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We study the use of the complex-Langevin equation (CLE) to simulate lattice QCD at a finite chemical
potential (μ) for a quark-number, which has a complex fermion determinant that prevents the use of
standard simulation methods based on importance sampling. Recent enhancements to the CLE specific to
lattice QCD inhibit runaway solutions which had foiled earlier attempts to use it for such simulations.
However, it is not guaranteed to produce correct results. Our goal is to determine under what conditions the
CLE yields correct values for the observables of interest. Zero temperature simulations indicate that for
moderate couplings, good agreement with expected results is obtained for small μ and for μ large enough to
reach saturation, and that this agreement improves as we go to weaker coupling. For intermediate μ values
these simulations do not produce the correct physics. We compare our results with those of the phase-
quenched approximation. Since there are indications that correct results might be obtained if the CLE
trajectories remain close to the SUð3Þ manifold, we study how the distance from this manifold depends on
the quark mass and on the coupling. We find that this distance decreases with decreasing quark mass and as
the coupling decreases, i.e., as the simulations approach the continuum limit.
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I. INTRODUCTION

QCD at finite baryon/quark-number density describes
nuclear matter, the constituent of neutron stars and the
interiors of heavy nuclei. We are interested in calculating
the phase diagram for nuclear matter. Knowing the proper-
ties of nuclear matter can yield an equation-of-state and a
better description of neutron stars. In addition it can yield
information on the interaction of nuclear matter with
particles passing through it. Nuclear matter at high temper-
atures undergoes a transition to a quark-gluon plasma. Such
transitions can be observed in relativistic heavy-ion colli-
sions. While for low densities this transition is expected to
be a crossover, it is believed that for high densities it
becomes a first-order transition. The critical end point is the
second-order transition (critical point) where this change
occurs.
Finite density QCD has a sign problem which prevents

the direct application of standard lattice QCD simulation

methods, which rely on importance sampling. When finite
density is implemented by use of a quark-number chemical
potential, μ, the sign problemmanifests itself by making the
fermion determinant complex, with a real part of indefinite
sign. Simulations using the complex Langevin equation
(CLE) [1–4] can accommodate such complex actions.
However, the CLE can only be shown to yield correct
values for observables if the space over which the fields
evolve is compact, the drift (force) term is holomorphic in
the fields, and the solutions are ergodic [5–13].
For QCD, implementation of the CLE requires extending

the gauge-field manifold from SUð3Þ to SLð3; CÞ. Keeping
the action holomorphic in the fields except on a space of
measure zero requires making the action a function of the
gauge fields and their inverses only. Then the drift term is
meromorphic in the gauge fields, having poles at the zeros
of the fermion determinant. Early attempts at simulations
were frustrated by runaway behavior which could not be
controlled by adaptively decreasing the updating interval.
Recently it was discovered that, for small enough cou-
plings, this behavior could be tamed by “gauge-cooling”,
gauge transforming the fields after each update to keep
them as near as possible to the SUð3Þ manifold [14]. When
this is done, the gauge fields appear to evolve over
a compact manifold, at least for weak enough coupling.
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It remains to be determined for what if any range of quark
masses, lattice spacings, chemical potentials and temper-
atures, and for what choices of lattice actions, the CLE
produces correct values for chosen observables, despite the
presence of poles in the drift term and/or in the operators
defining these observables.
Extensive studies have been performed of heavy dense

lattice QCD at finite μ using the CLE. [15–20]. Some CLE
simulations of lattice QCD have been performed at finite μ
with lighter quark masses, both on small lattices and at
finite temperatures [17,21–25]. Preliminary work directed
towards zero temperatures has been reported [26]. In heavy
dense lattice QCD at finite chemical potential, the zeros of
the fermion determinant (poles in the drift term) only affect
the CLE results very close to the transition, provided one
excludes the regions where the real part of the fermion
determinant is negative, when necessary. Alternatively,
good results for heavy quarks can be obtained by restricting
the length of CLE trajectories to keep them close to the
SUð3Þ manifold. For lighter quarks, CLE simulations are
found to produce good results at high temperatures (above
the finite temperature phase transition), but the situation at
lower temperatures is less clear.
We simulate zero temperature lattice QCD with two

flavors (tastes) of staggered quarks at μ values from zero to
saturation, using the CLE. Here we are interested in the
phase transition from hadronic to nuclear matter which
should occur at μ ∼mN=3. Random matrix theories (RMT)
related to QCD at finite μ suggest that when CLE
simulations fail, they produce the results of the phase-
quenched model (the theory where the fermion determinant
is replaced by its magnitude), which has a transition to a
superfluid state with a pionlike condensate at μ ≈mπ=2.
This has been observed by Mollgard and Splittorff [27]
who simulate the Osborn RMT [28,29] and find that the
CLE fails for small masses, approaching phase-quenched
results for small-enough masses. They suggest a solution
in a subsequent paper [30]. Bloch et al. [31] using the
Stephanov RMT [32] (which has a nontrivial phase
structure) find that the CLE generates phase-quenched
results. (Note that other random matrix CLE simulations
seemmore optimistic [33].) For this reason we also perform
RHMC simulations of the phase-quenched theory at the
same values of β ¼ 6=g2 and quark mass m over the same
range of μ values and on the same lattice size as the full
theory, for comparison. Hence it is important that we
choose m such that mN=3 is significantly larger than
mπ=2. We perform our simulations at β ¼ 5.6, m ¼
0.025 (in lattice units) on a 124 lattice and at β ¼ 5.7, m ¼
0.025 on a 164 lattice. Preliminary results were reported at
Lattice 2015–2018. See [34] and its references to our
earlier talks.
At β ¼ 5.6, the CLE measurement of the plaquette

for μ ¼ 0 exhibits a systematic error of ≈0.31%, while
at saturation it shows a systematic error of ≈1.43%.

These should be compared with the increase in value of
the plaquette over this range which is ≈9.2%. At β ¼ 5.7
the CLE plaquette measurement has a systematic error
of ≈0.16%, while at saturation the systematic error is
≈0.3%. The increase in the known value of the plaquette
over this range is ≈6.6%. We note that for both βs, the
plaquette values at saturation show excellent agreement
with those obtained from CLE simulations of SUð3Þ lattice
gauge theory in the absence of quarks, as expected.
At β ¼ 5.6, the CLE measurement of the chiral con-

densate at μ ¼ 0 lies ≈6.9% below the correct value, while
at β ¼ 5.7 the chiral condensate predicted by the CLE is
≈1.22% lower than the known value. For μ < mπ=2 there is
a similar improvement in the CLE-predicted chiral con-
densate between β ¼ 5.6 and β ¼ 5.7. At β ¼ 5.7 and
0.5 ≤ μ ≤ 0.9 the CLE produces values of the chiral
condensate, quark-number density and plaquette in good
agreement with the phase-quenched theory. However, the
Wilson line/Polyakov loop indicates that the fermion
determinant is still complex. Although the CLE results
appear to be approaching the correct physics for very small
and large μ as the coupling decreases towards the con-
tinuum limit, they still fail to produce the expected physics
in the transition region. The transition to nuclear matter
appears to start at μ even less than mπ=2 instead of
μ ≈mN=3.
Since there are indications that the CLE might produce

correct results when its trajectories remain close to the
SUð3Þ manifold, we perform a systematic study of how
the average distance to this manifold (measured using the
“unitarity norm”) depends on the quark mass and the
coupling. We find that this norm decreases with decreasing
quark mass and with decreasing coupling, i.e., as we
approach the continuum limit.
In Sec. II we present the formulation of the CLE, we

7use. Section III describes our simulations at β ¼ 5.6 and
β ¼ 5.7 and presents results. In Sec. IV we present our
simulations to determine how the unitarity norm depends
on quark mass m and lattice coupling g. Section V gives a
summary, discussion and conclusions.

II. COMPLEX LANGEVIN FOR FINITE
DENSITY LATTICE QCD

If SðUÞ is the gauge action after integrating out the quark
fields, the Langevin equation for the evolution of the gauge
fields U in Langevin time t is

−i
�
d
dt

Ul

�
U−1

l ¼ −i
δ

δUl
SðUÞ þ ηl; ð1Þ

where l labels the links of the lattice, and ηl ¼
P

aη
a
l λ

a.
Here λa are the Gell-Mann matrices for SUð3Þ. ηal ðtÞ
are Gaussian-distributed random numbers normalized
so that
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hηal ðtÞηbl0 ðt0Þi ¼ δabδll0δðt − t0Þ: ð2Þ

We note in passing that the discretized Langevin equation is
the limiting case of the hybrid molecular dynamics method
where each trajectory has only a single update.
The complex-Langevin equation has the same form

except that the Us are now in SLð3; CÞ. S, now SðU; μÞ is

SðU; μÞ ¼ β
X
□

�
1 −

1

6
Tr½UUUU þ ðUUUUÞ−1�

�

−
Nf

4
Trfln½MðU; μÞ�g; ð3Þ

whereMðU; μÞ is the unimproved staggered Dirac operator
with quark-number chemical potential μ, for a single
staggered fermion field (corresponding to four continuum
flavors). Note: backward links are represented by U−1 not
U†. Note also that we have chosen to keep the noise term
η real.
To simulate the time evolution of the gauge fields we use

the partial second-order formalism of Fukugita, Oyanagi
and Ukawa [35–37]. For an update of the fields by a “time”
increment dt, this gives

Uðnþ1=2Þ ¼ eX0UðnÞ

X0 ¼ dt
δ

δU
SðUðnÞ; μÞ þ i

ffiffiffiffiffi
dt

p
ηðnÞ

Uðnþ1Þ ¼ eγðX0þX1ÞUðnÞ

X1 ¼ dt
δ

δU
SðUðnþ1=2Þ; μÞ þ i

ffiffiffiffiffi
dt

p
ηðnÞ; ð4Þ

where γ ¼ 1
2
þ 1

4
dt and the Gaussian noise η is normalized

such that

hηaðmÞ
l ηbðnÞl0 i ¼

�
1 −

3

2
dt

�
δabδll0δ

mn: ð5Þ

To proceed, we replace the spacetime trace with a stochastic
estimator ξ,

Trfln½MðU; μÞ�g → ξ†fln½MðU; μÞ�gξ: ð6Þ

ξ is a vector over space-time and color of Gaussian random
numbers, normalized such that

hξ�iðmÞðxÞξjðnÞðyÞi ¼ δijδxyδ
mn; ð7Þ

which means, in particular, that the ξs in X0 and X1 are
independent, unlike the ηs. After performing δ

δU of lnðMÞ it
is useful to use the cyclic property of the trace to rearrange
the terms proportional to U and U−1 prior to introducing
the stochastic estimators, so that this operator is anti-
Hermitian when μ ¼ 0 and U is unitary. That way, in this

special case, the complex Langevin equation becomes the
real Langevin equation.
We apply adaptive updating. If fijðlÞ are the components

of the drift term, we define

fmax ¼ l; i; j
MAX

jfijðlÞj; ð8Þ

where l runs over the links of the lattice. i ¼ 1, 2, 3, j ¼ 1,
2, 3 are the color indices. Then, if fmax > 1, we replace the
input updating increment dt by the adaptive increment,

dtadaptive ¼
dt
fmax

ð9Þ

for the current update. Because the Dirac operator is often
ill-conditioned, we use 64-bit floating point precision
throughout.
After each update, we adaptively gauge fix to the gauge

which minimizes the unitarity norm,

FðUÞ ¼ 1

4V

X
x;μ

Tr½U†U þ ðU†UÞ−1 − 2� ≥ 0; ð10Þ

which equals 0, if and only ifU is unitary.V is the space-time
volume of the lattice. FðUÞ is a measure of the lattice
averaged distance of the gauge fields from the SUð3Þ
manifold. We implement gauge cooling after each updating
following the method described in [14], Eqs. 8–10. Here ϵ ¼
dt the input increment for our CLE updating, and we choose
α ¼ 1=4. We make this updating adaptive by the following
ansatz. If GðnÞ ¼ P

aλaGaðnÞ, GðnÞnorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðGðnÞ2Þ

p
,

then if αGnormðnÞ > 1, we replace GðnÞ by GðnÞ=
½αGnormðnÞ� for this gauge-cooling step.

III. CLE SIMULATIONS OF LATTICE QCD
AT FINITE μ AND ZERO TEMPERATURE

We simulate two-flavor lattice QCD at β ¼ 5.6, m ¼
0.025 on a 124 lattice, and at β ¼ 5.7, m ¼ 0.025 on a 164

lattice, at 0 ≤ μ ≤ 1.5. Note μ ¼ 1.5 is well into the
saturation domain, where all fermion levels are filled
and the fermion number density, normalized to 1 staggered
fermion field (four flavors/tastes)is 3. The input dt is
chosen to be 0.01. Our runs for individual μ values vary
between 106 and 3 × 106 updates in length. Discarding the
first fifth of each run for equilibration, this makes the length
of each run in Langevin time units vary between 80 and
over 1000, with the shortest runs being in the saturation
regime. For most of the runs, we choose five gauge-cooling
steps after each CLE update.
To test our choice of dt and the number of gauge-cooling

steps per update, as well as to observe the finite-lattice-size
effects we ran a number of test runs at β ¼ 5.6, μ ¼ 0
where we could compare our CLE simulations with those
performed using the exact RHMC algorithm and with the
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corresponding real Langevin equation (RLE). The results
of these simulations are summarized in Tables I–III.
There is good agreement between the RLE and the exact

RHMC observables when we used an input dt ¼ 0.01. We
note that changing the number of gauge-cooling steps has
little effect on the chiral condensates, plaquettes and
unitarity norms for the CLE simulations. Neither does
changing the starting conditions for the runs. This was also
found to be true at μ ¼ 0.5 where we ran CLE simulations
from an ordered start with five gauge-cooling steps per
update and from a disordered start with ten gauge-cooling
steps per update. The chiral condensate shows a small but
significant finite volume effect in going from a 124 to a 164

lattice. Reducing dt from 0.01 to 0.005 on the 164 lattice
increases the CLE measurement of the chiral condensate.
Considering only the leading dependence on dt and hence

on dtadaptive which is linear, we predict hψ̄ψi ≈ 0.2025 in
the limitdt → 0.We note that the difference between this and
the true (RHMC) value is ≈0.013, compared with the
difference between the dt ¼ 0.01 value and the true value
on the 124 lattice is ≈0.014. Since we know that one needs a
smaller dt on a larger lattice we believe that dt ¼ 0.01 is
adequate for the 124 lattice, at least atμ ¼ 0. Forβ ¼ 5.7 on a
164 lattice at μ ¼ 0, the RHMC simulations predict that the
chiral condensate, the observable most sensitive to simu-
lationmethods and parameters, hψ̄ψi ¼ 0.1752ð2Þ, the RLE
simulations with dt ¼ 0.01 give hψ̄ψi ¼ 0.1756ð3Þ, while
the CLE simulations with dt ¼ 0.01 and five gauge-cools/
update yield hψ̄ψi ¼ 0.1731ð10Þ. While the CLE probably
still has some systematic error, we consider it to be small
enough to be acceptable. Hence we choose dt ¼ 0.01 and
five gauge-cools/update for all CLE simulations except those

TABLE I. Plaquettes from simulations at β ¼ 5.6, μ ¼ 0 for various types of simulation and choice of parameters.

Lattice β μ dt dtadaptive Cools Start Plaquette

RHMC 124 5.6 0.0 Ordered 0.43552(5)
RHMC 164 5.6 0.0 Ordered 0.43556(2)
RLE 164 5.6 0.0 0.01 0.00103 0 Ordered 0.43566(3)
CLE 124 5.6 0.0 0.01 0.000309 5 Ordered 0.43667(9)
CLE 124 5.6 0.0 0.01 0.000299 15 Disordered 0.43672(12)
CLE 124 5.6 0.0 0.01 0.000294 100 Ordered 0.43686(10)
CLE 164 5.6 0.0 0.01 0.000183 5 Ordered 0.43681(6)
CLE 164 5.6 0.0 0.005 0.000094 5 dt ¼ 0.01 0.43682(7)

TABLE II. Chiral condensate from simulations at β ¼ 5.6, μ ¼ 0 for various types of simulation and choice of
parameters.

Lattice β μ dt dtadaptive Cools Start hψ̄ψi
RHMC 124 5.6 0.0 Ordered 0.2133(11)
RHMC 164 5.6 0.0 Ordered 0.2158(3)
RLE 164 5.6 0.0 0.01 0.00103 0 Ordered 0.2160(5)
CLE 124 5.6 0.0 0.01 0.000309 5 Ordered 0.1993(15)
CLE 124 5.6 0.0 0.01 0.000299 15 Disordered 0.1996(29)
CLE 124 5.6 0.0 0.01 0.000294 100 Ordered 0.1985(17)
CLE 164 5.6 0.0 0.01 0.000183 5 Ordered 0.1968(8)
CLE 164 5.6 0.0 0.005 0.000094 5 dt ¼ 0.01 0.1997(9)

TABLE III. Unitarity norms FðUÞ from CLE simulations at β ¼ 5.6, μ ¼ 0 for various choices of parameters.

Lattice β μ dt dtadaptive Cools Start FðUÞ
CLE 124 5.6 0.0 0.01 0.000309 5 Ordered 0.1436(28)
CLE 124 5.6 0.0 0.01 0.000299 15 Disordered 0.1479(41)
CLE 124 5.6 0.0 0.01 0.000294 100 Ordered 0.1496(31)
CLE 164 5.6 0.0 0.01 0.000183 5 Ordered 0.1533(15)
CLE 164 5.6 0.0 0.005 0.000094 5 dt ¼ 0.01 0.1487(20)
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mentioned in the tables. Here we implicitly assume that
adaptive rescaling of dt is sufficient to tame any wild
fluctuations which are produced by going to a nonzero μ.
For comparison, we perform RHMC simulations of the

phase-quenched theory with the same parameters and
lattice sizes. At each β and μ we run 10 000 length-1
trajectories (except at μ ¼ 0, where we ran 20 000 trajec-
tories). The observables for the phase-quenched theory
should remain constant at their μ ¼ 0 values up to μ ≈
mπ=2 in the limit that the explicit symmetry-breaking
term’s coefficient λ vanishes, up to finite temperature
and volume corrections, whereas in the full theory, these
observables should remain constant until μ ≈mN=3. (See
[38] for definition of λ.) Note that QCD with an isospin
chemical potential μI is identical to the phase-quenched
theory with chemical potential μ ¼ μI=2. This is because
the 2-flavor phase-quenched theory is a theory with one
quark which is a color triplet and one conjugate-quark
which is a color antitriplet and has the opposite parity from
the regular quark. These can form a pionlike state of one
quark and one conjugate quark, which can form a colorless
quark-number breaking condensate. (If we write Ψ as a
“flavor” doublet with components the normal quark and the
anti-conjugate-quark, then the symmetry breaking term in
the Lagrangian is iλΨ̄γ5τ2Ψ.) For β ¼ 5.6, m ¼ 0.025,
mπ=2 ≈ 0.21 and mN=3 ≈ 0.33 [39] while for β ¼ 5.7,
m ¼ 0.025, mπ=2 ≈ 0.194 and mN=3 ≈ 0.28 [40,41], so
these two transitions should be distinguishable. At satu-
ration, the quark-number density should be 3 (one quark of
each color at each site), the chiral condensate should
vanish, and the fermions should decouple from the gauge
fields, so gauge observables such as the plaquette should
have their pure gauge values.

Figure 1 shows the average plaquettes as functions of μ
for β ¼ 5.6, m ¼ 0.025 on a 124 lattice and β ¼ 5.7, m ¼
0.025 on a 164 lattice, from our CLE simulations. The
corresponding results for the phase-quenched theory are
shown for two different values of the symmetry breaking
parameter λ indicating that there is relatively little λ
dependence. For μ ¼ 0 at β ¼ 5.6, while the difference
between the CLE value and the exact value is not large, it is
significant. At β ¼ 5.7 the relative difference is almost a
factor of 2 smaller. At saturation, for both βs, the plaquette
for the phase-quenched theory is identical to that of the pure
gauge theory within statistical errors. For both βs the
plaquette value for the full theory at saturation predicted
by the CLE, agrees within statistical errors with that
predicted by CLE simulations of the pure gauge theory.
The values predicted by the CLE for pure gauge theory
differ significantly from the correct value (see Sec. IV).
However, this difference is much smaller for β ¼ 5.7 than
for β ¼ 5.6.
The chiral condensates for β ¼ 5.6 and β ¼ 5.7 are

shown as functions of μ in Fig. 2 for both our CLE
simulations of QCD at finite μ and RHMC simulations of
the phase-quenched theory. At μ ¼ 0 the CLE value of this
condensate at β ¼ 5.6 is ≈6.6% too low, while at β ¼ 5.7 it
is ≈1.2% too low, a considerable improvement. As μ is
increased from zero, the condensates for both βs start to fall
for μ < mπ=2 rather than for μ ≈mN=3. Therefore, even
though β ¼ 5.7 shows an improvement over β ¼ 5.6, it is
still a worse approximation to the physics than is the phase-
quenched theory. It is still unclear if going to a much
weaker coupling will produce the correct results or those of
the phase-quenched theory. At both βs the condensate
reaches its saturation value of zero at large μ.

FIG. 1. Plaquettes as functions of μ for (a) β ¼ 5.6, m ¼ 0.025 on a 124 lattice and for (b) β ¼ 5.7, m ¼ 0.025 on a 164 lattice. Both
complex Langevin (CLE) and phase-quenched (PQ) results are presented. Vertical dotted lines are at μ ¼ mπ=2 and μ ¼ mN=3.
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Figure 3 shows the quark-number densities for our β ¼
5.6 and β ¼ 5.7 simulations. On this scale, the CLE results
for the full theory and RHMC results for the phase-
quenched theory look almost identical, except on their
approach to saturation. Figure 4, shows an expanded
version of the low μ region which indicates that the
apparent agreement is only because the number densities
are so close to zero for small μ. The results for the two
theories are closer for β ¼ 5.7 than for β ¼ 5.6. This would
be expected if the CLE produces phase-quenched results in
the weak-coupling limit, but also could indicate that it
produces correct results in that limit. Note that it is difficult,

if not impossible, to determine the positions of the
transitions from these quark-number density graphs.
Figure 5 shows the average unitarity norms for the CLE

simulations at β ¼ 5.6 and β ¼ 5.7 as functions of μ. In
both cases this norm decreases from its value at μ ¼ 0 as μ
is increased reaching a minimum around 0.5 or 0.6 before
increasing to a maximum at saturation, which is the value
for CLE simulations of the pure gauge theory at the same β
value. The values of the unitarity norms for β ¼ 5.7 lie
below the values of those at β ¼ 5.6 for the same μ. It has
been suggested, on the basis of simulations of lattice QCD
in the heavy-dense limit that there is some value of the

FIG. 2. Chiral condensates as functions of μ for (a) β ¼ 5.6,m ¼ 0.025 on a 124 lattice and for (b) β ¼ 5.7,m ¼ 0.025 on a 164 lattice.
Both complex Langevin (CLE) and phase-quenched (PQ) results are presented. Vertical dotted lines are at μ ¼ mπ=2 and μ ¼ mN=3.

FIG. 3. Quark-number densities as functions of μ for (a) β ¼ 5.6, m ¼ 0.025 on a 124 lattice and for (b) β ¼ 5.7, m ¼ 0.025 on a 164

lattice. Both complex Langevin (CLE) and phase-quenched (PQ) results are presented. Vertical dotted lines are at μ ¼ mπ=2 and μ ¼ mN=3.
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unitarity norm around 0.1 below which the CLE
will produce correct results [18].1 From our simulations
at m ¼ 0.025 there does appear to be such a value for
μ ¼ 0, between 0.13 and 0.15. However, if there is such a
value for μ > 0, it decreases with increasing μ, lying below
the value of this norm for β ¼ 5.7, at least through the
transition region.
At β ¼ 5.7, the value of the unitarity norm drops by

roughly a factor of 2 from μ ¼ 0 where it is ≈0.131 to
μ ¼ 0.3 at the upper end of the transition region, where it is
≈0.067. From there it falls by an order of magnitude,
reaching a minimum between μ ¼ 0.5 where it is ≈0.0058
and μ ¼ 0.6 where it is ≈0.0054. It is tempting to suggest
that the CLE will produce correct results for μs around this
rather broad minimum. Moreover, for 0.5 ≤ μ ≤ 0.9 the
plaquette, the chiral condensate, and the quark-number
density are in good agreement with those of the phase-
quenched approximation. (Above μ ¼ 0.9 we are in the
regime controlled by saturation a lattice artifact.) Either, in
the large μ region, the full and phase-quenched theories
give the same physics or this is a sign that the CLE
breakdown produces phase-quenched results as suggested
by random matrix theory. We shall have more to say about
this shortly.
To test whether the assumption that the CLE is valid for

β ¼ 5.7,m ¼ 0.025 for μ near the unitarity-norm minimum
is reasonable, even though it fails for small μ, we examine

the distribution of values of the chiral condensate for
0 ≤ μ ≤ 0.9. (For μ > 0.9 the system is influenced by
saturation, a lattice artifact.) The chiral condensate is
chosen since it has poles at the same places as those of
the drift term. Hence if these poles are approached too
closely, which invalidates the CLE, it should show large
(non-Gaussian) excursions in its distribution. Figure 6
presents the histogram of values of hψ̄ψi at μ ¼ 0, which
is typical of the distributions for small μ. This histogram
has long tails, with a few outliers, which indicates that the

FIG. 4. As for Fig. 3, but showing the low μ region on an expanded scale.

FIG. 5. Average unitarity norms as functions of μ for β ¼ 5.6,
m ¼ 0.025 and β ¼ 5.7, m ¼ 0.025.

1We have investigated the suggestion from this paper that one
should terminate the simulation at a given β and μ before the
fluctuations in the observables increase substantially. For our
simulations, while this improves the results at μ ¼ 0, it does not
prevent the precocious onset of the transition. In addition, such
restricted simulations are short and their length decreases with
increasing μ, essentially vanishing above the transition, so it is
doubtful that the system has time to equilibrate.
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poles in the drift term as well as those in ψ̄ψ are being
approached. The fact that good results are obtained for
μ ¼ 0 indicates that although the trajectory of the system
approaches the poles this does not necessarily cause a
breakdown of the CLE. However, as μ is increased, and
the tails slowly become more prominent, the CLE does start
to deviate from the correct physics. In Fig. 7 we show
histograms at μ ¼ 0.2, close to mπ=2 and hence at the
beginning of the transition region if the physics were that of
the phase-quenched theory, and at μ ¼ 0.3 close to mN=3
and thus to the transition expected for QCD at finite μ. At
μ ¼ 0.2 the tails appear to be close to maximal. Beyond
this, they decrease and are noticeably smaller at μ ¼ 0.3.
Figure 8 shows the histograms for μ ¼ 0.6 at the minimum
of the unitarity norm, and μ ¼ 0.8 in the large μ regime.

By μ ¼ 0.6 the non-Gaussian tails have almost vanished
and remain insignificant over the range 0.5 ≤ μ ≤ 0.9 as
can be seen in the histogram at μ ¼ 0.8. In this high μ
regime we have also looked at the histograms of quark-
number density distributions (since the quark-number
operator also has poles at the zeros of the fermion deter-
minant), which are also well-behaved over this range of μs.
Figure 9 shows the real parts of the Wilson lines

(Polyakov loops) and the inverse Wilson lines as functions
of μ for our β ¼ 5.6, and β ¼ 5.7 from our CLE simu-
lations. The imaginary parts of these quantities are small,
consistent with zero. We include the Wilson lines from the
corresponding phase-quenched RHMC simulations with
λ ¼ 0.001 for comparison. What we notice is that once μ is
above the transition, if not before, the Wilson lines start to

FIG. 6. Histogram of values of the chiral condensate from a CLE simulation at β ¼ 5.7, m ¼ 0.025, μ ¼ 0. (a) Full histogram.
(b) Central portion of this histogram.

FIG. 7. Histogram of values of the chiral condensate from a CLE simulation at β ¼ 5.7, m ¼ 0.025. (a) μ ¼ 0.2. (b) μ ¼ 0.3.
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diverge from their inverses. This means that the fermion
determinant is complex. The fact that the inverse Wilson
line lies above the Wilson line up to some μ between 0.8
and 0.9 indicates that the phase of the Wilson line and that
of the fermion determinant are positively correlated. Such a
correlation was anticipated in [42], and observed in
simulations of heavy-dense lattice QCD [14,15,19,20]. It
is interesting to note that the crossover point where the
phase of the determinant vanishes lies near to the quark-
number density of 1.5 where the Fermi states are half filled.
This behavior was predicted and observed in heavy-dense
lattice QCD [20].
The Wilson line and the inverse-Wilson line increase

with increasing μ reaching a maximum just before the
effects of saturation start to be felt. At β ¼ 5.7 the fact that
local observables measured in CLE simulations agree with

phase-quenched results, despite the fact that the fermion
determinant is complex, is possible because the phase of the
fermion determinant can be determined by a few low lying
eigenvalues of the Dirac operator, whereas other quantities
are determined by the distribution of eigenvalues. This was
discussed most clearly in [31]. We also note that the CLE
Wilson and inverse-Wilson lines do not show any signifi-
cant effect from the pseudotransition at μ ¼ mπ=2, unlike
theWilson line for the phase-quenched theory, which might
indicate that the CLE will not eventually yield phase-
quenched results in the transition region.
Because the presence of the chemical potential introdu-

ces an asymmetry between space and time which tends to
amplify the effects of temperature, the question arises as to
whether the 124 lattice for β ¼ 5.6 and the 164 lattice
for β ¼ 5.7, while being good approximations to zero

FIG. 8. Histogram of values of the chiral condensate from a CLE simulation at β ¼ 5.7, m ¼ 0.025. (a) μ ¼ 0.6. (b) μ ¼ 0.8.

FIG. 9. Wilson line (Polyakov loop) and inverse Wilson line as functions of μ (a) for β ¼ 5.6, m ¼ 0.025 on a 124 lattice and (b) for
β ¼ 5.7, m ¼ 0.025 on a 164 lattice.
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temperature at μ ¼ 0, remain good approximations to zero
temperature as μ is increased. The increase in value of the
Wilson line as μ is increased, discussed in the previous
paragraph, emphasizes the possibility that some of the μ
dependence of observables other than the Wilson line could
actually be finite temperature effects. To check this we
performed test CLE runs on a 163 × 36 lattice with β ¼ 5.7
and m ¼ 0.025 at μ ¼ 0.2 and μ ¼ 0.3, which bracket the
transition region, and at μ ¼ 0.8, a large value of μ, but not
so large as to be influenced by saturation. At all three of
these μ values theWilson lines are consistent with zero. The
values of the plaquette, chiral condensate, and quark-
number density and unitarity norm measured in these
simulations are compared with those obtained for the
corresponding 164 lattice simulations in Table IV.
For μ ¼ 0.2, 0.3 there is good agreement between these

local observables for Nt ¼ 16 and Nt ¼ 36. For μ ¼ 0.08
there are small but noticeable differences in the plaquettes
and chiral condensates between the two lattice sizes, while
the quark-number densities and unitarity norms are in good
agreement. We conclude that the finite temperature effects
from using Nt ¼ 16 are acceptably small over the whole
range of μ values.

IV. DEPENDENCE OF THE UNITARITY NORM
ON QUARK MASS AND COUPLING

It has been observed that the CLE is better behaved if its
trajectories remain near to the SUð3Þ manifold, i.e., if the
unitarity norm remains small. It is therefore of interest to
determine how the unitarity norm depends on the param-
eters of the theory.
First we consider how the unitarity norm depends on the

quark mass m. In the previous section, we have observed
that, for fixed m and β, the local maximum for small μ
occurs at μ ¼ 0. The global maximum occurs at saturation.
Since this maximum is the value for the pure gauge theory
at this β, it does not depend on m. Therefore we shall
determine them dependence of the unitarity norm at μ ¼ 0,
which is thus relevant for small μ.
Since the unitarity norm at μ ¼ 0 appears to decrease

with increasing β and we shall be interested in β ≥ 5.6, we
study the m dependence with β fixed at β ¼ 5.6. We
perform CLE simulations with 0.01 ≤ m ≤ ∞. For m ¼
0.01 we use a 164 lattice. For m ¼ 0.025 we use both 164

and 124 lattices, while for m ¼ 0.05, m ¼ 0.1, m ¼ 0.25,
m ¼ 0.5 and m ¼ ∞ we use 124 lattices. Except for m ¼
0.025 and m ¼ ∞ on 124 lattices, each run uses 3 × 106

updates.
In Fig. 10 we plot the unitarity norm versus 1=m at

β ¼ 5.6. We note that it decreases by almost an order of
magnitude as m is decreased from infinity to 0.01.
For a given β, the unitarity norm has its maximum for μ

at saturation, for which it is mass independent. Hence we
choose to perform a CLE at saturation for each β, that is we

TABLE IV. Comparison between local observables from CLE
simulations at β ¼ 5.7, m ¼ 0.025 on 164 and 163 × 36 lattices
for μ ¼ 0.2, 0.3, 0.8.

Plaquette

μ 164 163 × 36

0.2 0.42365(4) 0.42364(3)
0.3 0.42368(4) 0.42365(3)
0.8 0.43686(6) 0.43706(3)

hψ̄ψi
μ 164 163 × 36

0.2 0.1543(8) 0.1540(3)
0.3 0.1388(5) 0.1385(3)
0.8 0.0412(8) 0.0437(9)

Quark number density

μ 164 163 × 36

0.2 0.0103(9) 0.0092(3)
0.3 0.0208(6) 0.0214(4)
0.8 0.9634(16) 0.9620(17)

Unitarity norm

μ 164 163 × 36

0.2 0.0994(15) 0.0999(12)
0.3 0.0673(19) 0.0667(12)
0.8 0.0135(3) 0.0135(2) FIG. 10. Unitarity norm as a function of inverse quark mass at

β ¼ 5.6.
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simulate the pure gauge theory for that β, knowing that this
will give the upper bound to the unitarity norm for that β.
Moreover, since there are no quarks, we do not have to
worry that we should really changemwhen we change β so
as to keep on a line of constant physics. Since there are no
quarks, these simulations are fast, and for given β one can
use a much smaller lattice than for the same β with light
quarks. Without quarks, the drift term is holomorphic in the
gauge fields, so the CLE should produce results correct to
order dt2, provided the fields evolve on a compact domain.
We perform CLE simulations for a selection of βs in the

range 5.6 ≤ β ≤ 7.0:β ¼ 5.6 and β ¼ 5.7 simulations were
performed on 124 lattices, β ¼ 5.8, β ¼ 5.9, β ¼ 6.0 and
β ¼ 6.2 simulations were performed on 164 lattices, β ¼
6.5 simulations were performed on a 244 lattice and β ¼
7.0 simulations were performed on a 324 lattice. First we
find that at β ¼ 5.7, if we start on the SUð3Þ manifold, the
CLE trajectory stays on the SUð3Þmanifold for at least 107

updates. However, if we start slightly off this manifold, the
system evolves away from the SUð3Þ manifold to a region
where the unitarity norm fluctuates around a stable, non-
zero value. This value appears to be independent of how far
the starting point is from the SUð3Þ manifold. We assume
similar behavior for β > 5.7 and start the simulations at
larger βs away from the SUð3Þ manifold. At each β, we
have at least one run with a non-SUð3Þ start of 5 × 106

updates or more. The measured unitarity norms are plotted
as a function of β in Fig. 11. These decrease as β increases,
that is as the coupling g decreases. In fact over the range of
βs considered, this norm decreases by more than an order of
magnitude.

In Fig. 12 we plot the average plaquette from our CLE
simulations and compare it to the “exact” value from a
Monte-Carlo simulation. Except for β ¼ 5.6 these values
are close and get closer as β is increased. This difference for
the lower βs is too large to be due to statistical errors or the
inexact nature of Langevin simulations. (This is surprising
since the drift term is holomorphic in the fields, and the
region spanned by these CLE simulations appears to be
bounded.) Hence it is a systematic of the CLE, which must
be due to the distribution of the plaquette values not falling
off fast enough at the boundaries or nonergodicity which
could indicate that there are other regions of the SLð3; CÞ4V
space which are not accessible to these simulations. For
β ¼ 5.6 where this systematic error is unacceptably large,
we have observed one large excursions in some of our runs.
At all βs the distributions of plaquette values do have “tails”
or “skirts” as do those of the unitarity norms.
Because of the size of the systematic errors for pure

gauge theory at β ¼ 5.6, we have checked to see if any of
this can be due to inadequate gauge-cooling by running
simulations with 5, 7 and 100 cooling steps with dt ¼ 0.01.
The plaquette values from all three are in good agreement,
as are the unitarity norms. We also performed a simulation
with 100 cooling steps per update but with dt ¼ 0.005 and
find good agreement with the plaquettes and unitarity
norms from our dt ¼ 0.01 simulations. For β ¼ 5.7 we
have performed simulations with 5, 6, 7, 8 and 10 gauge-
cooling steps, with different starting configurations. For the
case with five gauge-cooling steps per update, where we
used an ordered start, the system stayed in SUð3Þ (RLE)
and the plaquette was very close to that from the (exact)

FIG. 11. Unitarity norm for pure SUð3Þ gauge theory as a
function of β.

FIG. 12. Average plaquette for pure SUð3Þ gauge theory as a
function of β.
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Monte Carlo value. For the other four choices, the
plaquettes were in agreement and only slightly above the
exact value. The agreement between the CLE and exact
simulations improves with increasing β.

V. SUMMARY, DISCUSSION AND CONCLUSIONS

We have performed CLE lattice simulations of lattice
QCD at zero temperature and finite μ at β ¼ 5.6, m ¼
0.025 and at β ¼ 5.7, m ¼ 0.025. Neither β shows the
expected physics in the transition region. Whereas one
expects that the transition from hadronic to nuclear matter
should occur at μ ≈mN=3, these simulations show tran-
sitions for μ < mπ=2. For the weaker coupling (β ¼ 5.7) for
μ close to zero, the CLE produces values of the observables
which are close to the correct results, and considerably
better than those for β ¼ 5.6. For μ large enough to produce
saturation, where all available fermion states are filled, both
βs indicate that the quarks have decoupled leaving us with a
pure SUð3Þ gauge theory. In both cases the plaquette
observable agrees with that from a CLE simulation of
the pure gauge theory. This value is much closer to the
exact result for the weaker coupling. For β ¼ 5.7 at very
small μ and for a significant range of μs above mN=3, there
is good agreement between these CLE simulations and the
exact (RHMC) simulations of the phase-quenched theory.
For μ > mN=3 we have not seen any sign of new exotic

phases, such as a color-superconducting phase. Nor is there
any indication of a transition to quark-matter below satu-
ration. There is also no indication of a difference between the
full theory and its phase-quenched approximation for μ ≥
0.5while not so high that saturation is a dominant influence,
except that the Wilson Line indicates that the fermion
determinant is complex for the full theory. The apparently
Gaussian distribution of chiral condensate measurements
(and of quark-number density measurements) suggests that
the CLE should be reliable in this domain. A difference
between the full theory and the phase-quenched theory
might be expected because of the existence of a pionlike
superfluid phase in the latter. If the full theory does have
local observables identical to the phase-quenched theory in
this region, and this is not an artifact of the CLE, it might be
possible to check this by reweighting from the phase-
quenched theory to the full theory in the high μ domain.
Because there is some indication that the CLE is more

likely to produce correct results if the trajectories stay close
to the SUð3Þ manifold, we have performed CLE simu-
lations over a range of quark masses at a fixed coupling and
over a range of couplings at infinite quark mass [pure
SUð3Þ gauge theory]. What we find is that the average
distance of the trajectories from SUð3Þ as determined by
the unitarity norm decreases as the coupling and quark
mass are decreased, that is as we approach the continuum
limit. This gives us some hope that the CLE might produce
the correct physics in this limit. However, random matrix
theories suggest that it might produce phase-quenched

results. Since the simulations described in Sec. III do
not rule out either possibility, further simulations at weaker
couplings, which require larger lattices, are needed. Since
our conclusion that the CLE fails to observe the transition
from hadronic to nuclear matter at the expected μ value is
based on measurements of the chiral condensate and quark-
number density, both of which are expectation values of
operators with poles at the same place as those in the drift
term, another possibility needs to be considered. That is the
possibility that the simulation is correct and produces the
correct values for the expectation values of nonsingular
operators but fails for such singular operators.
Other methods have been suggested to try and obtain

correct results from CLE simulations. One is to add terms to
the action which cause the CLE to avoid the poles, with
coefficients, which when taken to zero, yield the original
action [43]. The question then is can these coefficients be
taken small enough to allow them to be continued to zero,
without them losing their effectiveness in avoiding the poles.
Preliminary results onvery small lattice lookpromising, but it
remains to be seen if this method will work on larger lattices.
A second method is based on the observation that one

needs to keep the unitarity norm small for the CLE to work.
This is achieved by changing the dynamics of the CLE by
adding a force in the direction of decreasing unitarity norm
to the drift term, with a coefficient which can be made
arbitrarily small [44]. This additional force should be
irrelevant (in the renormalization group sense) so that it
will vanish as the lattice spacing goes to zero. It should also
vanish when the gauge fields lie on the SUð3Þ manifold.
Such a force will not be holomorphic in the gauge fields, so
that adding it to the drift term could completely destroy any
relationship between the CLE and the physics contained in
the original functional integral, so careful testing is needed.
Another possible reason for the failure of the CLE has

been discussed by Block and Schenk [45]. Their claim is
that part of the problem with the usual application of the
CLE to lattice QCD at finite μ is the use of stochastic
estimators for the traces of the inverses of the poorly
conditioned Dirac operator. They promote the use of newer
methods to replace these stochastic estimators, which
produce better results.
The use of other actions should be investigated. For

example, the phase structure of lattice QCD at zero temper-
ature should be studied as a function of μ using the CLEwith
Wilson fermions, since Wilson fermions preserve the
continuum order of the zeros of the fermion determinant,
which is equal to the number of flavors. For staggered
fermions this order is decreased by a factor of 4 by “taste”
breaking, and is only recovered in the continuum limit.
Application of the CLE to finite temperature QCD at

finite μ, in particular with regard to the effect of finite μ on
the transition of hadronic/nuclear matter to a quark-gluon
plasma, should be studied, continuing the pioneering work
of Fodor et al. [22]. It has been observed that the CLE
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should work better in this case, since finite temperatures
move the zeros of the fermion determinant away from the
CLE trajectories. In the case of 2-flavor staggered quarks,
our studies indicate that this is only likely to work (at least
form ¼ 0.025) if β ¼ 5.6 lies in the low temperature phase.
This requires Nt ≳ 12.
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