
 

Relaxion dark matter
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We highlight a new connection between the Standard Model hierarchy problem and the dark matter
sector. The key piece is the relaxion field, which besides scanning the Higgs mass and setting the
electroweak scale also constitutes the observed dark matter abundance of the Universe. The relaxation
mechanism is realized during inflation, and the necessary friction is provided by particle production.
Using this framework, we show that the relaxion is a phenomenologically viable dark matter candidate in
the kilo-electron-volt mass range.

DOI: 10.1103/PhysRevD.100.055010

I. INTRODUCTION

Despite the impressive effort of the community, the
nongravitational nature of dark matter (DM) is still
unknown. In light of no definitive evidence of new physics
at the tera-electron-volt scale and strong exclusion limits
from direct detection experiments, to go beyond the weakly
interacting massive particle (WIMP) paradigm became
crucial. In this work, we propose another option which
can closely connect the Higgs naturalness problem with the
DM sector. The link is the relaxion field.
The cosmological relaxation of the electroweak scale is

a recent proposal to address the Standard Model (SM)
hierarchy problem making use of the relaxion, an axionlike
field which scans the Higgs mass parameter during its
cosmological evolution [1]. The main idea is very simple.
The relaxion (which we will call ϕ for the rest of the paper)
rolls down a linear potential gΛ3ϕ, where g is a small
coupling that parametrizes the explicit breaking of the shift
symmetry of ϕ, which we assume it is a pseudo–Nambu-
Goldstone boson. The field ϕ also couples to the Higgs
doublet through a term approximately g0Λϕh2, where
g0 ≪ 1 and Λ is assumed to be the cutoff of the theory,
which also controls the Higgs mass term Λ2h2.1 During its
evolution, the relaxion provides an effective mass term for
the Higgs that varies with time, until the evolution is

stopped when the Higgs mass squared is negative and has
the size of the electroweak scale (v2EW).
The relaxion evolution stops due to a backreaction

mechanism which turns on when the Higgs vacuum
expectation value (VEV) is at the electroweak (EW) scale.
For example, in Ref. [1], a term of the form Λ4

b cosðϕ=fÞ
was added to the potential, where Λ4

b depends on the
Higgs VEV h. As EW symmetry breaks, the Higgs VEV
and thus Λb grow until the velocity is not large enough to
overcome the barriers provided by the cosine potential.
After that point, the relaxion is trapped, and the EW scale
is determined by the final value of ϕ. An alternative
realization, which we will consider in this paper, was
introduced in Ref. [2]. In this case, the barriers
Λ4
b cosðϕ=fÞ are constant, and the field’s kinetic energy

is large enough to overcome them. By assumption, the EW
symmetry is broken early on, and all the SM particles are
initially very heavy. When the relaxion approaches the
critical point at which the Higgs VEV is zero, all SM
particles become light. At this point, the relaxion stops
due to the production of SM gauge bosons, due to a
coupling that we will discuss below in Sec. II. The EW
scale can be related to the parameters of the model, with
vEW ≪ Λ in a technically natural way.
This paradigm shift fits in the interface between

particle physics and early Universe cosmology and gave
rise to a varied body of literature, including studies on the
model building challenges [3–12], concerns about the
inflationary and reheating sectors [13–18], alternatives to
inflation [2,19,20], UV completions [21–24], develop-
ments on the model building front [25–36], baryogenesis
[37,38], experimental signatures [39–43], and cosmo-
logical implications [44,45].
The cosmological consequences of the relaxion scenario

have not been fully explored yet. This is of maximum
importance, as it would help both in constraining the
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1To simplify the notation, we will treat the Higgs as a single
real scalar field, the evolution of which is purely classical, and all
fluctuations will be neglected.
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properties of the relaxion field and in pointing out possible
observable signatures of its existence. In this paper, we
address the question of whether the relic population of
relaxion particles can constitute the current DM density.
In previous literature, the answer was negative.2 The con-
structions discussed in Refs. [1,3,41] use a Higgs-dependent
barrier to stop the field evolution, which happens during
inflation. In these models, the relaxion abundance is neg-
ligible [41]. A second field, which scans the barriers’
amplitude in Ref. [3], can instead have a sizable misalign-
ment yield. Oppositely, if relaxation proceeds after inflation,
and the source of friction is the tachyonic production of
gauge bosons, the relaxion is overproduced [20], and one has
to impose that its lifetime is short enough to dilute this
abundance before nucleosynthesis.
Here, we assume that relaxation happens during inflation

and the relaxion stopping mechanism is provided by
particle production [2]. This construction does not require
new physics close to the tera-electron-volt scale, and, in a
portion of the parameter space, it can be realized without a
large number of e-folds or super-Planckian field excur-
sions. As we will detail below, in this scenario, the relaxion
particles, produced after reheating by scatterings in the SM
plasma, can account for the observed DM density.
The paper is structured as follows. In Sec. II, we

introduce the model and discuss in detail the mechanism
to generate a small EW scale. In Sec. III, we discuss the
conditions that need to be applied on the parameters of
the model. Section IV discusses the production of the
relaxion DM population in the early Universe, the proper-
ties of which are discussed in Sec. V. Finally, we draw our
conclusions in Sec. VI.

II. RELAXATIONWITH PARTICLE PRODUCTION

We now introduce the relaxion model that we will
consider throughout this paper, which was first introduced
in Ref. [2]. We will assume that relaxation takes place
during inflation and refer the reader to Ref. [20] for an
analysis of the case in which relaxation happens after
inflation. The Lagrangian is [2]

L ⊃
1

2
ðΛ2 − g0ΛϕÞh2 þ gΛ3ϕ −

λ

4
h4 − Λ4

b cos

�
ϕ

f0

�

−
ϕ

4F
ðg22Wa

μνW̃aμν − g21BμνB̃μνÞ; ð1Þ

where ϕ is an axionlike field with decay constant f0, h is the
Higgs field, Λ is the cutoff of the theory, the dimensionless

parameters g and g0 are assumed to be spurions that
explicitly break the axion shift symmetry, and λ is the
Higgs quartic coupling. The scale Λb is related to the
confinement scale Λc of some non-Abelian gauge group, at
which the ϕ cosine potential is generated as Λ4

b ∼ ϵΛ4
c,

where in general ϵ ≪ 1. For example, if the relaxion is the
QCD axion, ϵ ≈mq=ΛQCD, where mq is the mass scale of
the up and down quarks. In the following, we will not
specify any further the mechanism responsible for the
generation of these barriers. The effective scale F controls
the interaction of the relaxion with the SM gauge bosons.
We assume that the relaxation dynamics takes place in
the broken phase so that the Higgs mass parameter,
μ2hðϕÞ≡ ð−Λ2 þ g0ΛϕÞ, is large and negative when the
scanning process starts, μ2hðϕiniÞ ∼ −Λ2. The potential of
Eq. (1) also induces a mixing of the relaxion with the Higgs
[41]. After relaxation ends and the relaxion stops in one
of the minima of its potential, the mixing angle is

θ ≈
g0vEWΛ

½ðm2
h −m2

ϕÞ2 þ 4g02v2EWΛ2�1=2 : ð2Þ

The last term in Eq. (1) is responsible for slowing down
the relaxion once the particle production is triggered. B and
W are the SM gauge bosons with g1 and g2 being the
corresponding U(1) and SU(2) gauge couplings. When
expanded in the mass eigenstates, this term reads

−
ϕ

F
ϵμνρσð2g22∂μW−

ν ∂ρWþ
σ þ ðg22 − g21Þ∂μZν∂ρZσ

− 2g1g2∂μZν∂ρAσÞ: ð3Þ

In what follows, we will only consider the tachyonic
instability from the ZZ̃ term and absorb the gauge coupling
in the definition of the corresponding field such that
1=f ¼ ðg22 − g21Þ=F . The contribution from the WW term
is expected to be suppressed due to the self-interactions of
the W, which induce an effective mass making particle
creation inefficient. Tachyonic production of photons, as
we will see, is suppressed in this model; thus, we expect the
ZA term in Eq. (3) to be subdominant with respect to the
ZZ one.
As is well known in the context of axion inflation (see,

e.g., Ref. [46] and references therein for a recent account),
a coupling of the form ϕFF̃ with _ϕ ≠ 0 leads to the
exponential production of gauge bosons. In the case at
hand, this production is suppressed by the mass of the Z,
which is initially large. As we will see below, particle
production starts only when mZ ≪ Λ. At this point, it
should be clear that a coupling to photons ϕFF̃ must be
suppressed because it would lead to exponential photon
production during the relaxion’s evolution, thus slowing
down the field independently of the Higgs VEV and
spoiling the mechanism. The nongeneric coupling structure

2After this paper appeared, Ref. [44] pointed out the possibility
of obtaining relaxion DM through the coherent oscillations of the
relaxion field after reheating, using the model of Ref. [1]. If the
reheating temperature is larger than the scale Λb, the relaxion is
displaced from its minimum, and its oscillations carry a sizeable
energy.

NAYARA FONSECA and ENRICO MORGANTE PHYS. REV. D 100, 055010 (2019)

055010-2



of Eq. (3) is designed for this purpose. This can, for
example, descend from a left-right symmetric UV com-
pletion [47]. Also, it appears in nonminimal composite
Higgs models with coset SO(6)/SO(5) [48–52], even if an
attempt of embedding the relaxion mechanism in such a
construction is still missing in the literature.
The interaction of Eq. (3) generates a coupling to SM

fermions (at one loop) and to photons (at one and two
loops) [47,53],

∂μϕ

fF
ðψ̄γμγ5ψÞ and

ϕ

4fγ
FF̃; ð4Þ

where

1

fF
¼ 3α2em

4F

�
Y2
FL

þ Y2
FR

cos4θW
−

3

4sin4θW

�
log

Λ2

m2
W
; ð5Þ

and

1

fγ
¼ 2αem

π sin2 θWF
B2ðxWÞ þ

X
F

NF
c Q2

F

2π2fF
B1ðxFÞ; ð6Þ

where NF
c is the color factor, QF is the electric charge of

the fermion F with mass mF, and xi ≡ 4m2
i =m

2
ϕ. The

functions B1;2 are

B1ðxÞ¼1−x½fðxÞ�2; B2ðxÞ¼1−ðx−1Þ½fðxÞ�2; ð7Þ

fðxÞ ¼
8<
:

arcsin 1ffiffi
x

p ; x ≥ 1

π
2
þ i

2
log 1þ ffiffiffiffiffiffi

1−x
p

1−
ffiffiffiffiffiffi
1−x

p ; x < 1.
ð8Þ

When the relaxion is light, which will turn out to be the
case of interest for our DM scenario, these functions scale
like B1ðxFÞ → −m2

ϕ=ð12m2
FÞ and B2ðxWÞ → m2

ϕ=ð6m2
WÞ as

m2
ϕ → 0. This implies, for instance, that when the relaxion

is lighter than the electron mass the induced coupling to
photons originating from the coupling in Eq. (1) is
suppressed.
Let us now describe how the relaxion mechanism works

in this model. The ϕ field rolls down its potential until it
reaches the critical point when there is an exponential
production of gauge bosons, which makes the relaxion
slow down due to the transfer of its energy to the gauge
bosons. This backreaction mechanism becomes apparent
once we examine the equations of motion for ϕ and Z,

ϕ̈ − gΛ3 þ g0Λh2 þ Λ4
b

f0
sin

ϕ

f0
þ 1

4f
hZZ̃i ¼ 0; ð9Þ

Z̈� þ
�
k2 þ ðmðhÞÞ2 ∓ k

_ϕ

f

�
Z� ¼ 0; ð10Þ

where mðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
h=2, hZZ̃i is the expectation

value of the quantum operator and Z� refers to the two
transverse polarizations of Zμ.

3 In terms of the mode
functions Z�, hZZ̃i can be written as

hZZ̃i ¼
Z

d3k
ð2πÞ3 ðjZþj2 − jZ−j2Þ: ð11Þ

Assuming _ϕ > 0, Zþ has a tachyonic growing mode when

ω2
k;þ≡k2þðmðhÞÞ2−k

_ϕ
f <0. The first mode that becomes

tachyonic is the one for which ωk;þ is minimum, kc ¼
_ϕ=ð2fÞ; thus, Zþ grows exponentially for

_ϕ > 2fmðhÞ: ð12Þ

The growth of the mode function Zþ continues until hZZ̃i
becomes the dominant term in the equation of motion
of ϕ, Eq. (9). After this point, ϕ̈ ≈ −hZZ̃i=ð4fÞ < 0, and
the relaxion velocity decreases. After ϕ has slowed down,
the constant cosine potential acting as a barrier can
make the relaxion evolution stop. An example of such
evolution was computed numerically in Ref. [20].
The Z mass depends on the Higgs field, implying that

condition (12) is not satisfied when the Higgs field value is
large and particle production is ineffective. To obtain the
correct value of the electroweak scale, the backreaction
should be triggered when mðhÞ ¼ mZ ≈ 90 GeV, i.e., for

_ϕ ∼ 2fmZ: ð13Þ

In the following, we will use this equation to write f as a
function of the model’s parameters. The backreaction must
turn on when ϕ is close to the critical value Λ=g0 that
cancels the Higgs mass term in Eq. (1), generating a
parametric hierarchy between the cutoff Λ and the electro-
weak scale. This happens if the classical Higgs field h
follows closely the minimum of its potential, as we will
detail in the next section.
After the tachyonic growth starts, the Higgs and gauge

fields undergo a complicated dynamics. First of all, we
expect the system to quickly thermalize as soon as the
energy density of the gauge fields becomes larger than
the EW scale [2] (see also Ref. [20]). The interaction rate
can be estimated as

Γint ∼ nhσvi ∼ ρ

vEW

1

v2EW
; ð14Þ

with ρ ∼ _ϕ2 > vEW; thus, Γint > vEW, which should be
compared with the tachyonic growth rate, which is

3We neglect the longitudinal mode ZL as it does not have a
tachyonic instability.
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OðvEWÞ. Notice that, in the following, we will impose that
the timescale for particle production is much shorter than
the Hubble time.
Finite density effects affect both the Higgs and the gauge

fields’ evolution. A positive mass term for the Higgs is
generated in the thermal bath, temporarily restoring the
electroweak symmetry. The field h (and thus the mass of
the gauge bosons) rolls to zero, making the tachyonic
growth faster.
On the other hand, the presence of the thermal plasma

affects the dispersion relation of the gauge bosons, which is
modified into

ω2
k;þ ¼ k2 þm2

V − k
_ϕ

f
þ Π½ω; k�; ð15Þ

where, in a hard thermal loop (i.e., high temperature)
limit [54],

Π½ω; k� ¼ m2
D
ω

k

�
ω

k
þ 1

2

�
1 −

ω2

k2

�
log

ωþ k
ω − k

�
: ð16Þ

Here, m2
D ¼ g2EWT

2=6 is the Debye mass of the bosons
in the plasma. The factor gEW is obtained by taking into
account all the SM fermions and their respective hyper-
charges, as gEW ≈ ð32=9Þsin2θWg21 ≈ 0.2, where g1 is the
SM hypercharge coupling and the Weinberg angle sin2 θW
projects the Z onto its Abelian component.
The function Π½ω; k� is positive for imaginary frequency

ω ¼ iΩ, thus damping the tachyonic instability. Expanding
Eq. (16) for Ω=k → 0, we obtain

Π½Ω; k� ≈ π

2

jΩj
k

m2
D: ð17Þ

Ω is thus maximized for k ¼ 2 _ϕ=ð3fÞ, with

Ωmax ≈
8

27π

_ϕ3

f3m2
D
¼ 16

9πg2EW

_ϕ3

T2f3
: ð18Þ

From Eq. (18), we can estimate the typical timescale for the
exponential growth as

Δtpp ∼
9πg2EW
16

T2f3

_ϕ3
: ð19Þ

The temperature T is obtained by assuming that the
relaxion kinetic energy is transferred to radiation:

1

2
_ϕ2 ∼

1

2

�
V 0
ϕ

3HI

�
2

∼
π2

30
g�T4: ð20Þ

To summarize, we expect that particle production leads to
the production of a thermal bath of SM particles, which
temporarily restores EW symmetry and, at the same time,

reduces the particle production rate. After the relaxion field
stops, the temperature is rapidly erased by cosmic expan-
sion, and the Higgs relaxes to its zero temperature VEV,
which is now fixed by the value of the relaxion field.
Equation (13) ensures that the final Higgs VEV is the
measured one.

III. PARAMETER SPACE

The parameter space is characterized by six parameters:
the cutoff Λ, the couplings g and g0, the barriers’ height Λb,
the decay constant f0, and the Hubble constant during
inflation HI . The scale f can be fixed in terms of the other
parameters using Eq. (13) f ¼ _ϕ=ð2mZÞ and the value of
the slow-roll velocity _ϕ ¼ gΛ3=ð3HIÞ, yielding

f ¼ gΛ3

6HImZ
: ð21Þ

The couplings g, g0 must satisfy g > g0=ð4πÞ2; otherwise, a
linear term g0Λ3ϕ=ð4πÞ2, generated through a Higgs loop,
would dominate over the term gΛ3ϕ in the relaxion
potential. Since the two spurions may be generated in a
similar manner in the UV theory, it would be reasonable to
assume g ¼ g0. Still, as we will show below, it is convenient
to relax this assumption, and therefore in the following, we
will consider the benchmarks g=g0 ¼ 1, 103, 106.
Independently of the relaxion being the DM, there are a

number of conditions that the model must satisfy to actually
solve the hierarchy problem. First, the relaxion should not
affect the inflationary dynamics, implying that the relaxion
potential is subdominant compared to the inflaton one. This
gives a lower bound on the inflation scale HI:

Vϕ ∼ Λ4 ≲H2
IM

2
Pl: ð22Þ

In addition, the assumption that ϕ evolves classically
is valid only if the classical evolution dominates over
the quantum fluctuations during inflation. Therefore, we
impose that, over a Hubble time, ðδϕÞclass ≳ ðδϕÞquant with
ðδϕÞclass ∼ V 0

ϕ=ð3H2
I Þ and ðδϕÞquant ∼HI=ð2πÞ. This gives

us an upper bound on the inflation scale,

HI ≲
�
2π

3

�
1=3

ðgΛ3Þ1=3; ð23Þ

where we used that V 0
ϕ ∼ gΛ3.

Furthermore, inflation should last long enough that
the relaxion has time to scan the Higgs mass parameter.
The minimal number of e-folds which is required to scan a
field range Δϕ ∼ Λ=g0 is given by

N e ∼ ðδϕclassÞ−1
Λ
g0
∼

3H2
I

g0gΛ2
∼

gΛ4

12g0m2
Zf

2
; ð24Þ
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where in the last step we used that the slow-roll velocity
is _ϕ ∼ 2mZf.
We also need to make sure that the Higgs field is

efficiently tracking the minimum of its potential during
the scanning process. This ensures that the backreaction
from the exponential production of gauge bosons is
triggered when the VEV is at the electroweak scale.
Hence, we impose that

���� _v
v2

����≲ 1; ð25Þ

where v ¼ ðΛ2 − g0ΛϕÞ1=2= ffiffiffi
λ

p
is the minimum of the

Higgs potential given in Eq. (1). The need for this last
condition can be understood as follows. The mass of the Z
boson, and hence the time at which its tachyonic production
starts, depends on the value of the Higgs field h. After
relaxation is over, h will relax to the minimum v, so that v
controls the current value of the EW scale. Therefore, it is
important that the evolutions of h and v match; otherwise,
the relaxion field would stop as soon as h satisfies Eq. (12),
while having a value of v different from the current one.
Equation (25) needs to be satisfied until the Higgs field
value has reached the electroweak scale.
Another necessary condition is that the average slow-roll

velocity during the scanning has to be large enough to
overcome the barriers generated by the cosine potential
in Eq. (1),

_ϕroll ≳ Λ2
b; ð26Þ

where _ϕroll ∼ V 0
ϕ=ð3HIÞ þ δðtÞ with V 0

ϕ ¼ gΛ3 and δðtÞ
being a contribution due to the cosine potential. At the same
time, the average slow-roll velocity should not exceed the
cutoff, for the consistencyof the effective theory:V 0

ϕ=ð3HIÞ≲
Λ2. The sharp cut in the green region of Fig. 1 at Λ ≳
104 GeV descends from this condition, after fixingHI to get
the correct relic abundance (see below for more details).
Additionally, once the backreaction has turned on, the

barriers must be high enough to stop the relaxion evolution,
requiring that

Λ4
b ≳ gΛ3f0: ð27Þ

We should also ensure that once relaxion is slowing
down the Higgs mass does not change by an amount larger
than the correct value, i.e.,

Δmh ∼
Δm2

h

mh
∼

1

mh
g0Λ _ϕΔtpp ≲mh: ð28Þ

We impose that the kinetic energy lost by ϕ due to
particle production is larger than the one gained by rolling
down the potential,

ΔKrolling ≲ ΔKpp: ð29Þ

We estimate the two terms as ΔKpp ∼ _ϕ2=2 and ΔKrolling ∼
dK
dt Δtpp, where dK=dt¼−dV=dt∼gΛ3 _ϕ. To be conser-

vative [see Eq. (26)], we take _ϕ2=2 ∼ Λ4
b.

On top of that, one should guarantee that the particle
production is faster than the expansion rate,

Δtpp < H−1
I ; ð30Þ

so that the energy dissipation efficiently slows down the
relaxion field.
Furthermore, the scanning must have enough precision

to resolve the electroweak scale. The mass parameter μ2h
cannot vary more than the Higgs mass over one period of
the cosine potential,

g0Λδϕ ¼ g0Λð2πf0Þ≲m2
h: ð31Þ

In addition, it is crucial that the induced coupling to
photons in Eq. (4) is suppressed enough; otherwise, the
dissipation from particle production would be relevant
independently of the value of the Higgs mass. Then, we
have to impose that the produced photons are efficiently
diluted by the cosmic expansion

Δtγ > H−1
I ; ð32Þ

whereΔtγ ∼ T2f3γ= _ϕ
3 with fγ given in Eq. (6). The relaxion

induced coupling to photons through the Higgs mixing is
very suppressed, and the dilution requirement in Eq. (32)
for this contribution is trivially satisfied.
A last condition concerns the restoration of the shift

symmetry. After the relaxion has been trapped into one
of the wiggles, the temperature cannot be larger than the
confinement scale, T < Λb, where, to be conservative, we

FIG. 1. Parameter space consistent with relaxation during
inflation using particle production (pp) as the stopping mecha-
nism. Orange: ϕ is unstable; yellow: ϕ is overproduced; green:
compatible with the relaxion being DM; light green: results after
applying indirect detection bounds.
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assumed Λb ≈ Λc [see discussion below Eq. (1)]. This
condition is only relevant if the sector which generates the
cosine potential gets in thermal equilibrium with the SM
model. This can be estimated as follows. We assume that
the barriers are generated by some confining gauge group,
which is coupled to the relaxion via a term ðϕ=f0ÞG0G̃0.
Then, we naively estimate the rate for g0g0 ↔ ZZ inter-
actions as Γ ∼ T5=ðf2f02Þ, which must be larger than the
Hubble rate HI to achieve thermalization.
All in all, the conditions that apply to the parameters of

our model are the following:

HI ≳ gΛ
3

slow-roll velocity ð33Þ

HI ≳ g0gΛ4

3v3EWλ
3=2 Higgs tracking the minimum ð34Þ

HI ≲ gΛ3

3Λ2
b

overcome the wiggles ð35Þ

HI ≳
�
10−4g5Λ15ffiffiffiffiffi
g�

p
m3

ZΛ8
b

�
1=4

efficient dissipation ð36Þ

HI ≳
�
10−4g0g4Λ13ffiffiffiffiffi
g�

p
m2

hm
3
ZΛ4

b

�
1=4

small Higgs mass variation

ð37Þ

HI ≳Min

��
5

3

g2Λ6

g�π2Λ4
b

�
1=2

;

�
230m8

Zg
2Λ6

g5�f08

�
1=6

�

no symmetry restoration ð38Þ

HI ≳ Λ2

MPl
inflaton potential dominates ð39Þ

HI ≲
�
2π

3

�
1=3

g1=3Λ classical rolling dominates ð40Þ

HI ≳ 16

9π2g2EW

_ϕ3

T2f3γ
photon dilution ð41Þ

HI ≲ 16

9π2g2EW

_ϕ3

T2f3
particle production fast ð42Þ

g≲ Λ4
b

Λ3f0
stopping condition ð43Þ

g0 ≲ m2
h

2πf0Λ
scanning with enough precision ð44Þ

f0 ≳ Λb;Λ and f ≳ Λ consistency of the EFT: ð45Þ

The colored region in Fig. 1 shows the values of Λ; g0 for
which the relaxion mechanism can be realized successfully,
for a fixed ratio g=g0. Each point in this plane has a
corresponding range of the other three free parameters.
The colors correspond to different conditions which are
imposed in order to make the relaxion a viable DM
candidate, as we will detail in the next section.

IV. RELAXION AS DARK MATTER

The relaxion can be produced via vacuum misalignment
and through thermal scattering. In the first case, after the
relaxion gets stuck in one of the barriers, it will eventually
start to oscillate freely when particle production becomes
inefficient, leading to an energy density which redshifts as
nonrelativistic matter. Since in our scenario the relaxation
dynamics happens during inflation, the energy density
stored in the field is diluted away, and the misalignment
contribution to the relaxion abundance is negligible [2]
(see also Refs. [3,41]). The only possibility to produce a
significant relaxion abundance is then via scattering.
A population of relaxion particles is produced through

aþ b ↔ ϕþ c interactions, where the species a, b, and c
belong to the SM and are in thermal equilibrium.
The relaxion abundance is controlled by the Boltzmann
equation [55]

dYϕ

dx
¼ −

Γ
xH

ðYϕ − Yeq
ϕ Þ; ð46Þ

where Yϕ ¼ nϕ=s and x ¼ mϕ=T with nϕ being the
relaxion number density and s the entropy density. The
equilibrium number density of ϕ is Yeq

ϕ ¼ neqϕ =s≈
0.278=g�, where g� is the number of relativistic degrees
of freedom, and H is the Hubble rate. The quantity Γ is
given by the sum over the interaction rates, Γ≡P

i Γi with
Γi ¼ ncihσvii, where the sum includes gluon scattering
[56], Primakoff scattering (via ϕγγ, ϕZγ, and ϕBB; see,
e.g., Refs. [41,57,58]), Compton scattering of leptons and
quarks (via ϕl̄l and ϕq̄q; see, e.g., Refs. [41,57]), and
Primakoff and Compton processes through the mixing
with the Higgs (see, e.g., Ref. [41]). The pion-conversion
processes π0N → ϕN and π0π0 → ϕπ0 can be neglected,
as they are only active for a short time around the QCD
phase transition and their integrated rate is thus negligible.
Assuming that the initial ϕ density is negligible,
Yϕðx0Þ ¼ 0, the solution of Eq. (46) is

YϕðxÞ ¼ Yeq
ϕ

�
1 − exp

�
−
Z

x

x0

Γ
x0H

dx0
��

; ð47Þ

where T0 ¼ mϕ=x0 can be identified with the reheating
temperature (we will comment more on this below). If the
integrand is large, then YϕðxÞ ≈ Yeq

ϕ , and the correct DM
abundance can only be met for a very light (thus hot) DM
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component. We must therefore be in the opposite situation,
in which the integrand is smaller than 1, and we can
approximate Yϕ by

YϕðxÞ ≈ Yeq
ϕ

Z
x

x0

Γ
x0H

dx0: ð48Þ

All the processes listed above are suppressed by the same
physical scale f (or by the mixing angle θ for the ones
mediated by Higgs-relaxion mixing). Therefore, the inte-
gral in Eq. (48) is dominated by the process that is active for
the longest time, which is Compton scattering off electrons
γ þ e ↔ ϕþ e. Using the expressions for the interaction
rates Γi in Refs. [41,56–58], we checked explicitly that all
the other processes give a subdominant contribution to the
relic abundance. We can also neglect all the interference
terms, since at each temperature the subdominant processes
are highly suppressed compared to the main one. Compton
scattering is active until electrons become nonrelativistic.
This is why we need a rather low T0, which guarantees that
the interactions are out of equilibrium (Γi=H < 1) and that
the relaxion never enters in thermal equilibrium with the
SM bath. The interaction rate is given by

ΓC ≈
3ζð3Þ
π2

αem
m2

eT
f2e

; ð49Þ

where fe is given in Eq. (5).
The relaxion decays through the loop-induced couplings

to photons and SM fermions as in Eq. (4), by the leading
interaction with the electroweak gauge bosons in Eq. (1),
and via the mixing with the Higgs [for which we used the
results in Ref. [59] multiplied by θ2 of Eq. (2)]. We only
consider two-body decays in our analysis.
As we shall see, relaxion dark matter is in the kilo-

electron-volt range. In this mass ballpark, the relaxion can
only decay into photons and neutrinos. The decay into
photons proceeds through the mixing with the Higgs and
through the loop-induced coupling of Eq. (4). For sim-
plicity, we assume that neutrinos are Majorana fermions, in
which case the decay in this channel is suppressed
compared to the one into photons as it proceeds via
higher-dimensional operators (see, e.g., Ref. [53]). If
neutrinos are Dirac fermions, this can be the dominant
decay channel. Nevertheless, the bounds from indirect
detection on the DM decaying into photons (see the next
section) imply stronger constraints on the relaxion lifetime.

V. RESULTS AND DISCUSSION

We performed a scan looking for points in fΛ; g0;Λb; f0g
which can satisfy the DM hypothesis. For each point, the
value of HI is fixed by plugging Eq. (21) into Eq. (48) and
then requiring to match the observed DM abundance. This
value has to be compared with the range allowed from the
conditions on particle production. The result is shown in

Fig. 1. The green region is the one where the relaxion is
stable, all the bounds on a successful relaxation with
particle production are simultaneously satisfied, and the
relaxion abundance matches the observed DM one (for a
given range of Λb and f0). The light green part is the one in
which, additionally, the constraints from indirect detection
are satisfied. In the yellow region, the relaxion can be
stable, but it is overproduced. Finally, in the orange region,
the relaxion’s lifetime is shorter than the age of the
Universe. Table I shows the allowed parameter space for
three benchmarks.
On top of the above constraints, we applied a lower

bound on the DM mass from structure formation. The free-
streaming length λNR is constrained by observations from
Lyman-α forest [60,61], which are in tension with a thermal
relic below a few kilo-electron-volts. We estimate the
free-streaming length as [55]

λFS ¼ a0

Z
tNR

tFI

1

aðt0Þ dt
0 þ a0

Z
tEQ

tNR

aðtNRÞ
a2ðt0Þ dt

0

¼ a0
aðtNRÞ

tNR

�
2 − 2

�
tFI
tNR

�
1=2

þ ln

�
tEQ
tNR

��
; ð50Þ

where aðtÞ is the scale factor as a function of time within a0
being the scale factor today, tFI refers to the time when DM
abundance freezes in, after which it free streams relativ-
istically until tNR ≫ tFI when it becomes nonrelativistic.
The relaxion then free streams nonrelativistically up to the
matter-radiation equality at tEQ. The time tNR can be easily
obtained if the DM velocity distribution is thermal.
However, in our scenario, the DM distribution function
can depart from a thermal distribution as the relaxion is
produced out of equilibrium, which may weaken these
bounds (see Refs. [62,63] and references therein). It would
be important to further explore such feature, which we

TABLE I. Allowed parameter space after taking into account
the bounds from indirect DM searches, for the benchmarks
g=g0 ¼ 1, 103, and 106. The last line shows the minimal number
of e-folds that inflation should last to allow for relaxation to
complete.

g=g0 ¼ 1 g=g0 ¼ 103 g=g0 ¼ 106

Λ
GeV 104–5 × 105 104–2 × 106 104–3 × 106

g0 6 × 10−16–6 × 10−13 3 × 10−19–2 × 10−14 3 × 10−22–2 × 10−16

mϕ

keV 2–5 2–5 2–17
f0

GeV 1011–2 × 1013 1011–7 × 1014 1011–3 × 1016

Λb
GeV 5 × 102–7 × 103 5 × 102–5 × 104 5 × 102–4 × 105

f
GeV 6 × 105–5 × 106 6 × 105–107 6 × 105–2 × 109

HI
GeV 6 × 10−11–10−7 7 × 10−11–10−6 7 × 10−11–4 × 10−6

T0

GeV 10−3–3 × 10−2 10−3–2 × 10−1 10−3–3 × 101

Ne 0.3–5 × 105 3 × 102–1010 3 × 105–1013
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leave for future work. Here, we simply impose that the
relaxion should be heavier than 2 keV.
Figure 2 shows how the allowed region depends on the

value of the reheating temperature. A drawback of our
scenario is that the reheating temperature is rather low,
T0 ≲ 30 MeV, 200 MeV, 30 GeV for g=g0 ¼ 1, 103, 106, to
avoid overabundance. Ultimately, this is due to the UV
sensitivity of the production mechanism. If thermal equi-
librium is reached, in this mass range, the relaxion would
be overabundant by a factor of 10–100. Oppositely, the
correct relic abundance could only be obtained for a
correspondingly lighter particle, which would then be
too light to comply with the warm DM mass lower bound.
Measurements of the abundance of light elements,

large scale structure data, and anisotropies of cosmic
microwave background temperature constrain late-time
entropy production, which then restricts the reheating
temperature to be larger than 1–4 MeV [64–69]. Below
this temperature, the Universe behaves like radiation, and
only very small entropy injections are possible.
A low reheating temperature can be achieved even if

the temperature of the SM plasma at the end of inflation
rises to much higher values, during a phase of entropy
injection [70–72]. This is indeed expected to happen
when the inflaton decays perturbatively into SM particles.
The temperature first rises to a maximal value Tmax ∼
T1=2
0 ðHIMPlÞ1=4, and then it decreases with the typical

dependence on the scale factor T ∝ a−3=8. This behavior
proceeds until the decay of the inflaton ceases at a time of
order the inverse decay width of the inflaton, at which
radiation dominance begins with the standard T ∝ a−1

behavior. During the reheating phase, entropy is contin-
uously created, and the Hubble rate scales as H ∼
½g�ðTÞ=g1=2� ðT0Þ�T4=ðT2

0MPlÞ (expansion is faster for a
lower reheating temperature). In such a scenario, the
abundance of relic particles is altered compared to the
standard radiation dominance calculation. On the one
hand, particles with mass larger than the reheating
temperature can be copiously produced [73]. On the

other hand, which is the case relevant here, particles with
a freeze-out temperature larger than T0 are diluted by
entropy injection, and their abundance is smaller than in
the standard freeze-out computation. As an example,
Refs. [72,74] argued that SM model neutrinos in the
kilo-electron-volt mass range (hence now excluded)
could have the right relic abundance to be a warm DM
candidate. The relic abundance of long-lived particles
in a low reheating scenario is studied in the literature for
many kinds of DM candidates, such as sterile neutrinos
[75–77], supersymmetric particles and more generic
WIMPs [72,78–82], heavy particles [73], and axions
[72,83–89]. Here, we just assume that at T0 the relaxion
abundance is negligible and that its relic abundance is
built up during radiation dominance.
Finally, let us mention that baryogenesis mechanisms

that require a large temperature are also viable in this
scenario. As an example, electroweak baryogenesis is
viable in this case for T0 as small as 1 GeV [72,90], thus
favoring large values of the ratio g=g0. While this is an
interesting option, a concrete realization which connects
the relaxion to DM and to baryogenesis is beyond the scope
of the present work.
Strong constraints on the model come from the obser-

vations of the galactic and extragalactic diffuse x-ray and
γ-ray background. We consider the constraints on decaying
DM from Ref. [91], which uses the diffuse photon spectra
data from different satellites. For our parameter space,
which comprises masses around the kilo-electron-volt
range, the relevant bounds are given by the satellites
HEAO-1 [92] and INTEGRAL [93]. In Fig. 1, we show
in light green the region in agreement with the bounds on
the lifetime of a scalar DM decaying into two photons,
τϕ ≳ 1026–28 s for mϕ > 5 keV [91]. This constrains the
relaxion mass to bemϕ ≲ f5 keV; 5 keV; 17 keVg, respec-
tively, for the three benchmarks in Table I. Extrapolating
the bound from Ref. [91] to lower masses further constrains
the parameter space, but the results are qualitatively similar.
This places relaxion DM in a knife-edge position: on the
one hand, new results from indirect searches in the kilo-
electron-volt mass range could rule out this scenario; on the
other hand, a numerical solution of the Boltzmann equation
could weaken the lower bound on the relaxion mass, thus
opening the parameter space for lighter DM.
Other important constraints are given by astrophysical

probes [47]. The relaxion coupling to electrons [see Eq. (5)]
is constrained from red giants observations, which results
in a lower bound for the coupling in Eq. (1) of f ≳
3 × 107 GeV for mϕ ≲ 10−5 GeV. Even more stringent is
the bound from Supernova 1987A, which for mϕ ≲
0.1 GeV disfavors f ≲ 108 GeV. It should be noticed that
the uncertainties associated with the bounds derived from
astrophysical sources are typically within an order of
magnitude [41,47,94]. This implies that part of our param-
eter space in Table I is in tension with such bounds. On the

FIG. 2. Allowed dark matter region as a function of the reheating
temperature. The region shrinks for higher temperature T0.
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other hand, the parameter space for successful relaxation
with particle production is also subject to some variation.
The requirements for a successful particle production
mechanism could be relaxed by considering the relaxion
velocity. This has two natural reference values: the first is
the slow-roll velocity _ϕroll ∼ V 0

ϕ=ð3HIÞ, while the second is
the minimal velocity to overcome the wiggles _ϕb ∼ Λ2

b. The
two are related by _ϕroll > _ϕb. In deriving the relations, we
always chose the value that led to the most conservative
bound. Some of the conditions on particle production could
therefore be weakened by choosing a different value for the
velocity, but we do not pursue this possibility further.

VI. CONCLUSIONS

In this work, we showed that the relaxion mechanism
can naturally provide a phenomenologically viable warm
DM candidate in the kilo-electron-volt mass range. We
identified the relevant parameter space in the scenario in
which relaxation happens during inflation, using particle

production as a source of friction. We discussed astro-
physical and indirect detection constraints on the model.
Recently, there has been increasing interest in DM direct

detection experiments that can probe the sub–mega electron
volt mass range (see, e.g., Refs. [95,96]). The relaxion
would be a well-motivated DM candidate in the kilo-
electron-volt range, which encourages new studies in this
mass ballpark.
It would be interesting to further explore the conse-

quences of such a model on structure formation and
perform a dedicated analysis of the indirect detection
bounds. We leave these studies for future work.

ACKNOWLEDGMENTS
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