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The nucleon-pion-state contribution in the QCD three-point function of the pseudoscalar density is
calculated to leading order in chiral perturbation theory. It predicts a nucleon-pion-state contamination in
lattice estimates for the pseudoscalar form factor GPðQ2Þ determined with the plateau method. Depending
on the momentum transfer Q2 the contamination varies between −20% and þ50% for a source-sink
separation of 2 fm. The nucleon-pion-state contamination also causes violations in the generalized
Goldberger-Treiman relation among the pseudoscalar and the axial nucleon form factors, the dominant
source being the nucleon-pion-state contamination in the induced pseudoscalar form factor G̃PðQ2Þ.
Comparing the chiral perturbation theory predictions with lattice results of the PACS Collaboration we find
reasonable agreement even for source-sink separations as small as 1.3 fm.
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I. INTRODUCTION

In a recent paper [1] the nucleon-pion (Nπ) contribution
in the nucleon axial-vector three-point (pt) function was
computed in leading order (LO) chiral perturbation theory
(ChPT). The results allow one to estimate the Nπ-state
contamination in lattice QCD estimates for the two asso-
ciated axial form factors, the axial form factor GAðQ2Þ and
the induced pseudoscalar form factor G̃PðQ2Þ. In particular
the latter is afflicted with a sizable Nπ-state contamination
leading to an underestimation of the true form factor for
small momentum transfers Q2. As a result the Q2 depend-
ence of the form factor is distorted and differs significantly
from the one expected by the pion-pole dominance
(PPD) model.
Due to the partially conserved axial-vector current

(PCAC) relation the three-pt function of the axial-vector
current is related to the three-pt function of the pseudo-
scalar density. This relation implies a relation between the
two axial form factors and the pseudoscalar form factor
GPðQ2Þ, often called the generalized Goldberger-Treiman
(gGT) relation [2]. However, lattice calculations of all
three form factors have shown that this relation is violated
badly [3–7]. Reference [3] concludes that lattice spacing
artifacts cannot explain the large violation, leaving essen-
tially excited-state effects as a natural explanation. Indeed,

Ref. [8] argues that a large part of the violation may be
due to strong excited-state contaminations in the three-pt
functions involving the pseudoscalar density and the time
component of the axial-vector current.
Here we present the results for the Nπ-state contamina-

tion in the pseudoscalar three-pt function and lattice
estimators for the pseudoscalar form factor GPðQ2Þ. The
results are derived to LO in ChPT. Together with the
analogous results for the axial form factors GAðQ2Þ and
G̃PðQ2Þ we explicitly calculate the dominant violations of
the gGT relation by Nπ excited states.
As anticipated in [8] we find a sizable Nπ-state con-

tamination in lattice estimates for GPðQ2Þ. It leads to an
underestimation for small Q2, but to an overestimation for
larger values. The size of the deviation depends on the
source-sink separation t in the pseudoscalar three-pt func-
tion, and covers the range −20% toþ40% for t ¼ 2 fm and
momentum transfers below 0.25 GeV2. The Q2 depend-
ence of the deviation leads to a distortion of the expected
PPD behavior.
The validity of the generalized Goldberger-Treiman

relation is sometimes tested by a ratio rPCAC [3,8]. It
involves all three form factors and the deviation from
the value 1 is a quantitative measure for a violation of the
generalized Goldberger-Treiman relation. We find that the
Nπ-state contamination in all three form factors results in
rPCAC < 1, and the difference to 1 increases the smaller Q2

is. In fact, comparing the LO ChPT results with lattice QCD
data recently obtained by the PACS Collaboration [6] we
find remarkable agreement even for source-sink separations
as small as t ≈ 1.3 fm. This supports the conclusion that the
observed violation of the generalized Goldberger-Treiman
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relation has its origin in non-negligible excited-state
contaminations.
The ChPT calculation of the Nπ contamination in the

axial form factors can be found in Ref. [1]. It involves the
computation of various Feynman diagrams stemming from
the chiral expansion of the axial-vector three-pt function.
In principle the same set of diagrams needs to be computed
to obtain the Nπ contamination in the pseudoscalar form
factor, with the axial-vector current replaced by the
pseudoscalar density. However, it is simpler to proceed
differently. By construction, ChPT reproduces the chiral
Ward identities of QCD, in particular the PCAC relation.
Therefore, the PCAC relation can be used to directly obtain
the Nπ contamination in the pseudoscalar three-pt function
from the results for the axial-vector three-pt functions in
[1]. The same strategy is used in Ref. [9] in the computation
of the three-pion excited-state contribution to the QCD
two-point functions of the axial-vector current and the
pseudoscalar density.
This paper relies heavily on the results in Ref. [1], and

the reader is assumed to be familiar with this reference. The
general ideas behind ChPT calculations of the Nπ-state
contamination in nucleon observables have been recently
reviewed in [10,11] and are not repeated here.

II. AXIAL AND PSEUDOSCALAR FORMFACTORS
OF THE NUCLEON

A. Basic definitions and results

We follow Ref. [1] and consider QCD with degenerate
up and down quark masses. The spatial volume is assumed
to be finite with extent L, and periodic boundary conditions
are imposed for all spatial directions. The time extent is
taken infinite, for simplicity, and we work in Euclidean
spacetime.
We are interested in the matrix element of the local

isovector pseudoscalar density PaðxÞ between single-
nucleon states of definite momenta and spin,

mqhNðp0; s0ÞjPað0ÞjNðp; sÞi

¼ mqGPðQ2Þūðp0; s0Þγ5
σa

2
uðp; sÞ: ð2:1Þ

Here mq denotes the mass of the up and down quarks.
The right-hand side defines the pseudoscalar form factor
GPðQ2Þ. uðpÞ is an isodoublet Dirac spinor with momen-
tum p and spin s, and the four-momentum transfer Qμ is
given by

Qμ ¼ ðiEN;p⃗0 − iEN;p⃗; q⃗Þ q⃗ ¼ p⃗0 − p⃗: ð2:2Þ

In Euclidean (lattice) QCD the form factors are computed
for spacelike momentum transfers Q2 > 0, with Q2 ¼
ðp⃗0 − p⃗Þ2 − ðEN;p⃗0 − EN;p⃗Þ2 and E2

N;p⃗ ¼ p⃗2 þM2
N .

In analogy to the pseudoscalar density we also consider
the analogous matrix element of the local isovector axial-
vector current Aa

μðxÞ,

hNðp0; s0ÞjAa
μð0ÞjNðp;sÞi

¼ ūðp0; s0Þ
�
γμγ5GAðQ2Þ− iγ5

Qμ

2MN
G̃PðQ2Þ

�
σa

2
uðp;sÞ:

ð2:3Þ

The right-hand side shows the decomposition of the matrix
element in two form factors, the axial form factor GAðQ2Þ
and the induced pseudoscalar form factor G̃PðQ2Þ. The
matrix elements of the axial-vector current and the pseu-
doscalar density are not independent but related via the
PCAC relation,

∂μAa
μðxÞ ¼ 2mqPaðxÞ: ð2:4Þ

Taking this relation between single-nucleon (SN) states
provides the gGT relation,

2MNGAðQ2Þ − Q2

2MN
G̃PðQ2Þ ¼ 2mqGPðQ2Þ; ð2:5Þ

between the three form factors.1

Considering Eq. (2.5) in the limit of vanishing momen-
tum transfer and pion mass one can conclude that both
G̃PðQ2Þ andGPðQ2Þ are dominated by a pion pole for small
Q2. For Q2 close to −M2

π one can derive the expressions2

G̃ppd
P ðQ2Þ ¼ 4M2

N

Q2 þM2
π
GAðQ2Þ; ð2:6Þ

2mqG
ppd
P ðQ2Þ ¼ 2MNM2

π

Q2 þM2
π
GAðQ2Þ; ð2:7Þ

for the form factors, which are called the PPD model
results.
A simple ansatz for the axial form factor GAðQ2Þ, used

commonly in fits to experimental data, is provided by the
dipole approximation

Gdip
A ðQ2Þ ¼ gA

ð1þQ2=M2
AÞ2

; ð2:8Þ

where MA is the axial dipole mass and gA ¼ GAð0Þ the
axial charge of the nucleon. It is a simple one parameter
ansatz that reproduces the axial charge for Q2 ¼ 0 and the
behavior GAðQ2Þ ∼Q−4 for large momentum transfers
expected from perturbation theory.

1Reference [8] refers to it as the PCACFF relation.
2See Appendix B of Ref. [12] for a quick derivation.
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B. Correlation functions

The standard procedure to compute the form factors is
based on evaluating various two- and three-pt functions.
Explicitly, the nucleon two-pt function is given by

C2ðp⃗; tÞ ¼
Z

d3xeip⃗x⃗ΓβαhNαðx⃗; tÞN̄βð0; 0Þi: ð2:9Þ

N, N̄ denote interpolating fields of the nucleon. We assume
them to be given by the standard three-quark operators
[13,14] (either pointlike or smeared) that have been mapped
to ChPT [15–17]. The projector Γ acts on spinor space and
is given by

Γ ¼ 1þ γ4
4

ð1þ iγ5γ3Þ ð2:10Þ

in terms of Euclidean gamma matrices. Some lattice
collaborations choose a different normalization for Γ, but
this is irrelevant for the results in this paper.
In the following the nucleon three-pt function is com-

puted with the nucleon at the sink being at rest, i.e., p⃗0 ¼ 0.
This implies q⃗ ¼ −p⃗ and

Q2 ¼ 2MNðEN;q⃗ −MNÞ ð2:11Þ

for the momentum transfer. In addition, we always choose
the third isospin component of the axial-vector current and
the pseudoscalar density, i.e., a ¼ 3. Thus, the nucleon
three-pt functions we consider are given by

C3;P3ðq⃗; t; t0Þ ¼
Z

d3x
Z

d3yeiq⃗ y⃗ΓβαhNαðx⃗; tÞ

× P3ðy⃗; t0ÞN̄βð0; 0Þi; ð2:12Þ

C3;A3
μ
ðq⃗; t; t0Þ ¼

Z
d3x

Z
d3yeiq⃗ y⃗ΓβαhNαðx⃗; tÞ

× A3
μðy⃗; t0ÞN̄βð0; 0Þi: ð2:13Þ

The Euclidean times t and t0 denote the source-sink
separation and the operator insertion time, respectively.
With the two-pt and three-pt functions we define the
generalized ratios

Rμðq⃗; t; t0Þ ¼
C3;Xμ

ðq⃗; t; t0Þ
C2ð0; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðq⃗; t− t0Þ
C2ð0; t− t0Þ

C2ð0⃗; tÞ
C2ðq⃗; tÞ

C2ð0⃗; t0Þ
C2ðq⃗; t0Þ

s
;

μ¼ 1;…4;P: ð2:14Þ

For μ ¼ 1;…4 the ratio involves the axial-vector current
three-pt function (2.13). As a shorthand notation we also
allow for μ ¼ P, referring to the case with the three-pt
function (2.12). The ratios are defined in such a way that,
in the asymptotic limit t; t0; t − t0 → ∞, they converge to
constant asymptotic values Πμðq⃗Þ,

Rμðq⃗; t; t0Þ → Πμðq⃗Þ: ð2:15Þ

These are related to the form factors according to

Πkðq⃗Þ ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EN;q⃗ðMN þ EN;q⃗Þ
p �

ðMN þ EN;q⃗ÞGAðQ2Þδ3k

−
G̃PðQ2Þ
2MN

q3qk

�
; ð2:16Þ

Π4ðq⃗Þ ¼
q3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EN;q⃗ðMN þ EN;q⃗Þ
p �

GAðQ2Þ

þMN − EN;q⃗

2MN
G̃PðQ2Þ

�
; ð2:17Þ

ΠPðq⃗Þ ¼
q3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EN;q⃗ðMN þ EN;q⃗Þ
p GPðQ2Þ: ð2:18Þ

The PCAC relation in Eq. (2.4) implies the constraint

2mqC3;P3ðq⃗; t; t0Þ ¼ ∂t0C3;A3
4
ðq⃗; t; t0Þ − i

X3
k¼1

qkC3;A3
k
ðq⃗; t; t0Þ

ð2:19Þ

between the various three-pt functions. Multiplying the
two-pt function contribution to form the ratios (2.14)
we obtain

2mqRPðq⃗; t; t0Þ ¼ R0
4ðq⃗; t; t0Þ − i

X3
k¼1

qkRkðq⃗; t; t0Þ; ð2:20Þ

where R0
4ðq⃗; t; t0Þ denotes the ratio involving the time

derivative ∂t0C3;A3
4
ðq⃗; t; t0Þ. Equation (2.20) is the PCAC

relation on the level of the ratios. Taking the times t, t0
both to infinity it reduces to

2mqΠPðq⃗Þ ¼ 2MNΠ4ðq⃗Þ; ð2:21Þ

i.e., the SN contribution of the pseudoscalar ratio is directly
proportional to the one of the time component of the
axial-vector current. Together with Eqs. (2.17) and (2.18)
we immediately reproduce the gGT relation (2.5).

III. EXCITED-STATE ANALYSIS

A. Preliminaries

In principle the form factors are obtained from the
asymptotic values Πμðq⃗Þ of the ratios. For example, the
pseudoscalar form factor GPðQ2Þ is directly proportional to
ΠPðq⃗Þ. The proportionality factor is a simple kinematical
factor that is easily computed and removed from ΠPðq⃗Þ.
The two axial form factors GAðQ2Þ and G̃PðQ2Þ are
computed analogously, although in general one has to
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solve a linear system to extract the two form factors from
two independent asymptotic values.3

In practice one only has access to the ratios Rμðq⃗; t; t0Þ at
time separations t, t0 that are far from being asymptotically
large. In that case the correlation functions and the ratios
not only contain the contribution of the lowest-lying SN
state, but also of excited states with the same quantum
numbers as the nucleon. This excited-state contamination
also enters the calculation of the form factors. Instead of the
true form factors one is interested in one obtains effective
form factors including an excited-state contamination. The
effective form factors are expected to be of the form4

Geff
X ðQ2; t; t0Þ ¼ GXðQ2Þ½1þ ΔGXðQ2; t; t0Þ�;

X ¼ A; P; P̃: ð3:1Þ

The excited-state contribution ΔGXðQ2; t; t0Þ vanishes for
t; t0; t − t0 → ∞.
For pion masses as small as in nature one can expect

two-particle Nπ states to cause the dominant excited-state
contamination for large but finite time separations. This
expectation rests on the naive observation that the energy
gaps between the Nπ states and the SN ground state are
smaller than those one expects from true resonance states
like the Roper resonance. Note that this not only requires
small pion masses but also sufficiently large volumes such
that the discrete spatial momenta imply small energies for
the lowest-lying Nπ states. Volumes with MπL ≃ 4, often
used in lattice simulations, already fulfill this criterion [10].
In this section we derive formulas that capture the Nπ-

state contamination in the two-pt and three-pt functions,
the ratio Rμ and eventually in the effective form factors.
In these expressions the Nπ-state contamination is para-
metrized in terms of coefficients stemming from ratios of
various matrix elements with Nπ states as initial and/or
final states. In the next subsection ChPT will be used to
compute these coefficients perturbatively.

B. Nπ states in the correlation functions

Performing the standard spectral decomposition in
C2ðq⃗; tÞ defined in Eq. (2.9), the two-pt function is a
sum of various contributions,

C2ðq⃗; tÞ ¼ CN
2 ðq⃗; tÞ þ CNπ

2 ðq⃗; tÞ þ…: ð3:2Þ

The first two terms on the right-hand side refer to the SN
and the Nπ contributions. The ellipsis refers to omitted
contributions which we assume to be small in the follow-
ing. The SN contribution is given by

CN
2 ðq⃗; tÞ ¼

1

2EN;q⃗
jh0jNð0ÞjNð−q⃗Þij2e−EN;q⃗jtj: ð3:3Þ

Here jNð−q⃗Þi denotes the state for a moving nucleon with
momentum −q⃗. The interpolating field Nð0Þ also excites
Nπ states with the same quantum numbers as the nucleon,
thus we obtain the nonvanishing Nπ contribution

CNπ
2 ðtÞ ¼ 1

L3

X
k⃗

1

4EN;r⃗Eπ;k⃗

jh0jNð0ÞjNðr⃗Þπðk⃗Þij2e−Etotjtj:

ð3:4Þ

The sum runs over all pion momenta k⃗ that are compatible
with the periodic boundary conditions, and the nucleon
momentum is fixed to r⃗ ¼ −q⃗ − k⃗. Etot is the total energy
of the Nπ state. For weakly interacting pions Etot equals
approximately the sum EN;r⃗ þ Eπ;k⃗ of the individual
nucleon and pion energies.
Since the leading SN contribution is nonzero we can

rewrite Eq. (3.2) as

C2ðq⃗; tÞ ¼ CN
2 ðq⃗; tÞ

�
1þ

X
k⃗

dðq⃗; k⃗Þe−ΔEðq⃗;k⃗Þt
�
: ð3:5Þ

The coefficient dðq⃗; k⃗Þ is essentially the ratio of the matrix
elements in Eqs. (3.4) and (3.3), and the energy gap
ΔEðq⃗; k⃗Þ reads

ΔEðq⃗; k⃗Þ ¼ Eπ;k⃗ þ EN;q⃗þk⃗ − EN;q⃗: ð3:6Þ

As mentioned before, we have ignored the nucleon-pion
interaction energy. Computing the two-pt function in ChPT
to LO one recovers the result (3.6) for the energy gap [1].
Deviations due to the nucleon-pion interaction will appear
at higher order in the chiral expansion.
The two-pt function enters the generalized ratio

Rμðq⃗; t; t0Þ. Introducing the shorthand notation
ffiffiffiffiffiffiffiffiffi
ΠC2

p
for

the square root expression in (2.14) and expanding in
powers of small quantities we obtain

1

C2ð0; tÞ
ffiffiffiffiffiffiffiffiffi
ΠC2

p
¼ 1

CN
2 ð0; tÞ

ffiffiffiffiffiffiffiffiffiffi
ΠCN

2

q �
1þ 1

2
Yðq⃗; t; t0Þ

�
;

ð3:7Þ

where the function Yðq⃗; t; t0Þ contains the Nπ-state
contribution,

3In lattice calculations one often measures more than two
asymptotic values and constructs an overdetermined linear system
for the two unknown form factors. This is subsequently solved by
minimizing a suitably defined least-squares function [18,19].

4For brevity we introduce the notation GP̃ ¼ G̃P.

OLIVER BÄR PHYS. REV. D 100, 054507 (2019)

054507-4



Yðq⃗; t; t0Þ
¼

X
k⃗

�
dðq⃗; k⃗Þ

n
e−ΔEðq⃗;k⃗Þðt−t0Þ − e−ΔEðq⃗;k⃗Þt0 − e−ΔEðq⃗;k⃗Þt

o

− dð0; k⃗Þ
n
e−ΔEð0⃗;k⃗Þðt−t0Þ − e−ΔEð0⃗;k⃗Þt0 þ e−ΔEð0⃗;k⃗Þt

o�
:

ð3:8Þ

The excited-state analysis of the three-pt function is
analogous. Performing again the spectral decomposition
we find, in analogy to Eq. (3.2), the result (μ ¼ 1;…; 4; P)

C3;μðq⃗; t; t0Þ ¼ CN
3;μðq⃗; t; t0Þ þ CNπ

3;μðq⃗; t; t0Þ þ…; ð3:9Þ

¼ CN
3;μðq⃗; t; t0Þð1þ Zμðq⃗; t; t0ÞÞ: ð3:10Þ

As before we ignore all but the SN and the Nπ contribution
in the following. Thus, Zμ denotes the ratio CNπ

3;μðq⃗; t; t0Þ=
CN
3;μðq⃗; t; t0Þ. Forming this ratio we assume and only

consider the cases where the SN contribution is non-
vanishing, which puts a constraint on the possible momenta
q⃗ and the index μ.
With the assumed kinematical setup the generic form for

Zμðq⃗; t; t0Þ is found as

Zμðq⃗;t;t0Þ¼aμðq⃗Þe−ΔEð0;−q⃗Þðt−t0Þ þ ãμðq⃗Þe−ΔEðq⃗;−q⃗Þt0

þ
X
k⃗

bμðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þ

þ
X
k⃗

b̃μðq⃗; k⃗Þe−ΔEðq⃗;k⃗Þt0

þ
X
k⃗

cμðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þe−ΔEðq⃗;k⃗Þt0 : ð3:11Þ

The coefficients aμðq⃗Þ; ãμðq⃗Þ; bμðq⃗; k⃗Þ; b̃μðq⃗; k⃗Þ; cμðq⃗; k⃗Þ in
Eq. (3.11) contain ratios of matrix elements involving the
nucleon interpolating fields and either the axial-vector
current or pseudoscalar density. For example, the coeffi-
cient bPðq⃗; k⃗Þ contains the matrix element hNπjPajNi with
the Nπ state as the final state. Similarly, b̃Pðq⃗; k⃗Þ contains
the matrix element with the Nπ state as the initial state.
Together the bPðq⃗; k⃗Þ and b̃Pðq⃗; k⃗Þ contributions form
the excited-to-ground-state contribution. Similarly, the
cPðq⃗; k⃗Þ contribution is called the excited-to-excited-state
contribution, since it involves the matrix elements with Nπ
states as initial and final states. An explanation for the
presence of the aPðq⃗Þ and ãPðq⃗Þ contribution, which
multiply the same exponentials as the bPðq⃗;−q⃗Þ and
b̃Pðq⃗;−q⃗Þ contribution, will be given in the next section.
Taking the product of Eqs. (3.10) and (3.7) we obtain the

total result for the Nπ contamination in the generalized
ratios,

Rμðq⃗; t; t0Þ ¼ Πμðq⃗Þ
�
1þ Zμðq⃗; t; t0Þ þ

1

2
Yðq⃗; t; t0Þ

�
;

ð3:12Þ

≡ Πμðq⃗Þð1þ Xμðq⃗; t; t0ÞÞ; ð3:13Þ

with Πμðq⃗Þ referring to the asymptotic values of the ratios
introduced in Eqs. (2.16)–(2.18). The Nπ contamination
Xμðq⃗; t; t0Þ vanishes exponentially as the time separations
tend to infinity, so the ratios correctly approach their
asymptotic values.
The pseudoscalar form factor is directly proportional

to the asymptotic value ΠPðq⃗Þ. Therefore, comparing
Eq. (3.13) with Eq. (3.1) we read off the simple relation
ΔGPðQ2; t; t0Þ ¼ XPðQ2; t; t0Þ. In case of the axial form
factors the relation between the XμðQ2; t; t0Þ and the
ΔGA;P̃ðQ2; t; t0Þ is slightly more involved and depends
on the particular choice for the ratios one has made to
extract the form factors. For details see Ref. [1].

C. The PCAC relation and the Nπ
contribution ZPðq⃗; t; t0Þ

The PCAC relation relates the three-pt functions of the
pseudoscalar density and the axial-vector current. This
relation not only holds for the SN contribution but for all
contributions in the spectral decomposition. Consequently,
the coefficient aPðq⃗; k⃗Þ, for example, is related to and
computable in terms of the coefficients aμðq⃗; k⃗Þ. The same
holds for all the other coefficients in Eq. (3.11).
To derive these relations we use the spectral decom-

position (3.9) in the PCAC relation in Eq. (2.19).
Since the SN contribution satisfies 2mqCN

3;Pðq⃗; t; t0Þ ¼
2MNCN

3;4ðq⃗; t; t0Þ we obtain

2mqC3;Pðq⃗; t; t0Þ ¼ 2MNCN
3;4ðq⃗; t; t0Þ þ ∂t0CNπ

3;4ðq⃗; t; t0Þ
− iqkCNπ

3;kðq⃗; t; t0Þ: ð3:14Þ

Here and in the following a sum over the spatial index
k ¼ 1, 2, 3 is implied on the right-hand side. Provided
CN
3;4ðq⃗; t; t0Þ ≠ 0 this is easily brought into the form

2mqC3;Pðq⃗; t; t0Þ ¼ 2MNCN
3;4ðq⃗; t; t0Þð1þ Z0

4ðq⃗; t; t0Þ
þ αkðq⃗ÞZkðq⃗; t; t0ÞÞ: ð3:15Þ

The newly introduced αk are the shorthand notation for the
combination

αkðq⃗Þ ¼ −i
CN
3;kðq⃗; t; t0Þ

CN
3;4ðq⃗; t; t0Þ

qk
2MN

: ð3:16Þ

Note that the time dependence of the three-pt functions
cancels in the ratio on the right-hand side, thus αk is a
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constant for fixed momentum q⃗. The remaining term
involving the time derivative,

Z0
4ðq⃗; t; t0Þ≡

∂t0CNπ
3;4ðq⃗; t; t0Þ

2MNCN
3;4ðq⃗; t; t0Þ

; ð3:17Þ

has the same form as the original Z4ðq⃗; t; t0Þ, but with
primed coefficients a04ðq⃗Þ, ã04ðq⃗Þ, b04ðq⃗; k⃗Þ, b̃04ðq⃗; k⃗Þ,
c04ðq⃗; k⃗Þ. The primes serve as a reminder that the coef-
ficients involve additional factors stemming from the time
derivative ∂t0 of the exponentials in CNπ

3;4ðq⃗; t; t0Þ:

a04ðq⃗Þ ¼
Eπ;q⃗

2MN
a4ðq⃗Þ; ð3:18Þ

ã04ðq⃗Þ ¼ −
Eπ;q⃗

2MN
ã4ðq⃗Þ; ð3:19Þ

b04ðq⃗; k⃗Þ ¼
Eπ;k⃗ þ EN;k⃗ − EN;q⃗

2MN
b4ðq⃗; k⃗Þ; ð3:20Þ

b̃04ðq⃗; k⃗Þ¼−
Eπ;k⃗−ðEN;k⃗þq⃗−EN;q⃗ÞþðEN;q⃗−MNÞ

2MN
b̃4ðq⃗; k⃗Þ;

ð3:21Þ

c04ðq⃗; k⃗Þ ¼ −
EN;k⃗þq⃗ − EN;k⃗

2MN
c4ðq⃗; k⃗Þ: ð3:22Þ

Putting everything together we obtain the following coef-
ficients for the Nπ contribution in ZPðq⃗; t; t0Þ:

aPðq⃗Þ ¼ a04ðq⃗Þ þ αkakðq⃗Þ; ð3:23Þ

ãPðq⃗Þ ¼ ã04ðq⃗Þ þ αkãkðq⃗Þ; ð3:24Þ

bPðq⃗; k⃗Þ ¼ b04ðq⃗; k⃗Þ þ αkbkðq⃗; k⃗Þ; ð3:25Þ

b̃Pðq⃗; k⃗Þ ¼ b̃04ðq⃗; k⃗Þ þ αkb̃kðq⃗; k⃗Þ; ð3:26Þ

cPðq⃗; k⃗Þ ¼ c04ðq⃗; k⃗Þ þ αkckðq⃗; k⃗Þ: ð3:27Þ

D. ChPT results for the coefficients

The coefficients introduced in the previous subsection
can be perturbatively computed in ChPT.5 This has been

done in Ref. [1] for the coefficients with μ ¼ 1;…; 4, i.e.,
for the correlation functions and ratios involving the axial-
vector current. To this end 12 one-loop and three tree-level
Feynman diagrams were computed to obtain the leading
Nπ-state contribution to the correlation functions.6 In
principle, the same diagrams with Aa

μ replaced by Pa need
to be computed to obtain the Nπ-state contribution for the
pseudoscalar correlation functions. Alternatively, since
the PCAC relation is satisfied in ChPT, we can use the
results (3.23)–(3.27) to get the pseudoscalar coefficients
from the axial-vector ones.
The calculations in [1] were performed in the covariant

formulation of baryon ChPT [1]. The expressions for the
coefficients are fairly cumbersome in the full covariant
form. They simplify significantly if we perform the non-
relativistic (NR) expansion of the nucleon energy,

EN;q⃗ ¼ MN þ q⃗2

2MN
; ð3:28Þ

and keep the first two terms only. For practical uses this
approximation is expected to be sufficient. For example, the
NR expansion for the coefficients akðq⃗Þ reads

akðq⃗Þ ¼ a∞k ðq⃗Þ þ
Eπ;q⃗

MN
acorrk ðq⃗Þ; ð3:29Þ

and the results for a∞k ðq⃗Þ, acorrk ðq⃗Þ are given in [1],
Eqs. (4.14)–(4.17). Analogous expressions hold for the
other coefficients.7

To compute the coefficients with μ ¼ P according to
Eqs. (3.23)–(3.27) we need αkðq⃗Þ defined in Eq. (3.16). The
LO ChPT results for CN

3;kðq⃗; t; t0Þ and CN
3;4ðq⃗; t; t0Þ are given

in [1], Eqs. (4.2) and (4.3), respectively. Taking the ratio
and performing the NR expansion we obtain

αk ¼ −
q2k
M2

π
; k ¼ 1; 2; α3 ¼

E2
π;q⃗ − q23
M2

π
: ð3:30Þ

The explicit expressions for the coefficients entering
Eqs. (3.23)–(3.27) are given in Ref. [1], Sec. IV E. In
principle there is no need to write down the explicit results
one obtains from Eqs. (3.23)–(3.27), in particular since
the full expressions are quite cumbersome and not very
illuminating. The leading results in the NR expansion,
however, assume a compact form and may be useful for
lattice practitioners in their analysis of lattice data, so we
quote these results here.
As mentioned before, the calculation in Ref. [1] involves

various one-loop and tree-level diagrams. It turned out to be
convenient to introduce separate coefficients for the

5The first account for ChPT calculations of Nπ-state contri-
butions is given in [20].

6See Fig. 3 in Ref. [1] for the diagrams.
7The NR expansion of the coefficients with μ ¼ 4 is slightly

different, see [1].
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contributions originating in either one-loop or tree dia-
grams. The coefficients aμðq⃗Þ and ãμðq⃗Þ are associated to
the latter. With Eqs. (3.23) and (3.24) we obtain

a∞P ðq⃗Þ ¼ ã∞P ðq⃗Þ ¼ −
1

2
: ð3:31Þ

The remaining coefficients capture the loop diagram
contribution. Following [1] they are split into a universal
part (containing the anticipated 1=L3 factor of a two-
particle state in a finite spatial volume) and a “reduced
coefficient,”

bPðq⃗; k⃗Þ ¼
1

8ðfLÞ2Eπ;k⃗L
BPðq⃗; k⃗Þ: ð3:32Þ

The NR expansion for the reduced coefficient is as
before,

BPðq⃗; k⃗Þ ¼ B∞
P ðq⃗; k⃗Þ þ

Eπ;k⃗

MN
Bcorr
P ðq⃗; k⃗Þ; ð3:33Þ

and analogous formulas hold for B̃P, CP. For the leading
O(1) coefficients we obtain the following results (for
brevity we introduce kq≡ kμqμ):

B∞
P ðq⃗; k⃗Þ ¼ 2g2A

E2
π;q⃗

M2
π

�
k2

E2

π;k⃗

þ k3
q3

kq
E2

π;k⃗

�
− 4

E2
π;q⃗

M2
π

k3
q3

;

ð3:34Þ

B̃∞
P ðq⃗; k⃗Þ ¼ 2g2A

E2
π;q⃗

M2
π

�
k2

E2

π;k⃗

þ k3
q3

kq
E2

π;k⃗

�
þ 4

E2
π;q⃗

M2
π

k3
q3

;

ð3:35Þ

C∞
P ðq⃗; k⃗Þ ¼ g2A

E2
π;q⃗

M2
π

�
k2

E2

π;k⃗

− 2
k3
q3

kq
E2

π;k⃗

�
: ð3:36Þ

The Nπ contribution to the ratios involves a sum over all
discrete pion momenta allowed by the periodic boundary
conditions. Some terms essentially average away when
this sum is performed, for instance the last term propor-
tional to −4k3=q3 in Eq. (3.34). However, the other terms
contribute for all possible k⃗, leading to a nonvanishing
contribution of the loop diagrams to the total Nπ-state
contribution.

IV. IMPACT ON LATTICE CALCULATIONS

A. Preliminaries

To LO in ChPT the Nπ contribution to the ratio Rμ and
the effective form factors depends on a few low-energy
coefficients (LECs) only, and these are known rather

precisely from experiment. Assuming these values in the
ChPT results we obtain estimates for the expected impact
of the Nπ contribution in lattice QCD simulations. The
rationale for this application of the ChPT results is the same
as for the axial form factors presented in Ref. [1]. The
reader is referred to Sec. V in this reference for details, here
we merely summarize the values for the various input
parameters that need to be fixed for the analysis.
Two necessary LECs are the chiral limit values of the

pion decay constant and the axial charge. To LO it is
consistent to use the experimental values for these LECs
and we set gA ¼ 1.27 and f ¼ fπ ¼ 93 MeV [21]. We
ignore the errors in these values since they are too small to
be significant for the LO estimates. Two more LECs are
associated with the pion and nucleon mass. Since we
are mainly interested in the Nπ contribution in physical
point simulations we fix the pion and nucleon masses to
their (approximate) physical values Mπ ¼ 140 MeV and
MN ¼ 940 MeV.
The spatial volume determines the accessible spatial

momenta. In practice it is fixed by the lattice spacing and
the number of lattice points in the spatial directions. Typical
values in recent lattice calculations cover a range MπL ∼ 3
to 6, and we will assume such values in the following.
Imposing periodic boundary conditions the spatial momen-
tum transfer can assume the values q⃗n ¼ ð2π=LÞn⃗q with
the vector n⃗q having integer valued components. These
momenta imply the discrete values

Q2
n ¼ q2n

�
1 −

q2n
4M2

N

�
ð4:1Þ

for the 4-momentum transfer if we perform the NR
expansion (3.28).
ChPT is an expansion in the small pion mass and in small

pion momenta. Therefore, we need to select an upper
bound on the pion momentum in the Nπ state. Following
Refs. [22,23] we choose jk⃗nj≲ kmax with kmax=Λχ ¼ 0.45,
where the chiral scale Λχ is equal to 4πfπ. Nπ states with
pions satisfying this bound are called low-momentum Nπ
states in the following. For these we expect the LO ChPT
results to work reasonably well. States with pion momenta
larger than this bound are called high-momentumNπ states.
These too contribute to the excited-state contamination.
However, choosing all Euclidean time separations suffi-
ciently large the contribution of the high-momentum Nπ
states can be made small and negligible. The results in
Refs. [22,23] suggest that at least a 1 fm separation between
the operator and both source and sink is necessary for a
sufficient suppression. This corresponds to source-sink
separations of 2 fm or larger in the three-pt functions.
Note that an upper bound jk⃗nj≲ kmax translates into a

number nk;max that depends on the spatial volume, i.e., on
MπL. The larger the volume the more discrete the momenta
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that satisfy the bound. Table I lists nk;max for the volumes
considered in this paper.8

B. Impact on the pseudoscalar form factor

The effective form factors Geff
X ðQ2; t; t0Þ depend on the

source-sink separation t and the operator insertion time t0.
For fixed t we introduce the plateau estimates that,
as a function of t0, minimize the deviation from the true
form factors. The results of the last section imply
ΔGPðQ2; t; t0Þ > 0, thus we define the plateau estimate

Gplat
P ðQ2; tÞ≡ min

0<t0<t
Geff

P ðQ2; t; t0Þ: ð4:2Þ

This is a function of the momentum transfer and t.
Alternatively one can define a second estimator, the
midpoint estimate

Gmid
P ðQ2; tÞ≡Geff

P ðQ2; t; t0 ¼ t=2Þ: ð4:3Þ

With the ChPT results for the Nπ contribution the difference
between the two estimators is very small, much smaller than
the uncertainty one anticipates for the LO results.
As a measure for the Nπ-state contribution we introduce

the relative deviation from the true form factors,

ϵestP ðQ2; tÞ≡Gest
P ðQ2; tÞ
GPðQ2Þ − 1; ð4:4Þ

where “est” labels the plateau (plat) and midpoint (mid)
estimators.
Figure 1 shows the results for ϵmid

P ðQ2; tÞ. The source-
sink separation was chosen as t ¼ 2 fm. The discrete Q2

values stem from Eq. (4.1) with various different volumes
satisfyingMπL ¼ 3 (purple), 4 (blue), 5 (black) and 6 (red).
Open symbols correspond to the results with the leading
NR limit values for the coefficients, see Eqs. (3.31)–(3.36),
filled symbols include the 1=MN corrections. For the
largest momentum transfers displayed in Fig. 1 the differ-
ence between the open and filled symbols is about 0.2.
In the following we always include the 1=MN corrections
in the Nπ contributions.
According to Fig. 1 the midpoint estimate Gmid

P under-
estimates the physical form factor for Q2 ≲ 0.06 ðGeVÞ2,
but overestimates it for larger momentum transfers.

Comparing the MπL ¼ 3 and 6 results we do observe a
noticeable finite volume effect that increases for larger Q2.
The results for Mπ ≳ 4, however, fall essentially on a
smooth line.
The analogous results for the axial form factor estimators

are discussed in Ref. [1]. Figure 2 shows the relative
deviations for all three form factors for t ¼ 2 andMπL ¼ 6.
ϵmid
A ðQ2; tÞ is approximately þ0.05 and essentially inde-
pendent of the momentum transfer. ϵmid

P̃
ðQ2; tÞ shows a

clear dependence on Q2 and ranges between −0.4 and
−0.05 for the momentum transfers covered in the figure.
While ϵmid

P̃
ðQ2; tÞ decreases for larger Q2 the deviation

ϵmid
p ðQ2; tÞ increases to values larger than 0.5 for

FIG. 1. The deviation ϵmid
P ðQ2; tÞ for t ¼ 2 fm as a function of

Q2 according to Eq. (4.1) with MπL ¼ 3 (purple), 4 (blue), 5
(black) and 6 (red). Open symbols correspond to the results with
the leading NR limit values for the coefficients, filled symbols
include the 1=MN corrections.

FIG. 2. The relative deviations ϵmid
A ðQ2; tÞ (circles), ϵmid

P̃
ðQ2; tÞ

(diamonds) and ϵmid
P ðQ2; tÞ (triangles) defined in Eq. (4.4) as

a function of Q2 for t ¼ 2 fm. Q2 values according to Eq. (4.1)
with MπL ¼ 6.

TABLE I. nk;max as a function of MπL for kmax=Λχ ¼ 0.45.

kmax
Λχ

nk;max

MπL ¼ 4 MπL ¼ 4 MπL ¼ 5 MπL ¼ 6

0.45 3 5 8 12

8See Ref. [10] for other upper momentum bounds.
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Q2 ≳ 0.2 ðGeVÞ2. Note that ChPT is expected to work
better the smaller the momentum transfer is, i.e., higher
order corrections are expected to become larger for
larger Q2.

C. Impact on testing the gGT relation

As a measure to test the validity of the gGT relation one
can introduce the ratios [3,8]

rest1 ðQ2; tÞ ¼ Q2

4M2
N

G̃est
P ðQ2; tÞ

Gest
A ðQ2; tÞ ; ð4:5Þ

rest2 ðQ2; tÞ ¼ 2mq

2MN

Gest
P ðQ2; tÞ

Gest
A ðQ2; tÞ ; ð4:6Þ

and the sum

restPCACðQ2; tÞ ¼ rest1 ðQ2; tÞ þ rest2 ðQ2; tÞ: ð4:7Þ

In the limit t → ∞ the estimators converge to the SN form
factors, and because of the gGT relation the ratio
restPCACðQ2; tÞ assumes the constant value 1 in this limit.
For finite source-sink separations the excited-state contri-
bution in the estimators cause a deviation from this value.
With the results of the LO ChPT calculation the deviation
due to Nπ states is given by

rest;Nπ
1 ðQ2; tÞ ¼ Q2

Q2 þM2
π

	
1þ ϵest

P̃
ðQ2; tÞ

1þ ϵestA ðQ2; tÞ


; ð4:8Þ

rest;Nπ
2 ðQ2; tÞ ¼ M2

π

Q2 þM2
π

	
1þ ϵestP ðQ2; tÞ
1þ ϵestA ðQ2; tÞ



: ð4:9Þ

Figure 3 shows these two ratios and their sum forMπL ¼ 6
at t ¼ 2 fm (filled symbols). The open symbols correspond
to the limit t → ∞ without the Nπ contribution. The blue
and red symbols show the results for the two ratios rmid

1 and
rmid
2 , respectively. The plot reflects what we have already
observed in Fig. 1: The Nπ contribution in the induced
pseudoscalar form factor underestimates the true form
factor, thus the filled blue symbols are below the open
ones over the entire Q2 range. The smaller the momentum
transfer the larger the deviation. The Nπ contribution in
the pseudoscalar form factor underestimates for small Q2

but overestimates for large Q2. Therefore, the filled red
symbols are below the open ones for small Q2, and above
for large Q2. The sum rmid

PCAC (orange symbols) is smaller
than 1 for the momentum transfers considered, and the
difference is larger for smaller Q2.
Two features are worth emphasizing. Firstly, we have

seen that the Nπ contribution in the pseudoscalar case
significantly overestimates for larger Q2, according to

Fig. 1 about 50% for Q2 ≈ 0.2ðGeVÞ2. Testing the gGT
relation with the ratio restPCAC this sizable overestimation is
largely suppressed because the ratio rest2 contributes only
about 10% to restPCAC for Q2 ≳ 0.15ðGeVÞ2. Secondly, for
the larger Q2 values the deviations of rest1 and rest2 partially
compensate if the sum is taken. Overall it is fair to say that
the violation of restPCAC ¼ 1 stems dominantly from the Nπ
contamination in the induced pseudoscalar form factor, at
least for the momentum transfers displayed in Fig. 3.

D. Impact on testing the PPD hypothesis

As measures to test the validity of the PPD hypothesis
one can introduce the two ratios

rest3 ðQ2; tÞ≡Q2 þM2
π

4M2
N

G̃est
P ðQ2; tÞ

Gest
A ðQ2; tÞ ; ð4:10Þ

rest4 ðQ2; tÞ≡Q2 þM2
π

2MNM2
π

2mqGest
P ðQ2; tÞ

Gest
A ðQ2; tÞ : ð4:11Þ

In the limit t → ∞ these ratios converge to 1 provided the
PPD results (2.6) and (2.7) are valid. Deviations due to
excited states are expected for finite source-sink separa-
tions. With the LO ChPT results for the Nπ-state contri-
butions we obtain

rest;Nπ
3 ðQ2; tÞ ¼ 1þ ϵest

P̃
ðQ2; tÞ

1þ ϵestA ðQ2; tÞ ; ð4:12Þ

rest;Nπ
4 ðQ2; tÞ ¼ 1þ ϵestP ðQ2; tÞ

1þ ϵestA ðQ2; tÞ : ð4:13Þ

FIG. 3. The ratios rmid;Nπ
1 ðQ2; tÞ (blue), rmid;Nπ

2 ðQ2; tÞ (red) and
rmid;Nπ
PCAC ðQ2; tÞ (orange) given in Eqs. (4.7)–(4.9) for the lowest
discrete momenta corresponding to MπL ¼ 6 at t ¼ 2 fm (filled
symbols) and for infinite t (open symbols).
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Figure 4 shows the ratio rest;Nπ
3 ðQ2; tÞ, as before for

t ¼ 2 fm andMπL ¼ 6. The values are between 0.6 and 0.8
for the momentum transfers considered, i.e., significantly
below 1, the SN result (open symbols). As mentioned
before, the dominant reason for this difference is the
underestimation of the induced pseudoscalar form factor,
which is more prominent for small momentum transfers.
The Q2 dependence of rmid;Nπ

3 resembles the one of
rmid;Nπ
PCAC . This is not surprising since rmid;Nπ

PCAC is, as discussed
before, dominated by the Nπ contamination in the induced
pseudoscalar form factor.
Figure 5 shows the result for ratio rest;Nπ

4 ðQ2; tÞ. The Nπ
contribution leads to a nearly linear dependence onQ2 with
nonvanishing positive slope.

V. COMPARISON WITH RECENT PACS DATA

A. Preliminaries

In order to compare the ChPT results for the form factor
estimators with lattice QCD data we ideally need con-
tinuum extrapolated data with a (near to) physical pion
mass. The spatial volume should be sufficiently large with
MπL≳ 4, and either the plateau or the midpoint estimates
for the form factors should have been measured at
sufficiently large Euclidean time separations in the corre-
lation functions.
In Ref. [6] the PACS Collaboration reports lattice data

for the three nucleon form factors. The results were
obtained in 2þ 1 flavor QCD on a 964 lattice with lattice
spacing a ≈ 0.085 fm. Thus, the spatial lattice extent
L ≈ 8.1 fm is fairly large implying a small minimal pion
momentum of about 155 MeV. The pion and nucleon
masses are almost physical with Mπ ≈ 146 MeV and

MN ≈ 958 MeV. A fixed source-sink separation of 15 time
slices has been used in the three-pt functions, correspond-
ing to t ≈ 1.3 fm, and the central four time slices were
averaged to obtain the plateau estimates. For more simu-
lation details see [6].
A source-sink separation of t ¼ 1.3 fm is very small, in

fact too small to naively expect pion physics to dominate
the correlation functions and ChPT to apply. Source-sink
separations of 2 fm and larger are typically needed to
sufficiently suppress the high-momentum Nπ states that are
not properly captured by ChPT. We nevertheless compare
the ChPT results for the low-momentum Nπ contribution
with the PACS data, keeping in mind that the results are
most probably subject to large corrections due to the
neglected high momentum Nπ and other excited states.

B. The pseudoscalar form factor

Table IX of Ref. [6] lists the plateau estimates of the
pseudoscalar form factor for the nine lowest momentum
transfers accessible in the simulation. The data are not
renormalized and the renormalization factor ZP is not yet
available. Zm is known and could be used as an approxi-
mation for Z−1

P [24,25], but we prefer to consider the
normalized form factor

Gnorm
P ðQ2; Q2

ref ; tÞ≡ Gplat
P ðQ2; tÞ

Gplat
P ðQ2

ref ; tÞ
; ð5:1Þ

which is independent of ZP. Figure 6 shows this ratio (black
symbols) forQ2

ref ¼ 0.072ð2Þ ðGeVÞ2. TheQ2 dependence
resembles the one of the induced pseudoscalar G̃PðQ2Þ
with a strongQ2 dependence at small momentum transfers.
This is expected according to the PPD hypothesis. The red

FIG. 5. The ratio rmid;Nπ
4 ðQ2; tÞ, given in Eq. (4.13), for the

lowest discrete momenta corresponding to MπL ¼ 6 at t ¼ 2 fm
(filled symbols) and for infinite t (open symbols).

FIG. 4. The ratio rmid;Nπ
3 ðQ2; tÞ, given in Eq. (4.12), for the

lowest discrete momenta corresponding to MπL ¼ 6 at t ¼ 2 fm
(filled symbols) and for infinite t (open symbols).
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dashed line in Fig. 6 shows the ratio in Eq. (5.1) with the
PPD results (2.7) and (2.8) used on the right-hand side.9

Even though the statistical errors are quite large the
momentum transfer dependence of the lattice data displays
a flatter Q2 dependence than the PPD model.
The plateau estimates were obtained at t ≈ 1.3 fm, and

we expect them to differ from the physical values at t ¼ ∞
due to excited states. With the ChPT result ϵplatP ðQ2; tÞ we
can analytically remove the anticipated LO Nπ-state
contamination by calculating the corrected data

Gcorr
P ðQ2; tÞ≡ Gplat

P ðQ2; tÞ
1þ ϵplatP ðQ2; tÞ ; ð5:2Þ

setting t ¼ 1.3 fm. If higher order corrections and other
excited-state contributions are small we expect

Gcorr
P ðQ2; tÞ ≈ GPðQ2Þ; ð5:3Þ

i.e., the corrected data should be close to the true form
factor.
The red symbols in Fig. 6 show the normalized form

factor obtained with the corrected data on the right-hand
side of Eq. (5.1). Apparently, the corrected data show a
steeperQ2 dependence and are in better agreement with the
PPD hypothesis. Taken at face value Fig. 6 suggests that
excited states other than low-momentum Nπ states have

only a small impact on the pseudoscalar form factor. This is
surprising given the small source-sink separation.

C. The ratios testing the gGT relation
and the PPD hypothesis

Figure 7 compares the PACS data (circles) and the ChPT
result (diamonds) for the ratio rplatPCAC that was introduced to
test the gGT relation. We find good agreement within
the (large) statistical errors, and the ChPT result describes
very well the characteristic Q2-dependent deviation of
rplatPCAC from 1 observed in the lattice data.
Figures 8 and 9 show the PACS data and the ChPT result

for the two ratios rplat3 , rplat4 that were introduced to test the

PPD hypothesis. In case of rplat3 we find good agreement,

qualitatively similar to what is found for rplatPCAC. For the

ratio rplat4 , on the other hand, the comparison is less

FIG. 7. PACS data (circles) and the ChPT result (diamonds) for
the ratio rplatPCACðQ2; t ¼ 1.3 fmÞ given in Eqs. (4.7)–(4.9).

FIG. 6. PACS data for the normalized pseudoscalar form
factor Gnorm

P ðQ2; Q2
ref ; tÞ, defined in Eq. (5.1), for t ¼ 1.3 fm

and Q2
ref ¼ 0.072 ðGeVÞ2 (black symbols). The dashed red line

shows the PPD result. Red symbols correspond to the data
corrected with Eq. (5.2).

FIG. 8. PACS data (circles) and the ChPT result (diamonds) for
the ratio rplat3 ðQ2; t ¼ 1.3 fmÞ given in Eq. (4.12).9We follow Ref. [6] and set MA ≈ 1.04 GeV.
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satisfactory. Although we observe a monotonic increase as
Q2 gets larger, the slope in the lattice data is substantially
smaller than in the ChPT result.
The discrepancy between the lattice data and the LO

ChPT result displayed in Fig. 9 is on the level one may
expect for source-sink separations as small as 1.3 fm. As
repeatedly said, at such a small time separation excited
states other than low-momentum Nπ states are not suffi-
ciently suppressed to be negligible. Therefore, the differ-
ence between lattice data and ChPT may be attributed to
excited-state contributions not included in the ChPT result.
More surprising and remarkable is the good agreement in
Figs. 7 and 8, which seems to suggest that excited states
other than low-momentum Nπ states do not contribute
significantly for the two ratios shown in these figures.
For rplat3 ðQ2; tÞ this is probably the case: The dominant

source for the difference from 1 is the Nπ contribution in
the induced pseudoscalar form factor G̃P. As discussed in
Ref. [1], the Nπ contamination in G̃PðQ2; tÞ stems domi-
nantly from a single state with the spatial pion momentum
fixed to the one associated with the momentum transferQ2.
The contribution of otherNπ states with increasing nucleon
and pion momenta essentially cancel in the sum over all k⃗.
Such a (partial) cancellation does not happen in case of
the Nπ contribution to GP. Therefore, ChPT is expected to
work less well for rplat4 . Finally, the Nπ contamination in G̃P

dominates the ratio rplatPCAC, in particular for large Q2. Thus,
the good agreement we observe in Fig. 7 is basically the
same agreement we see in Fig. 8.

VI. DISCUSSION

It is premature to draw definite conclusions from the
comparison in the last section. More data are needed to
unambiguously identify Nπ excited states as the dominant
source for the observed violation of the gGT relation.

To this end lattice data for larger and more than one source-
sink separation will be very beneficial, since these allow for
checking the dependence of ϵXðQ; tÞ on the source-sink
separation t. The PACS Collaboration reported on form
factor data obtained from an ensemble with a 135 MeV
pion mass and a finite volume of size ð10.8 fmÞ4 [26].
Plateau estimates for the form factors exist for four source-
sink separations, and a dependence on the source-sink
separation is clearly visible in the data. It is highly
interesting to compare the data with the ChPT predictions
presented here, but the data are not publicly available
yet [27].
Although suggestive, attributing the violation of the gGT

relation to Nπ states leads to an apparent puzzle. Many
lattice collaborations employ multistate fits to control the
anticipated excited-state contamination. Reference [3]
reports on fits to the three-pt functions data including two
excited states next to the ground state. Still, rPCAC is
significantly smaller than 1 and looks qualitatively the same
compared to the ratio formed with simple plateau estimates
for the form factors. If the violation of the gGT relation is due
to the excited-state contamination one may legitimately ask
why multistate fits are unable to capture it properly [28].
The ChPT results for the Nπ-state contamination offer a

possible answer to this question. It is necessary to recall
how most multistate fits are done in practice. To extract the
form factors from the three-pt correlation function one
considers the spectral decomposition including the ground
state and one or two excited states. The energies of these
states are usually taken from fits to the nucleon two-pt
function, since the contributing states are expected to be
the same.
Although correct in principle, this assumption might be

flawed in some cases. The spectral decomposition for the
two-pt function is given in Eq. (3.5). For physical pion
masses and on typical volumes with MπL≳ 4 quite a few
Nπ states contribute non-negligibly to the sum in Eq. (3.5),
not only one [10]. Since lattice data have statistical errors
one may still be able to fit a two-state fit ansatz,

C2ðq⃗; tÞ ≈ CN
2 ðq⃗; tÞf1þ deffðq⃗Þe−ΔEeffðq⃗Þtg; ð6:1Þ

to the two-pt function data with effective parameters deffðq⃗Þ
and ΔEeffðq⃗Þ. Both will be some average of the contrib-
uting coefficients dðq⃗; k⃗Þ and energy gaps ΔEðq⃗; k⃗Þ,
respectively. Since the coefficients dðq⃗; k⃗Þ are all positive
numbers the average energy gap ΔEeffðq⃗Þ will be larger
than the lowest or even a few individual gaps ΔEðq⃗; k⃗Þ. For
simplicity we have assumed one excited state in Eq. (6.1),
but the same arguments apply for more than one effective
energy gap if an n-state ansatz is made with n > 1.
The analogous spectral decomposition of the three-pt

function is given in Eqs. (3.9)–(3.11), and the same energy
gaps appear in both cases. However, suppose we are

FIG. 9. PACS data (circles) and the ChPT result (diamonds) for
the ratio rplat4 ðQ2; t ¼ 1.3 fmÞ given in Eq. (4.13).

OLIVER BÄR PHYS. REV. D 100, 054507 (2019)

054507-12



interested in calculating the induced pseudoscalar form
factor G̃P. It is directly proportional to the ratio Rμðq⃗; t; t0Þ
with μ ¼ 1, as long as the momentum transfer q⃗ can be
chosen with both components q1 and q3 nonvanishing, see
Eq. (2.16). For this particular case the coefficients b1ðq⃗; k⃗Þ,
b̃1ðq⃗; k⃗Þ and c1ðq⃗; k⃗Þ are proportional to the product
k1k3=q1q3 [1]. Therefore, performing the sum over all
pion momenta k⃗ their contributions in Eq. (3.11) essentially
cancel out. Consequently, to a good approximation the
Nπ-state contribution in the three-pt function reads [1]

Z1ðq⃗; t; t0Þ ≈ a1ðq⃗Þe−ΔEð0;q⃗Þðt−t0Þ þ ã1ðq⃗Þe−ΔEðq⃗;−q⃗Þt0 :
ð6:2Þ

Both gaps here are approximately equal to Eπ;q⃗, the
energy of a pion with spatial momentum associated with
the momentum transfer. The larger the spatial volume the
smaller can jq⃗j be, and the larger one can expect the
difference between the effective gap from the two-pt
function and the gap in the three-pt function.10

How exactly the lattice estimate for G̃P is influenced by
a misidentified energy gap in the three-pt function is an
open question. And even if it has an impact it is not
clear whether it provides the answer to the question of
why multistate fits are apparently unable to capture the
excited-state contribution in some cases. Nevertheless,

since the Nπ-state contamination in the induced pseudo-
scalar form factor dominates the ratio rPCAC it is conceiv-
able that it is at least part of the puzzle.
The same conclusion has been put forward in [29]. It is

shown in this reference that the energy gap to the first
excited state in the three-pt function with the temporal
component A4 of the axial vector is different from the one
in the nucleon two-pt function. This too is predicted by
the ChPT results in Ref. [1], the argument being essen-
tially the same as we have given above for Eq. (6.2). It
will be very interesting to repeat the study in [29] for the
component A1 of the axial vector. This hopefully will
shed additional light on the source for the violation of the
gGT relation.
Recently, Ref. [8] suggested the use of a projected

pseudoscalar density P⊥ðxÞ as a method to reduce the
excited-state contamination. The efficiency of this projec-
tion in removing the Nπ-state contamination can also be
studied analytically in ChPT. First results to leading order
in the NR expansion suggest that the Nπ contamination
in the correlation functions with P⊥ðxÞ are even larger
compared to the case with the standard pseudoscalar
density PðxÞ discussed here. This will be discussed in a
forthcoming publication [30].
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