHYS. REV. D 100, 055015 (2019)

055015-8



As for the leptoquark case, Y2i
l couplings (real) are

generated randomly in the range ½10−5∶1�. With the obtained
sets of couplings, we calculate the strength of remaining
leptoquark couplings, for randomly generated LQ mass,
from Eq. (4) to get the correct neutrino masses. The
symmetric neutrino mass matrix in Eq. (4) represents six
independent equations as six independent parameters (given
in Table IV) that are obtained from the neutrino oscillation
experiments. Throughout the analysis, we have kept
Majorana phases to be 0, and have employed the 2σ ranges
for the neutrinomixingparameters for normal hierarchy from
Refs. [65,66]. Finally, those sets of LQcouplings are selected
that satisfy all of the constraints in Sec. III. The results for the
LQ couplings are given in Fig. 3.
The pattern in the lower limit of the Y22;23

l coupling is
mainly decided by b → slþl− anomalies whereas the DQ
couplings, Y12=13

d , do not contribute significantly to neutrino
mass calculations and thereby leptoquark parameter space as
Y12=13
d comes with the product of down and strange/bottom

quark masses in Eq. (4), and the down quark mass is
very small.
We compare our results for leptoquark coupling with the

results given in [33,67] and find them consistent. A few
benchmark points (BP) are given in the Appendix B. For
these BP, we present branching ratios for the rare decays in
Table V following the calculations in Ref. [51]. The
branching ratios are rather small and it will be difficult to
observe these decays in ongoing experiments. Our analysis
shows that the B anomalies and the neutrino masses can all
be accommodated in a consistent framework.

VI. CONCLUSION

In conclusion we have discussed a unified framework to
provide solutions to three problems. They are the anomalies
in b → sμþμ− measurements, nonleptonic B → πK decays,
and the issue of generating neutrino masses and mixing.
Our framework contained a scalar triplet leptoquark, a
scalar color sextext diquark, and also, possibly, a color
antitriplet diquark. We considered several low energy as
well as collider bounds on the leptoquark, diquark cou-
plings, and masses. For the leptoquarks these low energy
observables included the b → slþl− measurements. The
solutions to the B → πK puzzle provided constraints on
products of the diquark Yukawa couplings. We then
checked that the correct neutrino masses and mixings were
reproduced with the allowed couplings of the leptoquarks
and diquarks. We also predicted the branching ratios for a
few rare B decays whose observations could signal the
existence of diquarks. However, we found the branching
ratios of these decays to be unobservably small.
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APPENDIX A: SOME USEFUL EXPRESSIONS

In this Appendix, we give some useful expressions and
calculations that could be useful while reading the paper

ψc ¼ Cψ̄T;

ψ̄c ¼ ðψcÞ†γ0 ¼ −ψTC−1;

ðγμÞT ¼ −C−1γμC;

C−1 ¼ C†; ðA1Þ
H ¼ Yij

d d̄
c
iαPRdjβSαβ;

H† ¼ Yij�
d d†jβPRð−dTiαC−1Þ†S�αβ

¼ −Yij�
d d̄jβPLðγ0Cd�iαÞS�αβ: ðA2Þ

Integrating out diquark

Heff ¼ −Y13
d d̄cαPRbβSαβ ⊗ Y12�

d s†βPRð−dTαC−1Þ†S�αβ

¼ −
Y13
d Y12�

d

m2
S

d̄cαPRbβs̄βPLðγ0Cd�αÞ

¼ Y13
d Y12�

d

2m2
S

d̄cαγμPLðγ0Cd�αÞs̄βγμPRbβ

¼ Y13
d Y12�

d

2m2
S

s̄βγμPRbβ½−dTαC−1γμPLðγ0Cd�αÞ�

¼ −
Y13
d Y12�

d

2m2
S

s̄βγμPRbβ½dTαγμTPT
Lðγ0Td�αÞ�

¼ −
Y13
d Y12�

d

2m2
S

s̄βγμPRbβ½d†αγ0PLγ
μdα�T

¼ Y13
d Y12�

d

2m2
S

s̄βγμPRbβdαγμPRdα: ðA3Þ

TABLE III. χ2min=d:o:f: and best-fit values of unknown param-
eters for the Diquark model where the fit 2 has X3̄ ¼ 0.
Constraints: B → πK data, measurements of β and γ, and
jP0C

EW;NP=P
0
EW;NPj ¼ 1.

NP fit (2): χ2=d:o:f: ¼ 3.82=4, p value ¼ 0.43

Parameter Best-fit value

γ ð74.7� 5.2Þ°
β ð21.80� 0.68Þ°
Φ0 ð18.7� 33.9Þ°
jT 0j 19.7� 7.1
jP0

tcj 45.5� 3.9
P0
EW;NP 6.7� 3.9

P0C
EW;NP 6.5� 3.7

δP0
tc

ð−4.0� 2.0Þ°
δC0 ð−48.9� 23.5Þ°
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Because Sαβ is symmetric/antisymmetric there is an additional factor of 2. In other words S12 can contract with S12 and S21.

APPENDIX B: BENCHMARK POINTS

Here we give the benchmark points satisfying the B anomalies observations and explaining the neutrino mass.
(i) BP A:

mL ¼ 3.5 TeV; mS ¼ 5 TeV

Yl¼

0
B@
1.40×10−4þ i3.24×10−4 5.02×10−3þ i8.9×10−3 3.7×10−3þ i3.26×10−2

1.37×10−3þ i2.83×10−4 1.81×10−1 2.44×10−2

5.03×10−4þ i3.12×10−3 1.4×10−1þ i3.31×10−2 1.1×10−2þ i4.5×10−2

1
CA: ðB1Þ

Yd ¼

0
B@

1.68 × 10−4 4.6 × 10−1 þ i1.22 × 10−1 4.64 × 10−1 þ i1.3 × 10−2

4.6 × 10−1 þ i1.22 × 10−1 2 × 10−1 0.01

4.64 × 10−1 þ i1.3 × 10−2 0.01 −1.42 × 10−4 þ i2.5 × 10−4

1
CA:

ðMνÞee ¼ 4.53 × 10−3 eV ðB2Þ

(ii) BP B:

mL ¼ 7.5 TeV; mS ¼ 6 TeV

Yl ¼

0
B@

1.03×10−4þ i7.8×10−3 8.2×10−3þ i1.2×10−2 1.87×10−2þ i1.11×10−2

1.32×10−3þ i3.2×10−4 2.15×10−1 9.5×10−2

7.56×10−4þ i1.91×10−3 1.23×10−1þ i1.25×10−1 3.2×10−2þ i1.51×10−2

1
CA: ðB3Þ

Yd ¼

0
B@

1.38 × 10−4 6.28 × 10−2 þ i3.6 × 10−1 5.1 × 10−1 þ i2.12 × 10−2

6.28 × 10−2 þ i3.6 × 10−1 1.8 × 10−1 0.01

5.1 × 10−1 þ i2.12 × 10−2 0.01 −1.4 × 10−3 þ i3 × 10−4

1
CA:

ðMνÞee ¼ 1.55 × 10−3 eV ðB4Þ
(iii) BP C:

mL ¼ 5.0 TeV; mS ¼ 7.5 TeV

Yl¼

0
B@

5.1×10−3þ i2.63×10−4 4.6×10−2þ i5.2×10−2 3.3×10−3þ i1.1×10−2

7.26×10−4þ i1.55×10−3 2.42×10−1 4.3×10−2

1.57×10−3þ i1.64×10−3 1.24×10−1þ i1.06×10−1 1.32×10−2þ i1.0×10−2

1
CA: ðB5Þ

Yd ¼

0
B@

1.2 × 10−4 3.04 × 10−1 þ i7.3 × 10−1 5.1 × 10−1 þ i1.79 × 10−1

3.04 × 10−1 þ i7.3 × 10−1 7.2 × 10−1 0.01

5.1 × 10−1 þ i1.79 × 10−1 0.01 −1.43 × 10−2 − i5.11 × 10−3

1
CA:

ðMνÞee ¼ 1.01 × 10−3 eV ðB6Þ

TABLE V. Branching ratios obtained with the couplings that
can produce required neutrino mass and also satisfy the con-
straints coming from the B → πK puzzle.

B.P BRðB� → ϕπ�Þ BRðB0 → ϕπ∘Þ BRðB0 → ϕϕÞ
A 1.45 × 10−10 7.2 × 10−11 1.45 × 10−12

B 6.5 × 10−14 3.2 × 10−14 6.5 × 10−16

C 1.19 × 10−12 5.95 × 10−13 1.19 × 10−14

TABLE IV. Neutrino data with 2σ deviation for normal
hierarchy [65,66].

δm2 7.07 − 7.73 × 10−5 eV2

sin2 θ12 0.265–0.334
jΔm2j 2.454 − 2.606 × 10−3 eV2

sin2 θ13 0.0199–0.0231
sin2 θ23 0.395–0.470
δ=π 1.00–1.90
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