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We consider a modified cosmological history in which the presence of beyond-the-Standard-Model
physics causes the weak gauge sector, SUð2ÞL, to confine before it is Higgsed. Under the assumption of
chiral symmetry breaking, quark and lepton weak doublets form condensates that break the global
symmetries of the Standard Model, including baryon and lepton number, down to a U(1) subgroup under
which only the weak singlet fermions and Higgs boson transform. The weakly coupled gauge group
SUð3Þc × Uð1ÞY is also broken to an SUð2Þc × Uð1ÞQ gauge group. The light states include (pseudo-)
Goldstone bosons of the global symmetry breaking, mostly elementary fermions primarily composed of the
weak singlet quarks and leptons, and the gauge bosons of the weakly coupled gauge group. We discuss
possible signatures from early Universe cosmology including gravitational wave radiation, topological
defects, and baryogenesis.
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I. INTRODUCTION

Quarks and leptons can interact via the weak force,
mediated by the W- and Z-bosons. The Standard Model of
elementary particles (SM) describes the electroweak force
by a quantum field theory that is constructed from the
gauge group SUð2ÞL × Uð1ÞY and is in the Higgs phase
[1–3]. Higgsing screens weak isospin at the weak scale and
leaves only weakly coupled electromagnetic long-range
interactions. The theory is weakly coupled in the infrared,
which agrees extremely well with measured quark and
lepton interactions. By contrast the strong force, which
mediates interactions among the quarks, is strongly coupled
in the infrared, leading to the confinement of the constitu-
ent quarks into composite states, namely mesons and
baryons. In this article, we study the weak-confined
Standard Model (WCSM) in which the SUð2ÞL component
of the electroweak force is strongly coupled and the weak
isospin is confined in composite particles.
Confinement of SUð2ÞL was studied in the pioneering

work of Abbott, Farhi, and others in the 1980’s [4–7]
(also [8–10]) as an alternative to the SM. Assuming that
confinement occurs without chiral symmetry breaking, they
argued that the known “elementary particles” are actually

composite particles and that the predicted low-energy
fermion spectrum agrees well with the measured quark
and lepton masses. However, this scenario is now ruled out
by precision measurements of the electroweak sector [11],
and it would appear that the weak force is not confining in
our present day Universe.
Nevertheless, when we study particle physics in a

cosmological context, the system can exist in different
phases at different times, corresponding to different temper-
atures of the primordial plasma. We explore a scenario in
which the SUð2ÞL weak force was strongly coupled in
the early Universe, when the plasma temperature was
T ≫ 100 GeV, but became weakly coupled and Higgsed
well before the epoch of nucleosynthesis, T ∼MeV.
Although we are unable to access the weak-confined phase
in the laboratory today, e.g., at collider experiments, the
Universe may contain relics from this period in its cosmic
history, such as gravitational waves and the baryon asym-
metry of the Universe.
Our work shares some common elements with several

previous studies of SM exotic phases, their associated
phase transitions, and their imprints on cosmology. As we
have already mentioned above, SUð2ÞL confinement was
studied in Refs. [4–8], and we present a detailed compari-
son of our work with theirs in Sec. VI. The authors of
Refs. [12,13] studied a variation of the SM in which the
Higgs field is absent, and the electroweak force is Higgsed
by the quark chiral condensates, and Ref. [14] points out a
dark matter candidate in a related model. Delaying the
electroweak phase transition (EWPT) to coincide with the
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chiral phase transition of QCD was studied as a means of
generating the baryon asymmetry of the Universe [15–17]
(see also Ref. [18]) and a stochastic background of
gravitational waves [19]. Likewise, an early period of
QCD confinement, which triggers a first order EWPT,
was proposed as a possible mechanism of baryogenesis
[20]. Moreover, early QCD phase transitions have been
studied in order to open the axion parameter space [21,22].
We will see that SUð2ÞL confinement in the WCSM

causes baryon number and lepton number to be sponta-
neously broken, which is signaled by the formation of
lepton-quark and quark-quark condensates, hlqi and hqqi.
The violation of baryon number is a necessary condition to
explain the cosmological excess of matter over antimatter,
and therefore one may expect that the WCSM can naturally
accommodate baryogenesis. However, when we discuss the
cosmological implications of weak confinement in Sec. V,
we will see that the viability of baryogenesis remains
unclear.
This article is structured as follows. In Sec. II we provide

an example of the new physics that could lead to weak
confinement in the early Universe. In order to develop
intuition for confinement in an SU(2) gauge theory, we next
study three simplified models in Sec. III. Turning to the
WCSM in Sec. IV, we investigate the symmetry breaking
pattern, calculate the spectrum of composite particles, and
discuss their interactions. We discuss the possible cosmo-
logical implications in Sec. V and highlight directions for
future work. We contrast the WCSM with Abbot and
Farhi’s earlier work on SUð2ÞL confinement in Sec. VI and
conclude in Sec. VII.

II. CONFINEMENT OF THE WEAK FORCE

What new physics might allow the SUð2ÞL weak force to
confine in the early Universe? In the context of QCD, early
color confinement has been studied previously in
Refs. [21,22] (see also Ref. [20]), and we can straightfor-
wardly adapt that mechanism for our purposes. The
essential idea is to link the strength of the weak force
with the expectation value of a scalar field that experiences
a phase transition in the early Universe.
Let φ̂ðxÞ be a real scalar field, which we call the

modulus field, and suppose that it interacts with the weak
force through a dimension-five operator. The relevant
Lagrangian is

L ¼ −
1

2

�
1

g2
−

φ̂

M

�
Tr½WμνWμν� − Vðφ̂Þ; ð2:1Þ

where g is the SUð2ÞL gauge coupling, M is an energy
scale parameter,W is the SUð2ÞL field strength tensor, and
V is the scalar potential of φ̂. In the limit M → ∞ the
modulus field decouples from the Standard Model. We
will consider M > TeV in order to avoid disrupting the

remarkable agreement between electroweak-precision
theory and measurement.
In general the scalar modulus may have a nonzero

expectation value, hφ̂i, and in this background, the strength
of the SUð2ÞL interaction is controlled by the effective
coupling,

1

g2eff
¼ 1

g2
−
hφ̂i
M

: ð2:2Þ

If hφ̂i ≪ M=g2 then geff ≈ g, but if hφ̂i ∼M=g2 then the
weak force is stronger, geff ≳ g. The value of hφ̂i need not
remain fixed throughout the cosmic history, and we
demonstrate this point in the paragraphs below. Thus we
will assume that hφ̂i was large in the early Universe,
corresponding to geff > g, but that it evolved to a small
value, where geff ≈ g, at some point before the epoch of big
bang nucleosynthesis. In this way, laboratory probes of the
weak force only access geff ≈ g, whereas cosmological
probes of the prenucleosynthesis era may uncover evidence
for geff > g in the early Universe.
As discussed, the effective strength of the weak inter-

action, geff , varies with time through the scalar field
modulus, hφ̂i, but it also varies through the cosmological
plasma temperature, T. At temperatures T > 100 GeV, the
hot Standard Model plasma contains SUð2ÞL-charged
quarks and leptons, which interact via the weak force.
As the Universe expands and the cosmological plasma
cools, these scatterers carry less kinetic energy, and they
probe the weak force at larger-and-larger length scales. This
scale dependence of the weak force is described by the
equations of renormalization group flow, and its effects are
captured by treating g as a running coupling that is tiny at
small length scales in the high-energy ultraviolet (UV)
regime and grows bigger at large length scales in the low-
energy infrared (IR) regime. In the Standard Model the
weak force was Higgsed at the electroweak phase transition
when the plasma temperature was T ∼ v ∼ 100 GeV, cor-
responding to g2=4π ≪ 1. However, if hφ̂i ∼M=g2 at early
times, then the weak coupling may run to a nonperturba-
tively large value, g2eff=4π ¼ Oð4πÞ, while the Higgs field’s
expectation value remains zero. In that case the Standard
Model enters the confined-SUð2ÞL phase, which we call
the WCSM, and we study the properties of this phase in the
remainder of this article. The proposed modification to the
gauge coupling’s running is schematically illustrated
in Fig. 1.
One can imagine several different explanations for the

nontrivial dynamics of φ̂. On the one hand, the potential
Vðφ̂Þ may have a local minimum at hφ̂i ≠ 0, which traps
the field until it is either released, for instance by the
changing temperature of the cosmological plasma, or it
escapes through a first order phase transition. Alternatively,
the potential Vðφ̂Þ may simply be very shallow such that
the field φ̂ is “frozen by Hubble drag” at its nonzero value
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until a time such that the Hubble parameter, H, decreases
below its effective mass, i.e., H < mφ̂ ∼ jV 00j1=2.1 If the
Universe is radiation-dominated at this time, then T ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mφ̂Mpl

p
where Mpl is the reduced Planck mass. For

instance if mφ̂ ∼ 10−5 eV then T ∼ 100 GeV. Once φ̂ is
released, it can roll toward the minimum of its potential,
located at hφ̂i ¼ 0, where it oscillates and decays.
In the remainder of this article, we do not assume any

particular model for inducing confinement of the weak
force. Instead we assume that the SUð2ÞL weak interaction
becomes nonperturbatively large at a scaleΛW ≳ TeV in the

early Universe at a time before the electroweak interaction
is Higgsed and before color is confined.

III. BUILDING UP TO THE WCSM

Our goal is to study the weak-confined Standard Model,
which has the same particle content as the SM, but in which
the SUð2ÞL weak force is confined. As weak confinement
leads to a dramatic departure from the usual SM dynamics,
we use this section to put together the pieces of the SUð2ÞL-
confined SM bit-by-bit. First, we consider an SU(2) gauge
theory with doublet fermions followed by the addition of a
doublet scalar, and we finally consider singlet fermions.

A. Model 1: Include only SUð2ÞL-doublet fermions

We consider a gauge theory based on the SU(2)
symmetry group, which we denote by SUð2ÞL, anticipating
the connection with SM weak isospin. The force carriers
are represented by the vector fieldWμðxÞ, which transforms
in the adjoint of SUð2ÞL, and the matter is represented by
2Nf flavors

2 of left-chiral Weyl fermion fields, denoted by3

ψ iðxÞ for i ¼ 1; 2;…; 2Nf, which separately transform in
the fundamental representation of SUð2ÞL. The fermions
are assumed to have no mass terms, and the Lagrangian is
simply

L1jUV ¼
X2Nf

i¼1

ψ†
i iσ̄

μDμψ i −
1

2g2
Tr½WμνWμν�; ð3:1Þ

where Dμψ i ¼ ∂μψ i − iWμψ i is the covariant derivative of
ψ i, g is the running SUð2ÞL gauge coupling at the UV scale,
andWμν is the SUð2ÞL field strength tensor.4 In Sec. IV we
will take 2Nf ¼ 12 to count the SM’s nine quark doublets
and three lepton doublets, but here we keep the analysis
more general.
The theory of Eq. (3.1) has a Uð2NfÞψ flavor symmetry

under which the ψ i transform in the fundamental repre-
sentation and Wμ transforms as a singlet. Using the

FIG. 1. The strength of the SUð2ÞL weak force is parametrized
by the fine structure constant αW ¼ g2eff=4π, which varies with
the temperature of the cosmological plasma, T, according to the
renormalization group flow. The solid-green line illustrates
the Standard Model prediction: the weak force grows stronger
(smaller α−1W ) as the plasma cools (smaller T), but it remains weak
(α−1W ≫ 1=4π) when the theory is Higgsed at T ∼ v ∼ 100 GeV.
Instead, we are interested in the weak-confined Standard Model,
corresponding to the dashed-green line: the nonzero modulus
field makes the weak force stronger (smaller α−1W ) at early times
(large T) such that αW reaches ∼4π at T ∼ ΛW , and the theory
enters the SUð2ÞL-confined phase.

1It is worth remarking that the modulus field’s effective
potential is a sum of Vðφ̂Þ and a correction induced by confine-
ment, which isΔV ∼ Λ4

W . The confinement scale can be written as
Λ4

W ∼ Λ4
UVe

−8π2=g2eff where ΛUV is a high-energy input scale and
geff depends on φ̂ through Eq. (2.2). The corresponding mass
correction, Δmφ̂ ∼ 4π2Λ2

W=M, may be larger than H ∼ T2=Mpl at
the time of confinement when T ∼ ΛW , which would cause φ̂ to
be released from its Hubble drag before the system spends much
time in the confined phase. This outcome can be avoided by
taking M > Mpl or possibly by tuning Vðφ̂Þ against ΔV.

2An even number of fermions (2Nf) is required to avoid
an anomaly in the SUð2ÞL gauge group. We assume Nf > 1, but
see Ref. [23] for an analysis of Nf ¼ 1.

3Here and throughout the text we suppress the spinor and
SUð2ÞL gauge indices when appropriate, showing instead only
the flavor indices.

4In general the Lagrangian will also contain a topological term,
Lθ ¼ −ðθ=16π2ÞTr½WμνW̃μν� where θ is the vacuum angle.
However, as we will discuss momentarily, this theory has an
anomaly in the axial ψ -number and no other explicit breaking of
this symmetry, which makes it possible to perform a field
redefinition and remove the topological term from the Lagran-
gian, implying that θ cannot affect any observable. Analogously
the weak vacuum angle can be removed from the SM Lagrangian
through the baryon- or lepton-number anomalies [24]. Therefore,
without a loss of generality, we will work in the basis where the
topological term is absent.

PHASE OF CONFINED ELECTROWEAK FORCE IN THE EARLY … PHYS. REV. D 100, 055005 (2019)

055005-3



isomorphism Uð2NfÞψ ¼ SUð2NfÞψ × Uð1Þψ , we can
assign ψ a charge qψ under the Uð1Þψ group whose
conserved charge is axial-ψ -number. The SUð2ÞL gauge
interactions induce an anomaly in Uð1Þψ [25], breaking it to
the Z2Nf

subgroup. The transformation properties of the
various fields are summarized in Table I.
It is illustrative to draw a contrast with the flavor

symmetry of QCD [26]. In the limit that the up, down,
and strange quarks and antiquarks are massless, we would
have Nf ¼ 3 flavors of left-chiral Weyl fermions trans-
forming in the fundamental of SUð3Þc color, 3, and Nf ¼ 3

additional flavors (of left-chiral Weyl fermions) transform-
ing in the antifundamental, 3̄. The flavor symmetry is
UðNfÞ×UðNfÞ ¼ SUðNfÞV ×Uð1ÞV ×SUðNfÞA ×Uð1ÞA
where the conserved charge associated to Uð1ÞV is baryon
number and the anomalous charge associated with Uð1ÞA is
axial-baryon number. The situation in the theory with
gauged SUð2ÞL is different because the fundamental
representation is pseudoreal, i.e., 2 ¼ 2̄, which allows
the 2Nf fields to be collected into a single flavor multiplet
with the larger Uð2NfÞ flavor symmetry instead.
The SUð2ÞL force in Eq. (3.1) is not Higgsed, as in the

SM, but rather may become strongly coupled in the IR. To
analytically understand the evolution towards strong cou-
pling, one can calculate the gauge coupling’s beta function
βg, and a value βg < 0 implies that g grows in the IR.
Calculating βg at one-loop order in perturbation theory
gives βg ¼ ðb=16π2Þg3 with b ¼ −22=3þ 2Nf=3 [27].
A theory with Nf < 11 has βg < 0, and this perturbative
analysis suggests that such a theory is strongly coupled
in the IR; that is, g2=4π grows as large as 4π as the
energy scale decreases toward ΛW. This perturbative
analysis is confirmed by numerical lattice studies for
small Nf while Nf ¼ 6 is marginal and near the conformal
window [28–32].

The strong coupling is assumed to imply that SUð2ÞL
charge is confined, in analogy with QCD’s color confine-
ment.5 Consequently the d.o.f. in the low-energy confined
phase are composite states, analogs of the mesons and
baryons of QCD. Specifically, the spectrum consists of
several massless Goldstone bosons Πa, associated with the
assumed SUð2NfÞψ global flavor symmetry, a single
massive pseudo-Goldstone boson η0, associated with the
anomalous Uð1Þψ global flavor symmetry, and a tower of
heavy resonances with masses around the confinement
scale, mres ∼ ΛW. These heavy resonances include meson-
like scalars, vectors, and glueball-like bound states of the
Wμ boson. As these resonances are expected to be heavy
and unstable, we can assume that they decay shortly after
SUð2ÞL is confined, and we focus on the properties of the
light states.
Collectively the lowest-lying, mesonlike states Πa

and η0 are encoded in the scalar fields ΣijðxÞ, which
have the same symmetry properties as the fermion
bilinears,

Σij ∼ ψ iεψ j: ð3:2Þ

Here the totally antisymmetric tensor, ε, with ε12 ¼ 1,
contracts the (suppressed) SUð2ÞL indices such that
Σij is an SUð2ÞL singlet. Under the flavor symmetries, Σ
transforms as an antisymmetric rank-2 tensor of
SUð2NfÞψ with charge 2qψ under Uð1Þψ. We assume that
Σ acquires a nonzero vacuum expectation value, and
the global SUð2NfÞψ × Uð1Þψ symmetry is spontaneously
broken.
The symmetry breaking pattern cannot be deter-

mined through a perturbative calculation, since after all,
symmetry breaking is a consequence of nonperturbative
charge confinement. However, this simple model has
been studied using nonperturbative, numerical lattice tech-
niques [33,34] for Nf ¼ 2 (see also Refs. [28–32]). Those
studies conclude that SUð2NfÞψ is broken to Spð2NfÞψ ,
which is the naive expectation from chiral symmetry
breaking in analogy with QCD [35,36]. Therefore, we will
adopt the results of the lattice studies and assume that the
unbroken global flavor symmetry is the Spð2NfÞψ group.
This pattern of symmetry breaking is obtained if the
antisymmetric field ΣijðxÞ acquires a vacuum expectation
value hΣiji ¼ ðΣ0Þij that satisfies

Σ†
0Σ0 ¼ Σ0Σ

†
0 ¼ 1 ⇔ SUð2NfÞψ=Spð2NfÞψ : ð3:3Þ

TABLE I. This table summarizes the charge assignments for the
sequence of models in Sec. III. Note that the N- and ðN2 − NÞ-
dimensional representations of SUðNÞ are the fundamental and
antisymmetric representations, respectively. When applied to the
WCSM in Sec. IV we take 2Nf ¼ 12 and Nξ ¼ 21.

SO(4) Uð2NfÞψ UðNξÞξ
SUð2ÞL SUð2Þϕ SUð2NfÞψ Uð1Þψ SUðNξÞξ Uð1Þξ

ψ 2 1 2Nf qψ 1 0
Wμ 3 1 1 0 1 0
ϕ=φ 2 2 1 0 1 0
ξ 1 1 1 0 Nξ qξ

Σ 1 1 2N2
f − Nf 2qψ 1 0

Φ 1 1 1 0 1 0
Ψ 1 2 2Nf qψ 1 0
ξ 1 1 1 0 Nξ qξ

5If the theory instead has a strongly coupled, IR-stable fixed
point, as suggested by Ref. [31], then there is no charge
confinement, and a different analysis is required to determine
the properties and interactions of the low-energy degrees of
freedom (d.o.f.).
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Without loss of generality, we work in the basis where Σ0 is
a block diagonal matrix with Nf blocks of ε along the
diagonal.
Due to the spontaneous symmetry breaking in Eq. (3.3),

Goldstone’s theorem implies that there will be massless
Goldstone bosons in the spectrum of low-lying, mesonlike
states. Note that SUð2NfÞψ has 4N2

f − 1 generators,
which we denote by Ta

ij and Xa
ij such that Ta

ij for a ¼
1; 2;…; 2N2

f þ Nf are the generators of the unbroken
subgroup Spð2NfÞψ and Xa

ij for a¼1;2;…;2N2
f−Nf−1

are the generators of the broken symmetries. The Uð1Þψ
factor is also broken by Eq. (3.3). Thus we expect the
spectrum to contain 2N2

f − Nf − 1 massless Goldstone
bosons, denoted by Πa, and one massive pseudo-
Goldstone boson, denoted by η0; the notation is chosen
to draw an analogy with the pions and η0 meson of
QCD. Since Uð1Þψ is anomalous, the η0 mass is lifted
by SUð2ÞL-instanton effects (see below).
In the confined phase, the low-energy physics can be

described with a nonlinear sigma model,

L1jIR ¼ f2

4
Tr½∂μΣ†∂μΣ� þ κΛ2

Wf2Re½detΣ�; ð3:4Þ

where f is the decay constant, κ is an Oð1Þ dimensionless
number, and ΛW ∼ 4πf is the confinement scale. As we
have discussed above, the antisymmetric complex scalar
field ΣijðxÞ parametrizes the massless Goldstone boson
fields ΠaðxÞ and the pseudo-Goldstone boson field η0ðxÞ.
We make this connection explicit by writing

Σ ¼ exp½iη0= ffiffiffiffiffiffi
Nf

p
f� exp

�X
a

2iXaΠa=f

�
Σ0; ð3:5Þ

where Xa
ij are the 2N2

f − Nf − 1 broken generators of
SUð2NfÞ, and the vacuum expectation value Σ0 satisfies
Eq. (3.3). The factors of 2 and

ffiffiffiffiffiffi
Nf

p
are included to

ensure canonical normalization of kinetic terms and the
generators are normalized such that Tr½XaXb� ¼ δab=2.
The last term of Eq. (3.4) arises from instanton effects

via the chiral anomaly of Uð1Þψ . The anomaly explicitly
breaks the Uð1Þψ symmetry to its Z2Nf

subgroup and
thereby lifts the mass of the η0 through instanton effects,
in analogy with the Uð1ÞA problem of QCD [37]. One
calculates the η0 mass by substituting Eq. (3.5) into
Eq. (3.4) and expanding to quadratic order; doing so
gives m2

η0 ¼ 4κNfΛ2
W.

B. Model 2: Add an SUð2ÞL-doublet scalar
Let us next consider an extension of the first model

that is a closer approximation to the Standard Model
particle content, by introducing an analog of the Higgs
doublet field. Consider the complex scalar field ϕðxÞ that

transforms under SUð2ÞL in the fundamental representa-
tion. The Lagrangian of the UV d.o.f. can be written as (see
also Ref. [38])

L2jUV ¼ L1jUV þ jDμϕj2 −Uðϕ�ϕÞ; ð3:6Þ

where Dμϕ ¼ ∂μϕ − iWμϕ is the covariant derivative,
and U is a potential for the scalar ϕ. We require the
Lagrangian to be invariant under SUð2ÞL, which forces U
to be a function of ϕ�ϕ only, since ϕεϕ is identically
zero, and forbids renormalizable interactions between ϕ
and the ψ i.
The complex SUð2ÞL-doublet field ϕ consists of

4 real d.o.f., and in fact Eq. (3.6) respects an SO(4)
symmetry. It is useful to apply the isomorphism SOð4Þ ¼
SUð2ÞL × SUð2Þϕ where the first factor is identified as the
gauged subgroup, and the second factor is a new global
flavor symmetry which is the analog of custodial SU(2) in
the Standard Model. Thus the global flavor symmetry is
enlarged to Uð2NfÞψ × SUð2Þϕ. It is useful to recall that an
SUð2ÞL-doublet field ϕðxÞ can also be represented as φaðxÞ
with [39]

φ1 ¼ εϕ and φ2 ¼ −ϕ�; ð3:7Þ

where φ transforms as 2 under each factor of SUð2ÞL×
SUð2Þϕ. Using this equivalent representation of the
SUð2ÞL-doublet scalar, we can write the Lagrangian as

L2jUV ¼ L1jUV þ 1

2

X
a¼1;2

jDμφaj2 − Uðjφj2=2Þ; ð3:8Þ

where Dμφa¼∂μφaþiWμφa, and we have used the short-
hand notation jφj2 ≡ φ†

1φ1 þ φ†
2φ2.

From the low energy perspective, we have extended
the spectrum by additional low-lying states, correspond-
ing to a new real scalar field ΦðxÞ and a set of new Weyl
fermions ΨiaðxÞ for i ¼ 1; 2;…; 2Nf and a ¼ 1, 2, which
have the same symmetry properties as the following
bilinears:

Φ ∼ ϕ�ϕ ð3:9aÞ

Ψia ∼ ψ iφa; ð3:9bÞ

which are all singlets under SUð2ÞL. The composite
scalar, Φ, is a total singlet, while the composite fermions,
Ψia, transform as fundamentals under the SUð2NfÞψ
flavor symmetry, carry charge qψ under the Uð1Þψ sym-
metry, and transform as a 2 under the SUð2Þϕ custodial
symmetry as summarized in Table I. Note that Φ is a
singlet under the custodial SU(2), and there does not
exist an analogous triplet state; only the custodial anti-
symmetric combination is allowed.
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The low energy physics is described by

L2jIR ¼ L1jIR þ
X2Nf

i¼1

X
a¼1;2

Ψ†
iaiσ̄

μ∂μΨia

þ 1

2
∂μΦ∂μΦ − Λ2

Wf2VðΦ=fÞ

−
X2Nf

i;j¼1

X
a;b¼1;2

½y0ΛWε
abΨiaΣ

†
ijΨjb þ H:c:�

−
X2Nf

i;j¼1

X
a;b¼1;2

½ðy00ΛW=fÞεabΨiaΣ
†
ijΨjbΦþ H:c:�;

ð3:10Þ
where f is the decay constant, ΛW ∼ 4πf is the confine-
ment scale, V is a potential for the composite scalar Φ,
and y0 and y00 are Yukawa couplings. The 4π counting is
performed using naïve dimensional analysis [40–42],
which implies that y0, y00, and the dimensionless coef-
ficients in V are Oð1Þ numbers. We assume that the
potential U in Eq. (3.6) is a small perturbation on V,
such that the scalar’s mass is of order mΦ ∼ ΛW. The
potential V may also induce a nonzero vacuum expect-
ation value for Φ, which is expected to be hΦi ∼ f, but
since Φ is a singlet, this vacuum expectation value does
not signal any spontaneous symmetry breaking. The y0
term, which is a Yukawa interaction, respects the
Uð2NfÞψ × SUð2Þϕ flavor symmetry, and when Σij

acquires a nonzero vacuum expectation value (3.3), it
induces a mass term for the Ψia. Together Ψia combine in
pairs to form 2Nf Dirac fermions, which are all degen-
erate and have a mass mΨ ¼ y0ΛW.

C. Model 3: Add SUð2ÞL-singlet fermions

As a final iteration, we introduce a set of SUð2ÞL-singlet,
left-chiral Weyl fermion fields, denoted as ξiðxÞ for
i ¼ 1; 2;…; Nξ. Note that Nξ may be either even or odd,
since these fields do not contribute to the SUð2ÞL anomaly.
As we build up to the SM, these fields will correspond to
the Nξ ¼ 21 SUð2ÞL-singlet quark and lepton fields.
We require the theory to respect an extended global

symmetry group, Uð2NfÞψ × SUð2Þϕ × UðNξÞξ where the
ξi transform in the fundamental representation of the
UðNξÞξ and the ψ i, Wμ, and ϕ are singlets; see Table I.
This symmetry forbids masses such as μijξiξj and inter-
actions such as λijϕψ iξj. Therefore the Lagrangian for the
high-energy d.o.f. is simply

L3jUV ¼ L2jUV þ
XNξ

i¼1

ξ†i iσ̄
μ∂μξi: ð3:11Þ

Moreover, these SUð2ÞL-singlet fermions do not feel the
strong SUð2ÞL force and therefore do not participate in

confinement. Thus the Lagrangian for the low-energy d.o.f.
is also simply

L3jIR ¼ L2jIR þ
XNξ

i¼1

ξ†i iσ̄
μ∂μξi: ð3:12Þ

These singlet fermions are entirely inert and decoupled.
In the next section we find that breaking the large global
flavor symmetry allows for Yukawa interactions, such as
ΔL ∼Ψξ and ΨξΦ. These interactions will have interest-
ing consequences for the spectrum in the IR.

IV. THE WEAK-CONFINED STANDARD MODEL

Let us now investigate weak isospin confinement in
the WCSM. The UV particle content and symmetries of
the WCSM are identical to the SM, shown in Table II.
In particular the SM symmetry group is

fSUð3Þc × SUð2ÞL × Uð1ÞYggauge
× fUð1ÞBþLganomaly × fUð1Þ3B=3−Ligglobal; ð4:1Þ

where the Uð1ÞBþL factor is anomalous under the
SUð2ÞL × Uð1ÞY gauge interactions. The key difference
between the WCSM and the SM has to do with the strength
of the SUð2ÞL weak force, which is assumed to be larger in
the WCSM, g → geff ≫ g, such that weak isospin is
confined in the IR. Therefore, whereas the SM predicts
that SUð2ÞL is Higgsed by the vacuum expectation value of
H, the WCSM predicts that the SUð2ÞL weak force is
confined in the IR and the SUð2ÞL-doublet fields (qi, li, and
H) form composite states.
This section contains the main results of our paper. To

simplify the analysis, we will begin in Sec. IVA by setting
to zero the strong coupling gs ¼ 0, the hypercharge

TABLE II. This table shows the WCSM particle content and
charge assignments. The index i ∈ f1; 2; 3g labels the three
generations of fermions. There are four global charges, corre-
sponding to Uð1ÞBþL and Uð1ÞB=3−Lj for j ¼ 1, 2, 3. All fermions
are represented by left-chiral Weyl spinor fields in the two-
component notation [43].

Gauge Global

SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞBþL
Uð1ÞB=3−Lj

qi 3 2 1=6 1=3 1=9
Ui 3̄ 1 −2=3 −1=3 −1=9
Di 3̄ 1 1=3 −1=3 −1=9
li 1 2 −1=2 1 −δij
Ei 1 1 1 −1 δij
H 1 2 1=2 0 0
gμ 8 1 0 0 0
Wμ 1 3 0 0 0
Bμ 1 1 0 0 0
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coupling g0 ¼ 0, and the Yukawa couplings λYuk ¼ 0.
We reintroduce these couplings in Sec. IV B where
they are treated as perturbations around an enhanced
symmetry point.

A. Turn off strong, hypercharge,
and Yukawa couplings

Upon taking gs ¼ g0 ¼ λYuk ¼ 0, the symmetry group of
the SM Lagrangian is enlarged from Eq. (4.1) to

fSUð2ÞLggauge × fUð1Þψganomaly

× fSUð12Þψ × SUð2Þϕ × Uð21Þξgglobal; ð4:2Þ

where the Uð1Þψ factor is anomalous under the SUð2ÞL
gauge interaction. To make these symmetries manifest in
the Lagrangian, it is useful to collect the fields together into
the following multiplets:

ψ ¼ fl1; qR1 ; qG1 ; qB1 ;…;…g;
φ ¼ fεH;−H�g;
ξ ¼ fE1; UR̄

1 ; U
Ḡ
1 ; U

B̄
1 ; D

R̄
1 ; D

Ḡ
1 ; D

B̄
1 ;…;…g; ð4:3Þ

where ψ i for i ¼ 1; 2;…; 12 contains the SUð2ÞL-doublet
fermions, φa for a ¼ 1, 2 contains the SUð2ÞL-doublet
Higgs boson, and ξi for i ¼ 1; 2;…; 21 contains the
SUð2ÞL-singlet fermions. The subscript 1 indicates first-
generation fields, the dots correspond to the second and
third generations, the SUð2ÞL index is suppressed, and the
SUð3Þc indices are fR;G; Bg and fR̄; Ḡ; B̄g. The symmetry
transformation properties of these fields are shown in
Table I where 2Nf ¼ 12 and Nξ ¼ 21; specifically, the
SUð2ÞL-doublet fermions transform as a ψ i ∼ 12 of
Uð12Þψ , the SUð2ÞL-doublet Higgs boson transforms as
a φa ∼ 2 of the “custodial” SUð2Þϕ, and the SUð2ÞL-singlet
fermions transform as a ξi ∼ 21 of Uð21Þξ.
Using the multiplets in Eq. (4.3), the WCSM Lagrangian

(for gs ¼ g0 ¼ λYuk ¼ 0) is written compactly as

LWCSMjUV ¼
X12
i¼1

ψ†
i iσ̄

μDμψ i þ
X21
i¼1

ξ†i iσ̄
μ∂μξi

−
1

2g2eff
Tr½WμνWμν� þ

X
a¼1;2

1

2
Dμφ†

aDμφa

−
1

2
μ2jφj2 − 1

4
λjφj4: ð4:4Þ

Here we have written the SUð2ÞL gauge coupling as
geff > g, which distinguishes the WCSM from the SM.
Additionally, Dμψ i¼∂μψ i−iWμψ i is the covariant deriva-
tive of the doublet fermions, Dμφa ¼ ∂μφa þ iWμφa is the
Higgs field’s covariant derivative, Wμν is the SUð2ÞL field
strength tensor, μ2 is the Higgs mass parameter, λ is the

Higgs self-coupling, and jφj2 ≡ φ†
1φ1 þ φ†

2φ2. We note that
the gluon and hypercharge bosons are present but
decoupled due to the assumption that their gauge couplings
are zero valued.
By neglecting the strong, hypercharge, and Yukawa

interactions, we can write the Lagrangian as in Eq. (4.4),
which now bears a marked similarity to the models that we
have already discussed in Sec. III for Nf ¼ 6 and Nξ ¼ 21.
As before, we assume that the weak force confines, and the
chiral symmetry is spontaneously broken. By applying
what we learned in Sec. III, we can immediately infer
the effects of SUð2ÞL-charge confinement in the WCSM.
The SUð2ÞL-doublet fermions condense in pairs to form
composite scalars, Σij ∼ ψ iεψ j; the doublet Higgs boson
condenses with the doublet fermions to form composite
fermions, Ψia ∼ ψ iφa; the Higgs boson condenses in pairs
to form another composite scalar, Φ ∼

P
aφ

†
aφa ∼H†H;

and the SUð2ÞL-singlet fermions, ξi, naturally do not con-
fine but (most of them) acquire masses indirectly through
weak-isospin confinement as outlined in Sec. IV B. The
symmetry transformation properties of these low-energy
d.o.f. are also shown in Table I.
By carrying over the results from Sec. III, the Lagrangian

describing the low-energy d.o.f. of the WCSM can be
written as

LWCSMjIR ¼
X12
i¼1

X2
a¼1

Ψ†
iaiσ̄

μ∂μΨia þ
X21
i¼1

ξ†i iσ̄
μ∂μξi

−
X12
i;j¼1

X2
a;b¼1

½y0ΛWε
abΨiaΣ†

ijΨjb þ H:c:�

−
X12
i;j¼1

X2
a;b¼1

½ðy00ΛW=fÞεabΨiaΣ
†
ijΨjbΦþ H:c:�

þ f2

4
Tr½∂μΣ†∂μΣ� þ κΛ2

Wf2Re½detΣ�

þ 1

2
∂μΦ∂μΦ − Λ2

Wf2VðΦ=fÞ: ð4:5Þ

Recall that y0, y00, and κ are Oð1Þ dimensionless coef-
ficients and ΛW ∼ 4πf is the scale at which SUð2ÞL
weak isospin confines. This Lagrangian describes an
effective field theory of the low-energy d.o.f. where we
have integrated out a tower of resonances with masses
mres ∼ ΛW, and we do not show all the nonrenormalizable
operators that they generate. The anomalous Uð1Þψ part of
Eq. (4.2) is broken by the determinant term, for κ ≠ 0,
which arises from nonperturbative instanton effects in the
confined phase.
As we have discussed already in Sec. III, the confine-

ment is accompanied by the spontaneous breaking of
the Uð12Þψ ¼ SUð12Þψ × Uð1Þψ global symmetry from
Eq. (4.2). The scalar condensate field ΣðxÞ acquires a
nonzero vacuum expectation value, Σ0 ¼ hΣi, and in order

PHASE OF CONFINED ELECTROWEAK FORCE IN THE EARLY … PHYS. REV. D 100, 055005 (2019)

055005-7



to achieve the anticipated symmetry breaking pattern,
SUð12Þψ=Spð12Þψ , we should have Σ†

0Σ0¼1 [33,34,44].
As SUð12Þψ has 143 generators and Spð12Þψ has 78
generators, then the number of broken generators is 65,
which equals the number of massless Goldstone boson
fields, ΠaðxÞ. The vacuum expectation value Σ0 ≠ 0 also
breaks the Uð1Þψ ⊂ Uð12Þψ , but since this symmetry is
anomalous, the would-be Goldstone boson has its mass
lifted by electroweak instantons, in analogy with the η0
meson of QCD. Thus after confinement and spontaneous
symmetry breaking, the symmetry group from Eq. (4.2) is
broken to

fSpð12Þψ × SUð2Þϕ × Uð21Þξgglobal; ð4:6Þ

where Spð12Þψ acts (nonlinearly) on the 65 “pions,” Πa.
Due to spontaneous symmetry breaking, Σ0 ≠ 0, the

Yukawa interaction, ∼ΨΣ†Ψ in Eq. (4.5), becomes a Dirac
mass for the composite fermions. In particular, the 24
composite fermions, Ψia, form 12 degenerate Dirac fer-
mions with mass mΨ ∼ y0ΛW, on the order of the confine-
ment scale. Meanwhile the 21 singlet fermions, ξi,
remain massless and noninteracting to all orders, since
the relevant operators are forbidden by the residual global
symmetry (4.6).
The composite scalar Φ has a potential V, which induces

its mass and self-interaction. An analytical calculation of V
is hindered by the strongly coupled nature of the theory,
but dimensional analysis arguments suggest that Φ will
acquire a nonzero vacuum expectation value, hΦi ∼ f.
Since Φ is a singlet under the residual symmetry (4.6)
its vacuum expectation value does not signal any symmetry
breaking.
In summary, the spectrum of the WCSM (with

gs ¼ g0 ¼ λYuk ¼ 0) in the confined phase is

mΠ ¼ 0 65 Goldstone bosons ð4:7aÞ

mη0 ∼ ΛW 1 pseudo-Goldstone ð4:7bÞ

mΨ ∼ ΛW 12 composite Dirac fermions ð4:7cÞ

mΦ ∼ ΛW 1 composite scalar ð4:7dÞ

mξ ¼ 0 21 elementary Weyl fermions ð4:7eÞ

mres ∼ ΛW heavier resonances: ð4:7fÞ

The heavy resonances are not included in Eq. (4.5).
Finally, we investigate the vacuum structure of this

theory more carefully. We have seen that the symmetry
breaking pattern SUð12Þψ=Spð12Þψ is obtained when the
antisymmetric scalar condensate’s vacuum expectation

value satisfies Σ†
0Σ0 ¼ 1. To be more explicit, we work

in a basis where

Σ0 ¼

0
B@

A

A

A

1
CA; A¼

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA; ð4:8Þ

where the three blocks correspond to the three generations
of fermions. Recall the mapping from the scalar condensate
to the SM quark and lepton doublets, Σij ∼ ψ iεψ j with ψ i

given by Eq. (4.3). Therefore the symmetry breaking
pattern implies

hliεqRi i ≠ 0 and hqGi εqBi i ≠ 0; ð4:9Þ

for each of the three generations i ∈ f1; 2; 3g. Thus we see
that the vacuum state carries a nonzero baryon number
and lepton number, and consequently the particles in
Eq. (4.5) will experience B- and L-violating interactions
that allow

3ΔB ¼ ΔL ¼ �1 and ΔB ¼ �2=3: ð4:10Þ

The violation of baryon number is a requirement for any
model of baryogenesis, and its natural emergence here is a
tantalizing hint for a connection between the WCSM and
the cosmological excess of matter over antimatter; we
discuss this possibility further in Sec. V.

B. Turn on strong, hypercharge,
and Yukawa couplings

Let us finally consider SUð2ÞL confinement with the
Standard Model particle content at the measured values for
the strong, hypercharge, and Yukawa couplings. Since
these nonzero couplings explicitly break the large global
flavor symmetry, we will find that the spectrum of pseudo-
Goldstone pions is lifted. Moreover, because the conden-
sates (4.9) spontaneously break color and hypercharge, we
will see that some of the gluons and hypercharge boson
acquire mass from the Higgs mechanism by “eating” the
would-be Goldstone bosons. The reader may be familiar
the style of analysis that we employ in this section from
studies of little Higgs theories [45].

1. Comparison with QCD

Before beginning the determination of the effect of these
explicit chiral symmetry breaking terms in the WCSM, we
contrast the symmetry breaking to that in confining SM
QCD. The quark masses and electric couplings are both
sources of explicit chiral symmetry breaking in the SM.
Since the quark masses only involve confining states, they
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contribute to chiral symmetry breaking terms at tree-level
in the Lagrangian. On the other hand, the electric coupling,
which involves the nonconfining photon, only contributes a
small correction at loop level. Furthermore, the same
combination of the nonconfining SUð2ÞL × Uð1ÞY gauge
group that would get broken by confinement of QCD is
already broken at a much higher scale by the Higgs
mechanism, so all of the pions remain in the spectrum
rather than being eaten. On the other hand, there are no
chiral symmetry breaking operators involving only the
weak-charged fermions in the WCSM, so all chiral sym-
metry breaking for the pions occurs at loop level stemming
from the SUð3Þc × Uð1ÞY gauge and Yukawa couplings.
There is no higher scale breaking of the weakly coupled
SUð3Þc × Uð1ÞY gauge group, so it is broken only by the
confinement of SUð2ÞL, leading to both some eaten
Goldstone modes and non-negligible corrections due to
the massive gauge bosons that are not completely
decoupled at the confinement scale.

2. Treat small couplings perturbatively

A key assumption in the following analysis is that
the nonzero strong, hypercharge, and Yukawa couplings
can be treated as perturbations on the preceding analysis
of Sec. IVA. This is a reasonable expectation as most
of these couplings are ≪ Oð1Þ, with the largest being
the top Yukawa coupling and the strong coupling.
Specifically, we assume that the scalar condensate, Σij,
still acquires a vacuum expectation value Σ0 that leads
to the SUð12Þψ=Spð12Þψ symmetry breaking pattern as
in Eq. (3.3).

3. Introduce gauge interactions

We implement the SUð3Þc × Uð1ÞY gauge interactions
by promoting partial derivatives in the WCSM’s IR
Lagrangian (4.5) to covariant derivatives: DμΨia, Dμξi,
DμΣij, and DμΦ. Since the scalar Φ is a singlet under
SUð3Þc × Uð1ÞY , we have simply DμΦ ¼ ∂μΦ. Let us look
more closely at DμΣij, as it reveals how the gauge boson
masses arise through the Higgs mechanism. The covariant
derivative of the scalar field ΣijðxÞ, is written as

DμΣ¼ ∂μΣ− igs
X8
a¼1

Ga
μðLaΣþΣLaTÞ− ig0BμðYΣþΣYÞ;

ð4:11Þ

where gs is the SUð3Þc coupling, Ga
μðxÞ for a ¼ 1;…; 8 are

the gluon fields, La are the generators of SUð3Þc, g0 is the
Uð1ÞY coupling, BμðxÞ is the hypercharge boson field, and
Y is the generator of Uð1ÞY . It is convenient to define the
SUð3Þc generators in a slightly unconventional way using
the following basis:

λ1¼ 1

2

0
B@
0 0 0

0 0 1

0 1 0

1
CA; λ2¼ 1

2

0
B@
0 0 0

0 0 −i
0 i 0

1
CA;

λ3¼ 1

2

0
B@
0 0 0

0 1 0

0 0 −1

1
CA; λ4¼ 1

2

0
B@
0 1 0

1 0 0

0 0 0

1
CA

λ5¼ 1

2

0
B@
0 −i 0

i 0 0

0 0 0

1
CA; λ6 ¼ 1

2

0
B@
0 0 1

0 0 0

1 0 0

1
CA;

λ7¼ 1

2

0
B@
0 0 −i
0 0 0

i 0 0

1
CA; λ8 ¼ 1

2
ffiffiffi
3

p

0
B@
−2 0 0

0 1 0

0 0 1

1
CA: ð4:12Þ

As such, the SUð3Þc and Uð1ÞY generators are written as

La ¼ diagð0;λa;0;λa;0;λaÞ for a¼ 1;…;8

Y¼ diag

�
−
1

2
;
1

6
;
1

6
;
1

6
;−

1

2
;
1

6
;
1

6
;
1

6
;−

1

2
;
1

6
;
1

6
;
1

6

�
; ð4:13Þ

respectively. The generators are orthonormal such that
Tr½LaLb� ¼ 3δab=2, Tr½LaY� ¼ 0, and Tr½YY� ¼ 1.

4. Explicit global symmetry breaking

By setting gs ¼ g0 ¼ λYuk ¼ 0 previously, we saw that
the SM global symmetry of Eq. (4.1) was enhanced to
Eq. (4.2). Since the nonzero Yukawa couplings are typi-
cally much smaller than the SUð3Þc × Uð1ÞY gauge cou-
plings, it is also useful to consider the intermediate case in
which gs, g0 ≠ 0 and λYuk ¼ 0. For vanishing Yukawa
couplings, the global symmetry group of the theory is

SUð3Þq×SUð3ÞU ×SUð3ÞD×SUð3Þl
×SUð3ÞE×Uð1ÞU×Uð1ÞD×Uð1ÞE×Uð1ÞH; ð4:14Þ

where each factor acts nontrivially on only one field,
indicated by the subscript. In other words the nonzero
gauge couplings explicitly break the global symmetry from
Eq. (4.2) to Eq. (4.14). This explicit breaking lifts several of
the would-be Goldstone bosons, as we demonstrate below.
The choice of the definition of the U(1) factors here is not
unique; any linear combinations of these with Uð1ÞY will
also be a symmetry. We choose these combinations for later
convenience. Two combinations of the residual U(1) global
symmetry factors are anomalous under SUð3Þc × Uð1ÞY,
but this anomalous explicit breaking is extremely weak,
and we neglect it in this work.

5. Spontaneous symmetry breaking

The nonzero vacuum expectation value, hΣi ¼ Σ0 in
Eq. (4.8), indicates that the gauge symmetry is broken as
follows:
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fSUð3Þc×Uð1ÞYggauge→ fSUð2Þc×Uð1ÞQggauge: ð4:15Þ

Specifically, SUð3Þc is broken to an SUð2Þc subgroup, and
a linear combination of SUð3Þc and Uð1ÞY is broken to a
Uð1ÞQ subgroup. The generators of the SUð2Þc are simply
the Pauli matrices, τa ¼ σa=2 for a ¼ 1, 2, 3, and the
generator of Uð1ÞQ is

Q ¼ 1ffiffiffi
3

p L8 − Y

¼ diag

�
1

2
;−

1

2
; 0; 0;

1

2
;−

1

2
; 0; 0;

1

2
;−

1

2
; 0; 0

�
: ð4:16Þ

Note that Q is not SM electromagnetism, but we use this
notation to draw a parallel between Eq. (4.15) and SM
electroweak symmetry breaking. By counting the broken
symmetry generators, we identify the gauge bosons that
acquire mass through the Higgs mechanism. This will be
discussed in detail shortly, but the result is that five gauge
bosons acquire a mass and “eat” five of the would-be pions.
Nonzero Σ0 also signals spontaneous breaking of the

global symmetry acting on the SUð2ÞL-charged fermions.
In the regime where the Yukawa couplings are neglected,
we observe that the global symmetry of Eq. (4.14) is
broken to

SOð3Þg × SUð3ÞU × SUð3ÞD × SUð3ÞE
× Uð1ÞU × Uð1ÞD × Uð1ÞE × Uð1ÞH: ð4:17Þ

The SOð3Þg factor corresponds to a real rotation among
the three generations. There are thus 13 spontaneously
broken global symmetry generators, and correspondingly
we find 13 massless Goldstone bosons remain after
inclusion of the SUð3Þc × Uð1ÞY gauge interactions, while
the remaining 47 pions are lifted at this level.

6. Charges under SUð2Þc × Uð1ÞQ
Let us take a brief aside to study how the residual

gauge symmetry (4.15) acts on the various fields. For the
SUð2ÞL-doublet fermions, we find that li ∼ 1 for i ¼ 1, 2, 3
transforms as a singlet under SUð2Þc, while qRi ∼ 1 also
transforms as a singlet and ðqGi ; qBi Þ ∼ 2 transforms as
a doublet. To emphasize this distinction between the
SUð2Þc-singlet and doublet quark fields, we introduce
the following notation:

qSi ¼ qRi and qDi ¼ ðqGi ; qBi Þ; ð4:18Þ

where i ¼ 1, 2, 3 labels the generation. Additionally,
Eq. (4.16) reveals that li and qSi carry charges þ1=2
and −1=2, respectively, under Uð1ÞQ, while qDi is not
charged under Uð1ÞQ. A similar decomposition is also
possible for the SUð2ÞL-singlet quarks, Ui and Di, while

the SUð2ÞL-singlet leptons, Ei, are singlets under the
SUð2Þc and carry charge −1 under the Uð1ÞQ. Finally,
the Higgs doublet, as represented by φa for a ¼ 1, 2, can
also be denoted as φþ ¼ φ2 and φ− ¼ φ1, where the
superscript indicates the sign of the Uð1ÞQ charge. These
charge assignments are summarized in Table III.

7. Composite scalars under SUð2Þc × Uð1ÞQ
We have seen that ΣijðxÞ represents 66 pseudoscalar

fields: η0ðxÞ and ΠaðxÞ for a ¼ 1;…; 65. To clarify how
these scalar fields transform under SUð2Þc × Uð1ÞQ, it
useful to map them to fermion bilinears as follows:

Πþ
1 ∼ lεl − q†Sεq

†
S ð4:19aÞ

Π−
1 ∼ qSεqS − l†εl† ð4:19bÞ

Π0
1 ∼ lεqS − q†Sεl

†; qDεεcqD − q†Dεεcq
†
D ð4:19cÞ

Πþ
2 ∼ lεqD − q†Sεq

†
D ð4:19dÞ

TABLE III. This table summarizes how the WCSM particle
content transforms under the SUð2Þc × Uð1ÞQ subgroup of
SUð3Þc × Uð1ÞY and the global Uð1Þr. Particles above the double
bar correspond with states in Table II, and those below the bar
correspond to composite particles. The “States” column counts 1
for each Weyl spinor d.o.f. and 1 for each real boson.

States SUð2Þc Uð1ÞQ Uð1Þr
li 6 1 1=2 0
qSi 6 1 −1=2 0
qDi 12 2 0 0
Ei 3 1 −1 −1
USi 3 1 1 1
UDi 6 2 1=2 1
DSi 3 1 0 −1
DDi 6 2 −1=2 −1
φ� 4 1 �1=2 �1

G1;2;3 6 3 0 0
A0 2 1 0 0
W�0 12 2 �1=2 0
Z0 3 1 0 0

Ψ0
1;Ψ

0c
1 6 1 0 �1

Ψ�
1 6 1 �1 �1

Ψ�
2 12 2 �1=2 �1

Ξ0
1 3 1 0 −1

Ξ�
1 6 1 �1 1

Ξ�
2 12 2 �1=2 1

Π�
1 6 1 �1 0

Π0
1 13 1 0 0

Π�
2 32 2 �1=2 0

Π0
3 9 3 0 0

η0 1 1 0 0
Φ 1 1 0 0
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Π−
2 ∼ qSεqD − l†εq†D ð4:19eÞ

Π0
3 ∼ qDεσaqD − q†Dεσ

aq†D; ð4:19fÞ

where εc ¼ iσ2 and σa are the Pauli matrices with SUð2Þc
indices, and there is an implicit contraction over SUð2ÞL
indices such that each Π is an SUð2ÞL singlet. Note that
these Π’s correspond to a total of 66 states, which includes
the η0, the five Goldstone bosons eaten by the broken gauge
fields and the 60 would-be Goldstone bosons.6

8. Composite fermions under SUð2Þc × Uð1ÞQ
The composite fermion fields, ΨiaðxÞ, can also be

decomposed into irreducible representations of the residual
gauge symmetry. Using the same notation as above, the
composite fermions (3.9) correspond to

Ψ0
1 ∼ lφ− ð4:20aÞ

Ψþ
1 ∼ lφþ ð4:20bÞ

Ψ−
1 ∼ qSφ− ð4:20cÞ

Ψ0c
1 ∼ qSφþ ð4:20dÞ

Ψ−
2 ∼ qDφ− ð4:20eÞ

Ψþ
2 ∼ qDφþ; ð4:20fÞ

and their charge assignments are shown in Table III.

9. Massless gauge boson interactions

We write the interactions of the four massless force
carriers, corresponding to the unbroken symmetry group
SUð2Þc × Uð1ÞQ, as follows. The covariant derivative from
Eq. (4.11) contains

DμΣ ⊃ −igs
X3
a¼1

Ga
μðLaΣþ ΣLaTÞ

− ieQA0
μðQΣþ ΣQÞ: ð4:21Þ

For the SUð2Þc interactions, gs is the SUð3Þc gauge
coupling that also determines the SUð2Þc coupling strength,
G1;2;3

μ are the force carriers of SUð2Þc, and L1;2;3 from

Eq. (4.13) are the generators of SUð2Þc. For the Uð1ÞQ
interaction,

eQ ¼ g0 cos θQ ≈ g0; ð4:22Þ

is the gauge coupling and the mixing angle is given by

sin θQ ¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g2s þ g02

p ; ð4:23Þ

which is θQ ≈ g0=
ffiffiffi
3

p
gs ≪ 1 in the regime of interest where

g0 ≪ gs. The massless force carrier is

A0
μ ¼ cos θQG8

μ þ sin θQBμ; ð4:24Þ

and Q from Eq. (4.16) is the generator of Uð1ÞQ.

10. Massive gauge boson interactions

The five remaining gauge bosons correspond to the
broken symmetry generators of Eq. (4.15). These states can
be arranged into a pair of complex vector fields W0�

μ ðxÞ,
and a single real vector field Z0

μðxÞ. We use the notation
W0� and Z0 to highlight the analogy with the Standard
Model weak gauge bosons, conventionally denoted by W
and Z. Their interactions are written as

DμΣ ⊃ −i
gsffiffiffi
2

p
X
�

X
i¼1;2

W0i�
μ ðLi�Σþ ΣLi∓Þ

− i
eQ

sQcQ
Z0
μðJΣþ ΣJÞ; ð4:25Þ

where we define the new notation in the remainder of this
paragraph. The SUð3Þc factor has five broken generators,
which are L4;5;6;7, and the corresponding gauge fields,
G4;5;6;7

μ ðxÞ, pair up to form two complex, massive vector
fields, W0�

μ ðxÞ corresponding to

L� ¼ ðL4 � iL5; L6 � iL7Þ: ð4:26Þ

The interaction strength of the W0� vectors is inherited
from the SUð3Þc gauge coupling, gs. The one final broken
generator is

J ¼ 1ffiffiffi
3

p L8 − s2QQ; ð4:27Þ

where sQ ¼ sin θQ and cQ ¼ cos θQ, and the corresponding
massive vector field, Z0

μðxÞ, can be written as

Z0
μ ¼ − sin θQG8

μ þ cos θQBμ: ð4:28Þ

The W0� transform as a charged doublet under
SUð2Þc × Uð1ÞQ while Z0 is a singlet; see Table III.

6We provide a few examples of counting these d.o.f. For the
Π�

1 there are three possible combinations of i and j as they must
be antisymmetric for each of � which results in six Π�

1 states
[equivalently NgðNg − 1Þ where Ng is the number of genera-
tions]. Likewise, for the Π0

3 pion there are three combinations of
generational indices each with three possible SUð2Þc states which
result in nine [3NgðNg − 1Þ=2] pion states of Π0

3.
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11. Gauge boson spectrum

The scalar field ΣijðxÞ acquires a nonzero vacuum
expectation value, given by Eq. (4.8), and the Higgs
mechanism splits the spectrum of gauge bosons. The mass
terms can be derived from Eqs. (4.21) and (4.25) by
using Σ ¼ Σ0 from Eq. (4.8). The gauge boson spectrum
is summarized as follows:

mG1;2;3 ¼ 0 ð4:29aÞ

mA0 ¼ 0 ð4:29bÞ

mW0� ¼
ffiffiffiffiffiffiffiffi
3=2

p
gsf ð4:29cÞ

mZ0 ¼
ffiffiffiffiffiffiffiffi
2=3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g2s þ g02

q
f: ð4:29dÞ

The four massless vector fields, G1;2;3
μ and A0

μ, are the force
carriers of SUð2Þc × Uð1ÞQ, while the two complex vectors
W0�

μ and the single vector Z0
μ acquire mass through the

Higgs mechanism.

12. Symmetry breaking including Yukawa interactions

Finally we discuss the ultimate spectrum of pions. Recall
that for vanishing strong, hypercharge, and Yukawa cou-
plings, the scalar ΣijðxÞ encodes 65 massless Goldstone
bosons ΠaðxÞ, which we called “pions,” and one massive
pseudoscalar η0ðxÞ, which is associated with an anomalous
Uð1Þψ and acquires mass from SUð2ÞL instantons. Taking
the strong, hypercharge, and Yukawa couplings to be
nonzero breaks the large global symmetry of Eq. (4.2)
down to the Uð1Þ3B=3−Li of Eq. (4.1).
Thus we expect that all but at most three of the pions will

have their masses lifted by the effect of nonzero gs, g0, and
λYuk. Since the gauge groups SUð3Þc and Uð1ÞY are
subgroups of SUð12Þψ × SUð21Þξ, the gauge generators
are spurions of SUð12Þψ transforming as adjoints. The
Yukawas are spurions transforming as antifundamentals of
SUð12Þψ , as well as fundamentals under SUð12Þξ as
summarized in Table IV.
The global symmetry is also spontaneously broken,

but there is an unbroken Uð1Þr symmetry acting only on
the weak singlet fermions and Higgs in the UV or,

correspondingly, only on the fermion states in the IR.
The charge can be written as the following combination of
U(1) charges:

r ¼ −2Y þ
X
i

�
B
3
− Li

�
¼ −2Y þ B − L: ð4:30Þ

This symmetry is an exact global symmetry of the
Lagrangian and is not anomalous under the surviving
gauge symmetries in the IR. It has important consequences
for the fermion spectrum and baryogenesis. The charges of
the spectrum under it are shown in Table III. There are thus
two broken global symmetry generators and, correspond-
ingly, two massless pions in theWCSM. The 11 other pions
that were massless after inclusion of the SUð3Þc × Uð1ÞY
gauge interactions (see below Eq. (4.17)) get lifted, such
that a total of 58 of the 60 physical pions are massive.

13. Gauge corrections to pion masses

The strong and hypercharge gauge interactions (for
gs ≠ 0 and g0 ≠ 0) induce radiative corrections that split
the pion mass spectrum. Working in the mass basis of the
vector bosons, where the leading contribution for each
gauge boson eigenstate sums up without mixing, the
relevant mass-correction operators are written as [46]

ΔL ¼ CGΛ2
Wf2

g2s
16π2

X
a¼1;2;3

Tr½LaTΣ†LaΣ�

þ CAΛ2
Wf2

e2Q
16π2

Tr½QΣ†QΣ�

þ CWΛ2
Wf2

g2s=2
16π2

X
�

X
i¼1;2

Tr½Li�Σ†Li�Σ�

þ CZΛ2
Wf2

e2Q=s
2
Qc

2
Q

16π2
Tr½JΣ†JΣ�; ð4:31Þ

where eQ ≈ g0 was given by Eq. (4.22), La was given by
Eq. (4.13), Q was given by Eq. (4.16), L� was given by
Eq. (4.26), J was given by Eq. (4.27), and ΛW ≈ 4πf. Each
term corresponds to a one-loop correction to the pion’s self-
energy; the first term arises from a G1;2;3 loop, the second
from an A0 loop, the third from a W0� loop, and the fourth
term arises from a Z0 loop. The dimensionless operator
coefficients—CG, CA, CW , and CZ—encode the details of
the loop calculation, and they are expected to be Oð1Þ
numbers [47,48] with CA ¼ CG since these two operators
both correspond to massless vectors in the loop.

14. Yukawa corrections to pion masses

Yukawa interactions between the pions and fermions (for
λYuk ≠ 0) also contribute to the pion’s self-energy at one-
loop order. The leading nontrivial contributions due to the
Yukawas come in at fourth power, taking the form,

TABLE IV. In the spurion analysis of Sec. IV B, this table
shows the charge assignments of the SUð3Þc generators Ta, the
Uð1ÞY generator Y, and the Yukawa couplings λu, λd, and λe.

SO(4) Uð12Þψ Uð21Þξ
SUð2ÞL SUð2Þϕ SUð12Þψ Uð1Þψ SUð21Þξ Uð1Þξ

Ta, Y 1 1 143 0 1 0
λu, λd, λe 1 2 12 −qψ 21 −qξ
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ΔL ¼ CYuk
Λ2

Wf2

16π2
X
k;k0

X2
a;b¼1

Tr½ðλkaλ†kaÞΣ†ðλ�k0bλTk0bÞΣ�;

ð4:32Þ

where λu is the up-type quark Yukawa matrix, λd is the
down-type quark Yukawa matrix, λe is the charged lepton
Yukawa matrix and the indices k, k0 run over u, d, e. These
are 12 × 12 complex matrices in the basis of Eq. (4.3).

15. Pion mass spectrum

To calculate the pion mass spectrum, we parametrize
the pions Πa in terms of Σij using Eq. (3.5), evaluate
Eqs. (4.31) and (4.32), and read off the quadratic terms,
ΔL ¼ −ð1=2ÞðM2

ΠÞabΠaΠb. The leading masses of the
pions are shown in Table V. Including all of the mass-
correction operators, the pion spectrum contains only two
massless states, corresponding to the Goldstone bosons
associated with Uð1ÞY × Uð1Þ3B=3−Li=Uð1ÞQ × Uð1Þr. If all
C’s are nonzero then one cannot avoid some tachyonic
states, but choosing CG < 0, CA < 0, 1≲ CZ < 0,
jCW j≲ 1, and CYuk > 0 leads to only four slightly
tachyonic Π0

1 with masses suppressed by the small
Yukawas yτ and yc. This indicates that the assumed

symmetry breaking pattern, SUð2NfÞ=Spð2NfÞ, is radia-
tively stable modulo small corrections.

16. Fermion mass spectrum

As we have discussed in Sec. IVA, the composite
fermions Ψia get a mass of order ΛW from the confinement
process. However, once we include the Yukawa inter-
actions, the composite fermions acquire a small mixing
with the SUð2ÞL-singlet fermions, ξj, and the spectrum is
split. To see this explicitly, we construct the Lagrangian for
the fermions. In the UV the Yukawa interactions take the
form,

ΔLYukjUV ¼
X12
i¼1

X21
j¼1

X2
a¼1

ðλu þ λd þ λeÞijaφaψ iξj: ð4:33Þ

In the IR the SUð2ÞL-doublet fermions are confined with
the Higgs, and this Lagrangian is mapped to

ΔLYukjIR ¼ Cλf
X12
i¼1

X21
j¼1

X2
a¼1

ðλu þ λd þ λeÞijaΨiaξj;

ð4:34Þ
where Cλ is an Oð1Þ constant. This operator allows the
composite Ψia to mix with the elementary ξj, and the
resultant mass eigenstates are mostly composite fermions
with masses ∼ΛW and mostly elementary fermions, which
we denote by Ξ, with masses≪ ΛW. The mostly elementary
fermion mass eigenstates correspond to the following
elementary constituents:

Ξ0
1 ∼DS ð4:35aÞ

Ξþ
1 ∼US ð4:35bÞ

Ξ−
1 ∼ E ð4:35cÞ

Ξþ
2 ∼UD ð4:35dÞ

Ξ−
2 ∼DD: ð4:35eÞ

The masses for these fermions arise only in the presence of
non-zero Yukawa couplings. The charged fermions get
Dirac masses via a seesaw mechanism as follows:

mΞ�
1
≈ C2

λλeλu
f2

y0ΛW

ð4:36aÞ

mΞ�
2
≈ C2

λλuλd
f2

y0ΛW

: ð4:36bÞ

Note that the CKM matrix should appear in this mass
matrix, but can be rotated to generate an off diagonal W0
coupling, as in the SM. The mass of each of generation of

TABLE V. Approximate mass spectrum for the pions. To
simplify the expressions we assume that all the C’s are Oð1Þ
and show only the leading contributions. The second column
indicates the multiplicity of each state, although some degener-
acies are split by higher order contributions. Five would-be pions,
which are “eaten” by the massive W0� and Z0 bosons, are not
shown in the table.

Pion # Squared mass ×16π2=Λ2
W

Π0
3 3 −4CGg2s

6 −4CGg2s þ 2CYukjVtbj4y4t
Π�

2 8 − 3
2
CGg2s − 1

2
CAe2Q þ 1

2
CZg2s þ CYukjVtbj4y4t

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
Wg

4
s þ C2

YukjVtbj8y8t
p

8 − 3
2
CGg2s − 1

2
CAe2Q þ 1

2
CZg2s þ CYukjVtbj4y4t

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
Wg

4
s þ C2

YukjVtbj8y8t
p

12 − 3
2
CGg2s − 1

2
CAe2Q þ 1

2
CZg2s þ CWg2s

4 − 3
2
CGg2s − 1

2
CAe2Q þ 1

2
CZg2s − CWg2s

Π�
1 6 −2CAe2Q − 2

3
CZg2s

Π0
1 2 2CYukjVtbj2y4t

4 2CYukjVtbj2y2t y2τ
1 2CYukjVcsj4y4c
2 − 1

2
CYukRe½Vts�2y2t y2τ

1 −2CYukRe½Vts�2y2t y2τ
1 6CYukRe½Vcs�Re½Vtd� Re½Vcs�Re½Vtd�−Re½Vcd�Re½Vts�

Re½Vts�2 y2cy2μ
2 0
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composite fermions is then determined by the product
diagonal Yukawa matrices of that generation as in (4.36).
The mostly composite heavy fermions also get some very
small correction due to the Yukawa couplings. The Ξ0

1
fermions are protected from getting a mass by the Uð1Þr
symmetry and remain exactly massless Weyl fermions. The
light, mostly elementary fermions mix with the heavy,
mostly composite fermions with a mixing angle given by

θLH ∼
Cλλu;d;ef
y0ΛW

; ð4:37Þ

and the mass eigenstates are partially composite [49]. Since
the Yukawas are typically λ ≪ 1, this is a small mixing.

C. Summary of the WCSM

We have studied the symmetries and the lightest states of
the WCSM. After all interactions and spontaneous symm-
metry breaking, the symmetry group of the WCSM is

fSUð2Þc × Uð1ÞQggauge × fUð1Þrgglobal: ð4:38Þ

The lightest states in the spectrum include:
(i) twomassless Goldstone bosons corresponding to two

combinations of spontaneous B=3 − Li breaking;
(ii) three mostly elementary massless Weyl fermions

corresponding to the SUð2Þc × Uð1ÞQ singlets
charged under Uð1Þr. They are mostly SUð2ÞL-
singlet down-type fermions;

(iii) four massless gauge bosons of SUð2Þc × Uð1ÞQ.
(iv) 47 pseudo-Goldstone bosons of the spontaneous

breaking of SUð12Þψ=Spð12Þψ are dominantly lifted
by the SUð2Þc×Uð1ÞQ gauge interactions. The gauge
interactions explicitly break the global symmetry
SUð12Þψ×SUð2Þϕ×Uð21Þξ=SUð3Þ5×Uð1Þ4, which
gets spontaneously broken in the confined phase to a
global symmetry SOð3Þg × Uð3Þ3 × Uð1Þ, leaving 13
massless Goldstone bosons after their inclusion;

(v) 11 pseudo-Goldstone bosons of the spontaneous
breaking of SUð12Þψ=Spð12Þψ get lifted by the
Yukawa interactions only. The Yukawas explicitly
break SUð3Þ5×Uð1Þ4=Uð1Þ3B=3−Li , which gets spon-
taneously broken to Uð1Þr. There are only two
massless Goldstones bosons after their inclusion;

(vi) nine mostly elementary Dirac fermions that get lifted
by the Yukawa couplings. They correspond mostly
to the remaining weak-singlet fermions;

(vii) five massive gauge bosons of the broken SUð2Þc ×
Uð1ÞQ gauge group. These eat five of the would-
be pions;

(viii) one η0 pion corresponding to the anomalous
Uð1ÞBþL global symmetry and acquires a mass of
order ΛW;

(ix) one Higgs-Higgs composite scalar that is not pro-
tected by any symmetry and gets a mass of orderΛW;

(x) 12 Dirac fermions corresponding mostly to fermion-
Higgs composite states and they receive Dirac
masses of order ΛW.

(xi) Additional scalar, radial, and spin excitations that are
not included in the nonlinear sigma model.

V. POTENTIAL COSMOLOGICAL
IMPLICATIONS

How would we know if the Universe passed through
a phase of confined SUð2ÞL? In this section we briefly
discuss the possible implications for various cosmological
relics.

A. Cosmological phase transition

After cosmological inflation evacuates the Universe of
matter, we suppose that reheating produces a plasma of
Standard Model particles at temperatures above the scale
of weak confinement. As the Universe grows older and
expands, the cosmological plasma cools to the confinement
scale, and the confinement of the weak force is accom-
plished through a cosmological phase transition. This
transition is expected to be first order, meaning that bubbles
of the confined phase nucleate in a background of the
unconfined phase, and the transition completes as the
bubbles grow and merge, filling all of space. The first
order nature of the weak-confining phase transition follows
from a more general argument by Pisarski and Wilczek
(1983) [50], who considered a general Yang-Mills gauge
theory with Nf flavors of massless vectorlike fermions and
showed that it will confine through a first order phase
transition if Nf ≥ 3. As we have discussed already in
Sec. IV, the Standard Model corresponds to 2Nf ¼ 12

massless flavors of SUð2ÞL doublets, and therefore we
expect the weak-confining phase transition to be first order.
A first order cosmological phase transition typically pro-
vides the right environment for the creation of cosmologi-
cal relics, such as topological defects, gravitational wave
radiation, and the matter-antimatter asymmetry.

B. Topological defects

When spontaneous symmetry breaking is accomplished
through a cosmological phase transition, causality argu-
ments require the symmetry-breaking scalar field to be
inhomogeneous on the Hubble scale, and this inhomoge-
neity may allow the field to form topological defects, such
as cosmic strings and domain walls [51]. In the context of
QCD’s chiral phase transition, where the SUð3ÞA × Uð1ÞA
symmetry is spontaneously broken by the chiral quark
condensate, these defects have been called pion and eta-
prime strings [52]. As the nonzero quark masses break the
SUð3ÞA × Uð1ÞA symmetry explicitly, this may prevent the
QCD defects from forming at all, but if they do form, then
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they are expected to be unstable and decay soon after the
QCD phase transition [53]. Similarly we expect that
spontaneous symmetry breaking in the WCSM will gen-
erate a string-wall defect network with a rich structure.
For instance, spontaneously breaking the global symmetry
Uð1Þ3B=3−Li in Eq. (4.1) is expected to generate multiple
networks of stable cosmic strings, which could survive
until SUð2ÞL is deconfined. While the defect network is
present, it may play a role in primordial magnetogenesis
[54] or baryogenesis [55].

C. Gravitational wave radiation

A first order cosmological phase transition produces a
stochastic background of gravitational waves [56] due to
the collisions of bubbles and their interactions with the
plasma. For a weakly coupled theory, it is straightforward
to calculate the spectrum of this gravitational wave radi-
ation [57], and gravitational waves have been studied in
strongly coupled theories as well [58]. Since gravity is
extremely weakly interacting, the gravitational wave radi-
ation is expected to free stream to us today where it might
be detected. For instance, gravitational waves produced at
an electroweak-scale phase transition could be detected by
space-based gravitational wave interferometer experiments
like LISA [59]. Measuring the appropriate spectrum of
gravitational wave radiation would provide one of the most
direct probes of weak confinement in the early Universe.

D. The matter-antimatter asymmetry

In general a first-order cosmological phase transition
also provides the right environment to explain the cosmo-
logical excess of matter over antimatter through the physics
of baryogenesis [60]. At the weak-confining phase tran-
sition in particular, weak sphalerons are active in front
of the bubble wall where they mediate baryon-number-
violating reactions, and they become suppressed behind the
bubble wall where SUð2ÞL is confined and the weak-
magnetic fields are screened. This observation suggests
that it may be possible to generate a baryon asymmetry
at the confined-phase bubble walls through dynamics
similar to electroweak baryogenesis [61] or spontaneous
baryogenesis [15,16,20].
However, although sphalerons may be suppressed in the

confined phase, this does not imply that Bþ L is effectively
conserved, as we find in the SM. As discussed in Sec. IV,
baryon number is not a good quantum number in the
confined phase where the quarks and leptons condense
and acquire a vacuum expectation value, spontaneously
breaking Uð1ÞBþL×Uð1Þ3B=3−Li . Instead there is only one
conserved global charge in the confined phase, r ¼
−2Y þ ðB − LÞ from Eq. (4.30), which is not anomalous,
and consequently an asymmetry in r cannot be generated
by the weak sphaleron. All other global charges are violated
by interactions in the Lagrangian or by the quark-lepton

condensates. Since an asymmetry in a nonconserved global
charge can be washed out in the confined phase, this
observation suggests that WCSM does not have all the
necessary ingredients for baryogenesis during the confining
phase transition.
Nevertheless, one can easily imagine extending the

WCSM by heavy Majorana neutrinos so as to accommo-
date the observed neutrino masses and mixings. The
associated lepton-number violation could provide a means
of generating r-charge during the confining phase
transition, which is later distributed into baryon number
when the system deconfines and enters the standard low-
temperature Higgs phase.
Alternatively, it may be possible to accomplish baryo-

genesis during the deconfining phase transition. For this
scenario to work, the system must pass directly from the
confined phase into the Higgs phase where the sphalerons
are inactive; if the system passes instead through the
Coulomb phase then the sphalerons will come back into
equilibrium and wash out any baryon asymmetry. This
constraint has the interesting implication that the system
must remain in the confined phase even at a time where the
cosmological plasma temperature is quite low, ≲100 GeV.
If the weak-confined phase results from the nontrivial
dynamics of a modulus field, such as we discussed in
the model of Eq. (2.1), then this constraint implies a low
mass for the modulus field.

VI. COMPARISON WITH THE
ABBOTT-FARHI MODEL

We explored the idea that the SUð2ÞL weak force may
have been confined in the early Universe, only to become
weakly coupled and Higgsed at later times. Confinement of
the weak force was first studied in the pioneering work by
Abbot and Farhi [4,5], which developed into a theory [6–8]
that we will call the Abbott-Farhi Model (AFM). The AFM
describes the SM particle spectrum as composite states that
arise from the confinement of the SUð2ÞL weak force at a
scale ΛW ¼ ffiffiffiffiffiffiffi

GF
p

∼ 300 GeV. These ideas were motivated
in part by the complementarity between a Yang-Mills
gauge theory in the Higgs phase and the confined phase
[62–65] (see also Refs. [66,67]). While the AFM was able
to reproduce the observed mass spectrum, interactions, and
even weak boson phenomenology, it was eventually found
to be in tension with electroweak precision measurements
at the Z-pole [11,68], leaving the (Higgs-phase) SM as the
preferred description of weak-scale phenomenology.
A key assumption of the AFM, and the essential dis-

tinction with our work here, has to do with the assumed
pattern of symmetry breaking. The AFM assumes that the
chiral symmetry remains unbroken after confinement (in the
regime where the hypercharge, QCD, and Yukawa inter-
actions can be neglected). In our notation, this assumption
corresponds to hΣi ¼ 0. If the chiral symmetry is unbroken,
then the AFM’s composite fermions, corresponding to the
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familiar SM particle content, must be massless. In this way,
the AFM’s fermion masses are induced by the nonzero
hypercharge, QCD, and Yukawa interactions, which
explains why these particles are much lighter than the
confinement scale ΛW ∼ 300 GeV. By contrast, we are
motivated by recent numerical lattice studies to assume an
SUð2NfÞ=Spð2NfÞ pattern of chiral symmetry breaking
(3.3), which leads to a massive spectrum of composite
fermions with mΨ ∼ ΛW.
Which of these two symmetry-breaking patterns is the

“correct” one? Since the physics controlling symmetry
breaking is inherently nonperturbative, it is prohibitive to
determine the symmetry breaking pattern through analyti-
cal techniques. Arguably, the assumed absence of chiral
symmetry breaking that underlies the AFM did not follow
from any fundamental physical principle, but rather it was
taken as a desirable assumption in order to reproduced the
known particle mass spectrum. However, recent numerical
lattice studies [33,34] have provided evidence against the
AFM’s assumed absence of symmetry breaking and in
favor of an SUð2NÞ=Spð2NÞ symmetry-breaking pattern
instead. Motivated by these lattice results, we adopt the
SUð2NÞ=Spð2NÞ breaking in our work (3.3), and all of our
results for the spectrum and interactions of composite
particles in the early-Universe weak-confined phase are
predicated on this assumption.

VII. SUMMARY

We have studied a scenario in which the weak force is
strong and the strong force is weak. In other words, we
assume that new physics allows the SUð2ÞL weak force to
become strongly coupled and confine at a scale ΛW > TeV
where the QCD strong force is weakly coupled, and
we refer to this scenario as the weak-confined Standard
Model (WCSM). We describe how interactions between

the Standard Model and new physics may allow the
WCSM phase to be realized in the early Universe at a
time when the cosmological plasma temperature was
sufficiently high, T ∼ ΛW. By assuming a pattern of chiral
symmetry breaking that it motivated by numerical lattice
studies, we calculate the spectrum of low-lying composite
particles, discuss their interactions, and compare this
exotic phase with strong color confinement. Our analysis
of the WCSM differs notably from earlier work on weak
confinement, where it was assumed that confinement did
not lead to chiral symmetry breaking. Although direct
tests of the weak-confined phase will be challenging,
given the richness of the WCSM spectrum there are
several possible cosmological implications of this exotic
phase in the early Universe. These cosmological observ-
ables, including topological defects, gravitational wave
radiation, and baryogenesis, may provide fruitful avenues
for further study.
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