
 

Gravity-mediated SUSY breaking, R symmetry,
and hyperbolic Kähler geometry

Constantinos Pallis*

Department of Physics and Astronomy, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia

(Received 9 February 2019; revised manuscript received 1 July 2019; published 11 September 2019)

A novel realization of the gravity-mediated supersymmetry breaking is presented, taking into account a
continuous global R symmetry. Consistently with it, we employ a linear superpotential for the hidden-
sector superfield and a Kähler potential parametrizing the SUð1; 1Þ=Uð1Þ Kähler manifold with constant
curvature −1=2. The classical vacuum energy vanishes without unnatural fine tuning and nonvanishing soft
supersymmetry-breaking parameters, of the order of the gravitino mass, arise. A solution to the μ problem
of minimal supersymmetric Standard Model may be also achieved by conveniently applying the Giudice-
Masiero mechanism. The potentially troublesome R axion may acquire acceptably large mass by explicitly
breaking the R symmetry in the Kähler potential through a quartic term which does not affect, though, the
achievements above.
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I. INTRODUCTION

Although still undiscovered, supersymmetry (SUSY)
remains one of the most plausible, well-motivated, and
natural candidates for the evolution of particle physics
beyond the Standard Model (SM). One of the most elusive
problems of the SUSY theories is the mechanism of the
SUSY breaking. According to an elegant and extensively
adopted paradigm, SUSY is spontaneously broken by the
vacuum expectation values (VEVs) of a set of chiral fields
which form a “hidden sector” [1] connecting with the
observable sector mostly through gravitational-strength
interactions, including the effects of supergravity (SUGRA).
One of the key ingredients for the successful imple-

mentation of this scenario is the determination of a realistic
vacuum for the relevant SUGRA potential with a naturally
vanishing or, at least, tunably small cosmological constant.
In view of the recent skepticism [2,3] related to the
consistency of the de Sitter vacua within string theory,
we here concentrate on the former possibility proposing a
novel gravity-mediated SUSY-breaking scenario with natu-
ral Minkowski solutions at the classical level. Actually, we
improve the well-known Polonyi model [4] in two direc-
tions: Following Ref. [5], we keep only the first term of the
relevant superpotential which includes a linear term of the
hidden-sector field and may become consistent with a

global R symmetry [6] forbidding other terms. The vanish-
ing of the cosmological constant is elegantly addressed by
selecting an appropriate internal space which exhibits a
SUð1; 1Þ=Uð1Þ symmetry [7–9] with constant curvature
−1=2. Using a convenient parametrization of the Kähler
manifold, which violates though the R symmetry, we show
that our model exhibits novel Minkowski solutions in the
context of the generalized no-scale SUGRA [10–12].
Contrary to that case [13], the gravitino, G̃, mass is clearly
determined at the tree level and the soft SUSY-breaking
(SSB) parameters [14] can readily acquire adjustable,
nonzero values of the order of G̃ mass. We exemplify
these effects, linking the hidden sector to a generic SUSY
model and theminimal supersymmetric SM (MSSM). In the
latter case, our scheme also offers an explanation of
the μ-fterm of the MSSM by conveniently adapting the
Giudice-Masiero mechanism [15].
However, a spontaneously broken continuous and global

R symmetry implies an (pseudo) Nambu-Goldstone boson,
the R axion [6,16]—as in the case of Peccei-Quinn
symmetry [17]—which is cosmologically dangerous.
To avoid this effect, we introduce a quartic term, inspired
by Ref. [12], in the Kähler potential, which violates R
symmetry and allows for nonvanishing R-axion masses
without disturbing, though, either the minimization of the
SUGRA potential or the values of the SSB parameters.
Below, in Sec. II, we outline the SUGRA formalism and

then we focus first, in Sec. III, on the hidden sector and
then, in Sec. IV, on the visible sector of our model. Our
conclusions and several perspectives are discussed in
Sec. V. A possible connection of our model with no-scale
SUGRA is examined in the Appendix. Unless otherwise
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stated, we use units where the reduced Planck mass mP ¼
2.433 × 1018 GeV is taken to be unity and charge con-
jugation is denoted by a bar.

II. SUGRA FORMALISM

In constructing a SUSY-breaking model based on
SUGRA, we mostly consider two sectors: a so-called
hidden sector responsible for the spontaneous SUSY
breaking, and an observable sector which includes ordinary
matter and Higgs fields and which would have unbroken
global SUSY in the absence of the coupling to SUGRA. In
particular, it is assumed that the superpotential has the form

W ¼ WHðZÞ þWOðΦαÞ; ð1Þ

in whichWH andWO depend only on the chiral fields of the
hidden and observable sectors, respectively. The hidden
sector here consists of just one gauge-singlet superfield Z,
similarly to the Polonyi [4] model, whereas the superfields
of the observable sector are denoted by Φα. The suggested
Kähler potential may take collectively the form

K ¼ KHðZÞ þ K̃ðZÞjΦαj2: ð2Þ

The specific expressions for WH and KH are given in
Sec. III whereas those for WO and K̃ are given in Sec. IV.
Central role in the SUGRA formalism plays the Kähler-

invariant function expressed in terms of K and W as
follows:

G ¼ K þ ln jWj2: ð3Þ

Using it we can derive the SUGRA scalar potential

V ¼ eGðGAB̄GAGB̄ − 3Þ ¼ ðGAB̄F
AF̄B̄ − 3eGÞ; ð4Þ

where the subscripts denote differentiation with respect to
the fields Z and Φα and GAB̄ ¼ KAB̄ is the inverse of the
Kähler metric KAB̄. The F-terms are defined as [14]

FA ¼ eG=2KAB̄GB̄ and F̄Ā ¼ eG=2KĀBGB: ð5Þ

The spontaneous SUSY breaking is signaled by the
absorption of a massless fermion named goldstino by G̃,
according to the “super-Higgs” mechanism, and is accom-
panied by a nonvanishing G̃ mass evaluated at the mini-
mum of V as follows:

m3=2 ¼ heG=2i ¼ 1

3
hGZZ̄F

ZF̄Z̄ − Vi; ð6Þ

where we made use of Eq. (4) and assume that hΦαi ≪ hZi.
The present vacuum energy density corresponds to
hVi ≃ 10−120, a negligible value with respect to the

SUSY-breaking mass scale m3=2 > 10−15 which implies

hFZF̄Z̄i > 10−30. The extraordinarily precise cancellation
required in Eq. (4) for fulfilling simultaneously the two
above constraints is the notorious cosmological constant
problem. Since the explanation of the smallness of hVi is
the crucial point of this problem and the compatibility of
the de Sitter solutions with the string theory is currently
under debate [2,3], we below focus on hVi ¼ 0 which
defines a Minkowski vacuum.
Under the assumption above, the mass-squared matrices

M2
J of the particles with spin J composing the final spectrum

of the hidden sector obey the super-trace formula [1]

STrM2 ¼
X3=2
J¼0

ð−1Þ2Jð2J þ 1ÞTrM2
J

¼ 2m2
3=2hG−2

ZZ̄GZGZ̄RZZ̄i; ð7Þ

where we take into account that KH ¼ KHðZÞ. Also, we
define the Ricci curvature [7,11] of the Kähler manifold as

RZZ̄ ¼ −∂Z∂Z̄ ln g with g ¼ ∂Z∂Z̄KH ð8Þ

being theKählermetric of the hidden space,whose the scalar
curvature is evaluated from the formula [9]

RH ¼ GZZ̄RZZ̄ ¼ ð∂Zg∂Z̄g − g∂Z∂Z̄gÞ=g3: ð9Þ

Taking advantage of Eqs. (9) and (4) with A ¼ Z we easily
infer that Eq. (7) is translated into

STrM2 ¼ 6m2
3=2hRHi; ð10Þ

which is significantly simplified with respect to the initial
one. For example, in the case of the Polonyi model [4]
with canonical Kähler potential we obtain g ¼ 1 and so
STrM2 ¼ 0 [1].

III. HIDDEN SECTOR

In this section we first—see Sec. III A—specify the
hidden sector of our model and then—see Sec. III B—
investigate the SUSY-breaking mechanism conserving R
symmetry and employing the curvature of the Kähler
manifold as free parameter. Perturbing mildly the resulting
geometry, we repeat the study, in Sec. III C, considering
a convenient R-symmetry violating term in the Kähler
potential.

A. Model setup

Taking into account the deep conceptual connection [6]
between R symmetry and SUSY breaking, we fix [5] the
form of WH in Eq. (1) by imposing an R symmetry under
which Z has the R character of WH. Namely, we select
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WH ¼ mZ; ð11Þ

where m is a positive, free parameter with mass dimen-
sions. Contrary to the Polonyi model [4] and its variants
[18,19], we do not consider any R-symmetry violating
constant term.
On the other hand, the form of KH in Eq. (2) adopted

here may not be totally R invariant. In particular, we set

KH ¼ −N ln
�
1 −

jZj2 − kZn
−

N

�
with Z− ¼ Z − Z̄

ð12Þ

and jZj < ffiffiffiffi
N

p
. Here N, k, and n are positive free

parameters. Motivated by several superstring and D-brane
models [20], we consider the integer values of N as the
most natural. We restrict also ourselves to integer n’s. In
contrast to the original Polonyi model [4] and its descend-
ants [5,18], where flat internal spaces are assumed, KH
parametrizes a curved space, with metric

g ¼ NðN − jZj2 þ kZn
−Þ−2ðN − nk2Z2ðn−1Þ

−

− kðn − 1ÞZn−2
− ðZ2

− þ nðjZj2 − NÞÞÞ ð13Þ

for n > 2. The R-symmetry violation is expressed via k
which is a tiny parameter employed to endow the R
axion—see Sec. III C—withmass. Small k values are totally
natural, in the ’t Hooft’s sense [21], since by nullifying this
parameter theR symmetry becomes exact. In the same limit,
the Kähler manifold is totally SUð1; 1Þ=Uð1Þ symmetric
[8,9,11] but the Kähler-invariant function—see Eq. (3)—
still violates it, due to the form of WH in Eq. (11).

B. Totally R-symmetric case

If we set k ¼ 0 in Eq. (12) we obtain the exactly
R-symmetric version of our model which exhibits an
hyperbolic space, in Poincaré disk coordinates [8,9], with
metric

gð0Þ ¼ ∂Z∂Z̄KH0 ¼ ð1 − jZj2=NÞ−2 ð14Þ

and constant curvature estimated by Eq. (9) with the
following result:

Rð0Þ
H ¼ −2=N since Rð0Þ

ZZ̄ ¼ −2gð0Þ=N: ð15Þ

Here and hereafter, the superscript (0) and the subscript 0
denote quantities corresponding to the totally R-symmetric
case. The same geometry can be expressed in the half-plane
coordinates as detailed in the Appendix.
The corresponding SUGRA potential, VH0, derived by

applying Eq. (4), depends exclusively on jZj2. Indeed, we
obtain

VH0 ¼
�
m
N

�
2

eKH0ððN þ ðN − 1ÞjZj2Þ2 − 3N2jZj2Þ; ð16Þ

where we take into account Eq. (14) and the equality

Gð0Þ
Z ¼

� ffiffiffiffiffiffiffi
gð0Þ

q
jZj2 þ 1

�
=Z ¼ Ḡð0Þ

Z̄ : ð17Þ

We seek below the (preferably integer) value of N that
yields a Minkowski vacuum defined by the conditions

ðaÞ hVH0i ¼ 0; ðbÞ hV 0
H0i ¼ 0 and ðcÞ hV 00

H0i> 0;

ð18Þ

where the derivatives with respect to jZj2 are denoted by a
prime. Computing the first derivative of VH0 in Eq. (16)
with respect to jZj2, we find

V 0
H0 ¼ m2

N þ ðN − 1ÞjZj2
e1−KH0N3

ððN − 1ÞðN − 2ÞjZj2 − 2NÞ:
ð19Þ

Taking into account that jZj2 > 0, we infer that Eq. (18b)
implies (for N ≠ 1 and N ≠ 2)

hV 0
H0i ¼ 0 ⇒ hjZj2i ¼ 2N

ðN − 2ÞðN − 1Þ ; ð20Þ

which fulfils Eq. (18b) since

hV 00
H0i ¼ m2

�
N − 2

N − 3

�
Nþ1

�
1 −

1

N

�
Nþ2

> 0 ð21Þ

for N > 3. The value of VH0 at the minimum is

hVH0i ¼ m2
N − 4

N − 2

�ðN − 2ÞðN − 1Þ
ðN − 3ÞN

�
N−1

ð22Þ

and can become consistent with Eq. (18a) for N ¼ 4. In
other words, the value N ¼ 4 renders the expression in the
parenthesis of Eq. (16) equal to the expansion of a perfect
square—see Eq. (30) below. In view of Eq. (15), we deduce
that the emergence of the Minkowski vacuum is closely
connected with the curvature of the internal space which is

confined to Rð0Þ
H ¼ −1=2. The structure of VH0 in Eq. (16)

is further highlighted in Fig. 1, where we depict it for
N ¼ 3, 4, and 5 (dot-dashed, solid, and dashed line,
respectively) versus jZj2. We observe that for

N ¼ 4 and hjZj2i ¼ 4=3 ð23Þ

VH0 exhibits an absolute minimum with vanishing hVH0i. It
is impressive that this goal is attained without any tuning.
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Obviously, tiny, nonzero hVH0i can be also achieved by
tuning N to values a little larger than 4.
If we analyze Z according to the description

Z ¼ ðzþ iθÞ=
ffiffiffi
2

p
ð24Þ

and expand VH0 in Eq. (16) about the configuration

hzi ¼ 2

ffiffiffi
2

3

r
and hθi ¼ 0; ð25Þ

cf. Eq. (23), we obtain the hidden-sector spectrum of the
model. This is composed of a massless Nambu-Goldstone
boson, θ, referred [6] to as an R axion, a massive real scalar
field, ẑ, called R saxion, with mass m̂z and the gravitino
G̃—which absorbs the fermionic partner of the R saxion,
the R axino—with mass m3=2. The former can be found by
substituting Eq. (21) with N ¼ 4 in the formula

m̂z ¼ h∂2
ẑVH0i1=2 ¼

�
2V 00

H0jZj2
g

�
1=2

¼ 3
ffiffiffi
3

p

2
m; ð26aÞ

where we take into account that ẑ ¼
ffiffiffiffiffi
g0

p
z with h

ffiffiffiffiffi
g0

p
i ¼

h ffiffiffi
g

p i ¼ 3=2—since along the direction in Eq. (25) the
R-violating term in Eq. (12) vanishes, we do not apply the
distinction mentioned below Eq. (15). As regards the G̃
mass, Eq. (6) yields

m3=2 ¼ mheKH=2Zi ¼ 3
ffiffiffi
3

p

2
m: ð26bÞ

The masses above satisfy Eq. (10) in view of Eqs. (15) and
(23), since

STrM2
0 ¼ m̂2

z − 4m2
3=2 ¼ −3m2

3=2: ð27Þ

We see that the mass scale m involved in Eq. (11) is related
to G̃mass. Its value is not constrained within our scheme. It
may lie in the range from TeV until mP with the former
choice being favored by the resolution of the gauge
hierarchy problem and the latter option being more natural
from the point of view of model building.
Since the R symmetry is explicitly broken by the SSB

terms only in the observable sector, the R axion remains
completelymassless if theR symmetry is color, i.e., SUð3Þc,
nonanomalous. To assess the color anomaly we have to
know the complete structure of theory, i.e., the R charges of
the SUð3Þc nonsinglet fermions—cf. Refs. [22,23]. There
are model-dependent mechanisms [24] which may render
the R symmetry anomalous free. In a such case, the
promotion of the global R symmetry to a gauged one
surpasses the difficulty with the massless mode since the
R axion is absorbed by the corresponding gauge boson via
the Higgs mechanism. If the R symmetry is color anoma-
lous, nonperturbative QCD instanton effects [25] result in a
mass for the R axion. Since hzi ∼mP, the decay constant of
the R axion, fR, is expected to be of order mP in contra-
diction with the constraint 10−8 ≲ fR=mP ≲ 10−6 implied
by the stellar evolution and the dark matter abundance
in the Universe. The constraint on fR may be fulfilled,
though, considering lower fundamental scale in the Kähler
potential—cf. Ref. [26].
In both cases above, another solution to the problem with

the massless R axion is the consideration of Z as a nilpotent
superfield [27]. In such a case, no sgoldstino multiplet
appears at the SUSY-breaking vacuum and so no R axion
too. Finally, the simplest solution, adopted here, is the
explicit breaking of R symmetry via subdominant terms in
WH and/or KH which generates a large enough mass for the
R axion. In particular, its mass must exceed 10 MeV
to evade astrophysical constraints from production in a
supernova [28].

C. Including the R-symmetry-breaking term

Taking advantage of the nice behavior of VH0 in Sec. III B
we fix N ¼ 4 and we allow for nonvanishing k and integer n
values in Eq. (12). Although no purely theoretical motivation
exists for this term, we can show that n can be uniquely
determined if we require that the resulting SUGRA potential
VH takes, along the real direction θ ¼ 0, the form of VH0 in
Eq. (16) and the R axion becomes massive.
Initially, it is easy to convince ourselves that g in Eq. (13)

declines from gð0Þ in Eq. (14) for Z ¼ Z̄ and n ¼ 1 or 2.
Therefore, we restrict our analysis to n ≥ 3. Applying
Eq. (4), we find that VH takes the form

VH ¼ m2

4
eKH

�
uv
w

− 12jZj2
�
; ð28Þ

where we introduce the quantities

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.5

0.0

0.5

1.0

1.5

2.0

N = 5
N = 4
N = 3

V
H

0
 (

m
2  m

2 ) 

|Z|2

< |Z|2 >

P

FIG. 1. The (dimensionless) hidden-sector potentialVH0=m2mP
2

in Eq. (16) as a function of jZj2 forN ¼ 3 (dot-dashed line),N ¼ 4
(solid line), and N ¼ 5 (dashed line). The line VH0 ¼ 0 and the
value hjZj2i are also indicated.
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u ¼ 4þ 3jZj2 − kZn−1
− ðð4n − 1ÞZ þ Z̄Þ ð29aÞ

v ¼ 4þ 3jZj2 þ kZn−1
− ðZ þ ð4n − 1ÞZ̄Þ ð29bÞ

w ¼ 4 − nk2Z2ðn−1Þ
− − kðn − 1ÞZn−2

− ðZ2
− þ nðjZj2 − 4ÞÞ

ð29cÞ

with u and v originating from the numerators of GZ and GZ̄
whereas w originates from the numerator in Eq. (13) for
N ¼ 4. Using the parametrization in Eq. (24), we can
express VH as a function of z and θ and minimize it in both
directions to determine the Minkowski vacuum. We can
show, though, that the direction θ ¼ 0 is stable, for n > 3,
and so the Minkowski vacuum still lies along the direction
in Eq. (25).
Indeed, VH for θ ¼ 0 coincides with the one obtained

from Eq. (16) for N ¼ 4, i.e.,

VHðz; θ ¼ 0Þ ¼ 64m2
ð3z2 − 8Þ2
ðz2 − 8Þ4 ð30Þ

and therefore, hzi keeps its value in Eq. (25). As regards θ,
its value in Eq. (25) satisfies the extremum condition
h∂θVHi ¼ 0 for n > 3. To prove it, we compute the first
derivative of VH with respect to θ for θ ¼ hθi with the
following result:

h∂θVHi¼−4m2

�
3

2

�
4
�∂θw

w

�
þ���

¼−
27

22−
n
2

in−2nðn−1Þðn−2Þkm2hθin−3þ��� ; ð31Þ

where the ellipsis represents terms which vanish at the
vacuum of Eq. (25) for n > 2. From the expression above,
we infer that

h∂θVHi ¼
	
−81i

ffiffiffi
2

p
km2 for n ¼ 3;

0 for n > 3:
ð32Þ

For n > 3, we can also verify that

h∂z∂θVHi ¼ h∂θ∂zVHi ¼ 0; ð33Þ

if we take into account the following relations:

h∂z∂θui¼h∂θ∂zui¼h∂z∂θvi¼h∂θ∂zvi¼0; ð34aÞ

h∂z∂θwi¼−ð
ffiffiffi
2

p
iÞn−2nðn−1Þðn−2Þkhθin−3hzi: ð34bÞ

On the other hand, the nonvanishing R-axion mass dictates
n ¼ 4. Indeed, evaluating the second derivative of VH in
Eq. (28) with respect to θ for θ ¼ hθi and taking into
account

hui ¼ hvi ¼ 2hwi ¼ 8 and h∂2
θui ¼ h∂2

θvi ¼ 3; ð35Þ

along with Eq. (18a) which implies

huvi ¼ 12hwjZj2i⇒ð25Þhuvi ¼ 16hwi; ð36Þ
we arrive at the following result:

h∂2
θVHi¼m2

�
3

2

�
4
�
4

�∂2
θu
u

þ∂2
θv
v

−
∂2
θw
w

�
−3

�

¼−
27in−2

22−
n
2

nðn−1Þðn−2Þðn−3Þkm2hθin−4: ð37Þ

The expression above assumes a positive value for n ¼ 4,
whereas it vanishes for n > 4. Canonically normalizing the
relevant mode, we may translate the above output as
follows:

m̂θ ¼ h∂2
θ̂
VHi12 ¼ h∂2

θVH=gi12 ¼
	
12

ffiffiffiffiffi
2k

p
m for n ¼ 4;

0 for n > 4:

ð38Þ
Consequently, setting n ¼ 4 and k > 0 in Eq. (12) does not
modifyVH fromVH0 in the real direction but just allows for a
nonvanishing R-axion mass. Note that the same (quartic)
term is also employed in Ref. [12] to stabilize the imaginary
direction of the SUSY-breaking field within a no-scale-type
model. The strength of theR-symmetry breaking is adequate
to render θ̂ heavier than a few tens of MeV freeing it,
thereby, from the astrophysical constraints. For example, for
m ¼ 1 TeV, it is enough to take k ≥ 3.5 × 10−7—where we
restore the units for convenience.
The conclusions of the analysis above can be

also verified by Fig. 2, where we display the relevant

FIG. 2. Three-dimensional plot of the (dimensionless) hidden-
sector potential VH=m2mP

2 in Eq. (28) for n ¼ 4 and k ¼ 0.1 as a
function of the parameters z and θ defined in Eq. (24). The
location of the Minkowski vacuum in Eq. (25) is also depicted by
a thick black point.
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three-dimensional plot of the dimensionless quantity
VH=m2mP

2 given by Eq. (28) for k ¼ 0.1 and n ¼ 4 versus
z and θ. We see that the direction θ ¼ 0 is a valley of
minima, along which the minimization of VH with respect
to z may be safely performed. As a consequence, the
Minkowski vacuum in Eq. (25) indicated by the black thick
point is also included in this path.
Besides the R axion, θ̂, which is massive for n ¼ 4 and

k > 0 in Eq. (12), the particle spectrum of the present
version of our model comprises also ẑ and G̃ whose the
masses are given by Eqs. (26a) and (26b), respectively,
since the z-dependent form of VH in Eq. (28) coincides with
that of VH0 in Eq. (16). We can verify that these masses
obey Eq. (10) with RH estimated by Eq. (9) with result

RH ¼ −
1

2

�
1þ 3k

4
ðjZj2 − 4Þ3

�
ð39Þ

for Z ¼ Z̄. Indeed, evaluating hRHi we end up with

STrM2 ¼ m̂2
z þ m̂2

θ − 4m2
3=2 ¼

1

3
ð128k − 9Þm2

3=2: ð40Þ

Checking the hierarchy of the various masses, we infer that

m̂z ¼ m3=2 and m̂θ ≤ m3=2 for k ≤
1

8

ffiffiffi
3

2

r
: ð41Þ

Therefore, no decay of ẑ and θ̂ (for the k’s above) into G̃ is
allowed in contrast to the models with strongly stabilized
sgoldstino—cf. Refs. [18,29,30]. As a consequence, no
extra contribution to the relic abundance of G̃ before
nucleosyntesis arises and no extra constraint has to be
imposed on the reheat temperature—cf. Ref. [16].
Let us, finally, note that the problem of the vanishing

R-axion mass can be also solved if we set the quartic term
in Eq. (12) outside the argument of the logarithm there. In
particular, if we adopt one of the KH below

KH ¼ −4 ln ð1 − jZj2=4Þ − Nk ln ð1þ kZ4
−=NkÞ; ð42aÞ

KH ¼ −4 ln ð1 − jZj2=4Þ − kZ4
−; ð42bÞ

the R axion acquires mass

m̂θ ¼ 8
ffiffiffiffiffi
3k

p
m; ð43Þ

which is similar to that found in Eq. (38). The prefactor Nk
in Eq. (42a) remains an undetermined positive constant.

IV. OBSERVABLE SECTOR

In this section we specify the transmission of the SUSY
breaking to the observable sector of SUSY models. We
consider first, in Sec. IVA, a generic SUSY model and

then, in Sec. IV B, we focus on the MSSM proposing a
solution to the μ problem. Since the quantities of the hidden
sector related to the present setup are computed exclusively
at the Minkowski vacuum in Eq. (25), the results are
obviously independent from the violation of the R
symmetry.

A. Generic model

To investigate the response of the visible sector to the
invisible one, introduced in Sec. III, we have to specifyWO

and K̃ in Eqs. (1) and (2). We here adopt the following,
quite generic form

WO ¼ hΦ1Φ2Φ3 þ μΦ4Φ5; ð44Þ

where we assign R charge 2=3 for each of Φ1, Φ2, and Φ3

and 1 for each of Φ4 and Φ5—let us assume that W and Z
carry R charge 2. We also consider that Φα with
α ¼ 1;…; 5 are involved in one of the following Kähler
potentials:

K1 ¼ KH þ
X
α

jΦαj2; ð45aÞ

K2 ¼ −4 ln
�
1 −

�
jZj2 − kZ4

− −
X
α

jΦαj2
�
=4

�
; ð45bÞ

K3 ¼ KH − NO ln

�
1 −

X
α

jΦαj2=NO

�
; ð45cÞ

where KH is given by Eq. (12) for n ¼ 4 and the specific
value of NO > 0 is irrelevant for our purposes. We also
restrict ourselves to universal SSB parameters, i.e., the
same for any Φα. If we expand the K’s above for low Φα

values, these may assume the form shown in Eq. (2), with K̃
being identified as

K̃ ¼
	
1 for K ¼ K1; K3;

ð1 − ðjZj2 − kZ4
−Þ=4Þ−1 for K ¼ K2:

ð46Þ

Replacing Z by its VEV, Eq. (25), in the total SUGRA
potential, Eq. (4), and takemP → ∞ keepingm3=2 fixed, we
obtain the SSB terms in the effective low-energy potential
which can be written as

VSSB¼ m̃2
αjΦ̂αj2þðAhΦ̂1Φ̂2Φ̂3þBμΦ̂4Φ̂5þH:c:Þ; ð47Þ

where the canonically normalized fields Φ̂α ¼ hK̃i1=2Φα

are denoted by hats and the SSB parameters may be found
by adapting the general formulas of Ref. [14] to our case. In
other words,

m̃2
α ¼ m2

3=2 − hF̄Z̄FZ∂Z̄∂Z ln K̃i; ð48aÞ
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A ¼ heKH=2K̃−3=2FZð∂ZKH − ∂Z ln K̃3Þi; ð48bÞ

B ¼ heKH=2=K̃ðFZð∂ZKH − ∂Z ln K̃2Þ −m3=2Þi: ð48cÞ

Note that h and μ are considered as independent of Z and
remain unhatted in Eq. (47)—cf. Ref. [14]. In deriving the
values of the SSB parameters above, we find it convenient
to distinguish the cases:
(a) For K ¼ K1 and K3, we see from Eq. (46) that K̃ is

constant and so the relevant derivatives are eliminated.
Substituting

hFZi¼hF̄Z̄i¼2m3=2ffiffiffi
3

p ; heKH=4i¼3

2
; h∂ZKHi¼

ffiffiffi
3

p

ð49Þ

into Eqs. (48a)–(48c), we arrive at

m̃α ¼ m3=2 and A ¼ 2B ¼ 9

2
m3=2: ð50Þ

(b) For K ¼ K2, K̃ in Eq. (46) is Z dependent with hK̃i ¼
3=2 and the relevant derivatives are found to be

h∂Z lnK̃2i¼2

3
h∂Z lnK̃3i¼

ffiffiffi
3

p

2
; h∂Z̄∂Z lnK̃i¼ 9

16
:

ð51Þ

Inserting the expressions above into Eqs. (48a)–(48c)
we end up with

m̃α¼
1

2
m3=2; A¼1

2

ffiffiffi
3

2

r
m3=2 and B¼0; ð52Þ

where the last result arises from a cancellation in the
last factor of Eq. (48c).

Let us emphasize, finally, that Uð1ÞR is totally broken
for k ≠ 0 in Eq. (12) and so, no topological defects are
generated when Z acquires its VEV in Eq. (25). For k ¼ 0
the terms in VSSB explicitly break Uð1ÞR to its subgroup
ZR

2 . Since Z has the R symmetry of WH, hzi in Eq. (25)
breaks also spontaneouslyUð1ÞR toZR

2 . Thanks to this fact,
ZR

2 remains unbroken and so, no disastrous domain walls
are formed in this case too.

B. MSSM

Trying to combine WH in Eq. (11) with an even more
realistic observable sector, we consider MSSM and we
show how the SUSY breaking is communicated to the
scalar and gaugino sector in Secs. IV B 1 and IV B 2,
respectively.

1. Scalar sector and Generation of the μ-term

As shown in Eqs. (50) and (52), the existence of the
bilinear term in Eq. (47) relies on the introduction of the
similar term in WO. In the case of MSSM, such a term,
involving the Higgs superfields Hu and Hd coupled to the
up and down quark, respectively, with μ ∼ 1 TeV, is crucial
for the electroweak symmetry breaking and the generation
of masses for the fermions. However, we would like to
avoid the introduction by hand of a low-energy scale into
the superpotential of MSSM, WMSSM. To achieve that, we
assign R charges equal to 2 for bothHu and Hd whereas all
the other fields of MSSM, i.e., ith generation SUð2ÞL
doublet left-handed quark and lepton superfields, Qi and
Li, and the SUð2ÞL singlet antiquark uci and dic and
antilepton superfields and eci , have zero R charges. Note
that these R assignments prohibit not only the term μHuHd
but also a term λμZHuHd which leads to unacceptable
phenomenology since μ ∼ hZi. Consequently, the resulting
WMSSM exhibits the structure of WO in Eq. (44) with
μ ¼ 0, i.e.,

WMSSM ¼ hDdcQHd þ hUucQHu þ hEecLHd

¼ 1

6
hαβγΦαΦβΦγ; ð53Þ

where we suppress the generation indices, consider real
values of WMSSM for simplicity, and set hαβγ ¼ hI with
I ¼ D, u, E. The resulting R symmetry is anomalous since
the R color anomaly, defined as the sum of the R charges
over the SUð3Þc nonsinglet fermions of the theory, is
NR ¼ 12, i.e., Uð1ÞR is broken by the QCD instanton
effects down to its ZR

12 subgroup. As a consequence, the R
axion is cosmologically safe if it becomes adequately
massive, i.e., if the Uð1ÞR is explicitly violated. Thanks
to this violation, no domain walls are formed too.
Despite the fact that no mixing between Hu and Hd

exists inWMSSM, in Eq. (53) such a term emerges in the part
of the potential including the SSB terms

VSSB ¼ m̃2
αjΦ̂αj2 þ

�
1

6
AαβγhαβγΦ̂αΦ̂βΦ̂γ

þ B̃μĤuĤd þ H:c:
�
; ð54Þ

if we add (somehow) to the K’s in Eqs. (45a)–(45c) the
following higher order terms, inspired by Ref. [15],

ΔKμ ¼ λμ
Z̄2

m2
P
HuHd þ H:c:; ð55Þ

where λμ is a real constant and Φ̂α in Eq. (54) are related
to the unhatted ones as shown below Eq. (47). Because
of the adopted R symmetry, the terms in Eq. (55) are 1 order
of magnitude higher than those proposed in the original
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paper [15]. However, we show below that the magnitude of
the resulting B̃μ is of the correct order of magnitude.
To be more specific, we consider the following alter-

native Kähler potentials:

K11 ¼ K1 þ ΔKμ; ð56aÞ

K21 ¼ K2 þ ΔKμ; ð56bÞ

K22 ¼ −4 ln
�
1 −

�
jZj2 − kZ4

− −
X
α

jΦαj2 − ΔKμ

�
=4

�
;

ð56cÞ

K23 ¼ −4 lnð1 − ðjZj2 − kZ4
− − ΔKμÞ=4Þ þ

X
α

jΦαj2;

ð56dÞ

where K1 and K2 are defined in Eqs. (45a) and (45b),
respectively. The K’s above may be brought into the form

KMSSM ¼ K þ ðCHHuHd þ H:c:Þ; ð57Þ

where K is defined in Eq. (2), with

K̃¼
	
1 forK¼K11;K23;

ð1−ðjZj2−kZ4
−Þ=4Þ−1 forK¼K21;K22;

ð58aÞ

and CH is found by expanding the K’s in Eqs. (56a)–(56d)
for low Hu and Hd values with the following result:

CH¼ λμ
Z̄2

m2
P

	
1 forK¼K11;K21;

ðjZj2−kZ4
−

4
−1Þ−1 forK¼K22;K23:

ð58bÞ

Thanks to nonvanishing CH, we expect that the effective
coefficient B̃μ in Eq. (54) assumes a nonvanishing, in
principle, value which may be found by applying the
formula [14]

B̃μ ¼ m3=2

K̃

�
2m3=2hCHi − hF̄Z̄∂Z̄CHi þ hFZ∂ZCHi

þ 1

m3=2
hF̄Z̄FZ∂Z̄CH∂Z ln K̃2 − F̄Z̄FZ∂Z̄∂ZCHi

− hFZCH∂Z ln K̃2i
�
: ð59Þ

Making use of Eqs. (48a) and (48b) we extract the
following SSB parameters:

m̃α

m3=2
¼

	
1

1
2

and
Aαβγ

m3=2
¼

	 9
2

ð3
8
Þ12

for K ¼
	
K11; K23;

K21; K22;

ð60aÞ

as expected if we compare the K’s in Eqs. (56a)–(56d) with
those in Eqs. (45a)–(45c). As regards B̃μ, Eq. (59) yields

B̃μ
m2

3=2

¼ λμ

8>>><
>>>:

0 for K ¼ K11;

8=9 for K ¼ K21;

2=3 for K ¼ K22;

4 for K ¼ K23;

ð60bÞ

where we take into account the following:
(a) For K ¼ K11 and K21, CH in Eq. (58b) is only Z̄

dependent and so we have

hCHi ¼ 4λμ=3; h∂ZCHi ¼ 0 and

h∂Z̄CHi ¼ 4λμ=
ffiffiffi
3

p
: ð61aÞ

As a consequence, a cancellation occurs in the two
first terms of the right-hand side of Eq. (59) for K ¼
K11 yielding B̃μ ¼ 0. ForK ¼ K21, derivatives involv-
ing K̃ can be computed with the aid of Eq. (51).

(b) For K ¼ K22 and K23, CH in Eq. (58b) is both Z and Z̄
dependent and so we estimate

hCHi ¼ 2h∂Z̄∂ZCHi=3 ¼ −2λμ; ð61bÞ

h∂ZCHi ¼ h∂Z̄CHi=5 ¼ −
ffiffiffi
3

p
λμ=2: ð61cÞ

For K ¼ K22, K̃ is nontrivial and its contribution into
Eq. (59) is computed by employing Eq. (51).

In conclusion, the μ-term of MSSM can be generated
consistently with the imposed R symmetry for K ¼ K21;
K22, and K23 in Eqs. (56b)–(56d).

2. Gaugino sector

Apart from the SSB terms for the scalars, we can also
obtain masses Ma for the (canonically normalized) gaugi-
nos λ̂a—where a ¼ 1, 2, 3 runs over the factors of the gauge
group of MSSM, Uð1ÞY , SUð2ÞL, and SUð3Þc with gauge
coupling constants ga, respectively. These depend not only
on KH and WH but also on the selected gauge-kinetic
function fa which is a holomorphic dimensionless function
of the chiral superfields. Adapting to our case the most
general formula [31], we find that the ratios of the running
gaugino masses Ma over the gauge coupling constants
squared g2a at a renormalization point are given by

Ma

g2a
¼ 1

2
hFZ∂Zfai þ

1

64π2
Ca∂Z ln ReðfaÞ

þ 1

16π2
ba

�
m3=2 þ

1

3
hFZ∂ZKHi

�

−
1

8π2
X
a

Ca
a hðFZÞ2∂Z ln ðe−KH=3K̃Þi: ð62Þ
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Here ðbaÞ ¼ ð33=5; 1;−3Þ are the one-loop beta function
coefficients, Ca are the quadratic Casimir of the gauge
multiplets, and ðCa

a Þ ¼ ð33=5; 7; 6Þ are the quadratic
Casimir of the representations Φa of MSSM.
Since the gauginos carry R charge þ1, the Majorana

gaugino mass terms originating from a polyonymic form of
fa violate strongly the R symmetry in the SUGRA
Lagrangian—cf. Ref. [32]—and generate potentially dan-
gerous radiative corrections [33] to KH in Eq. (12). For this
reason, we may assume that fa is a constant. However, the
remaining contributions to Ma from gauge anomalies are
loop suppressed and violate mildly the R symmetry. For
m ≪ mP and all possibleK’s in Eqs. (56a)—(56d)we obtain

Ma

m3=2
¼ 1

π2

8<
:

11=16 for a ¼ 1;

5=48 for a ¼ 2;

−5=16 for a ¼ 3;

ð63Þ

where we make use of Eq. (49). Note that the last term in
Eq. (62) turns out to be suppressed by m2

3=2=mP. As in the
original anomaly mediated scenario, the gaugino corre-
sponding to a ¼ 2 tends to be the lithest one and the Ma’s
turn out to be 1 order of magnitude lower than m3=2 or m̃α

due to the large denominators.

V. CONCLUSIONS AND PERSPECTIVES

We presented an improved version of the well-known
Polonyi model using as a guideline a global R symmetry
which is badly violated in the superpotential of that model.
As a starting point, we investigated a theory completely
consistent with this R symmetry—which uniquely deter-
mines the superpotential in Eq. (11)—selecting a specific
hyperbolic geometry for theKählermanifoldwith themetric
given by Eq. (14). Constraining the curvature of this space to
a natural value—see Eq. (23)—from the point of view of the
string theory, we succeeded to minimize the relevant
SUGRA potential at a SUSY-breaking Minkowski vacuum.
The presence of the cosmologically dangerousR axion in the
spectrum of the model can be eluded by including a quartic
term in the Kähler potential, i.e., setting n ¼ 4 in Eq. (12),
which breaks the R symmetry without modifying the
SUGRA potential, along its real direction, and the position
of the Minkowski vacuum in Eq. (25). No string-theoretical
origin can be invoked for this term, though.
It is gratifying that the R saxion and axion may acquire

masses lower than or equal to the G̃ mass and so the G̃
problem is not aggravated. The model communicates the
SUSY breaking to the visible world, allowing for non-
vanishing SSB (i.e., soft SUSY-breaking) parameters which
do not depend on the R-violating term. More specifically,
the SSB masses for the scalars are of the order of m3=2

whereas those for gauginos may be 1 order of magnitude
lower, originating from gauge anomalies. Furthermore, the
consideration of a higher order nonholomorphic term in the

Kähler potential—see Eq. (55)—offers an explanation of
the μ problem of MSSM inspired by the Giudice-Masiero
mechanism.
In its current realization, our model does not support

viable inflation driven by Z, mainly due to the low scalar
spectral index achieved in small-field inflationary models.
However, it can be combined with an inflationary sector
compatible with the R symmetry—see, e.g., Refs. [22,23].
In such a situation we expect that Z is displaced from its
VEV in Eq. (25) to lower values due to the large mass that
it acquires during inflation and rolls towards its VEV after
it—see, e.g., Refs. [29,34–38]. In the course of the
decaying-inflaton period which follows inflation, Z tracks
an instantaneous minimum [39] until the Hubble parameter
becomes of the order of its mass. Successively it starts to
oscillate about its VEV in Eq. (25) and may or may not
dominate the Universe, depending on the initial amplitude
of the coherent oscillations. The latter possibility is more
favored, since it does not dilute any preexisting lepton
asymmetry and does not disturb the success of the big bang
nucleosynthesis [40]. It can be facilitated if R saxion is
strongly stabilized through a large enough higher order
term of the Kähler potential [18], or if it participates there in
a strong enough coupling with the inflaton [39]. Obviously
such complications may affect our scheme and deserve
further investigation. Moreover, the R axion is expected to
be stable on cosmological time scales due to weak decay
widths [26]. It would be premature, though, to say anything
about its candidacy as dark matter particle before clarifying
the fate of the R saxion.
Another prospect of our setting is related to the low-

energy SUSY searches. In fact, the values for SSB param-
eters found in Sec. IV Bmay be used as boundary conditions
imposed at a high scale in order to solve the renormalization
group equations which govern the evolution of these
parameters up to a low scale. Finding their values there,
we can impose radiative electroweak symmetry breaking,
derive the sparticle spectrum and check its compatibility
with a number of phenomenological requirements—
cf. Refs. [13,30,41]. The viability of our scheme against
these constraints is an important open issue. The fact that the
majority of the SSB parameters gain values of the same order
of magnitude generically helps to this direction. Possible
nonuniversalities, caused by associating different K̃’s to Φα,
may further facilitate the achievement of acceptable results.
Despite the uncertainties above, we believe that the

introduction of a novel model for SUSY breaking without
tuning can be considered as an important development
which offers the opportunity for further exploration towards
several cosmo-phenomenological directions.
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APPENDIX: HALF-PLANE PARAMETERIZATION
OF HYPERBOLIC GEOMETRY

In this Appendix we employ an alternative parametriza-
tion of hyperbolic geometry which, although violates the R
symmetry, allows us to compare our model with similar
ones established in the context of generalized no-scale
SUGRA [11,12]. The transition to the new parameters is
described in Sec. A 1 and then, in Secs. A 2 and A 3, the
particle spectrum and the SSB parameters are derived,
respectively.

1. Half-plane formulation

It is well known [8] that the hyperbolic geometry is also
parametrized in the half-plane coordinates T and T̄ which
are related to the disc coordinates Z and Z̄, employed in the
main text, through the analytic transformation

Z ¼ −
ffiffiffiffi
N

p T − 1=2
T þ 1=2

with jTj < 1=2: ðA1Þ

Inserting Eq. (A1) into Eq. (12) for k ¼ 0, KH0 may be
expressed in terms of T and T̄ as follows:

KH0 ¼ −N ln
T þ T̄

ðT þ 1=2ÞðT̄ þ 1=2Þ : ðA2Þ

Upon performing a convenient Kähler transformation, we
can show that the model described by Eqs. (A2) and (11) is
equivalent to a model that relied on the Kähler potential

K̃H ¼ −N lnðT þ T̄Þ ðA3Þ
and the superpotential

W̃H ¼ −
ffiffiffiffi
N

p
mðT2 − 1=4ÞðT þ 1=2ÞN−2: ðA4Þ

The Kähler metric, the Ricci curvature, and the curvature
associated with K̃H are, respectively,

g̃ ¼ N
ðT þ T̄Þ2 ; R̃TT̄ ¼ −2

g̃
N

and R̃H ¼ −
2

N
:

ðA5Þ

Note that the last result coincides with that in Eq. (15).

2. Hidden-sector spectrum

Substituting Eqs. (A3) and (A4) with N ¼ 4 into Eq. (4)
we find the corresponding SUGRA potential which reads

ṼH0 ¼
m2

4





T þ 1

2






4
�
1þ 4jTj2 − 4ðT þ T̄Þ

ðT þ T̄Þ2
�

2

: ðA6Þ

To investigate further the structure of ṼH0, we analyze T in
real and imaginary parts as follows:

T ¼ ðtþ iφÞ=
ffiffiffi
2

p
ðA7Þ

and depict ṼH0 in Fig. 3 as a function of these para-
meters for 0 ≤ t ≤ 1=

ffiffiffi
2

p
and −1 ≤ φ ≤ 1. We observe that

ṼH0ðφ ¼ 0Þ develops two extrema at t ¼ tmax and tmin with

tmax ≃
1ffiffiffi
2

p and tmin ¼
1ffiffiffi
2

p ð2 −
ffiffiffi
3

p
Þ; ðA8Þ

from which tmax corresponds to a maximum whereas tmin

corresponds to a global minimum with vanishing hṼH0i.
Moreover, we see that the direction φ ¼ 0 is unstable for
0 < t ≤ 1=

ffiffiffi
2

p
contrary to the situation in Fig. 2 where the

direction θ ¼ 0 is stabilized for all values of z ≤ hzi.
If we derive the spectrum of the theory at tmin we infer

that this consists of a massless axion, a real scalar field, t̂
and G̃. The masses of the two latter particles are m̂t ¼ m̂z
and m̃3=2 ¼ m3=2, given by Eqs. (26a) and (26b), respec-
tively. These masses fulfill again Eq. (10) where m̃3=2 is
now calculated as follows:

m̃2
3=2 ¼ 4m2hjT þ 1=2j4jT2 − 1=4j2ðT þ T̄Þ−4i: ðA9Þ

The existence of the axion with zero mass is justified by the
fact that a Z2 symmetry remains unbroken. Indeed, ṼH0 in
Eq. (A6) is a function of jTj2 and (T þ T̄) and so remains
invariant under the reflection φ → −φ. Including, though,
a quartic term as that emerging in the argument of the
logarithm in Eq. (12) for n ¼ 4, we can generate a non-
vanishing mass m̂φ for φ̂. In particular, if we employ the
Kähler potential

K̃H ¼ −4 ln ðT þ T̄ þ kT4
−=4Þ with T− ¼ T − T̄;

ðA10Þ

FIG. 3. Three-dimensional plot of the (dimensionless) hidden-
sector potential ṼH0=m2m2

P as a function of the parameters t and
φ defined in Eq. (A7). The values tmax and tmin for φ ¼ 0 are also
depicted by thick black points.
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we obtain

m̂φ ¼ 3ð26 − 15
ffiffiffi
3

p
Þ

ffiffiffi
k

p
m3=2: ðA11Þ

Moreover, alternative choices like

K̃H ¼ −4 lnðT þ T̄Þ − Nk ln ð1þ kT4
−=NkÞ ðA12aÞ

or K̃H ¼ −4 lnðT þ T̄Þ − kT4
− ðA12bÞ

result to a little lower mass

m̂φ ¼ 3ð7 − 4
ffiffiffi
3

p
Þ

ffiffiffi
k

p
m3=2; ðA13Þ

without generating any ramifications either to the location
of the Minkowski vacuum or to the residual particle
spectrum. Apparently, our solutions are not included in
those presented in Refs. [11,12], where Kähler potentials of
the type of K̃H in Eq. (A3) are considered.

3. Soft SUSY-breaking parameters

Another key difference of our scheme with the pure no-
scale models [11] is that here nonvanishing SSB parameters
are generated. This feature insists employing the present
parametrization too. To prove it, we below find the SSB
parameters involved in the potential of Eq. (47), adopting
the superpotential in Eq. (44) for the visible-sector fields
Φa and one of the following Kähler potentials:

K̃1 ¼ K̃H þ
X
α

jΦαj2; ðA14aÞ

K̃2 ¼ −4 ln
�
T þ T̄ þ kT4

−=4 −
X
α

jΦαj2=4
�
; ðA14bÞ

K̃3 ¼ K̃H − NO ln

�
1 −

X
α

jΦαj2=NO

�
; ðA14cÞ

taking as reference K̃H defined in Eq. (A10). For low Φα

values, the K’s above reduce to that shown in Eq. (2), with
K̃ being identified as

K̃ ¼
	
1 for K ¼ K̃1; K̃3;

ðT þ T̄ þ kT4
−=4Þ−1 for K ¼ K̃2:

ðA15Þ

With the aid of Eqs. (48a)–(48c) we extract the following
SSB masses:

m̃α ¼
	
m3=2 for K ¼ K̃1; K̃3;

m3=2=2 for K ¼ K̃2

ðA16aÞ

trilinear couplings

A ¼
	
2ð12þ 7

ffiffiffi
3

p Þm3=2 for K ¼ K̃1; K̃3;ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp

m3=2=2 for K ¼ K̃2

ðA16bÞ

and bilinear coupling

B ¼
	 ð17þ 10

ffiffiffi
3

p Þm3=2 for K ¼ K̃1; K̃3;

ð ffiffiffi
3

p þ 1Þm3=2 for K ¼ K̃2:
ðA16cÞ

Comparing the above results with those in Eqs. (50) and
(52) we remark that m̃α are exactly the same.
As a bottom line, the SSB parameters acquire here

nonvanishing values, distinguishing further our setup from
the traditional no-scale SUGRA [11,13].
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