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We analyze the ultraviolet to infrared evolution and nonperturbative properties of asymptotically free
SUðNÞ ⊗ SUðN − 4Þ ⊗ Uð1Þ chiral gauge theories with Nf copies of chiral fermions transforming

according to ð½2�N; 1ÞN−4 þ ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ þ ð1; ð2ÞN−4ÞN , where ½k�N and ðkÞN denote the anti-

symmetric and symmetric rank-k tensor representations of SUðNÞ and the rightmost subscript is the U(1)
charge. We give a detailed discussion for the lowest nondegenerate case, N ¼ 6. These theories can exhibit
both self-breaking of a strongly coupled gauge symmetry and induced dynamical breaking of a weakly
coupled gauge interaction symmetry due to fermion condensates produced by a strongly coupled gauge
interaction. A connection with the dynamical breaking of SUð2ÞL ⊗ Uð1ÞY electroweak gauge symmetry
by the quark condensates hq̄qi due to color SUð3Þc interactions is discussed. We also remark on direct-
product chiral gauge theories with fermions in higher-rank tensor representations.

DOI: 10.1103/PhysRevD.100.055009

I. INTRODUCTION

A problem of basic field-theoretic interest concerns the
behavior of strongly coupled chiral gauge theories. In
general, there are two types of chiral gauge theories,
namely those based on a single gauge group and those
with a direct-product (dp) gauge group of the form

Gdp ¼ ⊗
NG

i¼1
Gi ð1:1Þ

with NG ≥ 2. Strongly coupled direct-product chiral gauge
theories are of particular interest because they can exhibit a
phenomenon that cannot occur in a chiral gauge theory
with a single gauge group, namely the induced dynamical
breaking of a weakly coupled gauge symmetry by a
different, strongly coupled, gauge interaction. This phe-
nomenon is important not only from the point of view of
abstract quantum field theory, but also because it actually
occurs in nature. In the Standard Model (SM), with the
gauge group GSM ¼ SUð3Þc ⊗ GEW, where the electro-
weak gauge group is GEW ¼ SUð2ÞL ⊗ Uð1ÞY , the bilinear
quark condensates hq̄qi produced by the strongly coupled
SUð3Þc color gauge interaction dynamically break GEW to

the elctromagnetic gauge symmetry, Uð1Þem. This breaking
contributes terms of the form g2f2π=4 and ðg2 þ g02Þf2π=4 to
the squared masses of the W and Z bosons, m2

W and m2
Z,

respectively, where g and g0 are the SUð2ÞL and Uð1ÞY
gauge couplings, and fπ ¼ 93 MeV is the pion decay
constant. Thus, although textbook discussions usually
mention only the vacuum expectation value (VEV)

hϕi0 ¼
�

0
vffiffi
2

p

�
ð1:2Þ

of the Higgs field

ϕ ¼
�
ϕþ

ϕ0

�
ð1:3Þ

as the source of electroweak symmetry breaking in the SM,
this breaking really arises from two different sources, one
of which is the Higgs VEV (1.2), yielding m2

W ¼ g2v2=4
and m2

Z ¼ ðg2 þ g02Þv2=4, where v ¼ 246 GeV, and the
other of which is the above-mentioned dynamical contri-
bution due to the formation of bilinear quark condensates in
quantum chromodynamics (QCD).
Although this dynamical breaking of electroweak gauge

symmetry by the SUð3Þc color gauge interaction is very
small compared with the contribution due to the VEVof the
Higgs field, it is important as a physical example of how, in
a direct-product chiral gauge theory, one strongly coupled
gauge interaction can induce the breaking of a weakly
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coupled one [1,2]. Indeed, a gedanken modification of the
Standard Model in which the Higgs field is removed is a
perfectly well-defined theory in which theW and Z masses
are entirely due to the dynamical breaking of the electroweak
gauge symmetry by the SUð3Þc interaction [2,3]. In the
Standard Model, the SUð3Þc gauge interaction is vectorial,
while GEW is chiral, but this mechanism can also break a
vectorial gauge symmetry; in Ref. [3] it was shown that in
this gedanken modification of the SM without any Higgs
field, if one reversed the order of the coupling strengths of
the non-Abelian gauge interactions so that the SUð2ÞL
coupling were much stronger than the SUð3Þc coupling,
then the SUð2ÞL gauge interaction would produce bilinear
fermion condensates of quarks and leptons that would break
thevectorial SUð3Þc, aswell asUð1ÞY andUð1Þem, [3], while
preserving SUð2ÞL.
Since dynamical symmetry breaking of a weakly coupled

gauge symmetry occurs in nature, as shown by the breaking
of electroweak gauge symmetry GEW by the hq̄qi quark
condensates produced by SUð3Þc gauge interaction, there is
a motivation to investigate chiral gauge theories that can
exhibit this phenomenon of the dynamical breaking of a
weakly coupled gauge symmetry by a different, strongly
coupled gauge interaction. As noted above, this requires that
one consider theories with direct-product chiral gauge
symmetries. Some previous studies of strongly coupled
chiral gauge theories with direct-product gauge groups (and
without any fundamental scalar fields) include [3–13],
[14,15]. See also [16].
In this paper we shall analyze chiral gauge theories with

the direct-product gauge group

G ¼ SUðNÞ ⊗ SUðN − 4Þ ⊗ Uð1Þ: ð1:4Þ

This group is of the form (1.1) with NG ¼ 3, G1 ¼ SUðNÞ,
G2 ¼ SUðN − 4Þ, and G3 ¼ Uð1Þ. The group (1.4) has
order oðGÞ and rank rkðGÞ given by

oðGÞ ¼ 2N2 − 8N þ 15; rkðGÞ ¼ 2N − 5: ð1:5Þ

The fermion content of the theory consists of Nf copies
(“flavors”) of chiral fermions transforming as

ð½2�N; 1ÞN−4 þ ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ þ ð1; ð2ÞN−4ÞN; ð1:6Þ

where the meaning of the notation

ðR1; R2Þq ð1:7Þ

is as follows: the first and second entries refer to the
representation R1 of G1 ¼ SUðNÞ and R2 of G2 ¼
SUðN − 4Þ, and the subscript q is the U(1) charge of the
given fermion. The symbols ½k�N and ðkÞN denote the k-fold
antisymmetric and symmetric tensor representations of
SUðNÞ, respectively, and Ri ¼ 1 denotes a singlet of Gi,

where i ¼ 1 or i ¼ 2. The fermion fields are denoted
explicitly as

ð½2�6; 1Þ2∶ ψ ij
p;L;

ð½1̄�6∶ ½1̄�2Þ−4∶ χi;α;p;L;

ð1; ð2Þ2Þ6∶ ωαβ
p;L; ð1:8Þ

where i, j are SUðNÞ group indices, α, β are SUðN − 4Þ
group indices, and p is a copy (flavor) index, running from
1 to Nf. We exclude the trivial value Nf ¼ 0, because it
does not produce a chiral gauge theory, but instead just a set
of three decoupled pure gauge theories. There are no bare
fermion masses in the theory, since they are forbidden by
the chiral gauge symmetry. Without loss of generality, we
write the fermions as left-handed. This theory is free of
anomalies in gauged currents, as is necessary for renorma-
lizability, and is also free of global anomalies and mixed
gauge-gravitational anomalies [12,17].
We note two equivalent theories with the same gauge

group, (1.4). The first of these has all of the representations
of the left-handed chiral fermions in (1.6) conjugated. The
second has the representations of SUðMÞ conjugated
relative to those of SUðNÞ, i.e., its fermion content consists
of Nf copies of the set

ð½2�N; 1ÞN−4 þ ð½1̄�N; ½1�N−4Þ−ðN−2Þ þ ð1; ð2̄ÞN−4ÞN: ð1:9Þ

Since these theories are equivalent to (1.4) with (1.6), it will
suffice to study only the latter.
This model is of particular interest for the following

reason. A natural construction of a chiral gauge theory with
a non-Abelian gauge group uses (left-handed chiral)
fermions transforming according to an antisymmetric or
symmetric rank-k tensor representation of the gauge group,
together with the requisite number of fermions transform-
ing according to the conjugate fundamental representation,
so as to yield zero gauge anomaly. The simplest of these
uses k ¼ 2, so let us focus on these theories with k ¼ 2.
With a special unitary gauge group, there are two such
constructions: (i) G ¼ SUðNÞ and chiral fermion content
consisting of Nf copies of the set

½2�N þ ðN − 4Þ½1̄�N ð1:10Þ

and (ii) G ¼ SUðMÞ and chiral fermion content consisting
of Nf copies of the set

ð2ÞM þ ðM þ 4Þ½1̄�M: ð1:11Þ

A basic question in the analysis of chiral gauge theories is
whether one can combine these two separate single-gauge-
group theories (i) and (ii) into a single chiral gauge theory
with a direct-product gauge group that contains SUðNÞ ⊗
SUðMÞ such that it is again anomaly-free. The answer is
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yes, if we set M ¼ N − 4, and the theory (1.4) with (1.6)
provides an explicit realization of this combination. Indeed,
not only does this theory successfully combine the two
separate chiral gauge symmetries SUðNÞ and SUðMÞ in an
anomaly-free manner; it also incorporates a third gauge
symmetry, namely the U(1).
A general classification of chiral gauge theories with

direct-product gauge groups was given in Ref. [13]. In this
classification, a factor group Gi is labeled as Gc if it has
complex representations and Gr if it has (only) real or
pseudoreal representations. If a group Gc has no gauge
anomaly from any of its representations, then it was
denoted as Gcs, where the subscript s stands for “safe.”
In this classification, if N ≥ 7, then the gauge group (1.4) is
of the form (Gc, Gc, Gc). In contrast, if N ¼ 6, then the
second factor group is SU(2), which has (pseudo)real
representations, so that the N ¼ 6 special case of (1.4) is
of the form (Gc, Gr, Gc) in this classification.
In accordance with the order of labeling of the Gi factor

groups, we denote the corresponding running gauge
couplings as g1ðμÞ for G1 ¼ SUðNÞ, g2ðμÞ for G2 ¼
SUðN − 4Þ, and g3ðμÞ for G3 ¼ Uð1Þ, where μ is the
Eucidean energy/momentum reference scale where giðμÞ
is measured. We further define αiðμÞ ¼ giðμÞ2=ð4πÞ and
aiðμÞ ¼ giðμÞ2=ð16π2Þ, with i ¼ 1, 2, 3. (The argument μ
will sometimes be suppressed in the notation.) As usual
with a U(1) gauge interaction, the U(1) charge assignments
in (1.6) involve an implicit normalization convention; the
physics is unchanged if one redefines qf → λqf for each
fermion f and g3 → λ−1g3, since only the product qfg3
appears in the U(1) covariant derivative.
Each of the two non-Abelian gauge interactions is

required to be asymptotically free (AF), because this
enables us to calculate the corresponding beta functions
self-consistently at a high scale μ ¼ μUV in the deep
ultraviolet (UV) region, where they are weakly coupled.
These beta functions then describe the running of the non-
Abelian couplings toward the infrared (IR) at small μ,
where these couplings become larger. Since we are inter-
ested in the nonperturbative behavior of the non-Abelian
gauge interactions, we will assume the U(1) gauge inter-
action to be weakly coupled at the initial reference scale
μUV; owing to the property that the beta function for this
U(1) interaction is nonasymptotically free, the U(1) cou-
pling α3ðμÞ becomes even weaker as μ decreases below μUV
and hence can be treated perturbatively in the full range
μ < μUV under consideration here.
In addition to the phenomenon of a strongly coupled

gauge interaction inducing the dynamical breaking of a
different gauge symmetry, a chiral gauge theory can also
exhibit a different phenomenon in which a strongly coupled
gauge interaction corresponding to a given gauge sym-
metry produces fermion condensates that break this gauge
symmetry itself [1,18]. In particular, for a given gauge
interaction corresponding to the non-Abelian gauge group

Gi, as μ decreases from μUV and αiðμÞ grows, it may
become large enough at a certain scale, which we will
denote as μ ¼ Λ1, to produce a fermion condensate that
breaks the gauge symmetry Gi to a subgroup Hi ⊂ Gi. The
fermions involved in this condensate gain dynamical
masses of order Λ1 and are integrated out of the low-
energy effective field theory (EFT) that describes the
physics as μ decreases below Λ1. The gauge bosons in
the coset space Gi=Hi pick up dynamical masses of order
giðΛ1ÞΛ1 and are also integrated out of the low-energy
effective theory. This low-energy theory has a gauge
coupling inherited from the UV theory, but since the
fermion and gauge boson content is different, this gauge
coupling runs according to a different beta function. Then
this process of self-breaking of a gauge can repeat at
one or more lower scales. The final low-energy effective
field theory may be a vectorial theory that confines and
produces fermion condensates with associated spontaneous
chiral symmetry breaking (SχSB) but no further gauge
self-breaking.
Besides being of abstract field-theoretic interest, this

mechanism of gauge self-breaking has been used in con-
structions and studies of reasonably ultraviolet-complete
models of dynamical electroweak symmetry breaking
(EWSB) and fermion mass generation [4–8], [11]. In these
constructions, one starts with an asymptotically free chiral
gauge theory that undergoes either self-breaking or a
combination of self-breaking and induced symmetry break-
ing in a sequence of three different scales, Λ1 > Λ2 > Λ3,
with an associated breaking of the UV chiral gauge
symmetry GUV → H1 → H2 → H3, where the H3 sym-
metry is vectorial. At a lower scale ΛT of order 1 TeV,
theH3 gauge interaction confines and produces condensates
that break GEW. It also produces a spectrum of H3-singlet
bound states. Gauge bosons in the coset spaceGUV=H1 gain
dynamical masses of order Λ1, while gauge bosons in the
coset spaces H1=H2 and H2=H3 gain dynamical masses of
order Λ2 and Λ3, respectively. Exchanges of these three
different types of massive vector bosons produce the three
generations of quark and lepton masses. More complicated
exchanges can also produce light neutrino masses via an
appropriate seesaw mechanism [5]. This scenario has the
potential to naturally explain the generational hierarchy in
fermion masses, which reflects the hierarchy of self-break-
ing scales Λi, i ¼ 1, 2, 3. This construction is also an
ultraviolet completion of low-energy effective Lagrangians
for dynamical EWSB that use four-fermion operators [19]
and predicts the coefficients of these four-fermion operators.
Our theory does not include any fundamental scalar

fields. Thus, the pattern of possible dynamical gauge
symmetry breaking depends only on the gauge and fermion
content, and the initial values of the gauge couplings at the
reference scale μUV. This is in contrast with theories in
which gauge symmetry breaking is produced by VEVs of
Higgs fields, because in these latter theories, the nature of
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the symmetry breaking depends on various parameters
in the Higgs potential, which can be chosen at will, subject
to the constraint that this Higgs potential should be
bounded from below [20,21].
An alternate application of strongly coupled chiral gauge

theories was to efforts at modeling the quarks and leptons as
composites of more fundamental fermions, commonly
called preons. This involved a scenario in which it was
envisioned that the strongly coupled gauge interaction
would produce confinement of the preons in gauge-singlet
composite fermions, but no spontaneous chiral symmetry
breaking. The presumed absence of SχSB was necessary in
order for the composite fermions to be very light compared
to the inverse of the spatial compositeness scale Λcomp ¼
1=rcomp For this purpose, theories were constructed that
satisfied certain matching conditions of chiral symmetries
between preons and the composite fermions [22,23]. In the
present paper we will focus on studying possible patterns
of bilinear fermion condensate formation and resultant
dynamical gauge symmetry breaking in the strongly coupled
gauge theory (1.4) with (1.6) and (1.12)–(1.13) rather than
on possible scenarios with light composite fermions.
In addition to our analysis of the general theory (1.4)

with (1.6), we will study the N ¼ 6 special case in detail.
This N ¼ 6 theory, with the gauge group

GN¼6 ¼ SUð6Þ ⊗ SUð2Þ ⊗ Uð1Þ; ð1:12Þ

is of particular interest because it is the lowest non-
degenerate member of this family. [If N ¼ 5, then the
SUðN − 4Þ group is trivial.] It is also special in two related
aspects, namely that (i) as mentioned above, the resultant
second factor group is SU(2), with (pseudo)real represen-
tations, in contrast to the situation for N ≥ 7, where the
SUðN − 4Þ group has complex representations; and (ii) the
symmetric rank-2 tensor representation ð2Þ2 of SU(2) is
the adjoint representation. The fermion content for this
N ¼ 6 theory, comprised of Nf copies of

ð½2�6; 1Þ2 þ ð½1̄�6; ½1̄�2Þ−4 þ ð1; ð2Þ2Þ6; ð1:13Þ

can also be conveniently expressed in terms of the
dimensionalities of the representations as

ð15; 1Þ2 þ ð6̄; 2Þ−4 þ ð1; 3Þ6: ð1:14Þ

Owing to property (ii) above, we will often use the
equivalent isovector notation ω⃗p;L for the ωαβ

p;L fermion.
Thus, the theory (1.4) with (1.6) and, in particular, the

N ¼ 6 special case, providevaluable theoretical laboratories
for the study of nonperturbative properties of chiral gauge
theories, including self-breaking of a strongly coupled chiral
gauge symmetry, induced breaking of a weakly coupled
gauge symmetry by a strongly coupled gauge interaction,
and the sequential construction of low-energy effective field

theories. This paper is organized as follows. The general
methods used in our analysis are described in Sec. II.
In Sec. III we analyze the UV to IR evolution, possible
fermion condensation channels, and corresponding gauge
symmetry breaking patterns of the theory (1.4) with (1.6). In
Secs. IV–VII we present a detailed analysis of the N ¼ 6
theory. Some remarks on related constructions of direct-
product chiral gauge theories with fermions in higher-rank
tensor representations are given in Sec. VIII. Our conclu-
sions are contained in Sec. IX.

II. RENORMALIZATION-GROUP EVOLUTION
AND FERMION CONDENSATES

A. Beta functions

In this section we discuss the general methods that are
used for our analysis. We first explain our application of the
renormalization group (RG). Recall our labeling conven-
tions given above for the gauge couplings, namely g1ðμÞ for
SUðNÞ, g2ðμÞ for SUðN − 4Þ, and g3ðμÞ for U(1). The
evolution of the three gauge couplings giðμÞ, or equiv-
alently, the corresponding αiðμÞ with i ¼ 1, 2, 3, is
determined by the RG beta functions

βGi
¼ dαiðμÞ

d ln μ
: ð2:1Þ

These have the series expansions

βGi
¼ −8πai

�
bðGiÞ
1l;i ai þ

X3
j¼1

bðGiÞ
2l;ijaiaj

þ
X3
j;k¼1

bðGiÞ
3l;ijkaiajak þ � � �

�
; ð2:2Þ

where an overall minus sign is extracted, the dots …
indicate higher-loop terms, and there is no sum on repeated

i indices in the square bracket. Here, bðGiÞ
1l;i is the one-loop

(1l) coefficient, multiplying ai inside the square bracket in

(2.2); bðGiÞ
2l;ij is the two-loop coefficient, multiplying aiaj in

the square bracket, and so forth for higher-loop terms. The

one-loop coefficients bðGiÞ
1l;i are scheme-independent.

We focus on the beta functions for the two non-Abelian
gauge interactions, since these determine the upper bound
on Nf and are relevant for the formation of various possible
fermion condensates as α1ðμÞ or α2ðμÞ become large in the
infrared. The one-loop coefficients in Eq. (2.2) are

bðSUðNÞÞ
1l;1 ¼ 1

3
½11N − 2NfðN − 3Þ�; ð2:3Þ

bðSUðN−4ÞÞ
1l;2 ¼ 1

3
½11ðN − 4Þ − 2NfðN − 1Þ�; ð2:4Þ
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and

bðUð1ÞÞ1l;3 ¼ −
4

3
NfNðN − 1ÞðN − 3ÞðN − 4Þ: ð2:5Þ

As mentioned before, we assume that the U(1) gauge
interaction is weakly coupled at the UV reference scale
μUV; then its gauge coupling decreases as μ decreases from
the UV to the IR, and hence can be treated perturbatively.
The requirements that the SUðNÞ and SUðN − 4Þ gauge

interactions must be asymptotically free are that bðSUðNÞÞ
1l;1 >0

and bðSUðN−4ÞÞ
1l;2 > 0. These impose the respective upper

limits Nf < Nf;b1z and Nf < N0
f;b1z, where

Nf;b1z ¼
11N

2ðN − 3Þ ð2:6Þ

and

N0
f;b1z ¼

11ðN − 4Þ
2ðN − 1Þ ; ð2:7Þ

where we use a prime to indicate the upper limit onNf from

the condition bðSUðN−4ÞÞ
1l > 0. The upper bound (2.7), is

more restrictive than the upper bound (2.6), as is clear,
since the difference

Nf;b1z − N0
f;b1z ¼

33ðN − 2Þ
ðN − 1ÞðN − 3Þ ð2:8Þ

is positive for all of the relevant values of N under
consideration here. Hence, we restrict

Nf <
11ðN − 4Þ
2ðN − 1Þ : ð2:9Þ

The (nonzero) values of Nf that are allowed by the
inequality (2.9) depend on N and are as follows:
(1) 1 ≤ Nf ≤ 2 if 6 ≤ N ≤ 7
(2) 1 ≤ Nf ≤ 3 if 8 ≤ N ≤ 12
(3) 1 ≤ Nf ≤ 4 if 13 ≤ N ≤ 34
(4) 1 ≤ Nf ≤ 5 if Nf ≥ 35.

AsN → ∞, the upper limit onNf (formally generalized to a
non-negative real number) approaches 11=2, thus allowing
physical integral values up to 5, inclusive, as indicated
above.
In general, the set of equations (2.2) is comprised of three

coupled nonlinear first-order ordinary differential equations
for the quantities αi, i ¼ 1, 2, 3. The solutions for the three
αiðμÞ depend on Nf and the three initial values αiðμUVÞ at
the UV reference scale μUV. Since we do not assume that
the group (1.4) is embedded in a single gauge group higher
in the UV, we may choose these initial values αiðμUVÞ
arbitrarily, subject to the constraint that for μ ¼ μUV, the

values are sufficiently small that the perturbative calcu-
lation of the beta functions βαi are self-consistent. To
leading order, i.e., to one-loop order, the differential
equations making up this set decouple from each other,
and one has the simple solution for each i ¼ 1, 2, 3:

αiðμ1Þ−1 ¼ αiðμ2Þ−1 −
bðGiÞ
1l;i

2π
ln

�
μ2
μ1

�
; ð2:10Þ

where we take μ1 < μ2.
At the level of two loops and higher, due to the fact that

each of the fermions has nonzero U(1) charge and one of
the fermions, χi;α;p;L, is a nonsinglet under both of the non-
Abelian gauge groups, there are mixed terms aiaj, aiajak,
etc., that involve different gauge interactions, in the three
beta functions βαi , so that the three beta functions become
coupled differential equations. In view of the mixing terms
in (2.2) at the two-loop level, it is natural to focus first on
two special cases, namely those in which one of the non-
Abelian gauge interactions is much stronger than the other.
This can be arranged by specifying appropriate initial
values of α1ðμUVÞ and α2ðμUVÞ at the UV scale μUV. In
these two cases, one can neglect the two-loop term that
mixes these two non-Abelian gauge interactions in
Eq. (2.2), so that, to two-loop level, these interactions
decouple, and the corresponding beta functions have the
form, to this level,

βα1 ¼
dα1
d ln μ

¼ −8πa1½bðSUðNÞÞ
1l;1 a1 þ bðSUðNÞÞ

2l;11 a21� ð2:11Þ

and

βα2 ¼
dα2
dlnμ

¼−8πa2½bðSUðN−4ÞÞ
1l;2 a2þbðSUðN−4ÞÞ

2l;22 a22�; ð2:12Þ

where the one-loop coefficients bðSUðNÞÞ
1l;1 and bðSUðN−4ÞÞ

1l;2

were given above in Eqs. (2.3)–(2.5), and the two-loop
coefficients are

bðSUðNÞÞ
2l;11 ¼ 1

6N
½68N3 − NfðN − 3Þð29N2 − 3N − 12Þ�

ð2:13Þ

and

bðSUðN−4ÞÞ
2l;22 ¼ 1

6ðN − 4Þ ½68ðN − 4Þ3 − NfðN − 1Þ

× ð29N2 − 229N þ 440Þ�: ð2:14Þ

Both of these two-loop coefficients for the non-Abelian
gauge couplings are positive for small Nf and decrease
with increasing Nf, eventually passing through zero to
negative values. We denote the values of N (formally
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generalized from positive integers N ≥ 6 to positive real

numbers) at which bðSUðNÞÞ
2l;11 and bðSUðN−4ÞÞ

2l;22 pass through

zero as NðSUðNÞÞ
f;b2z and NðSUðN−4ÞÞ

f;b2z . These are

NðSUðNÞÞ
f;b2z ¼ 68N3

ðN − 3Þð29N2 − 3N − 12Þ ð2:15Þ

and

NðSUðN−4ÞÞ
f;b2z ¼ 68ðN − 4Þ3

ðN − 1Þð29N2 − 229N þ 440Þ : ð2:16Þ

As N → ∞, NðSUðNÞÞ
f;b2z approaches 68=29 ¼ 2.34483 from

above, while NðSUðN−4ÞÞ
f;b2z approaches the same value

from below.
With these inputs, we can investigate the presence or

absence of an IR zero in the respective two-loop beta
functions for the SUðNÞ and SUðN − 4Þ theories. The two-
loop beta function for SUðNÞ has no IR zero for Nf ¼ 1 or
Nf ¼ 2; it does have an IR zero for higher values of Nf, as
allowed by the asymptotic freedom requirement for a fixed

N. With a given N, for the range of Nf such that b
ðSUðNÞÞ
1l;1 >

0 and bðSUðNÞÞ
2l;11 < 0, the IR zero of the two-loop SUðNÞ beta

function occurs at

α1;IR;2l ¼ 8πN½11N − 2NfðN − 3Þ�
NfðN − 3Þð29N2 − 3N − 12Þ − 68N3

: ð2:17Þ

Similarly, given a value of N, for the range of Nf such that

bðSUðN−4ÞÞ
1l;2 >0, while bðSUðN−4ÞÞ

2l;22 <0, the two-loop SUðN−4Þ
beta function has an IR zero at

α2;IR;2l ¼
8πðN − 4Þ½11ðN − 4Þ− 2NfðN − 1Þ�

NfðN − 1Þð29N2 − 229N þ 440Þ− 68ðN − 4Þ3 :

ð2:18Þ

As N → ∞, the rescaled IRFP values of the SUðNÞ and
SUðN − 4Þ gauge interactions have the same limit:

lim
N→∞

α1;IR;2lN ¼ lim
N→∞

α2;IR;2lN

¼ 8πð11 − 2NfÞ
29Nf − 68

: ð2:19Þ

We will analyze the UV to IR evolution using these beta
functions below.

B. Global flavor symmetries

The theory (1.4) with (1.6) has the classical global flavor
(cgb) symmetry

Gcgb ¼ UðNfÞψ ⊗ UðNfÞχ ⊗ UðNfÞω; ð2:20Þ

where, for each fermion f ¼ ψ ij
p;L, χi;α;p;L, and ω⃗p;L, the

elements of the group UðNfÞf act on the flavor indices p,
leaving all gauge indices unchanged. Each UðNfÞf factor
group in (2.20) can equivalently be written as SUðNfÞf ⊗
Uð1Þf. The instantons present in the SU(N) gauge sector
break both of the global Abelian symmetries Uð1Þψ and
Uð1Þχ . Separately, the instantons in the SUðN − 4Þ gauge
sector break both the Uð1Þχ and Uð1Þω symmetries.
There are two special cases that will be of particular

interest, namely the respective cases in which one non-
Abelian gauge interaction is much stronger than the other.
First, let us consider the case in which the SUðNÞ gauge
interaction is much stronger than the SUðN − 4Þ gauge
interaction, which, like the U(1) interaction, is weakly
coupled. In this theory, the effects of instantons in the
SUðN − 4Þ gauge sector are exponentially suppressed and
can be neglected [24]. Although the SUðNÞ instantons break
the global Uð1Þψ and Uð1Þχ flavor symmetries, one can
construct a currentwhich is a linear combinationof theUð1Þψ
and Uð1Þχ currents and is conserved in the presence of the
SUðNÞ instantons (see, e.g., Sec. Vof [25]), whichwe denote
as Uð1Þψχ . The effective nonanomalous global flavor
(gb) symmetry of this theory is thus Ggb ¼ SUðNfÞψ ⊗
SUðNfÞχ ⊗ Uð1Þψχ ⊗ UðNfÞω. Similarly, in the other case,
in which the SUðNÞ and U(1) gauge interactions are weak,
and the SUðN − 4Þ gauge interaction is strong, the effects of
SUðNÞ instantons are exponentially suppressed and are
negligible. Although the SUðN − 4Þ instantons break the
global Uð1Þω and Uð1Þχ flavor symmetries, one can con-
struct a current which is a linear combination of the Uð1Þω
and Uð1Þχ currents and is conserved in the presence of the
SUðNÞ instantons, whichwe denote as Uð1Þωχ . The effective
nonanomalous global flavor symmetry of this theory is
thus Ggb ¼ SUðNfÞω ⊗ SUðNfÞχ × Uð1Þωχ ⊗ UðNfÞψ .

C. UV to IR evolution and fermion condensates

We next discuss the UV to IR evolution of this theory
and the general analysis of possible fermion condensate
formation in various channels. We begin with the two
respective cases in which one of the two non-Abelian gauge
interactions is much stronger than the other and then
remark on the case where both are present with comparable
strength. Let us denote the dominant coupling as αiðμÞ.
As the reference scale μ decreases below μUV, the

coupling αiðμÞ for this interaction increases. There are
two general possibilities for the associated beta function,
βαi : (i) it does not have an IR zero or (ii) it has an IR zero. In
the first case, (i), the coupling continues to increase with
decreasing μ until it eventually exceeds the range where it
can be calculated with the perturbative beta function. This
can then lead to the formation of (bilinear) fermion
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condensates. In the second case, let us denote the value of
αi at this IR zero as αIR, and consider a possible con-
densation channel,

R × R0 → Rc; ð2:21Þ

where R and R0 denote fermion representations under the
strongly coupled gauge symmetry Gi, and Rc denotes the
representation of the condensate under Gi. Assuming that
this is an attractive channel, we denote the minimal critical
coupling for condensation in this channel as αcr. If the beta
function does not have an IR zero, then αi will certainly
exceed αcr as μ decreases to some scale. If the beta function
βαi does have an IR zero, then there are two subcases: (iia)
αIR ≥ αcr and (iib) αIR < αcr. In case (iia), the condensate
can form, similarly to case (i), while in case (iib), this
condensate will not form. For the possible condensation
channel (2.21), an approximate measure of its attractiveness
(motivated by iterated one-gluon exchange) is

ΔC2 ¼ CðRÞ þ CðR0Þ − CðRcÞ; ð2:22Þ

where C2ðRÞ is the quadratic Casimir invariant for the
representation R [26]. Among several possible fermion
condensation channels, the one with the largest (positive)
value of ΔC2 is commonly termed the most attractive
channel (MAC) and is the one that is expected to occur.
Approximate solutions of Schwinger-Dyson equations

for the fermion propagator in a vectorial theory have shown
that if one starts with a massless fermion, it follows that if
α > αcr, where 3αcrC2ðRÞ=π ¼ 1, then the Schwinger-
Dyson equation has a solution with a dynamically gen-
erated mass, indicating spontaneous chiral symmetry
breaking and associated bilinear fermion condensate for-
mation [27]. In a vectorial gauge theory such as quantum
chromodynamics, the condensate is a gauge-singlet, so
ΔC2 ¼ 2C2ðRÞ. Hence, one can write the condition for the
critical coupling in the form that can be taken over for a
chiral gauge theory, namely 3αcrΔC2=ð2πÞ ¼ 1, so that

αcr ¼
2π

3ΔC2

: ð2:23Þ

Because this is based on a rough approximation (an iterated
one-gluon exchange approximation to the Schwinger-
Dyson equation), it is used only as a rough estimate.
Since without loss of generality we write all fermions as

left-handed, the Lorentz-invariant bilinears involving two
fermion fields fL and f0L are of the form fTLCf

0
L, where C is

the Dirac charge-conjugation matrix satisfying CγμC−1 ¼
−ðγμÞT . If fL and f0L transform according to the same
representation R1 of a symmetry group G1 and R2 of a
symmetry group G2, then we may write the bilinear
fermion operator product abstractly as

fTR;p;LCfR;p0;L; ð2:24Þ

where gauge group indices are suppressed in the notation,
R denotes the representations under the gauge groups, and,
as before, p and p0 are flavor indices. From the property
CT ¼ −C together with the anticommutativity of fermion
fields, it follows that the bilinear fermion operator product
(2.24) is symmetric under interchange of the order of
fermion fields and therefore is symmetric in the overall
product

Y
i

ðRi × RiÞ�Rfl; ð2:25Þ

where Rfl abstractly denotes the symmetry property under
interchange of flavors [13]. For our theory, with its two
non-Abelian groups, this means that the fermion bilinears
are of the form

ðs; s; sÞ; ðs; a; aÞ; ða; s; aÞ; or ða; a; sÞ; ð2:26Þ

where here s and a indicate symmetric and antisymmetric,
and the three entries refer to the representations R1 of G1,
R2 of G2, and Rfl.
If, as μ decreases through a scale Λ1 and the coupling

αiðμÞ of the strongly coupled gauge interaction correspond-
ing to the factor group Gi increases beyond αcr for the
condensation channel (2.21) and the condensate forms,
then the fermions involved in the condensate gain dynami-
cal masses of order Λ1 and are integrated out of the low-
energy effective field theory that describes the physics as μ
decreases belowΛ1. If this condensate either self-breaks the
Gi symmetry or produces induced breaking of a weakly
coupled gauge symmetry Gj to a respective subgroup Hi ⊂
Gi or Hj ⊂ Gj, then the gauge bosons in the respective
coset spaces Gi=Hi or Gj=Hj pick up dynamical masses of
order giðΛ1ÞΛ1 or gjðΛ1ÞΛ1, respectively. Hence, like the
fermions with dynamically generated masses, these now
massive vector bosons are integrated out of the low-energy
effective field theory applicable as μ decreases below Λ.

III. THEORY WITH GENERAL N

In this section we analyze possible fermion condensation
channels in the general-N theory (1.4) with fermion
content (1.6).

A. SUðNÞ gauge interaction dominant

We begin by focusing on the case where the SUðNÞ
gauge interaction is much stronger than the SUðN − 4Þ
[and U(1)] gauge interactions. This theory is labeled
SUND, standing for “SUðNÞ dominant.” Although we
keep α2 and α3 nonzero, we note parenthetically that if
one were to set α2 ¼ α3 ¼ 0, then the resultant theory
would be the k ¼ 2 special case of a family of chiral gauge

ULTRAVIOLET TO INFRARED EVOLUTION AND … PHYS. REV. D 100, 055009 (2019)

055009-7



theories analyzed in Ref. [25] with a single gauge group
G ¼ SUðNÞ and an anomaly-free content of chiral
fermions transforming as ½k�N and nF̄ copies of ½1̄�N ,
where nF̄¼ðN−3Þ!ðN−2kÞ=½ðN−k−1Þ!ðk−1Þ!� [plus
SUðNÞ-singlet fermions]. Since the SUðNÞ gauge inter-
action is asymptotically free, α1ðμÞ increases as μ decreases
from the initial reference scale μUV in the UV. We focus on
the subset of values of Nf such that the beta function βα1
either has no IR zero at the two-loop level or has an IRFP at
a sufficiently large value that fermion condensation can
take place.
There are three possible (bilinear) fermion condensation

channels. We give shorthand names to these based on the
fermions involved in each condensate. The first is the ψχ
channel,

ψχ∶ ð½2�N;1ÞN−4 × ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ → ð½1�N; ½1̄�N−4Þ−2;
ð3:1Þ

with associated condensate

hψ ij T
p;L Cχj;β;p0;Li; ð3:2Þ

where i, j are SUðNÞ group indices and β is an SUðN − 4Þ
group index. The condensate (3.2) transforms as the
fundamental (½1�N) representation of SUðNÞ and the con-
jugate fundamental (½1̄�N−4) representation of SUðN − 4Þ,
so it self-breaks SUðNÞ to SUðN − 1Þ and produces an
induced breaking of the weakly coupled SUðN − 4Þ to
SUðN − 5Þ. Since the condensate (3.2) has a nonzero U(1)
charge, qψχ ¼ −2, it also breaks U(1). Thus, here the
residual gauge symmetry in the effective field theory that is
applicable as μ decreases below Λ1 is

SUðN − 1Þ ⊗ SUðN − 5Þ: ð3:3Þ

If N ¼ 6, then the residual gauge symmetry is just SU(5).
For this channel we calculate

ðΔC2Þψχ ¼ C2ð½2�NÞ ¼
ðN − 2ÞðN þ 1Þ

N
: ð3:4Þ

For this and other possible fermion condensation channels,
we record these properties in Table I. This table refers to the
possible initial condensation patterns at the highest con-
densation scale; subsequent evolution further into the
infrared is discussed below.
The second possible channel is the ψψ channel,

ψψ∶ ð½2�N; 1ÞN−4 × ð½2�N; 1ÞN−4 → ð½4�N; 1Þ2ðN−4Þ: ð3:5Þ

Note that ½4�N ≈ ½N − 4�N , where R ≈ R0 means that the
representations R and R0 are equivalent. The associated
condensate is

ϵ…klmnhψkl T
p;L Cψmn

p0;Li; ð3:6Þ

where the antisymmetric tensor ϵ…klmn has N indices, four
of which are indicated explicitly, with the rest implicit.
From the general group-theoretic analysis in [25,28], it
follows that since the condensate (3.6) transforms as a ½4�N
of SUðNÞ, it breaks SUðNÞ to SUðN − 4Þ ⊗ SUð4Þ. Since
the ψkl

p;L are singlets under the original SUðN − 4Þ group in
(1.4), this condensate is obviously invariant under this
SUðN − 4Þ. Furthermore, since this condensate has a
nonzero U(1) charge [namely, qψψ ¼ 2ðN − 4Þ], it breaks
the U(1) gauge symmetry. Hence, the condensate (3.6)
breaks G to

TABLE I. Properties of possible initial (highest-scale) bilinear fermion condensates in the UV theory (1.4) with (1.6) for N≥7. The
shorthand name of the condensation channel is listed in the first column, and the corresponding condensate is displayed in the second
column. The third and fourth columns list the values of ΔC2 with respect to the SUðNÞ and SUðN−4Þ gauge interactions. The entries in
the fifth, sixth, and seventh columns indicate whether a given condensate is invariant (inv.) under the SUðNÞ, SUðN−4Þ, and U(1) gauge
symmetries, respectively, or breaks (bk.) one or more of these symmetries. The entry in the eighth column gives the representation
ðR1;R2Þq of the condensate under the group (1.4), following the notation of Eq. (1.7). The ninth column lists the continuous gauge
symmetry group under which a given condensate is invariant. The tensors ϵ…klmn and ϵ…mn are antisymmetric SUðNÞ tensors, while
ϵ…αβ is an antisymmetric SUðN−4Þ tensor. These results are for the case Nf¼1 and for Nf≥2 with condensates symmetrized over the
flavor indices, which are suppressed in the notation. The ψχ channel is the MAC for the SUðNÞ-dominant case, while the χω channel is
the MAC for the SUðN−4Þ-dominant case in this N≥7 range. See text for further discussion.

Name Condensate ðΔC2ÞSUðNÞ ðΔC2ÞSUðN−4Þ SUðNÞ SUðN−4Þ U(1) ðR1;R2Þq Hinv

ψχ hψ ijT
L Cχj;β;Li ðN−2ÞðNþ1Þ

N
0 bk. bk. bk. ð½1�N;½1̄�N−4Þ−2 SUðN−1Þ⊗SUðN−5Þ

χω hχTi;α;LCωαβ
L i 0 ðN−2ÞðN−5Þ

N−4
bk. bk. bk. ð½1̄�N;½1�N−4Þ2 SUðN−1Þ⊗SUðN−5Þ

ψψ ϵ…klmnhψklT
L Cψmn

L i 4ðNþ1Þ
N

0 bk. inv. bk. ð½4�N;1Þ2ðN−4Þ ½SUðN−4Þ⊗SUð4Þ�
⊗SUðN−4Þ

χχ ϵ…mnϵ…αβhχTm;α;LCχn;β;Li Nþ1
N

N−3
N−4 bk. bk. bk. ð½2̄�N;½2̄�N−4Þ−2ðN−2Þ ½SUðN−2Þ⊗SUð2Þ0�⊗

⊗ ½SUðN−6Þ⊗SUð2Þ00�
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½SUðN − 4Þ ⊗ SUð4Þ� ⊗ SUðN − 4Þ; ð3:7Þ

where we have inserted brackets to distinguish the two
different SUðN − 4Þ groups. The measure of attractiveness
for this condensation channel is

ðΔC2Þψψ ¼ 2C2ð½2�NÞ − C2ð½4�NÞ ¼
4ðN þ 1Þ

N
: ð3:8Þ

The third possible channel is the χχ channel,

χχ∶ ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ × ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ
→ ð½2̄�N; ½2̄�N−4Þ−2ðN−2Þ; ð3:9Þ

with associated condensate

ϵ…mnϵ…αβhχTmα;p;LCχn;β;p0;Li; ð3:10Þ

where ϵ…mn and ϵ…αβ are antisymmetric tensors under
SUðNÞ and SUðN − 4Þ, respectively, with two indices
shown explicitly and the rest understood implicitly. From
the general group-theoretic analysis [25,28], it follows that
since the condensate (3.10) transforms as a ½2̄�N representa-
tion of SUðNÞ, it breaks SUðNÞ to SUðN − 2Þ ⊗ SUð2Þ0,
and similarly, since it transforms as a ½2̄�N−4 representation
of SUðN − 4Þ, it breaks SUðN − 4Þ to SUðN − 6Þ ⊗
SUð2Þ00. Here we append a single prime to the first SU(2)
and a double prime to the second SU(2) to distinguish them
and also to distinguish them from the SU(2) group of the
N ¼ 6 theory (1.12). Since the condensate (3.10) carries a
nonzero U(1) charge [namely, qχχ ¼ −2ðN − 2Þ], it breaks
the U(1) gauge symmetry. Thus, this condensate (3.10)
breaks G to the group

½SUðN − 2Þ ⊗ SUð2Þ0� ⊗ ½SUðN − 6Þ ⊗ SUð2Þ00�; ð3:11Þ

where the square brackets here are inserted to indicate the
origin of the different factor groups from the original SUðNÞ
and SUðN − 4Þ factor groups in (1.4). We find

ðΔC2Þχχ ¼ 2C2ð½1̄�NÞ − C2ð½2̄�NÞ ¼
N þ 1

N
: ð3:12Þ

From these results we calculate the relative attractiveness
of these three possible fermion condensation channels in
this SUðNÞ-dominant case. We compute the differences

ðΔC2Þψχ − ðΔC2Þψψ ¼ ðN − 6ÞðN þ 1Þ
N

ð3:13Þ

and

ðΔC2Þψψ − ðΔC2Þχχ ¼
3ðN þ 1Þ

N
; ð3:14Þ

whence

ðΔC2Þψχ − ðΔC2Þχχ ¼
ðN − 3ÞðN þ 1Þ

N
; ð3:15Þ

and the ratios

ðΔC2Þψχ
ðΔC2Þψψ

¼ N − 2

4
ð3:16Þ

and

ðΔC2Þψψ
ðΔC2Þχχ

¼ 4; ð3:17Þ

whence

ðΔC2Þψχ
ðΔC2Þχχ

¼ N − 2: ð3:18Þ

Therefore, in this SUðNÞ-dominant case withN ≥ 7, the ψχ
channel is the MAC, with greater attractiveness than
the ψψ channel, which, in turn, is more attractive than the
χχ channel. Summarizing,

SUðNÞ − dominant withN ≥ 7

⇒ ψχ channel is the MAC: ð3:19Þ

One interesting feature of these comparisons is that the
ratio ðΔC2Þψψ=ðΔC2Þχχ is independent of N. As is evident
from these results, in the lowest nondegenerate case,
namely N ¼ 6, the ψχ and ψψ channels are equally
attractive, and are a factor 4 more attractive than the χχ
channel. Thus,

SUðNÞ − dominant withN ¼ 6 ⇒ ψχ and

ψψ channels are the MACs: ð3:20Þ
We focus here on the range N ≥ 7; a detailed analysis of

the N ¼ 6 case will be given below. Since the ψχ channel is
the MAC, it is expected that as the Euclidean reference
scale μ decreases below a value that we denote as Λ1, the
coupling α1ðμÞ increases sufficiently to cause condensation
in this channel. This condensation self-breaks SUðNÞ to
SUðN − 1Þ and breaks the weakly coupled gauge symmetry
SUðN − 4Þ to SUðN − 5Þ and also the Abelian symmetry
U(1). Without loss of generality, we may choose the SUðNÞ
group index i in the condensate (3.2) to be i ¼ N and the
SUðN − 4Þ group index to be α ¼ N − 4. The condensate
(3.2) also spontaneously breaks the global flavor groupGgb

for this theory, producing a set of Nambu-Goldstone bosons
(NGBs). Earlier works in related chiral gauge theories have
studied the resultant change in counts of the UV versus IR
degrees of freedom [25], [29–32]. Here we focus on
the dynamical self-breaking and induced breaking of gauge
symmetries, together with the construction of resultant
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low-energy effective field theories. The fermions involved
in the condensate (3.2), namely ψNj

p;L¼−ψ jN
p;L with 1 ≤ j ≤

N − 1 and χj;N−4;p0;L with 1 ≤ j ≤ N − 1, gain dynamical
masses of orderΛ1. The 2N − 1 SUðNÞ gauge bosons in the
coset space SUðNÞ=SUðN − 1Þ gain dynamical masses of
order g1ðΛ1ÞΛ1, while the (2N − 9) SUðN − 4Þ gauge
bosons in the coset space SUðN − 4Þ=SUðN − 5Þ gain
dynamical masses of order g2ðΛ1ÞΛ1. Finally, the U(1)
gauge boson picks up a dynamical mass of order g3ðΛ1ÞΛ1.
These massive fields are integrated out of the low-energy
effective field theory that describes the physics as the
reference scale μ decreases below Λ1.
This low-energy effective field theory that is applicable

as μ decreases below Λ1 is invariant under the gauge
symmetry (3.3). The massless gauge-nonsinglet fermion
content of this EFT consists of
(1) ψ ij

p;L with 1 ≤ i; j ≤ N − 1, 1 ≤ p ≤ Nf, forming
Nf copies of a (½2�N−1; 1) representation under the
group (3.3),

(ii) χj;β;p0;L with 1 ≤ j ≤ N − 1, 1 ≤ β ≤ N − 5, and
1 ≤ p0 ≤ Nf, comprising Nf copies of the (½1̄�N−1,
½1̄�N−5) representation of (3.3), and

(iii) ωαβ
p;L with 1 ≤ α; β ≤ N − 5 and 1 ≤ p ≤ Nf, com-

prising Nf copies of ð1; ð2ÞN−5Þ.
[We do not list the U(1) charges, since there is no U(1)
gauge symmetry in this low-energy effective theory.] The
condensation process then repeats, with the ψχ condensa-
tion channel again being the MAC in this SUðN − 1Þ ⊗
SUðN − 5Þ theory. One can treat the successive self-
breakings and induced dynamical breakings iteratively at
the various steps.

B. SUðN − 4Þ gauge interaction dominant, N ≥ 7

Here we analyze the case in which the SUðN − 4Þ gauge
interaction is strongly coupled and dominates over the
SUðNÞ gauge interaction [as well as the weakly coupled
U(1) gauge interaction]. We restrict our analysis to the
range N ≥ 7 here and will consider N ¼ 6 in detail below.
It will sometimes be convenient to use the quantity M ¼
N − 4 as defined before. We will denote this theory as
SUMD, standing for “SUðMÞ dominant.” If we were to
completely turn off the SUðNÞ and U(1) gauge interactions,
then this theory would be equivalent to a chiral gauge
theory with an SUðMÞ gauge group, and Nf flavors of
chiral fermions transforming according to the anomaly-free
set ð2ÞM þM þ 4 copies of ½1̄�M, which has been studied in
[29–32]. However, here we do not completely turn off the
SUðNÞ or U(1) gauge interactions.
There are two possible (bilinear) fermion condensation

channels. The first is

χω∶ ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ × ð1; ð2ÞN−4ÞN →

→ ð½1̄�N; ½1�N−4Þ2; ð3:21Þ

with associated condensate

hχTi;α;p;LCωαβ
p0;Li; ð3:22Þ

where i is an SUðNÞ group index and α, β are SUðN − 4Þ
group indices. The value of ΔC2 for this condensation, as
produced by the SUðN − 4Þ gauge interaction, is

ðΔC2Þχω;SUMD ¼ C2ðð2ÞN−4Þ

¼ ðN − 2ÞðN − 5Þ
N − 4

in SUðN − 4Þ: ð3:23Þ

This condensate transforms as ð½1̄�N; ½1�N−4Þ2 and hence
self-breaks SUðN − 4Þ to SUðN − 5Þ and produces induced
breaking of the weakly coupled symmetries SUðNÞ to
SUðN − 1Þ and of U(1). It leaves invariant the same
residual gauge symmetry, (3.3), as the ψχ condensate
(3.2), which is the MAC for the SUðNÞ-dominant case
(3.3). By convention, one may choose the SUðN − 4Þ index
β in the condensate (3.22) to be β ¼ N − 4 and the SUðNÞ
index i to be i ¼ N. Then the fermions χN;α;p;L and
ωα;N−4
p0;L with 1 ≤ α ≤ N − 4, 1 ≤ p; p0 ≤ Nf involved in

the condensate pick up dynamical masses of order Λ1.
The dynamical mass generation for the SUðNÞ and
SUðN − 4Þ gauge bosons in the respective coset spaces
SUðNÞ=SUðN − 1Þ and SUðN − 4Þ=SUðN − 5Þ is the
same as described above in the SUðNÞ-dominant scenario,
as is the dynamical mass generation for the U(1) gauge
boson.
A second possible condensation channel is the χχ

channel (3.9), with associated condensate (3.10). This
condensate breaks G to the group given above in
Eq. (3.11). The measure of attractiveness of this conden-
sation channel, as produced by the SUðMÞ ¼ SUðN − 4Þ
gauge interaction, is

ðΔC2Þχχ ¼ 2C2ð½1̄�MÞ − C2ð½2̄�MÞ ¼
M þ 1

M

¼ N − 3

N − 4
: ð3:24Þ

Comparing the attractiveness measure of the channels
(3.21) and (3.9), we calculate the difference

ðΔC2Þχω − ðΔC2Þχχ ¼
N2 − 8N þ 13

N − 4
ð3:25Þ

and the ratio

ðΔC2Þχω
ðΔC2Þχχ

¼ ðN − 2ÞðN − 5Þ
N − 3

: ð3:26Þ

For the range N ≥ 6, the difference ðΔC2Þχω − ðΔC2Þχχ is
positive and, equivalently, the ratio ðΔC2Þχω=ðΔC2Þχχ > 1.
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Hence, the χω channel is always more attractive than the χχ
channel in this SUðN − 4Þ-dominant case. Thus,

SUðN − 4Þ − dominant withN ≥ 7∶

⇒ χω channel is the MAC: ð3:27Þ

In addition to breaking gauge symmetries, the MAC
condensate (3.22) spontaneously breaks the global sym-
metry Ggb for this theory, yielding a set of NGBs. Here we
focus on the gauge symmetry breaking. We have restricted
our analysis to the range N ≥ 7; as will be discussed below,
the MAC is different in the special case N ¼ 6, where it is
the ωω channel.
Although the χχ channel is not theMAC, we comment on

its symmetry properties. It breaks SUðN−4Þ to SUðN−6Þ⊗
SUð2Þ and also breaks U(1), since the condensate
has nonzero U(1) charge qχχ ¼ −2ðN − 2Þ. In terms of
SUðN − 4Þ, the associated condensate has the form

ϵ…αβhχTi;α;p;LCχj;β;p0;Li; ð3:28Þ

where ϵ…αβ is an antisymmetric SUðN − 4Þ tensor and we
have indicatedN − 6 of the indices implicitly with dots. For
this χχ channel, as regards the SUðNÞ and flavor symmetry,
there are two channels and corresponding condensates. The
(3.9) channel that involves an antisymmetric structure for
SUðNÞ group indices is

ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ × ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ →

→ ð½2̄�N; ½2̄�N−4Þ−2ðN−2Þ; ð3:29Þ

with corresponding condensate

ϵ…mnϵ…αβhχTm;α;p;LCχn;β;p0;Li: ð3:30Þ

Here ϵ…mn is an antisymmetric tensor under SUðNÞ, ϵ…αβ

was defined, and we indicate the rest of the indices in each
tensor implicitly with dots. This condensate is automati-
cally symmetrized in the flavor indices p and p0 and is of
the form ða; a; sÞ in the classification of Ref. [13]. The (3.9)
channel that involves a symmetric structure for SUðNÞ
group indices is

ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ × ð½1̄�N; ½1̄�N−4Þ−ðN−2Þ →

→ ðð2̄ÞN; ½2̄�N−4Þ−2ðN−2Þ; ð3:31Þ

with corresponding condensate

ϵ…αβhχTi;α;p;LCχj;β;p0;Li − ðp ↔ p0Þ: ð3:32Þ

Because this condensate is antisymmetrized in flavor
indices, it is automatically symmetric in SUðNÞ group

indices and is thus of the form ðs; a; aÞ in the classification
of Ref. [13].

C. SUðNÞ and SUðN − 4Þ gauge interactions
of comparable strength

Finally, we analyze the situation in which the SUðNÞ and
SUðN − 4Þ gauge interactions are of comparable strength at
the scale relevant for the initial condensation. We restrict to
N ≥ 7 here and will discuss the N ¼ 6 theory below. The
value of ΔC2 for the most attractive channel, ψχ, in the
SUðNÞ-dominant case was given in Eq. (3.4), and the value
of ΔC2 for the MAC χω in the SUðN − 4Þ-dominant case
was given in Eq. (3.23) above. The difference is

ðΔC2Þψχ;SUND − ðΔC2Þχω;SUMD ¼ 4ðN − 2Þ
NðN − 4Þ : ð3:33Þ

Since this is positive for the relevant range of N considered
here, it follows that, as the reference scale decreases and the
SUðNÞ and SUðN − 4Þ couplings increase, the minimal
value of α for condensation is reached first for the SUðNÞ-
induced ψχ condensate, at a scale μ that we may again
denote Λ1, where α1ðΛ1Þ exceeds αcr for the ψχ conde-
nsation. At a slightly lower scale, Λ1

0 ≲ Λ1, the SUðN−4Þ
gauge interaction, of comparable strength, increases
through the slightly larger critical value for condensation
in the χω channel. These condensates both break the gauge
symmetry in the same way, to the residual subgroup
SUðN − 1Þ ⊗ SUðN − 5Þ, as given in Eq. (3.3). We have
described the fermions and gauge bosons that gain dynami-
cal masses from the ψχ and χω condensations above, and
we combine these results here. By convention, one may
choose the SUðNÞ index i and the SUðN − 4Þ index α

in the ψχ condensate hψ ij T
p;L Cχj;α;p0;Li in Eq. (3.2) to be

i ¼ N and α ¼ N − 4, respectively. The fermions involved
in this condensate are then ψNj

p;L and χj;N−4;p0;L with 1 ≤
j ≤ N − 1. These gain dynamical masses of order Λ1. The
2N−1 SUðNÞ gauge bosons in the coset SUðNÞ=SUðN−1Þ
and the 2M − 1 ¼ 2N − 9 SUðMÞ gauge bosons in the
coset SUðMÞ=SUðM − 1Þ ¼ SUðN − 4Þ=SUðN − 5Þ gain
dynamical masses of order ≃g1ðΛ1ÞΛ1 and ≃g2ðΛ1ÞΛ1,
while the U(1) gauge boson gains a dynamical mass
≃g3ðΛ1ÞΛ1. A vacuum alignment argument [1,33] suggests
that the condensation process would be such as to preserve
the maximal residual gauge symmetry, with gauge group of
the largest order, thereby minimizing the number of gauge
bosons that pick up masses. In the present case, one can use
this argument to infer that in the condensate hχTi;α;p;LCωαβ

p0;Li
in Eq. (3.22), the SUðNÞ index is the same as the
unmatched index in the hψ ij T

p;L Cχj;α;p0;Li condensate,
namely i ¼ N, and the β index is the same as the unmatched
SUðN − 4Þ index α in the ψχ condensate, namely N − 4, so
that these two condensates break the initial UV gauge
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group G in the same way, to the subgroup SUðN − 1Þ ⊗
SUðN − 5Þ in Eq. (3.3). Then the fermions involved in the
χω condensate, χN;α;p;L and ωαβ

p0;L with 1 ≤ α ≤ N − 4 and
β ¼ N − 4, gain dynamical masses of order Λ1 and Λ0

1.
The resultant low-energy effective field theory that

describes the physics as the reference scale μ decreases
below Λ0

1 contains the following massless fermions that are
nonsinglets under the residual gauge group SUðN − 1Þ ⊗
SUðN − 5Þ:
(1) ψ ij

p;L with 1 ≤ i; j ≤ N − 1, 1 ≤ p ≤ Nf, forming
Nf copies of a ð½2�N−1; 1Þ representation under the
group (3.3),

(2) χj;α;p0;L with 1 ≤ j ≤ N − 1, 1 ≤ β ≤ N − 5, and
1 ≤ p0 ≤ Nf, forming Nf copies of the ð½1̄�N−1;
½1̄�N−5Þ representation of (3.3), and

(3) ωαβ
p0;L with 1 ≤ α; β ≤ N − 5, forming Nf copies of

the ð1; ð2ÞN−5Þ representation of the group (3.3).
This theory also includes certain massless fermions that are
singlets under the gauge group (3.3), e.g., χN;N−4;p;L.

IV. N = 6 THEORY

A. Beta function and constraints on Nf

In this section we study the lowest nondegenerate case of
the chiral gauge theory (1.4) with the fermions (1.6),
namely the N ¼ 6 theory, for which the fermion content
was given in Eq. (1.13). From the general formulas (2.3)
and (2.4), it follows that the one-loop coefficients for the
SU(6) and SU(2) gauge interactions in this theory are

bðSUð6ÞÞ1l;1 ¼ 2ð11 − NfÞ ð4:1Þ
and

bðSUð2ÞÞ1l;2 ¼ 2

3
ð11 − 5NfÞ: ð4:2Þ

SubstitutingN ¼ 6 into the upper bound onNf in Eq. (2.9),
we find that Nf < 11=5, i.e., for physical integral values,

N ¼ 6 ⇒ Nf ¼ 1; 2; ð4:3Þ
in accord with the general result given in Sec. II. When
discussing the Nf ¼ 1 case, we will suppress the flavor
indices in the notation, since they are all the same.
For the study of the UV to IR evolution of this theory, we

substituteN ¼ 6 into the general formulas (2.13) and (2.14)
to obtain the two-loop coefficients in the SU(6) and SU(2)
beta functions, which are

bðSUð6ÞÞ2l;11 ¼ 1

2
ð816 − 169NfÞ ð4:4Þ

and

bðSUð2ÞÞ2l;22 ¼ 1

6
ð272 − 275NfÞ: ð4:5Þ

V. N = 6 THEORY WITH SU(2) GAUGE
INTERACTION DOMINANT

A. RG evolution from UV

As before, it is natural to begin by analyzing the UV to IR
evolution in the case where one non-Abelian gauge inter-
action is much stronger than the other. We start with the
situation in which the SU(2) gauge interaction is much
stronger than the SU(6) interaction, so that, to first approxi-
mation, we may treat the SU(6) [as well as U(1)] gauge
interaction perturbatively. By analogy with our notation
above, thiswill be denoted as the SU2Dcase, where again,D

stands for “dominant.” Then, since bðSUð2ÞÞ1l;2 > 0 while

bðSUð2ÞÞ2l;22 < 0, the two-loop beta function βα2 for the SU(2)
gauge interaction has an IR zero at

α2;IR;2l ¼ −
4πbðSUð2ÞÞ1l;2

bðSUð2ÞÞ2l;22

¼ 16πð11 − 5NfÞ
275Nf − 272

: ð5:1Þ

For Nf ¼ 1, α2;IR;2l ¼ 32π ¼ 100.5, while for Nf ¼ 2,
α2;IR;2l ¼ 8π=139 ¼ 0.181. The IRFP value for Nf ¼ 1

is too large for the two-loop calculation to be considered to
be quantitatively accurate, but it does indicate that the theory
becomes strongly coupled in the IR. The IRFP value for
Nf ¼ 2 is considerably smaller than the estimates of the
critical values αcr for any of the three attractive condensation
channels (which will be given below). Hence, this theory
withNf ¼ 2 is expected to evolve in the IR limit to an exact
IR fixed point (IRFP) in a scale-invariant and conformally
invariant non-Abelian Coulomb phase (NACP), without any
spontaneous chiral symmetry breaking or associated fer-
mion condensate formation. We therefore focus on the
Nf ¼ 1 case. Since the flavor subscripts p, p0 are always
equal to 1, they are suppressed in the notation.

B. Condensation at scale Λ1

We proceed to determine the most attractive channel for
the formation of bilinear condensates of SU(2)-nonsinglet
fermions in this Nf ¼ 1 case. There are, a priori, several
possible channels. The first is

ωω∶ ð1; AdjÞ6 × ð1; AdjÞ6 → ð1; 1Þ12; ð5:2Þ

where Adj is the adjoint (triplet) representation of SU(2)
and the notation follows Eq. (1.7). The shorthand name for
this channel, ωω, follows from the condensate, which is

hω⃗T
LC · ω⃗Li: ð5:3Þ

In terms of dimensions of the SU(2) representations,
this channel has the form 3 × 3 → 1. The measure of
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attractiveness of this channel due to the strongly coupled
SU(2) gauge interaction is

ΔC2 ¼ 2C2ðAdjÞ ¼ 4 for 3 × 3 → 1 in SUð2Þ: ð5:4Þ
This is the most attractive channel:

SUð2Þ − dominant ⇒ ωω channel is the MAC: ð5:5Þ
The rough estimate of the minimal (critical) coupling

α2ðμÞ ¼ αcr for this channel is given by Eq. (2.23) as
αcr ≃ π=6 ¼ 0.5. Since the condensate involves the SU(6)-
singlet fermion ω⃗L, it obviously preserves the SU(6) gauge
symmetry. As a scalar product of the isovector ω⃗L with
itself, this condensate is also invariant under the strongly
coupled SU(2) gauge symmetry. Because the condensate
has a nonzero U(1) charge (namely, q ¼ 12), it breaks the
U(1) gauge symmetry. The continuous gauge symmetry
under which the condensate (5.3) is invariant is therefore

SUð4Þ ⊗ SUð2Þ: ð5:6Þ
This residual symmetry group has order 38 and rank 6. For
this and other possible fermion condensation channels, we
record these properties in Table II. This table refers to the
possible initial condensation patterns at the highest con-
densation scale; subsequent evolution further into the
infrared is discussed below
A second possible condensation channel is

χχ∶ ð½1̄�6; ½1̄�2Þ−4 × ð½1̄�6; ½1̄�2Þ−4 → ð½2̄�6; 1Þ−8; ð5:7Þ

where the shorthand name χχ reflects the associated
condensate, ϵαβhχTi;α;LCχj;β;Li. Since SU(2) has only pseu-
doreal representations, this channel has the form 2 × 2 → 1
with respect to SU(2). The measure of attractiveness of this
channel due to the strongly coupled SU(2) gauge inter-
action is

ΔC2 ¼ 2C2ð½1̄�2Þ ¼
3

2
for 2 × 2 → 1 in SUð2Þ: ð5:8Þ

From (2.23), we find that the minimal critical coupling for
condensation in this channel is αcr ≃ 4π=9 ¼ 1.4. From the
general structural analysis of fermion condensates given
above, it follows that, since the SU(2) tensor ϵαβ is anti-
symmetric, the condensate must be of the form ða; a; sÞ. [It
cannot be of the form ðs; a; aÞ because with Nf ¼ 1, this
would vanish identically.] Hence, under SU(6), it trans-
forms as ½4�6, or equivalently, as ½2̄�6, as indicated in
Eq. (5.7). Consequently, it is proportional to

ϵijklmnϵαβhχTm;α;LCχn;β;Li; ð5:9Þ

where i; j; k;l; m; n are SU(6) indices and α, β are SU(2)
indices. This condensation channel thus preserves SU(2)
while breaking U(1). As regards SU(6), from a general
group-theoretic analysis [25,28], one infers that the con-
densate (5.9) breaks this SU(6) gauge symmetry to the
subgroup SUð4Þ ⊗ SUð2Þ0, where we mark the SUð2Þ0 with
a prime to distinguish it from the SU(2) in the original
gauge group (1.12). Hence, the full continuous gauge
symmetry under which the condensate (5.9) is invariant is

½SUð4Þ ⊗ SUð2Þ0� ⊗ SUð2Þ; ð5:10Þ

where we insert the brackets to indicate the origin of the
½SUð4Þ ⊗ SUð2Þ0� group from the breaking of the original
SU(6) in (1.12). This residual symmetry group has order 21
and rank 5.
A third type of condensation channel is

χω∶ ð½1̄�6; ½1̄�2Þ−4 × ð1; AdjÞ6 → ð½1̄�6; ½1�2Þ2; ð5:11Þ

where the shorthand name χω reflects the condensate

TABLE II. Properties of possible initial bilinear fermion condensates in the UV theory (1.12) with (1.13). The shorthand name of the
condensation channel and the condensate in this channel are displayed in the first and second columns. The third and fourth columns list
the values of ΔC2 with respect to the SU(6) and SU(2) gauge interactions. The entries in the fifth, sixth, and seventh columns indicate
whether a given condensate is invariant (inv.) under the SU(6), SU(2), and U(1) gauge symmetries, respectively, or breaks (bk.) one or
more of these symmetries. The entry in the eighth column gives the representation ðR1; R2Þq of the condensate under the group (1.12),
following the notation of Eq. (1.7). The ninth column lists the continuous gauge symmetry group under which a given condensate is
invariant. These results are for the case Nf ¼ 1 and for Nf ¼ 2 with condensates symmetrized over the flavor indices, which are
suppressed in the notation. The ψψ and ψχ channels are the MACs for the SU(6)-dominant case, while theωω is the MAC for the SU(2)-
dominant case. See text for further discussion.

Name Condensate ðΔC2ÞSUð6Þ ðΔC2ÞSUð2Þ SU(6) SU(2) U(1) ðR1; R2Þq Hinv

ωω hω⃗T
LC · ω⃗Li 0 4 inv. inv. bk. ð1; 1Þ12 SUð4Þ ⊗ SUð2Þ

ψχ hψ ijT
L Cχj;β;Li 14

3
0 bk. bk. bk. ð½1�6; ½1̄�2Þ−2 SU(5)

χω hχTi;α;LCωαβ
L i 0 2 bk. bk. bk. ð½1̄�6; ½1�2Þ2 SU(5)

ψψ ϵijklmnhψkl T
L Cψmn

L i 14
3

0 bk. inv. bk. ð½2̄�6; 1Þ4 ½SUð4Þ ⊗ SUð2Þ0� ⊗ SUð2Þ
χχ ϵijklmnϵαβhχTm;α;LCχn;β;Li 7

6
3
2

bk. inv. bk. ð½2̄�6; 1Þ−8 ½SUð4Þ ⊗ SUð2Þ0� ⊗ SUð2Þ
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hχTi;α;LCωαβ
L i: ð5:12Þ

With respect to SU(2), this channel is 2 × 3 → 2. The
measure of attractiveness for this channel due to SU(2)
gauge interactions is

ΔC2 ¼ C2ðAdjÞ ¼ 2 for 2 × 3 → 2 in SUð2Þ: ð5:13Þ

The corresponding estimate of the critical coupling from
Eq. (2.23) is αcr ¼ π=3. Evidently, this channel is more
attractive than the χχ channel (5.7), but less attractive than
the ωω channel (5.2).
All of these three types of fermion condensation exhibit

the phenomenon of a strongly coupled gauge interaction
producing condensate(s) that dynamically break a more
weakly coupled gauge interaction, namely U(1). Further-
more, the condensate in the χχ channel (5.7) dynamically
breaks not only the U(1) gauge symmetry, but also the more
weakly coupled SU(6) gauge symmetry. If a condensate
were to form in the χω channel (5.11), it would self-break
the strongly coupled SU(2) symmetry, as well as breaking
the weakly coupled SU(6) symmetry. However, as will be
shown below, a condensate is not likely to form in the χω
channel.
Since the ωω channel (5.2) is the MAC, one expects that,

as this theory evolves from the UV to the IR, at a scale that
we denote μ ¼ Λ1 where the running coupling α2ðμÞ
increases above the critical value for condensation in this
ωω channel, the condensate (5.3) forms, breaking the U(1)
gauge symmetry, but leaving the SU(2) and SU(6) sym-
metries intact. As the condensate hω⃗T

LC · ω⃗Li in Eq. (5.3)
maintains the SU(2) symmetry, all of the three components
of the fermion ω⃗L involved in this condensate gain equal
dynamical masses ∼Λ1 and are integrated out of the low-
energy effective field theory that describes the physics as
the reference scale μ decreases below Λ1. The U(1) gauge
field gains a mass ∼g3ðΛ1ÞΛ1. With these fermion and
vector boson fields integrated out, the one-loop and two-
loop coefficients in the SU(2) beta function in the low-
energy effective theory have the same sign, so as the
reference momentum scale μ decreases below Λ1, the
coupling α2ðμÞ continues to increase. Because the ω⃗L
fermions have been integrated out at the scale Λ1, they
are no longer available to form a condensate in the χω
channel (5.11) in the low-energy effective theory below Λ1.

C. EFT below Λ1 and condensation at scale Λ2

In Ref. [32] it was proved that if one starts with a chiral
gauge theory with gauge group G that is free of gauge and
global anomalies, and it is broken dynamically to a theory
with gauge group H ⊆ G, with some set of fermions
gaining dynamical masses and being integrated out, then
the low-energy theory with the gauge group H is also free
of gauge and global anomalies. As a special case of this
theorem, the low-energy theory that is operative here as μ

decreases below Λ1 is also an anomaly-free theory. One
easily checks that it is chiral.
As μ decreases below a lower scale that we denote as Λ2,

α2ðμÞ increases past the critical value for the attractive χχ
condensation channel (5.7), which is the MAC in this low-
energy effective theory, and the condensate (5.9) is
expected to form. As noted above, this leaves SU(2)
invariant and breaks SU(6) to SUð4Þ ⊗ SUð2Þ0. By con-
vention, one may label the SU(6) indices i, j of the
fermions in the condensate (5.9) as m ¼ 5 and n ¼ 6.
Then the fermions χ5α;L and χ6β;L that are involved in this
condensate gain dynamical masses of order Λ2 and are
integrated out of the low-energy effective theory applicable
for μ < Λ2. Furthermore, the gauge fields in the coset space
SUð6Þ=½SUð4Þ ⊗ SUð2Þ� gain dynamical masses of order
g1ðΛÞΛ2.

D. EFT below Λ2 and further condensation

By the same theorem as before, this low-energy theory is
anomaly-free and one can again check that it is chiral. The
low-energy effective theory below Λ2 thus has a gauge
symmetry ½SUð4Þ ⊗ SUð2Þ0� ⊗ SUð2Þ, where the SUð2Þ0
arises from the breaking of the SU(6) and the second SU(2)
was present in the original theory. The fermions that have
gained masses and have been integrated out are no longer
dynamical. The elements of the residual SU(4) subgroup of
SU(6) operate on the indices 1 ≤ i ≤ 4, while the elements
of SUð2Þ0 operate on the indices i ¼ 5, 6. Thus, the
massless fermions in this effective field theory below Λ2

are as follows, where we categorize them with a three-
component vector, indicating the representations with
respect to the group (5.10) in the indicated order:
(1) ψ ij

L with 1 ≤ i; j ≤ 4, forming a (self-conjugate)
ð½2�4; 1; 1Þ representation of the group SUð4Þ ⊗
SUð2Þ0 ⊗ SUð2Þ in (5.10),

(2) ψ i5
L and ψ i6

L , forming a ð½1�4; ½1�201; 1Þ representation
of (5.10),

(3) χi;α;L with 1 ≤ i ≤ 4, forming a ð½1̄�4; 1; ½1̄�2Þ repre-
sentation of (5.10).

In this low-energy EFT below Λ2, the MAC for SU(4)-
induced condensate formations is ½2�4 × ½2�4 → 1 with the
self-conjugate ψ ij

L transforming as ½2�4 of SU4), producing
the condensate

X4
i;j;k;l¼1

ϵijklhψ ij T
L Cψkl

L i: ð5:14Þ

This is a singlet under the SU(4) gauge symmetry and is
obviously invariant under the two other gauge symmetries,
SUð2Þ0 ⊗ SUð2Þ, since the fermions in (5.14) are singlets
under these groups. Let us denote the scale at which this
condensate forms as Λ3. The SU(4)-induced condensation
producing this condensate (5.14) has ΔC2 ¼ 5. The ψ ij

L
with 1 ≤ i; j ≤ 4 involved in this condensate pick up
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dynamical masses of order Λ3 and are integrated out of the
low-energy EFT that is operative below Λ3. The SU(4)
gauge interaction can also produce the condensate

X4
i¼1

hψ ir T
L Cχi;αi; ð5:15Þ

where r ¼ 5, 6. This condensate is invariant under
SU(4) and breaks SUð2Þ0 ⊗ SUð2Þ [since it involves the
uncontracted SUð2Þ0 index r and the uncontracted SU(2)
index α]. For this condensation, ΔC2 ¼ 15=4. With these
condensates, only the SU(4) gauge symmetry remains, and
all SU(4)-nonsinglet fermions have picked up dynamical
masses. This vectorial SU(4) theory confines and produces
a spectrum of SU(4)-singlet bound state hadrons.

VI. N = 6 THEORY WITH SU(6) GAUGE
INTERACTION DOMINANT

A. RG evolution from UV

In this section we analyze the N ¼ 6 theory for the case
in which the SU(6) gauge interaction becomes strongly
coupled and is dominant over the weakly coupled SU(2)
[and U(1)] gauge interactions. We denote this as the SU6D
case. The one-loop and two-loop terms in the beta function
were given above in Eqs. (4.1) and (4.4). For both of the
cases allowed by the requirement of asymptotic freedom
for the SU(6) and SU(2) gauge interactions, namely Nf ¼
1 and Nf ¼ 2, these coefficients have the same sign, so that
the two-loop beta function of this SU(6) theory has no IR
zero. Hence, as the scale μ decreases from μUV to the IR,
α1ðμÞ increases until it eventually exceeds the range of
values where it can be calculated perturbatively.

B. Highest-scale condensation channels

We examine the various possible fermion condensation
channels produced by the strongly coupled SU(6) gauge
interaction. The first is the ψψ channel

ψψ∶ ð½2�6; 1Þ2 × ð½2�6; 1Þ2 → ð½4�6; 1Þ4 ≈ ð½2̄�6; 1Þ4; ð6:1Þ

with associated condensate

ϵijklmnhψkl T
p;L Cψmn

p0;Li: ð6:2Þ

This condensate is automatically symmetrized in the flavor
indices. Since it transforms as a ½2̄�6 representation of
SU(6), it breaks SU(6) to SUð4Þ ⊗ SUð2Þ0. Because the
constituent fermion fields in (6.2) are singlets under SU(2),
this condensate is obviously SU(2)-invariant. Finally,
owing to the property that the condensate (6.2) has nonzero
U(1) charge, it also breaks U(1). The residual subgroup of
the original group (1.12) that is left invariant by the
condensate (6.2) is thus ½SUð4Þ ⊗ SUð2Þ0� ⊗ SUð2Þ [see

Eq. (5.10)], as in the condensation process (5.7). The
condensation (6.1) thus provides another example of an
induced, dynamical breaking of one gauge symmetry,
namely U(1), by a different, strongly coupled, gauge
interaction in a direct-product chiral gauge theory. The
measure of attractiveness of this condensation channel
involving the SU(6) gauge interaction is

ΔC2¼C2ð½2̄�6Þ¼
14

3
for ½2�6× ½2�6 → ½2̄�6 in SUð6Þ: ð6:3Þ

From the rough estimate for the minimal critical coupling
strength to produce this condensate, (2.23), one has αcr ≃
π=7 ¼ 0.45.
A second possible condensation channel is

ψχ∶ ð½2�6; 1Þ2 × ð½1̄�6; ½1̄�2Þ−4 → ð½1�6; ½1̄�2Þ−2 ð6:4Þ

with associated condensate

hψ ij T
p;L Cχj;β;p0;Li: ð6:5Þ

This condensation breaks SU(6) to SU(5) and also breaks
SU(2) and U(1), so that the residual invariance group is
SU(5), with order 24 and rank 4. The total number of
broken generators is thus 15 and the reduction in rank is
by 3. Again, this illustrates the dynamical breaking of more
weakly coupled gauge symmetries by a strongly coupled
gauge interaction in a direct-product gauge theory. The
measure of attractiveness of this channel (6.4) is

ΔC2 ¼ C2ð½2�6Þ ¼
14

3
for ½2�6 × ½1̄�6 → ½1�6 in SUð6Þ:

ð6:6Þ

Evidently, this is the same as the attractiveness for the
channel (6.1), so the critical coupling αcr is also the same as
for that channel. This ΔC2 ¼ 14=3 is also larger than the
ΔC2 for the third channel (to be discussed below), so that,
as was stated above in (3.20), for this N ¼ 6 theory, with
SU(6) being the dominant gauge interaction, the ψψ and
ψχ channels are the MACs.
A third condensation channel produced by the dominant

SU(6) gauge interaction is

χχ∶ ½1̄�6 × ½1̄�6 → ½2̄�6 ≈ ½4�6 in SUð6Þ ð6:7Þ

with condensate

ϵijklmnhχTm;α;p;LCχn;β;p0;Li: ð6:8Þ

Although we use the same shorthand name, χχ, for this
channel as in Eq. (5.7), it is understood that here it is the
SU(6) gauge interaction that is responsible for the for-
mation of this condensate, rather than the SU(2) gauge

ULTRAVIOLET TO INFRARED EVOLUTION AND … PHYS. REV. D 100, 055009 (2019)

055009-15



interaction in (5.7). The measure of attractiveness for
this condensation, as produced by the SU(6) gauge inter-
action, is

ΔC2 ¼ 2C2ð½1̄�6Þ − C2ð½2�6Þ ¼
7

6

for ½1̄�6 × ½1̄�6 → ½2̄�6 in SUð6Þ: ð6:9Þ

This ΔC2 is a factor of 4 smaller than the common value
ΔC2 ¼ 14=3 for the condensation channels (6.1) and (6.4)
and hence is predicted not to occur in this SU(6)-dominant
case. We proceed to discuss in greater detail the two
different patterns of UV to IR evolution for the most
attractive condensation channels in this SU(6)-dominant
case.

C. ψψ condensation channel

Here we consider the ψψ condensation channel (6.1),
i.e., ð½2�6; 1Þ2 × ð½2�6; 1Þ2 → ð½2̄�6; 1Þ4. We denote the scale
at which the condensate (6.2) forms as Λ1. [To avoid
cumbersome notation, we use the same symbol for this
highest-level condensation as we did in the subsection
dealing with the case where the SU(2) gauge interaction is
dominant, but it is understood implicitly that this scale has
generically different values for these different cases.]
Without loss of generality, one may choose the SU(6)
group indices of the ψ fermions involved in the condensate
(6.2) to be k;l; m; n ∈ f1; 2; 3; 4g and the uncontracted
indices in (6.2) to be i; j ∈ f5; 6g. The ψ fermions involved
in the condensate (6.2) gain dynamical masses of order Λ1.
The gauge bosons in the coset SUð6Þ=½SUð4Þ ⊗ SUð2Þ0�
pick up dynamical masses of order g1ðΛ1ÞΛ1, and the U(1)
gauge boson picks up a dynamical mass ≃g3ðΛ1ÞΛ1. These
massive fermion and vector boson fields are integrated out
of the low-energy effective field theory that describes the
physics as the reference scale μ decreases below Λ1. The
resultant low-energy effective theory contains the following
massless fermions: (1) SUð4Þ ⊗ SUð2Þ0-nonsinglets ψ ia

p;L

with 1 ≤ i ≤ 4, a ∈ f5; 6g, and 1 ≤ p ≤ Nf, which are
singlets under SU(2); (2) SUð4Þ ⊗ SUð2Þ-nonsinglets
χiα;p;L with 1 ≤ i ≤ 4, α ¼ 1, 2, and 1 ≤ p ≤ Nf, which
are singlets under SUð2Þ0; and (3) SUð2Þ0 ⊗ SUð2Þ-non-
singlets χi;α;p;L with i ¼ 5, 6, which are singlets under
SU(4). There are also the massless fermions ψ56

p;L with
1 ≤ p ≤ Nf, which are singlets under all three factor
groups in (5.10). The fermions (1) transform as 2Nf

fundamental representations F ¼ ½1�4 of SU(4), while the
fermions (2) transform as 2Nf conjugate fundamental
representations F̄ ¼ ½1̄�4 of SU(4), so that the SU(4) gauge
symmetry is vectorial. Combining this property with the
fact that the SUð2Þ0 and SU(2) groups have only real
representations, it follows that this low-energy theory is
vectorial. The action of an element U ∈ SUð4Þ is

ψ ia
p;L ¼ Ui

jψ
ja
p;L

χia;p;L ¼ ðU†Þjiχja;p;L; ð6:10Þ

with fixed a ¼ 5, 6 and 1 ≤ p ≤ Nf. The elements of
SUð2Þ0 operate on the indices a ¼ 5, 6 of the fermions (1)
and (3). [The operation of the elements of SU(2) on the α, β
indices has already been discussed.] The couplings of the
SU(4) and SUð2Þ0 gauge interactions start out equal at
μ ¼ Λ1, as descendents of the gauge coupling α1 of the UV
gauge coupling for the SU(6) gauge interaction.
As the theory evolves further into the IR, several possible

patterns of gauge symmetry breaking are possible. The
SU(4) gauge interaction can produce a condensate in the
½1�4 × ½1̄�4 → 1, i.e., F × F̄ → 1 channel:

�X4
i¼1

ψ ia T
p;L Cχi;α;p0;L

�
; ð6:11Þ

where, as indicated, the sum on i is over the active SU(4)
gauge indices, while the other indices take on the values
a ¼ 5, 6, α ¼ 1, 2, and 1 ≤ p; p0 ≤ Nf. The measure of
attractive of this condensation, as produced by the SU(4)
gauge interaction, is ΔC2 ¼ 2C2ð½1�4Þ ¼ 15=4 ¼ 3.75.
This condensate preserves the SU(4) gauge symmetry
and breaks the SUð2Þ0 gauge symmetry operating on the
indices a ¼ 5, 6 and the SU(2) gauge symmetry operating
on the indices α ¼ 1, 2.
In contrast, the SUð2Þ0 gauge interaction could produce

the condensate

X6
a;b¼5

ϵabhψ ia T
p;L Cψ

jb
p0;Li: ð6:12Þ

The measure of attractiveness for this condensation, as
produced by the SUð2Þ0 interaction, is ΔC2 ¼ 3=2. Since
the fermions involved in this condensate are SU(2)-singlets,
it obviously preserves SU(2). With the contraction on the
SUð2Þ0 indices a; b ∈ f5; 6g, it also preserves SUð2Þ0. If
Nf ¼ 1, then the condensate is automatically symmetric in
the single flavor index, so it has the form ða; a; sÞ in the
notation of Eq. (2.26) and hence transforms like the ½2�4
representation of SU(4). This breaks SU(4) to SUð2Þ00 ⊗
SUð2Þ000, where we use repeated primes to indicate that
these SU(2) subgroups of SU(4) are distinct from both the
original UV SU(2) symmetry and the SUð2Þ0 symmetry. If
Nf ¼ 2, then there are two possibilities; ða; a; sÞ if one
constructs a linear combination that is symmetrized in
flavor indices, and ða; s; aÞ, if one antisymmetrizes over
flavor indices. For each of these possibilities, one can track
the evolution further into the IR using the same methods
as above.
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D. ψχ condensation channel

Here we consider the ψχ condensation channel (6.4), i.e.,
ð½2�6; 1Þ2 × ð½1̄�6; ½1̄�2Þ−4 → ð½1�6; ½1̄�2Þ−2, with the associ-
ated condensate hψ ij T

p;L Cχj;β;p0;Li in Eq. (6.5). By conven-
tion, we may choose the SU(6) index i ¼ 6 and the SU(2)
index β ¼ 2 in this condensate. Then the fermions involved
in the condensate, namely ψ6j

p;L and χj;2;p0;L with 1 ≤ j ≤ 5

gain dynamical masses of orderΛ1 and are integrated out of
the low-energy effective theory applicable for μ < Λ1. The
11 SU(6) gauge bosons in the coset SUð6Þ=SUð5Þ gain
dynamical masses of order g1ðΛ1ÞΛ1, while the SU(2) and
U(1) gauge bosons gain masses of order giðΛ1ÞΛ1 with
i ¼ 2, 3, respectively. These fields are integrated out of the
low-energy effective theory applicable for μ < Λ1.
For this channel, the low-energy effective theory that

describes the physics as μ decreases below Λ1 has an SU(5)
gauge symmetry with (massless) SU(5)-nonsinglet fer-
mions ψ ij

p;L and χi;1;p0;L, where 1 ≤ i; j ≤ 5 and 1 ≤ p;
p0 ≤ Nf. In addition, there are massless SU(5)-singlet

fermions χ6;β;p0;L and ωαβ
p;L with 1 ≤ α; β ≤ 2 and 1 ≤

p; p0 ≤ Nf remaining from the UV theory.
In this low-energy theory, the SU(5) gauge coupling

inherited from the SU(6) UV theory continues to increase
as μ decreases below Λ1, and is expected to trigger a further
fermion condensation

½2�5 × ½2�5 → ½1̄�5 ð6:13Þ
with ΔC2 ¼ 24=5 and associated condensate

X5
i;j;k;l;m¼1

ϵijklmhψ jk T
p;L Cψlm

p0;Li; ð6:14Þ

where the indices i; j; k;l; m are SU(5) group indices. By
convention, we may choose the uncontracted SU(5) group
index in (6.14) to be i ¼ 5. This condensate breaks SU(5)
to SU(4). The fermions ψ jk

p;L with j; k ∈ f1; 2; 3; 4g and
1 ≤ p ≤ Nf gain dynamical masses of order Λ2. The 9
gauge bosons in the coset SUð5Þ=SUð4Þ gain dynamical
masses of order g1ðΛ2ÞΛ2. All of these fields are integrated
out of the low-energy effective theory that describes the
physics at scales μ < Λ2.
The low-energy theory that is operative for μ < Λ2 has a

gauge group SU(4) and (massless) SU(4)-nonsinglet fer-
mion content consisting of ψ ij

p;L with 1 ≤ i; j ≤ 4 and
1 ≤ p ≤ Nf. However, this representation, ½2�4, in SU(4)
is self-conjugate, i.e., ½2�4 ≈ ½2̄�4, so this theory is vectorial.
The two-loop beta function for this theory has no IR zero
and as μ continues to decrease, the SU(4) coupling
inherited from the SU(5) theory continues to increase.
Because of the vectorial nature of this descendent SU(4)
theory, the condensate that forms is in the channel
½2�4 × ½2�4 → 1, with condensate

X4
i;j;k;l¼1

ϵijklhψ ij T
p;L Cψ

kl
p0;Li; ð6:15Þ

with ΔC2 ¼ 5, where here, i; j; k;l are SU(4) group
indices. This condensate preserves the SU(4) gauge sym-
metry, while breaking global chiral symmetries sponta-
neously. The fermions involved in this condensate pick up
dynamical masses of order the condensation scale. This
theory confines and produces a spectrum of SU(4)-singlet
bound state hadrons.

VII. N = 6 THEORYWITH SU(6) AND SU(2) GAUGE
INTERACTIONS COMPARABLE IN STRENGTH

A. General discussion

In this section we consider the situation in which both the
SU(6) and SU(2) gauge interactions are of comparable
strength and hence must be treated together [with the U(1)
gauge interaction still being weak]. In this case, one cannot
neglect the mixing terms at the two-loop and higher-loop
level in the beta functions βαi , Eq. (2.2), so the calculation
the evolution of the gauge couplings down from the initial
reference point μ ¼ μUV in the UV is more complicated.
For our present purposes, it will suffice to consider a case in
which α1ðμÞ ≃ α2ðμÞ ≃Oð1Þ at a lower scale μ. Since the
SU(2) interaction by itself would evolve to a relatively
weakly coupled IRFP if Nf ¼ 2, expected to be in the non-
Abelian Coulomb phase, we will assume Nf ¼ 1 here, to
guarantee that not just the SU(6) interaction, but also the
SU(2) interaction become strongly coupled in the infrared.

B. Analysis of possible condensation channels

1. Condensation(s) involving SU(6)-nonsinglet fermions

We have shown above that the most attractive conden-
sation channels are different in the simple situations where
either the SU(6) or the SU(2) gauge interactions are
dominant. Specifically, in the SU(2)-dominant case, the
MAC is theωω channel, withΔC2 ¼ 4, while in the SU(6)-
dominant case, the MACs are the ψψ and ψχ channels,
with the same measure of attractiveness, ΔC2 ¼ 14=3 ¼
4.7. One would thus expect that as the reference scale
decreases, the first condensate(s) to form would be in the
ψψ and/or ψχ channels, as produced by the SU(6) gauge
interaction. Since the ψψ channels involves SU(2)-singlet
fermions, it would not be affected by the fact that the SU(2)
gauge interaction is also strongly coupled. The other SU(6)
MAC, namely the ψχ channel involves the SU(2)-singlet
fermion ψ and the SU(2)-nonsinglet fermion χ, so the
binding is only caused by the SU(6) interaction. Since the
ψχ condensation leaves the residual gauge symmetry group
SU(5), of order 24, while the χχ condensation would leave
the residual gauge symmetry (5.10), of order 21, a vacuum
alignment argument suggests that the ψχ condensation
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channel is preferred over the χχ channel. Thus, the ψχ
condensate (6.5) is expected to form at a scale that we will
denote as Λ1, self-breaking SU(6) to SU(5) and also
producing induced dynamical breaking of U(1). The 11
gauge bosons in the coset SUð6Þ=SUð5Þ gain dynamical
masses of order g1ðΛ1ÞΛ1, and the U(1) gauge boson gains
a mass of order g3ðΛ1ÞΛ1.

2. EFT below Λ1

Next, one would expect that condensation would occur
in the ωω channel, as produced by the strong SU(2) gauge
interaction. Owing to the fact that the value of ΔC2 for this
condensation is equal to 4, slightly less than the value of 4.7
for the ψψ condensation, one expects that this occurs at a
slightly lower scale. Because this second condensation
would give dynamical masses to the ω fermions, which
would thus be integrated out of the low-energy theory
applicable below this condensation scale, it would preclude
the formation of an SU(2)-induced condensate in the χω
channel.
There remains the χχ condensation channel. Although

the value of ΔC2 for this condensation, as produced by the
SU(6) interaction, is 7=6, which is a factor of 4 smaller than
the value of 14=3 for the MACs, and although the value of
ΔC2 for this condensation, as produced by the SU(2)
interaction, is 3=2, considerably smaller than the value
ΔC2 ¼ 4 for the SU(2)-induced MAC channel, ωω, the χχ
channel has the special property that it involves both the
SU(2) and SU(6) gauge interactions, in contrast to all of the
other possible condensation channels (ψψ , ψχ, ωω, and
χω), each of which only involves one of these two non-
Abelian gauge interactions. If α1ðμÞ ¼ α2ðμÞ and one were
simply to add the two terms ð7=6Þα1ðμÞ þ ð3=2Þα2ðμÞ ¼
ð8=3Þα1ðμÞ, the effective ΔC2 would be 8=3 ¼ 3.7, which
is still less than values for the MACs for both the SU(6)-
induced condensates and the SU(2)-induced condensates.

VIII. RELATED CONSTRUCTIONS

At the beginning of this paper we remarked on how the
theory (1.4) with (1.6) successfully combines two different
(anomaly-free) chiral gauge theories, SUðNÞ with Nf

copies of (1.10), and SUðMÞ with Nf copies of (1.11),
where M ¼ N − 4. A natural question concerns related
constructions of direct-product chiral gauge theories with
fermions in higher-rank tensor representations of the factor
groups. The next step up in complexity involves rank-3
antisymmetric and symmetric tensor representations for the
fermions. Two theories with these rank-3 representations
use a gauge group of the form

SUðNÞ ⊗ SUðMÞ ⊗ Uð1Þ; ð8:1Þ

where nowM can take on two different values as a function
of N, namely M ¼ N − 3 or N ¼ N − 6. In both cases,

the fermion content consists of Nf copies of the set
[12,17]

ð½3�N;1Þq30 þð½2̄�N;ð1̄ÞMÞq21 þð½1�N;ð2ÞMÞq12 þð1;ð3̄ÞMÞq03
ð8:2Þ

with

M ¼ N − 3 ⇒ ðq30; q21; q12; q03Þ ¼
¼ ð−ðN − 3Þ; ðN − 2Þ;−ðN − 1Þ; NÞ ð8:3Þ

and

M ¼ N − 6 ⇒ ðq30; q21; q12; q03Þ ¼
¼ ð−ðN − 6Þ; ðN − 4Þ;−ðN − 2Þ; NÞ: ð8:4Þ

Owing to the presence of the factor group SUðMÞ in (8.1),
the lowest nondegenerate cases are N ¼ 5 if M ¼ N − 3
and N ¼ 8 if M ¼ N − 6.
As before, there are equivalent theories. One has all of

the representations of the (left-handed chiral) fermions
conjugated. The second has the SUðMÞ representations
conjugated relative to the SUðNÞ representations, i.e., it has
a fermion content comprised of Nf copies of the set

ð½3�N;1Þq30 þð½2̄�N;ð1ÞMÞq21 þð½1�N;ð2̄ÞMÞq12 þð1;ð3ÞMÞq03 :
ð8:5Þ

Since these are equivalent to the theory with gauge group
(8.1) and fermions (8.2), with the indicated U(1) charges
for M ¼ N − 3 and M ¼ N − 6, it suffices to discuss only
the latter theories.
However, none of these theories satisfies the requisite

condition for our analysis, that both the SUðNÞ and SUðMÞ
gauge interactions are asymptotically free (AF). The reason
for this is as follows. In the theory (1.4) with (1.6), the one-
loop term in the SUðNÞ and SUðN − 4Þ beta functions
involves the trace invariants for the fundamental and
symmetric or antisymmetric rank-2 representations.
While Tð½2�NÞ ¼ ðN − 2Þ=2 and Tðð2ÞNÞ are linear func-
tions of N and hence enter the one-loop coefficients in the
beta functions with the same polynomial degree as the
pure gauge contribution, Tð½3�NÞ and Tðð3ÞMÞ are quad-
ratic functions of N and M, respectively, namely Tð½3�N ¼
ðN − 3ÞðN − 4Þ=4Þ and Tðð3ÞMÞ ¼ ðM þ 3ÞðM þ 4Þ=4.
The most stringent restriction arises from the constraint
that the SUðMÞ beta function be negative. The one-loop
coefficient in this beta function is

bðSUðMÞÞ
1l;11 ¼ 1

3

�
11M − Nf

	
NðN − 1Þ

2
þ NðM þ 2Þ

þ ðM þ 2ÞðM þ 3Þ
2


�
: ð8:6Þ
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For the theory with M ¼ N − 3, this is

bðSUðN−3ÞÞ
1l;11 ¼ 1

3
½11ðN − 3Þ − 2NfNðN − 1Þ�: ð8:7Þ

This one-loop coefficient is negative if Nf > Nf;b1z;k3a,
where

Nf;b1z;k3a ¼
11ðN − 3Þ
2NðN − 1Þ : ð8:8Þ

We find that Nf;b1z;k3a < 1 for all N in the relevant range
N ≥ 5. Hence, the AF constraint does not allow any
nonzero value of Nf. Similarly, for the theory with
M ¼ N − 6,

bðSUðN−6ÞÞ
1l;11 ¼ 1

3
½11ðN − 6Þ − 2NfðN2 − 4N þ 3Þ�: ð8:9Þ

This one-loop coefficient is negative if Nf > Nf;b1z;k3b,
where

Nf;b1z;k3b ¼
11ðN − 6Þ

2NðN2 − 4N þ 3Þ : ð8:10Þ

The value of Nf;b1z;k3b is less than 1 for all N in the relevant
range, N ≥ 8. Therefore, the AF constraint does not allow
any nonzero value of Nf. We recall that Nf must be
nonzero in order for the theory to be a chiral gauge theory,
since if Nf ¼ 0, then the theory degenerates into decoupled
purely gluonic sectors. Thus, in neither of these theories
with rank-3 fermion representations and M ¼ N − 3 or
M ¼ N − 6 is the SUðMÞ gauge interaction asymptotically
free. Similar comments apply to SUðNÞ ⊗ SUðMÞ ⊗ Uð1Þ
theories with fermions in sets of representations containing
antisymmetric and symmetric rank-k tensor representations
of the non-Abelian gauge groups with k ≥ 4. As was
discussed above, the requirement of asymptotic freedom
of both of the non-Abelian gauge interactions was imposed
because of (i) the purpose of studying the strong-coupling
behavior of one or both of these interactions as the theory
evolves from the UV to the IR and (ii) the necessity to be
able to carry out a self-consistent perturbative calculation of
the beta functions for these interactions at a reference
scale, μUV.

IX. CONCLUSIONS

In nature, the SUð2ÞL ⊗ Uð1ÞY electroweak symmetry is
broken not only by the vacuum expectation value of the
Higgs field, but also dynamically, by the hq̄qi quark
condensates produced by the color SUð3Þc gauge inter-
action. Moreover, sequential self-breakings of strongly
coupled chiral gauge symmetries have also been used in
models of dynamical generation of fermion masses. In this
paper we have investigated a chiral gauge theory that serves
as a theoretical laboratory that exhibits both induced
breaking of a weakly coupled gauge symmetry via con-
densates formed by a different, strongly coupled gauge
interaction, and also self-breaking of strongly coupled
chiral gauge symmetries. We have studied an asymptoti-
cally free chiral gauge theory with the direct-product gauge
group SUðNÞ ⊗ SUðN − 4Þ ⊗ Uð1Þ and chiral fermion
content consisting of Nf flavors of fermions transforming
according to the representations ð½2�N; 1ÞN−4 þ ð½1̄�N;
½1̄�N−4Þ−ðN−2Þ þ ð1; ð2ÞN−4ÞN . One of the reasons for inter-
est in this theory is that it may be viewed as a combination
of two separate (anomaly-free) chiral gauge theories,
namely (i) an SUðNÞ theory with fermion content consist-
ing of Nf flavors of fermions in the ½2�N and N − 4 copies
of ½1̄�N , and (ii) an SUðMÞ theory with fermions consisting
of Nf flavors of fermions in the ð2ÞM and M þ 4 copies of
½1̄�M, with M ¼ N − 4, which also incorporates a U(1)
gauge symmetry. We have analyzed the UV to IR evolution
of this theory and have investigated patterns of possible
bilinear condensate formation. A detailed discussion of the
lowest nondegenerate case, N ¼ 6 was given. This analysis
involved a sequential construction and analysis of low-
energy effective field theories that describe the physics as
the theory evolves through various condensation scales and
certain fermions and gauge bosons pick up dynamically
generated masses. Our findings provide new insights into
the phenomenon of induced breaking of a weakly coupled
gauge symmetry by a different, strongly coupled gauge
interaction, and self-breaking of a strongly coupled chiral
gauge symmetry.
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