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Inspired by the duality between gravity and defects in crystals, we study lattice field theory with torsion.
The torsion is realized by a line defect of a lattice, namely, a dislocation. For the first application, we
perform the numerical computation for vector and axial currents induced by a screw dislocation. This
current generation is called the chiral torsional effect. We also derive the analytical formula for the chiral
torsional effect in the continuum limit.
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I. INTRODUCTION

Quantum field theory in a curved space shows various
intriguing phenomena. Although we want to observe and
confirm such gravity-induced phenomena, direct observa-
tion is not easy. In solid-state physics, there is an interesting
idea that gravitational effects can be mimicked by distorted
lattices in crystals. (See textbooks [1,2] and references
therein.) Since this emergent gravity is more controllable
than genuine gravity, we will have a better chance for direct
observation. Lattice defects behave as sources of the
emergent gravity: a disclination corresponds to curvature,
and a dislocation corresponds to torsion. There are many
proposals to study gravity-induced phenomena through
these lattice defects [3–10].
Since lattice field theory is formulated on a lattice, we

can apply the same idea to lattice field theory. Introducing
lattice defects to lattice field theory, we can simulate
quantum field theory in a curved space. There are two
motivations for this attempt. First, this is a nonperturbative
framework to study gravity-induced quantum phenomena.
Lattice field theory is a powerful computational scheme
beyond perturbation. The lattice field theory in a curved
space was previously formulated by introducing the metric
tensor and vierbein to lattice action [11–13]. The use of
lattice defects is another formulation. The new formulation
allows us to simulate not only curvature but also the torsion.
Second, this is the exact calculation for the emergent
gravity in solid-state physics. Since most lattice systems
with defects are analytically unsolvable, analytical calcu-
lations are impossible without approximations. Ab initio
numerical calculations are necessary to get exact results.

In this paper, we study lattice field theory with lattice
defects, in particular, with an external dislocation. In the
continuum limit, the dislocation corresponds to torsion, i.e.,
a space with noncommutative derivatives. In Sec. II, we
start with a brief introduction of torsion and then discuss
how to introduce dislocations to lattice field theory. For the
first application, we numerically compute the electric
currents induced by torsion, which we call the “chiral
torsional effect,” in Sec. III. We also show the analytical
formula of the chiral torsional effect in the continuum limit.
We discuss phenomenological applications in Sec. IV and
future perspectives in Sec. V.

II. TORSION AND DISLOCATION

In the Einstein gravity, the affine connection is assumed
to be symmetric, Γα

μν ¼ Γα
νμ. In the Einstein-Cartan gravity,

the antisymmetric part of the affine connection,

Tα
μν ¼

1

2
ðΓα

μν − Γα
νμÞ; ð1Þ

is nonzero. This is called the torsion tensor. In terms of the
vierbein, the torsion tensor is given by

Tn
μν ¼

1

2
ð∂μenν − ∂νenμÞ: ð2Þ

Nonzero torsion implies the noncommutativity of deriva-
tives, ½∂μ; ∂ν�xα ≠ 0. This expression clarifies that the
nonzero torsion arises from the singular or multivalued
coordinate. The noncommutative derivatives also appear in
the study of topological vortices [14,15]. The torsion
couples to matter fields through the connection and the
vierbein. For example, the Dirac equation of a massless
fermion reads

eνnγnDνψ ¼ 0 ð3Þ
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with the covariant derivative

Dν ¼ ∂ν þ iΓν þ δντðμþ γ5μ5Þ: ð4Þ

TheMatsubara formalism with imaginary time τ is adopted.
The vector chemical potential μ and the axial chemical
potential μ5 are introduced in the τ direction.
On the lattice, the torsion is realized by dislocations [1].

The schematic figure of dislocations is shown in Fig. 1. The
dislocation is parametrized by the displacement vector bα,
which is called the Burgers vector. The dislocation is
classified into the edge one and the screw one in accordance
with the direction of the Burgers vector. In the continuum
limit, the edge dislocation reproduces the torsion such as
Tx
xy and the screw dislocation reproduces the torsion such

as Tz
xy. In our formulation, we assume that the dislocations

are externally fixed by hand. Thus, the corresponding
torsion is external, not dynamical.
We consider formulating lattice field theory on the lattice

with dislocations. The calculation, except for lattice geom-
etry, is the standard one in the lattice field theory in a flat
space. The standard lattice actions of scalar, fermion,
and gauge fields can be used. This is in contrast to the
previous formulation of lattice field theory in a curved
space [11–13]. Dislocations do not break gauge invariance
in gauge theory because the lattice still consists of the

gauge-invariant loops of links. Although the pure gauge
theory with dislocations can be considered, it will not be
interesting. Link variables themselves do not distinguish
directions, unlike the Dirac operator, which explicitly
depends on directions through the gamma matrices. If
one naively construct lattice gauge action from the loops of
the link variables, it reproduces the continuum gauge action
without torsion. Therefore, the dislocations do not have
nontrivial effects on the pure gauge theory. This is con-
sistent with the fact that torsion does not couple to gauge
fields in nontrivial and gauge-invariant manners [16].

III. CHIRAL TORSIONAL EFFECT

We first consider the Euclidean lattice with one screw
dislocation. The dislocation is placed at the center
plaquette in the x-y plane, as shown in the right panel of
Fig. 1. The Burgers vector is along the imaginary time
direction, bα ¼ bδατ. In the continuum limit, this corre-
sponds to the torsion tensor

Tτ
xyðxÞ ¼ −

b
2
δð2ÞðxÞ ð5Þ

with the two-dimensional delta function δð2ÞðxÞ in the
x-y plane.
We performed lattice calculations with a single massless

Dirac fermion. The fermion is coupled to vector and axial
chemical potentials, but not to dynamical gauge fields. The
details of the lattice calculations are given in Appendix A.
We calculated the vector current and the axial current in the
z direction. As shown in Fig. 2, the dislocation induces the
currents. The induced currents have peaks at the center
plaquette. In Fig. 3, the peak values are plotted against the
Burgers vector length b. The currents are roughly propor-
tional to b, while small nonlinearity is also seen.
In the continuum and infinite-volume limit, we can

derive the analytical expression of the vector current

FIG. 1. Schematic figure of the edge dislocation (left) and the
screw dislocation (right). The arrows indicate the Burgers vectors.

FIG. 2. The vector current Jz and the axial current Jz5 in the x-y plane. The vector and axial chemical potentials are μ ¼ μ5 ¼ 0.1, the
temperature is T ¼ 1=12, and the Burgers vector length is b ¼ 3. The lattice unit is used.
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Jz ¼ −
μμ5
π2

Tτ
xy ð6Þ

and the axial current

Jz5 ¼ −
�
μ2 þ μ25
2π2

þ T2

6

�
Tτ
xy; ð7Þ

at the linear order of the torsion tensor. The derivation is
given in Appendix B. The numerical results can be
explained by Eqs. (6) and (7). The peaks in Fig. 2 will
reproduce the delta functions (5) in the continuum limit.
The peak values in Fig. 3 are proportional to b. Although
the peak values themselves cannot be directly compared
with Eqs. (6) and (7) because they are infinite due to the
delta functions in the continuum limit, the ratio Jz=Jz5 is
comparable. In this parameter setting, Eqs. (6) and (7) give
Jz=Jz5 ≃ 1=2. This is consistent with the numerical results at
b ¼ 3. Note that large b in the lattice unit corresponds to
the continuum limit.
We call this current generation the chiral torsional effect

[17]. One can interpret the chiral torsional effect as an
analog of the chiral vortical effect [18]. The functional
forms of Eqs. (6) and (7) coincide with those of the chiral
vortical effect by the replacement Tτ

xy ↔ −ωz [19]. We
have shown the chiral torsional effect of a single free
fermion. The introduction of noninteracting multiple colors
Nc would give the overall factor Nc to the currents. The
introduction of interactions would give more nontrivial
change.

IV. PHENOMENOLOGICAL APPLICATION

Although the chiral torsional effect is interesting from an
academic viewpoint, we do not know how to make it in the
real world. The chiral torsional effect is induced by the

torsion in the time direction. It is extremely difficult to
distort the temporal structure of matters. Here, we consider
the torsion in spatial directions. Unlike the torsion in the
time direction, the torsion in spatial directions can be
realized in realistic matters, e.g., in crystals with disloca-
tions and in fluids with vorticities. From Eqs. (B8) and
(B9), the torsion Tx

zx induces a vector current,

Jz ¼
�
μ2 þ μ25
2π2

þ T2

6

�
Tx
zx; ð8Þ

and an axial current,

Jz5 ¼
μμ5
π2

Tx
zx: ð9Þ

This is another pattern of the chiral torsional effect.
This can be studied by the lattice calculation with an edge
dislocation. Besides, the torsion Tz

xy induces a chiral
imbalance:

n5 ¼ Jτ5

¼ μ35
3π2

þ μ5μ
2

π2
þ μ5T2

3
þ
�
μ2 þ μ25
2π2

þ T2

6

�
Tz
xy: ð10Þ

The chiral imbalance is nonzero even at μ5 ¼ 0. This
means that the torsion can stand in for the axial chemical
potential. We can also study many other torsion-induced
and dislocation-induced phenomena found in earlier works
[3–8,20–24].

V. CONCLUSIONS

We proposed the idea of implementing external gravity
in lattice gauge theory by means of lattice defects. In this
work, a dislocation was introduced to realize torsion in the
continuum limit. We studied the chiral torsional effect.
Performing the lattice calculation with a dislocation, we
observed the vector and axial currents of Dirac fermions.
The numerical results qualitatively agree with the analytical
formulas in the continuum limit. This idea can be gener-
alized to other lattice defects, e.g., disclinations to realize
curvature.
We performed the lattice calculation without interaction

in this work. Our formulation can be applied to the
Monte Carlo simulation of interacting theory. Since a
dislocation only changes lattice structure and does not
change lattice action, it seems free from the sign problem
on the Monte Carlo simulation. This is correct for the
dislocations in spatial directions but incorrect for the
dislocation in the real time direction. The dislocation must
be introduced in real time before the Wick rotation, not in
imaginary time after the Wick rotation. As a consequence,
the dislocation in real time will make the lattice action
complex and thus cause the sign problem. This is the same

FIG. 3. The peak values of the vector current Jz and the axial
current Jz5 as functions of the Burgers vector length b. The vector
and axial chemical potentials are μ ¼ μ5 ¼ 0.1, and the temper-
ature is T ¼ 1=12. The lattice unit is used.
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difficulty as the lattice gauge theory in a rotating
frame [11].
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APPENDIX A: LATTICE CALCULATION

In this Appendix, the detail of lattice calculation is
explained. The lattice calculation is formulated in the flat
Euclidean space, and the index sum is explicitly written.
The lattice unit is assumed.
We used the noninteracting massless Wilson fermion.

The action is

S ¼
X
x

X
ν

ψ̄ðxÞ
�
ψðxÞ

−
1

2

��
1 −

X
n

eνnγnU5ν

�
Uνψðxþ ν̂Þ

þ
�
1þ

X
n

eνnγnU−1
5ν

�
U−1

ν ψðx − ν̂Þ
��

ðA1Þ

with

U5ν ¼ exp½þμ5γ
5δντ�

U−1
5ν ¼ exp½−μ5γ5δντ� ðA2Þ

and

Uν ¼ exp½þμδντ�
U−1

ν ¼ exp½−μδντ�: ðA3Þ

The vector and axial chemical potentials are introduced
on temporal link variables [25,26]. The vierbein is
ex1 ¼ ey2 ¼ ez3 ¼ eτ4 ¼ 1, otherwise zero. When the vector
ν̂ crosses the cut in Fig. 1, it is given by

ψðx� ŷÞ ¼ ψðx� 2̂ ∓ b4̂Þ; ðA4Þ

otherwise,

ψðx� x̂Þ ¼ ψðx� 1̂Þ
ψðx� ŷÞ ¼ ψðx� 2̂Þ
ψðx� ẑÞ ¼ ψðx� 3̂Þ
ψðx� τ̂Þ ¼ ψðx� 4̂Þ; ðA5Þ

where n̂ is the unit vector in the n direction. We define the
z components of the vector current

Jz ¼ −
1

2
hψ̄ðxÞð1 − γ3Þψðxþ 3̂Þ

− ψ̄ðxþ 3̂Þð1þ γ3ÞψðxÞi ðA6Þ

and the axial current

Jz5 ¼ −
1

2
hψ̄ðxÞð1 − γ3Þγ5ψðxþ 3̂Þ

− ψ̄ðxþ 3̂Þð1þ γ3Þγ5ψðxÞi: ðA7Þ

We computed these currents on the lattice with a disloca-
tion. The spatial lattice size is 123. At the boundaries in the
x-y plane, the derivative term perpendicular to the boun-
daries is set to zero. A periodic boundary condition is
imposed in the z direction and an antiperiodic periodic
boundary condition is imposed in the τ direction. The axial
current has a nonzero cutoff-dependent part even at T ¼
μ ¼ μ5 ¼ 0 (see Appendix B). As shown in Fig. 4, the
temperature dependence is in good agreement with a
quadratic function as expected in Eq. (7). The cutoff-
dependent part was estimated by the extrapolation T → 0 at
μ ¼ μ5 ¼ 0 and then subtracted in Figs. 2 and 3.

APPENDIX B: DERIVATION OF THE CHIRAL
TORSIONAL EFFECT

We analytically derive the chiral torsional effect. The
gravitational effect is expanded in the power series of the
torsion tensor. The metric tensor is assumed to be the flat
one gμν ¼ δμν at each order. For simplicity, we neglect the
spin connection Γν in the Dirac equation (3). The covariant
derivative incorporates only the vector and axial chemical
potentials, Dν ≡ ∂ν þ δντðμþ γ5μ5Þ. For later conven-
ience, we also define D̄ν ≡ ∂ν þ δντðμ − γ5μ5Þ.
We compute the currents carried by right-handed and

left-handed fermions,

FIG. 4. Temperature dependence of the axial current Jz5. The
Burgers vector length is b ¼ 3. The solid curves are the best-fit
quadratic functions. The lattice unit is used.
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JmR=L ¼ hψ̄γmPR=Lψi

¼ −TrD;C
�
γmPR=L

1

eνnγnDν

�
; ðB1Þ

where PR=L ¼ ð1� γ5Þ=2 ¼ ð1� γ1γ2γ3γ4Þ=2 is the chiral
projector. The trace is over the Dirac space D as well as the
coordinate space C. Using the relation

ðeμmγmDμÞðeνnγnD̄νÞ ¼ γmγnðeμmD̄μÞðeνnD̄νÞ

¼
�
1

2
fγm; γng þ 1

2
½γm; γn�

�

× ðeμmD̄μÞðeνnD̄νÞ
¼ D̄2 − iσmnTν

mnD̄ν;

where σmn ≡ ði=2Þ½γm; γn�, we expand the propagator in the
power series of the torsion tensor:

1

eνnγnDν
¼ eνnγnD̄ν

1

D̄2 − iσrsTα
rsD̄α

¼ eνnγnD̄ν

�
1

D̄2
þ i

1

D̄2
σrsTα

rsD̄α
1

D̄2
þ � � �

�
:

Plugging this expansion into the formula (B1), we get the
zeroth and the linear orders of the currents. For the right-
handed sector,

JmR ¼ JmRð0Þ þ JmRð1Þ þ � � � ;

where the zeroth order reads

JmRð0Þ ¼ −TrDðγmPRγ
nÞTrC

�
eνnDRν

1

D2
R

�
ðB2Þ

and the linear order reads

JmRð1Þ ¼ −iTrDðγmPRγ
nσrsÞTrC

�
eνnDRν

1

D2
R
Tα
rsDRα

1

D2
R

�
:

ðB3Þ

We defined the covariant derivative for the right-handed
spinorDRν ¼ ∂ν þ δντμR with μR ¼ μþ μ5. We will evalu-
ate each order in turn.
The Dirac trace in the zeroth-order current (B2) reads

TrDðγmPRγ
nÞ ¼ 2δmn: ðB4Þ

The trace over the coordinate space is given by the four-
momentum integral using the Fermi distribution function
nðxÞ ¼ 1=ðex=T þ 1Þ,

TrC

�
eνnDRν

1

D2
R

�
¼ eτn

Z
k

Z
C

dω
2π

−iKRτ

−K2
R
nðiωÞ;

where KRν ¼ ðk;ωþ iμRÞ. We neglected the momentum
dependence of eνn because it comes from the higher orders
of the derivative of eνn. The integral with respect toω, which
is a complex integral along the contour C surrounding the
Matsubara frequencies, is evaluated by deforming the con-
tour. The remaining momentum integral,

R
k≡

R
d3k=ð2πÞ3,

can also be carried out by introducing the cutoff at
k≡ jkj ¼ Λ. The result reads

−eτn
Z

k2dk
4π2

½nðk − μRÞ − nðkþ μRÞ − 1�

¼ −eτn
�

μ3R
12π2

þ μRT2

12

�
þ ðΛ dependentÞ: ðB5Þ

Plugging the traces (B4) and (B5) into Eq. (B2), we get

JμR=Lð0Þ ¼ δμτ
�
μ3R=L
6π2

þ μR=LT2

6

�
þ ðΛ dependentÞ:

The left-handed current was obtained in the same way. The
difference Jμ

5ð0Þ ¼ JμRð0Þ − JμLð0Þ, after the subtraction of

the ultraviolet divergence, gives the zeroth-order terms
of the chiral imbalance (10).
Let us now evaluate the current at the linear order (B3).

The Dirac trace reads

TrDðγmPR=Lγ
nσrsÞ ¼ −2ið�ϵmnrs þ δmrδns − δmsδnrÞ:

ðB6Þ

The trace over the coordinate space is given by

TrC

�
eνnDRν

1

D2
R
Tα
rsDRα

1

D2
R

�

¼ −eνnTα
rs

Z
C

dω
2π

Z
k

KRνKRα

ðK2
RÞ2

nðiωÞ:

Because of the rotational symmetry, this integral only
depends on the two tensors, δTνα ≡ δντδατ and δSνα ≡
δνα − δTνα. That is,

TrC

�
eνnDRν

1

D2
R
Tα
rsDRα

1

D2
R

�

¼ −δTναeνnTα
rs

Z
C

dω
2π

Z
k

ðωþ iμRÞ2
½ðωþ iμRÞ2 þ k2�2 nðiωÞ

− δSναeνnTα
rs

Z
C

dω
2π

Z
k

k2=3
½ðωþ iμRÞ2 þ k2�2 nðiωÞ:

The integral in the first term is, by carrying out the partial
integration, evaluated as
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Z
C

dω
2π

Z
dk
4π2

ðωþ iμRÞ2
ðωþ iμRÞ2 þ k2

nðiωÞ

¼ −
Z

kdk
8π2

½nðk − μRÞ þ nðkþ μRÞ − 1�

¼ −
�

μ2R
16π2

þ T2

48

�
þ ðΛ dependentÞ:

The integral in the second term reads

Z
C

dω
2π

Z
k

k2=3
½ðωþ iμRÞ2 þ k2�2 nðiωÞ

¼
Z
C

dω
2π

Z
dk
4π2

k2

ðωþ iμRÞ2 þ k2
nðiωÞ

¼ −
Z
C

dω
2π

Z
dk
4π2

ðωþ iμRÞ2
ðωþ iμRÞ2 þ k2

nðiωÞ

þ ðΛdependentÞ

¼ μ2R
16π2

þ T2

48
þ ðΛdependentÞ:

Thus, the trace over the coordinate space is given by

TrC

�
eνnDRν

1

D2
R
Tα
rsDRα

1

D2
R

�

¼ðδTνα−δSναÞeνnTα
rs

�
μ2R
16π2

þT2

48

�
þðΛdependentÞ: ðB7Þ

Plugging the traces (B6) and (B7) into Eq. (B3), we get the
torsion-induced current. Below, the results are shown
together with the left-handed one:

JμR=Lð1Þ ¼ −ðδTνα − δSναÞð�ϵμνρσ þ 2δμρδνσÞTα
ρσ

·

�
μ2R=L
8π2

þ T2

24

�
þ ðΛ dependentÞ:

The positive and negative signs associate to the right-
handed and left-handed currents, respectively. These cur-
rents are rephrased as the vector and axial currents, which
read

Jμð1Þ ¼ JμRð1Þ þ JμLð1Þ
¼ −ðδTνα − δSναÞTα

ρσ

·

�
ϵμνρσ

μμ5
2π2

þ 2δμρδνσ
�
μ2 þ μ25
4π2

þ T2

12

��
ðB8Þ

and

Jμ
5ð1Þ ¼ JμRð1Þ − JμLð1Þ

¼ −ðδTνα − δSναÞTα
ρσ

·

�
ϵμνρσ

�
μ2 þ μ25
4π2

þ T2

12

�
þ 2δμρδνσ

μμ5
2π2

�
ðB9Þ

after the subtraction of the ultraviolet divergence. They give
Eqs. (6)–(9).
In the above derivation, we have assumed that the spin

connection is zero, Γμ ¼ 0. In general, Dirac fermions can
couple to torsion through the spin connection. The minimal
one [27] is

Γμ ¼
1

2
ωμmnσ

mn ðB10Þ

ωμmn ¼
1

2
Kγ

μαδβγeαme
β
n ðB11Þ

Kγ
μα ¼ Tγ

μα − Tμ
αγ þ Tα

γμ: ðB12Þ

This will give another contribution to Jμð1Þ and J
μ
5ð1Þ, though

we do not take it into account in this paper.

[1] H. Kleinert, Gauge Fields in Condensed Matter. Vol. II:
Stresses and Defects. Differential Geometry, Crystal
Melting (World Scientific, Singapore, 1989).

[2] Gauge Theories of Gravitation, edited by M. Blagojevic and
F.W. Hehl (World Scientific, Singapore, 2013).

[3] A. Mesaros, D. Sadri, and J. Zaanen, Phys. Rev. B 82,
073405 (2010).

[4] F. de Juan, A. Cortijo, and M. A. H. Vozmediano, Nucl.
Phys. B828, 625 (2010).

[5] A. Randono and T. L. Hughes, Phys. Rev. Lett. 106, 161102
(2011).

[6] A. Gromov and A. G. Abanov, Phys. Rev. Lett. 114, 016802
(2015).

[7] M. A. Zubkov, Ann. Phys. (Amsterdam) 360, 655
(2015).

[8] A. Cortijo and M. A. Zubkov, Ann. Phys. (Amsterdam) 366,
45 (2016).

[9] A. Sepehri, R. Pincak, and A. F. Ali, Eur. Phys. J. B 89, 250
(2016).

[10] E. V. Castro, A. Flachi, P. Ribeiro, and V. Vitagliano, Phys.
Rev. Lett. 121, 221601 (2018).

[11] A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601
(2013).

[12] A. Yamamoto, Phys. Rev. D 90, 054510 (2014).
[13] K. H. Villegas and J. P. Esguerra, Mod. Phys. Lett. A 30,

1550020 (2015).

SHOTA IMAKI and ARATA YAMAMOTO PHYS. REV. D 100, 054509 (2019)

054509-6

https://doi.org/10.1103/PhysRevB.82.073405
https://doi.org/10.1103/PhysRevB.82.073405
https://doi.org/10.1016/j.nuclphysb.2009.11.012
https://doi.org/10.1016/j.nuclphysb.2009.11.012
https://doi.org/10.1103/PhysRevLett.106.161102
https://doi.org/10.1103/PhysRevLett.106.161102
https://doi.org/10.1103/PhysRevLett.114.016802
https://doi.org/10.1103/PhysRevLett.114.016802
https://doi.org/10.1016/j.aop.2015.05.032
https://doi.org/10.1016/j.aop.2015.05.032
https://doi.org/10.1016/j.aop.2016.01.006
https://doi.org/10.1016/j.aop.2016.01.006
https://doi.org/10.1140/epjb/e2016-70428-4
https://doi.org/10.1140/epjb/e2016-70428-4
https://doi.org/10.1103/PhysRevLett.121.221601
https://doi.org/10.1103/PhysRevLett.121.221601
https://doi.org/10.1103/PhysRevLett.111.081601
https://doi.org/10.1103/PhysRevLett.111.081601
https://doi.org/10.1103/PhysRevD.90.054510
https://doi.org/10.1142/S0217732315500200
https://doi.org/10.1142/S0217732315500200


[14] D. T. Son and A. R. Zhitnitsky, Phys. Rev. D 70, 074018
(2004).

[15] K. Fukushima and S. Imaki, Phys. Rev. D 97, 114003
(2018).

[16] I. L. Shapiro, Phys. Rep. 357, 113 (2002).
[17] The name “chiral torsional effect” was used in Ref. [18] to

name only the axial current (7). We would like to use the
same name for the vector current, too.

[18] Z. V. Khaidukov and M. A. Zubkov, JETP Lett. 108, 670
(2018).

[19] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog.
Part. Nucl. Phys. 88, 1 (2016).

[20] A. Shitade, Prog. Theor. Exp. Phys. 2014, 123I01 (2014).
[21] O. Parrikar, T. L. Hughes, and R. G. Leigh, Phys. Rev. D 90,

105004 (2014).
[22] H. Sumiyoshi and S. Fujimoto, Phys. Rev. Lett. 116, 166601

(2016).
[23] M. N. Chernodub and M. Zubkov, Phys. Rev. B 95, 115410

(2017).
[24] Y. Ferreiros, Y. Kedem, E. J. Bergholtz, and J. H. Bardarson,

Phys. Rev. Lett. 122, 056601 (2019).
[25] P. Hasenfratz and F. Karsch, Phys. Lett. B 125, 308 (1983).
[26] A. Yamamoto, Phys. Rev. Lett. 107, 031601 (2011).
[27] J. Audretsch, Phys. Rev. D 24, 1470 (1981).

LATTICE FIELD THEORY WITH TORSION PHYS. REV. D 100, 054509 (2019)

054509-7

https://doi.org/10.1103/PhysRevD.70.074018
https://doi.org/10.1103/PhysRevD.70.074018
https://doi.org/10.1103/PhysRevD.97.114003
https://doi.org/10.1103/PhysRevD.97.114003
https://doi.org/10.1016/S0370-1573(01)00030-8
https://doi.org/10.1134/S0021364018220046
https://doi.org/10.1134/S0021364018220046
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1093/ptep/ptu162
https://doi.org/10.1103/PhysRevD.90.105004
https://doi.org/10.1103/PhysRevD.90.105004
https://doi.org/10.1103/PhysRevLett.116.166601
https://doi.org/10.1103/PhysRevLett.116.166601
https://doi.org/10.1103/PhysRevB.95.115410
https://doi.org/10.1103/PhysRevB.95.115410
https://doi.org/10.1103/PhysRevLett.122.056601
https://doi.org/10.1016/0370-2693(83)91290-X
https://doi.org/10.1103/PhysRevLett.107.031601
https://doi.org/10.1103/PhysRevD.24.1470

