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We construct a qubit regularization of the Oð3Þ nonlinear sigma model in two and three spatial
dimensions using a quantum Hamiltonian with two qubits per lattice site. Using a worldline formulation
and worm algorithms, we show that in two spatial dimensions our model has a quantum critical point where
the well-known scale-invariant physics of the three-dimensional Wilson-Fisher fixed point is reproduced.
In three spatial dimensions, we recover mean-field critical exponents at a similar quantum critical point.
These results show that our qubit Hamiltonian is in the same universality class as the traditional classical
lattice model close to the critical points. Simple modifications to our model also allow us to study the
physics of traditional lattice models withOð2Þ and Z2 symmetries close to the corresponding critical points.
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I. INTRODUCTION

Quantitative understanding of quantum field theories
poses unique computational challenges that we must over-
come to be able to truly understand nature at a fundamental
level [1,2]. Currently, our understanding of these quantum
many body theories is mainly obtained from perturbation
theory. In a few cases when sign problems can be solved,
quantum Monte Carlo methods can be used to compute
equilibrium thermal averages and static ground state
properties. However, in the vast number of cases involving
nonequilibrium processes and in particular with strongly
coupled theories, the available computational approaches
are severely limited. One particularly promising approach
to overcome this computational bottleneck is quantum
computation [3]. Universal quantum computers with tens
of qubits already exist and it is likely that more advanced
ones will begin to appear over the next decade. Anticipating
this possibility, the field has exploded in recent years with
new ideas and algorithms for using quantum computers to
understand quantum many body systems and quantum field
theories [4–11]. Simple one-dimensional quantum field
theories are currently being studied extensively [12–18].
To study a quantum field theory using a quantum

computer, in addition to lattice regularization, we need
to formulate the theory with a local finite-dimensional
Hilbert space that can be represented with qubits. We will

refer to this as the qubit regularization of a quantum field
theory. In the traditional lattice regularization, local bosonic
field operators satisfy canonical commutation relations of
the form ½ϕðxÞ; πðyÞ� ¼ iδx;y, which can only be realized
with infinite-dimensional representations. For this reason,
traditional scalar and gauge field theories are naturally
formulated with lattice models that have an infinite-
dimensional Hilbert space at every lattice site. Even the
anticommutation relations fψðxÞ;ψ†ðyÞg ¼ δx;y of fer-
mionic field operators require special ideas to be formu-
lated using qubits [19,20]. We can define the qubit
regularization of a quantum field theory as the construction
of a quantum lattice Hamiltonian operator that acts on a
finite-dimensional Hilbert space at every spatial lattice site
but reproduces the same physics as the traditional lattice
regularized quantum field theory in the continuum limit.
Like with traditional lattice regularization, continuum
limits also arise in the vicinity of quantum critical points
with qubit regularization. However, these critical points are
usually located in a region of parameter space which is not
easily accessible in perturbation theory. In particular, even
Gaussian fixed points often require nonperturbative calcu-
lations. For this reason, qubit regularizations have remained
largely unexplored for many field theories.
An example of qubit regularization of quantum

field theories is the D-theory approach [21,22], in which
the qubit-regularized d-dimensional quantum lattice
Hamiltonian is constructed by equipping it with an extra
dimension of finite size β on each spatial site where qubits
live. In other words, we begin with a (dþ 1)-dimensional
quantum lattice Hamiltonian with a finite-dimensional
Hilbert space per lattice site. At spatial length scales much
larger than β, we obtain an effective d-dimensional quan-
tum Hamiltonian, which acts as the qubit regularization of
the original quantum field theory. The extent of the extra
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dimension β can be used as a coupling constant for the
lower dimensional theory. Thus, the claim of D-theory is
that a (dþ 1)-dimensional quantum lattice Hamiltonian
can provide the qubit regularization of a traditional lattice
regularized quantum field theory in dþ 1 spacetime
dimensions. D-theory formulations of asymptotically free
two-dimensional CPðN − 1Þ models were studied more
than a decade ago [23] and proposals for formulating
QCD and other lattice gauge theories have appeared even
earlier [24,25].
The goal of this work is to provide another concrete

example of a qubit regularization in the context of theOð3Þ
sigma model in two and three spatial dimensions. Using
this example, we wish to show that sometimes a qubit
regularization of a traditional lattice regularized quantum
field theory in dþ 1 spacetime dimensions is possible by
constructing a d-dimensional quantum lattice Hamiltonian
with a small number of qubits per lattice site. In other
words, the dimensional reduction of the D-theory approach
may not be necessary. By simply preserving the important
symmetries the relevant continuum quantum field theory
may emerge at an appropriate quantum critical point due to
Wilson’s renormalization group ideas (see Fig. 1). This
approach is often used in condensed matter physics to argue
that a particular (dþ 1)-dimensional quantum field theory
naturally describes the long distance properties of a d-
dimensional material. It was also recently advocated in
Ref. [26]. In this work, using quantum Monte Carlo
methods, we show explicitly that our qubit Hamiltonian
reproduces the critical scaling of the Oð3Þ Wilson-Fisher
fixed point and the Gaussian fixed point in two and three
spatial dimensions respectively. We also show that simple
modifications of our qubit Hamiltonian allow us to obtain
the critical scaling of similar fixed points with Oð2Þ and Z2

symmetries.

Another outcome of qubit regularizations is that they can
lead to new ways of formulating Euclidean lattice field
theories, especially within the worldline approach [27].
Here, we show that the physics of the qubit regularized
Oð3Þ model can be viewed from the perspective of
the Hamiltonian formulation in continuous time or a
relativistic lattice formulation in discrete time. Both view
points reproduce the expected scaling at the critical points.
However, the relativistic limit leads to a much simpler
worldline approach than the traditional lattice regularized
models. In other words, our relativistic models are sim-
plified versions of the dual formulations of OðNÞ models
constructed recently [28–31]. A similar simplified relativ-
istic model with Oð4Þ symmetry was studied in Ref. [32].
Similar models have also been constructed to study
statistical mechanics of OðNÞ models [33] and other
condensed matter phenomena [34].
This paper is organized as follows. In Sec. II, we construct

the qubit Hamiltonian for theOð3Þ model and show how to
construct its worldline formulation using path integrals in
Sec. III. We distinguish between the Hamiltonian limit and
the relativistic limit. In Sec. IV, we briefly sketch the worm
algorithm and discuss the observables we measure. Then in
Sec. V we present our results, and we discuss our con-
clusions in Sec. VI.

II. THE QUBIT MODEL

Our goal is to construct the qubit regularization for the
continuum quantum field theories that emerge from the
traditional lattice regularized classical nonlinear Oð3Þ
sigma model, whose action is given by

S ¼ −
1

g

X
hiji

ϕ⃗i · ϕ⃗j; ð1Þ

where i and j are nearest neighbor sites on a Euclidean
lattice site in dþ 1 spacetime dimensions and ϕ⃗i is a
classical unit 3-vector associated to that site. Continuum
limits of lattice field theories emerge at second order critical
points gc of the lattice model. In this case, Eq. (1) has one
such critical point separating the broken phase from a
symmetric phase in both d ¼ 2 and d ¼ 3. In d ¼ 2, we
obtain a conformal field theory governed by the Oð3Þ
Wilson-Fisher fixed point and in d ¼ 3, we obtain the
physics of the Gaussian fixed point (free field theory). In
this work, we reproduce the physics close to these two fixed
points using a d-dimensional quantum Hamiltonian with
two qubits per lattice site. We first construct a quantum
Hamiltonian with a global Oð3Þ symmetry and later extend
our model to an Oð2Þ or a Z2 model.
Our model is defined on a regular d-dimensional

periodic spatial lattice with L sites in each direction. At
each spatial site r, we have a singlet state js; ri and three
triplet states jm; ri (m ¼ 0;�1), which form the four

FIG. 1. Schematic of how qubit regularizations fit into the usual
picture of Wilson’s renormalization group ideas. The two lines
shown as Qubit Regularization 1 and Qubit Regularization 2
show a set of qubit Hamiltonians where one parameter is varied.
These are not RG flow lines, which are shown with arrows.
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orthonormal basis states of two qubits. The singlet acts as
the Fock vacuum while the triplets carry the Oð3Þ charge.
The Hamiltonian of our model is defined as a sum of two
terms,

H ¼ H1 þH2 ð2Þ

where H1 is a sum over single-site operators and H2 is
a sum over nearest-neighbor operators. The first term is
given by

H1 ¼
X
r

ðJtHt
r − μQrÞ; ð3Þ

where Jt is a coupling, Ht
r is a projection operator onto the

triplet jmi states on the site r,

Ht
r ¼

X
m

jm; rihm; rj ð4Þ

and Qr is the Oð3Þ-charge operator given by

Qr ¼
X
m

mjm; rihm; rj; ð5Þ

with μ the chemical potential. For μ > 0, the jm ¼ 1; ri
states are enhanced and the jm ¼ −1; ri states are sup-
pressed. The second term in the Hamiltonian is

H2 ¼ −
X
hr;r0i

ðJhHh
r;r0 þ JpH

p
r;r0 Þ; ð6Þ

where Jh and Jp are couplings, andHh
r;r0 andH

p
r;r0 are bond

operators on the link connecting the nearest neighbor sites r
and r0. These bond operators act on a 16-dimensional state
space with the basis vectors fjs; rijs; r0i; js; rijm; r0i;
jm; rijs; r0i; jm; rijm0r0ig. The term Hh

r;r0 is the hopping
part of the Hamiltonian and is given by

Hh
r;r0 ¼

X
m

fjs; rijm; r0ihm; rjhs; r0j

þ jm; rijs; r0ihs; rjhm; r0jg ð7Þ

whileHp
r;r0 denotes the pair creation/annihilation events and

takes the form

Hp
r;r0 ¼

X
m

ð−1Þmfjm; rij −m; r0ihs; rjhs; r0j

þ js; rijs; r0ihm; rjh−m; r0jg: ð8Þ

For convenience, we choose Jh ¼ Jp ¼ J in this work,
although this restriction is not necessary to preserve the
symmetries of interest.
When μ ¼ 0, our model Eq. (2) has a global SUð2Þ

symmetry under which all qubits in the model transform as

a spin-half state. Under these transformations, js; ri is
invariant by definition and the triplet states jm; ri
(m ¼ 0;�1) transform as the spin-1 representation of
SUð2Þ,

jm; ri →
X
m0

Dð1Þ
m;m0 jm0; ri; ð9Þ

where Dð1Þ
m;m0 are the SOð3Þ rotation matrices in the basis

which diagonalizes the generator of rotations around the z
axis. This makes all three terms Ht

r, Hh
r;r0 , and Hp

r;r0

invariant. The chemical potential μ breaks the Oð3Þ
symmetry, but we can use it to measure the mass of the
Oð3Þ particles if needed. In this work, we set μ ¼ 0.
It is straightforward to extend our model to obtain qubit

regularizations of Oð2Þ and Z2 quantum field theories in
two and three dimensions. Consider, for example, adding
the on-site term

H3 ¼ Jz
X
r

�
j0; rih0; rj −

X
m¼�1

jm; rihm; rj
�

ð10Þ

to the Hamiltonian in Eq. (2). When Jz → ∞, the m ¼ 0
states are forbidden from the theory and the qubit model is
only invariant under the SOð2Þ subgroup,

jm; ri → eiθmjm; ri: ð11Þ

and Z2 transformations jm; ri → j −m; ri: Thus the sym-
metry group of our model is reduced to Oð2Þ, and it should
naturally provide a qubit regularization of the Oð2Þ sigma
model. On the other hand, when Jz → −∞, the jm ¼ �1i
states are forbidden and only the jm ¼ 0i states are
allowed. In this case, we get a model which is invariant
under the Z2 transformation jm ¼ 0; ri → −jm ¼ 0; ri,
which is the global symmetry group of a real scalar field
theory.
The phase structure of our qubit regularized model in

Eq. (2) can be understood in terms of the dimensionless
coupling λ ¼ Jt=J (see Fig. 2). When λ → ∞, the lattice
Hamiltonian is in a symmetric massive phase since the
jm; ri states are suppressed and the singlet states js; ri
dominate. On the other hand when λ → −∞, every space-
time lattice site contains a triplet state jm; ri, and this most
likely leads to spontaneous symmetry breaking. Assuming
there is a second order quantum critical point at some
intermediate coupling λc, according to Wilson’s renormal-
ization group ideas, the continuum quantum field theory

FIG. 2. The zero temperature phase diagram of our qubit
Hamiltonian in d ¼ 2, 3.
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that emerges close to λc on either side would be the same as
that of the traditional lattice model (1). For example, if we
focus on the theory for λ > λc, we obtain the symmetric
massive phase of the Oð3Þ sigma model where we can use
the mass scale to set the lattice spacing. In 3þ 1 dimen-
sions, this theory will be free up to logarithmic corrections,
while in 2þ 1 dimensions, the scaling of the theory will be
described by the Wilson-Fisher fixed point. These argu-
ments extend toOð2Þ and Z2 cases as well. In this work, we
show explicitly, using Monte Carlo calculations, that the
scaling properties of the traditional model are indeed
reproduced by our qubit regularized model.

III. WORLDLINE FORMULATION

In order to show that our qubit regularization reproduces
the same physics as the traditional lattice regularization
near the critical point, we compute observables within our
qubit model using Monte Carlo methods and study their
scaling properties near the critical point. We do this using
the worldline approach and ideas of worm algorithms for
updating the configurations [35–37]. The partition function
of our model Z ¼ Trðe−βHÞ can be expanded as

Z ¼
X
k

Z
½dtk…dt1�Trðe−ðβ−tkÞH1ð−H2Þ

× e−ðtk−tk−1ÞH1 � � � ð−H2Þe−ðt1ÞH1Þ; ð12Þ

where we treat H1 as a free term and H2 as a perturbation.
However, the integer k, which labels the number of
insertions of H2 terms, is allowed to take any value and
hence the above expansion is not an approximation.
Inserting the expression for H2 as a sum over nearest
neighbor bond operators Hσ

b (either JhH
h
r;r0 or JpH

p
r;r0 ), we

can rewrite the above expression as sum over k bond
configurations ½b; σ� at times t1;…; tk,

Z ¼
X
k

Z
½dtk…dt1�

X
½b;σ�

Trðe−ðβ−tkÞH1ð−Hσk
bk
Þ

× e−ðtk−tk−1ÞH1 � � � ð−Hσ1
b1
Þe−ðt1ÞH1Þ: ð13Þ

We can evaluate the trace in the singlet-triplet basis by
inserting a complete set of states after every insertion of the
bond operator which can have nonzero off diagonal matrix
elements. This then leads to a worldline configuration
depicting the motion of m ¼ 0;�1 type particles in a Fock
vacuum (s type sites).
For convenience, in this work we also discretize time

into LT equal parts with temporal extent ε (that is, εLT ¼ β)
and map the worldline configuration onto a spacetime
lattice. We can do this by writing the partition function in
discrete time as

Z ¼ Trðe−εH2e−εH1e−εH2e−εH1 � � � e−εH2e−εH1Þ; ð14Þ

and then approximate

e−εH2 ≈
Y
hr;r0i

ð1þ εJhHh
r;r0 þ εJpH

p
r;r0 Þ þOðε2Þ ð15Þ

since ε is assumed to be small. The trace is then evaluated in
the occupation number basis and the partition function
takes the form

Z ¼
X
½nðr⃗;tÞ�

Y
hiji

Whiji ð16Þ

where the sum is over all lattice worldline configurations
½nðr⃗; tÞ� with nðr⃗; tÞ ¼ fs;m ¼ 0;�1g at each lattice site
ðr⃗; tÞ and Whiji are weights associated with spacetime
bonds hiji. A configuration ½nðr⃗; tÞ� is composed of
vacuum sites (no particles) and sites where one particle
of type m ¼ 0;�1 is moving. Figure 3 is an illustration of
such a worldline configuration in 1þ 1 dimensions.
Particle world lines are shown with lines on the bonds
connecting lattice sites and vacuum sites are depicted as
sites with filled circles. Each particle worldline is a loop,
that may be oriented (depicting m ¼ �1 type particles) or
unoriented (depicting m ¼ 0 type particles). A temporal
bond that contains an m ¼ þ1 (m ¼ −1) particle worldline
moving through it is depicted by an arrow pointing in the
positive (negative) time direction. The weightsWhiji can be
computed by looking at the configuration on the bond hiji.
If the bond hiji is empty, then Whiji ¼ 1, otherwise the
weight depends on whether the bond is along a spatial
direction or a temporal direction. For convenience, we
define three weights

Ws ¼ εJ; Wt ¼ e−εJt ; Wμ ¼ eμε: ð17Þ

If the bond contains a particle worldline along the spatial
direction then Whiji ¼ Ws, but if it is along the temporal
direction then Whiji ¼ WtðWμÞm. The latter term also
depends on the Oð3Þ charge of the particle on the temporal
bond.
Note that the factor ð−1Þm in Eq. (8) contributes to a

negative sign factor in the weight of the configuration for
every pair creation and annihilation event involving m ¼
�1 particles. However, since for every pair creation, there
is a pair annihilation event, the negative signs cancel. For
this reason we ignore this sign in defining the weights of the
partition function.
In the qubit regularization that we are propose here,

rotational symmetry between space and time is not always
guaranteed. Thus, it is usually difficult to understand how
one can recover a continuum relativistic quantum field
theory in this approach. Here, we rely on the fact that close
to quantum critical points the long distance theory may
flow to a quantum field theory that is naturally relativis-
tically invariant. Fortunately, in our worldline formulation
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it is easy to see that relativistic invariance is indeed
recovered. If we set Ws ¼ Wt, our worldline formulation
becomes invariant under spacetime lattice rotations. Thus,
by setting ε ¼ 1 and expð−εJtÞ ¼ εJ, we are guaranteed
that the quantum critical point obtained by tuning J will be
relativistically invariant. We will refer to this as the
“relativistic limit” of our qubit regularized lattice field
theory. This is in contrast to the “Hamiltonian limit” which
is obtained in the time continuum limit ε → 0 and by tuning
λ ¼ Jt=J to locate the critical point.
From the perspective of implementing a qubit formu-

lation of quantum field theories on a quantum computer, we
are more interested in the Hamiltonian limit since we can
then explore its real-time dynamics in addition to comput-
ing other interesting properties near the appropriate quan-
tum critical point. As stated above, in this limit there is no
symmetry between space and time and it becomes difficult
to argue that we will recover relativistic invariance near the
quantum critical point. However, given that our model has a
quantum critical point in the relativistic limit, it is very
likely that this critical point survives in the Hamiltonian
limit. We can, in principle, formulate an algorithm directly
in the time continuum limit (ε → 0) and compute quantities
as a function of λ. However, in this work, we choose
ε ¼ 0.1 for convenience, and refer to those results as the
Hamiltonian limit.

IV. WORM ALGORITHM

A worm algorithm to update worldline configurations
½nðr; tÞ�, described in Sec. III, can easily be constructed by
extending ideas developed previously for similar world-
line models [35–37]. The basic idea is to sample the
worldline configurations along with configurations
having two defects in the form of one creation operator

a†r;m ¼ jm; rihs; rj and one annihilation operator
ar;m ¼ js; rihm; rj. These configurations with defects are
referred to as worm configurations (illustrated in Fig. 3).
The location of the creation (annihilation) operator
is regarded as the tail (head) of the worm. Although
the defect configurations are different from the configura-
tions that contribute to the partition function, the rules to
compute their weights are the same. In particular, the
defects do not carry any new weights.
Since the construction of worm algorithms is well

established by now, we simply sketch the main ideas here.
The algorithm begins with creating a head and a tail on the
same site or nearest neighbor sites and propagating the head
locally around the lattice until it reaches the tail and can be
removed. Each of these local moves satisfies detailed
balance. For efficiency, the local moves are designed not
to retrace the steps backwards, while maintaining detailed
balance, so that the worm can explore new regions of the
configuration space faster. Figure 4 shows a local worm
configuration in the center and exhibits the four possible
types of local moves for the worm head on a two-
dimensional spacetime lattice. In general, there will be
2ðdþ 1Þ local moves that are proposed and accepted
according to detailed balance. In the example shown, the
worm head O can move to one of four labeled positions
A;…; D. We randomly choose one of these four directions
for the worm head to move. The simplest case is towards
site A: we propose to create a bond OA in that direction by
removing the monomer on site A and moving the worm
head there. If the chosen direction is towards site B, we
propose to delete the bondOB, create a monomer on siteO
and move the worm head back to position B. On the other
hand, if the worm head decides to move towards positionC,
we propose to create a bond OC, delete the bond CC0, and
move the worm head to position C0. This is a two-site move

FIG. 3. Illustration of a worldline configuration (left) and a worm (or defect) configuration (right) in one spatial dimension. Positive
time direction is upwards. The worm is shown as the thick solid line with a head (open circle) and a tail (filled square). The lines without
a head or a tail show particle worldlines, while sites with a Fock vacuum (singlets) are shown as filled circles. Particle with charge
m ¼ �1 are shown as oriented worldlines while those with charge m ¼ 0 are unoriented.

QUBIT REGULARIZATION OF THE Oð3Þ SIGMA MODEL … PHYS. REV. D 100, 054505 (2019)

054505-5



for the worm head because we do not allow configurations
with more than two bonds at any site. The final move type
is towards site D, which contains the worm tail. So, if
the direction chosen is towards site D, we propose to close
thewormby creating the bondOD, thereby transforming the
worm configuration into a regular worldline configuration.
If this proposal is accepted, the worm update ends. Each of
the above four local moves can be retraced and hence the
probabilities that satisfy detailed balance can beworked out.
In our qubit models we have both oriented and unor-

iented loops. Although the illustration above involved the
worm head and the worm tail on an oriented loop, a similar
strategy can be adapted for the unoriented loop. The move
towards C then leads to two possible moves for the head.
We have constructed worm algorithms that update each of
the sectors separately. In other words, while the oriented
loops are being updated the unoriented loops are frozen and
vice versa. We then also add a simple metropolis update
which flips between the two types of loops. This loop-flip
update then makes the entire algorithm ergodic even
without unoriented loop updates, and reduces the autocor-
relation time drastically. Indeed, in theOð3Þ case we do not
perform the worm update on the unoriented loops, but

combine the oriented loop update with a loop-flip update.
In the Oð2Þ (Z2) case there are no unoriented (oriented)
loops and hence there is no need to perform the loop-flip
update.
Using this worm algorithm, we compute several observ-

ables. The first observable is the average density of vacuum
sites

v ¼ 1

Z
Tr

�
1

Ld

X
r

Ps
re−βH

�
; ð18Þ

where Ps
r ¼ js; rihs; rj is the projector onto the singlet state

at the site r. Given a configuration ½nðr; tÞ�, this quantity
can easily be computed by counting the number of vacuum
sites.
The second observable is the average Oð3Þ charge

hQi ¼ 1

Z
Tr
�X

r

Qre−βH
�
: ð19Þ

In each worldline configuration, the Oð3Þ charge Qr is a
conserved quantity and can be easily computed. When

FIG. 4. Possible local moves for the worm head. The configurations shown follow the same convention as Fig. 3. Starting from the
configuration shown in the center, the worm head can move to one of the four positions A, B, C, orD. We choose the probability of each
move to satisfy detailed balance.
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μ ¼ 0, we expect hQi ¼ 0 due to the Oð3Þ symmetry.
However, as μ increases hQi will increase and cross 0.5 at a
critical coupling μc. In the massive phase when β; L → ∞,
this critical coupling gives the mass of the Oð3Þ particles.
This technique for computing the mass has also been used
with traditional formulations [30].
The third observable is the current-current susceptibility

(which is related to the superfluid density) ρs defined
through the Oð3Þ conserved current. One can compute it
using the conserved Oð3Þ charge along one of the spatial
directions. This can be obtained using the spatial winding
Qw of particle worldlines for every worldline configuration
½nðr; tÞ�, using the formula

ρs ¼
1

Ld−2β
hQ2

wi; ð20Þ

where the average is computed using the worm algorithm.
Our final observable is the susceptibility of the two point

correlation function involving the creation and annihilation
of particles. This is given by

χ ¼ 1

ZLd

X
r;r0

Z
β

0

dtTrðe−ðβ−tÞHOr;me−tHO
†
r0;mÞ ð21Þ

where O†
r;m ¼ ða†r;m þ ð−1Þmar;−mÞ. Computing χ is

straightforward in our worm algorithm since the worm
update naturally samples configurations with a creation and
an annihilation event (see Fig. 3). The factor of ð−1Þm in the
definition of O†

r;m cancels the identical factor in Eq. (8) and
makes χ a positive number for all configurations.
In the next section, we discuss our results for the above

observables close to the critical point separating the
symmetric phase from the broken phase in both d ¼ 2

and d ¼ 3, for the global symmetry groups Oð3Þ, Oð2Þ,
and Z2.

V. RESULTS

We study our qubit model in both the relativistic and
Hamiltonian limits in d ¼ 2 and d ¼ 3 to show that we
reproduce the results expected from traditional models near
the quantum critical points. We measure the current-current
susceptibility ρs and the susceptibility of the two-point
correlation function χ, defined in Sec. V. For the relativistic
limit, we tune the coupling J close to the critical value Jc.
Near this quantum critical point, in the scaling regime we
expect the observables to behave as

ρsLd−1 ¼ fððJ − JcÞL1=νÞ;
χ=L2−η ¼ gððJ − JcÞL1=νÞ; ð22Þ

where fðxÞ and gðxÞ are universal functions, and ν and η are
the critical exponents. Here we neglect corrections to
scaling for simplicity. We can extract the critical exponents
ν, η and the critical coupling Jc by approximating fðxÞ and
gðxÞ as fourth order polynomials (including x4) and
performing a simultaneous fit of ρs and χ to the above
expressions, allowing the critical exponents ν, η, the critical
coupling Jc and the coefficients of polynomial expansion
of fðxÞ and gðxÞ to vary. For the Hamiltonian limit, we
similarly tune the coupling λ ¼ Jt=J (keeping J fixed) to its
critical value λc, so we expect

ρsLd−1 ¼ fððλ − λcÞL1=νÞ;
χ=L2−η ¼ gððλ − λcÞL1=νÞ ð23Þ

TABLE I. Results for all models. The relativistic and Hamiltonian limits (ε ¼ 0.1) are indicated for each model by (R) and (H),
respectively. The monomer density v at the critical point is obtained by an interpolation for the largest lattice sizes. We compute the
χ2=DOF (chi-square per degree of freedom) statistic by a simultaneous fit of ρs and χ, as explained in Sec. V. For comparison, we include
existing results from Monte Carlo computations for Oð3Þ and Oð2Þ in d ¼ 2 [38], conformal bootstrap for Z2 in d ¼ 2 [39], and mean-
field theory for all cases in d ¼ 3.

Fit Literature

Model d v Jc or λc ν η χ2=DOF ν η

Oð3Þ (H) 2 0.785 956(18) 4.816 95(37) 0.693(15) 0.038(26) 0.32 0.7113(11) 0.0378(6)
Oð3Þ (R) 2 0.781 623 25(68) 0.244 327(10) 0.7048(70) 0.031(12) 0.52 0.7113(11) 0.0378(6)
Oð3Þ (H) 3 0.909 488 1(93) 10.098 17(55) 0.5050(96) −0.034ð46Þ 0.40 0.5 0.0
Oð3Þ (R) 3 0.920 662(10) 0.155 866 4(30) 0.4975(65) 0.003(31) 0.34 0.5 0.0

Oð2Þ (H) 2 0.854 411(21) 5.462 676(88) 0.6707(37) 0.0276(86) 0.34 0.6717(1) 0.0381(2)
Oð2Þ (R) 2 0.852 320(16) 0.232 037 3(36) 0.6626(38) 0.0308(71) 0.89 0.6717(1) 0.0381(2)
Oð2Þ (H) 3 0.939 669(21) 10.5535(10) 0.498(13) −0.005ð96Þ 5.53 0.5 0.0
Oð2Þ (R) 3 0.946 776(25) 0.152 952 6(21) 0.4921(43) −0.028ð23Þ 0.52 0.5 0.0

Z2 (H) 2 0.925 073(33) 6.059 74(21) 0.6416(95) −0.016ð45Þ 0.48 0.629 971(4) 0.036 298(2)
Z2 (R) 2 0.924 076(60) 0.221 965 5(45) 0.6375(50) −0.037ð18Þ 1.69 0.629 971(4) 0.036 298(2)
Z2 (H) 3 0.983 629 20(87) 10.9929(30) 0.507(26) −0.28ð38Þ 0.39 0.5 0.0
Z2 (R) 3 0.973 115(33) 0.150 208(18) 0.471(14) −0.02ð26Þ 1.22 0.5 0.0
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FIG. 5. Critical scaling in the Oð3Þ qubit model. Plots of ρsLd−1 and χ=L2−η as a function of ðJ=Jc − 1ÞL1=ν for the relativistic limit
and as a function of ð1 − λ=λcÞL1=ν for the Hamiltonian limit in d ¼ 2, 3 dimensions. The black line shows a combined fit in each case
assuming that fðxÞ and gðxÞ in Eq. (2) can be approximated by a polynomial up to fourth order.
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FIG. 6. Critical scaling in the Oð2Þ qubit model. Plots of ρsLd−1 and χ=L2−η as a function of ðJ=Jc − 1ÞL1=ν for the relativistic limit
and as a function of ð1 − λ=λcÞL1=ν for the Hamiltonian limit in d ¼ 2, 3 dimensions. The black line shows a combined fit in each case
assuming that fðxÞ and gðxÞ in Eq. (22) can be approximated by a polynomial up to fourth order.
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near the critical point. Even though the functions fðxÞ and
gðxÞ are universal, unfortunately it is difficult to compare
the ones obtained from the relativistic limit to the
Hamiltonian limit because the functions also depend on
the aspect ratio of the lattice. A complete listing of our
results for the fits with various models in d ¼ 2, 3 in both
the relativistic and Hamiltonian limits is given in Table I.

A. Results for the Oð3Þ model

The results for the critical scaling in the Oð3Þ model in
both d ¼ 2 and d ¼ 3 are shown in Fig. 5. In d ¼ 2, the
main result to show is that we can reproduce the physics of
the Wilson-Fisher fixed point. The critical exponents
ν ¼ 0.7113ð11Þ, η ¼ 0.0378ð6Þ for the Oð3Þ sigma model
are well known and have been computed in the literature
using the traditional model [38]. If we assume that fðxÞ and
gðxÞ are given by a fourth order polynomials, we find that
we can fit our data for both ρs and χ to Eq. (2) very well, as
is shown by the first row of Fig. 5 for the relativistic limit.
We repeat the above analysis in the Hamiltonian limit by

fixing ε ¼ 0.1 and varying λ. To mimic cubical boxes we
choose β ¼ L, which means the number of temporal lattice
sites now are ten times larger. This makes these compu-
tations more time consuming. We again get excellent fits as
shown in the second row of Fig. 5. These results provide
strong evidence that the Wilson-Fisher fixed point of the
Oð3Þ scalar field theory can be obtained using our two
qubit quantum Hamiltonian.
In d ¼ 3 dimensions, the Oð3Þ scalar field theory is free

up to logarithmic corrections. We thus expect our model to

reproduce the mean-field critical exponents. We show that
the results are indeed consistent with the mean-field
predictions, as shown in the bottom two rows of Fig. 5
for the relativistic and Hamiltonian limits.

B. Extension to Oð2Þ and Z2 models

As described earlier in Sec. II, we can modify the Oð3Þ
model to get Oð2Þ and Z2 models as well. This means we
should be able to recover the XY critical exponents in
d ¼ 2 for the Oð2Þ model and the Ising critical exponents
in d ¼ 2 for the Z2 model.
The critical exponents for the XY universality class are

known from Monte Carlo studies to be ν ¼ 0.6717ð1Þ and
η ¼ 0.0381ð2Þ [40]. Figure 6 shows our results for theOð2Þ
qubit model in d ¼ 2 spatial dimensions, for the relativistic
limit and the Hamiltonian limit (with ε ¼ 0.1). The
extracted critical exponents are in good agreement with
the literature. The bottom two rows show the results in
d ¼ 3, where we find the critical exponents to be consistent
with the mean-field predictions of ν ¼ 0.5 and η ¼ 0.0.
For the Z2 model, we show our results in Fig. 7. Since

there is no analog of ρs in this case, we only show the plots
for the susceptibility χ [defined in Eq. (21) for Z2 with
m ¼ 0]. After tuning the coupling close to the critical point,
we perform a single fit of χ to the form

χ ¼ L2−ηgðxÞ ð24Þ
where x ¼ ðJ − JcÞL1=ν for the relativistic limit and x ¼
ðλ − λcÞL1=ν for the Hamiltonian limit. The most precise

FIG. 7. Critical scaling in the Z2 qubit model. Plots of χ=L2−η as a function of ðJ=Jc − 1ÞL1=ν for the relativistic limit and as a function
of ð1 − λ=λcÞL1=ν for the Hamiltonian limit in d ¼ 2, 3 dimensions.
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estimates for the Ising critical exponents in d ¼ 2
come from conformal bootstrap [39], which gives ν ¼
0.629 971ð4Þ and η ¼ 0.036 298ð2Þ in d ¼ 2. Once again,
we find our results to be consistent with these in both the
relativistic and the Hamiltonian limits, as shown in the top
row of Fig. 7. The bottom row of that figure shows our
results for d ¼ 3, which are consistent with the mean-field
predictions.

C. Monomer density

We have also measured the monomer density v, as
defined in Sec. IV. Its value at the critical point for each
model, extracted from an interpolation of our data on the
largest lattice sizes, is shown in the third column of Table I.
In the limit β → ∞, the monomer density is the probability
of a spacetime site to be in the trivial Fock vacuum state. If
we write the ground state of our qubit model as

jΨi ¼ jr; si ⊗ jΦs
universei þ

X
m

jr; mi ⊗ jΦm
universei; ð25Þ

where jΦs
universei and jΦm

universei are the kets of the universe
without the site r, then

v ¼ hΦs
universejΦs

universei ¼ hΨjr; sihr; sjΨi: ð26Þ
We see that it is a measure of how perturbative the ground
state is. When v is close to 1 the theory becomes more and
more perturbative. Since the d ¼ 3 qubit models are
described by free field theories close to the critical point,
the observed values for the monomer density are seen to be
much closer to 1 than d ¼ 2 which is known to be less
perturbative.

VI. CONCLUSIONS

We have defined the concept of qubit regularization of
quantum field theories and have argued that this is an
important step in studying quantum field theories on a
quantum computer. Using the example of the Oð3Þ sigma
model in two and three spatial dimensions, we have argued
that qubit regularized models can reproduce the same
physics as the traditional lattice regularized quantum field
theories in the continuum limits. In particular, we showed
that the scaling of the Wilson-Fisher fixed points and the
Gaussian fixed points are reproduced accurately from the
qubit regularized model involving only two qubits on each
lattice site. We also demonstrated that qubit regularizations
for Z2 and Oð2Þ quantum field theories, constructed by
suitably modifying the Oð3Þ model, can also reproduce the
correct critical exponents.
In this work, we did not consider if our qubit regulari-

zation reproduces the physics of the traditional lattice
regularized model (1) for d ¼ 1. This problem has been
studied recently using the tensor networks within a differ-
ent qubit regularization scheme [41]. Based on those
results, one might conclude that our two qubit model will

not lead to a viable qubit regularization. However, we
believe the case of 1þ 1 dimensions is more subtle. While
the traditional model has a critical point at gc ¼ 0, where
the asymptotically freeOð3Þ quantum field theory emerges,
it may be naive to expect that something similar would
happen with all qubit regularizations. Since the Oð3Þ
symmetry would prevent the superfluid phase to form
due to the Mermin-Wagner theorem, it is possible that there
is no critical point in the theory constructed with two
qubits, as found in Ref. [41]. On the other hand, in our qubit
model, we can guarantee the existence of a critical point at
least at λc ¼ −∞, like in the traditional model. This is due
to the emergence of a new Uð1Þ symmetry, present in all
loop models on bipartite lattices. Previous work suggests
that our loop model will be in the critical Kosterlitz-
Thouless phase [42]. So, the physics of our qubit model
seems to be different from the one studied in Ref. [41].
In fact, we cannot rule out a topological phase transition to
an Oð3Þ symmetric Kosterlitz-Thouless phase even at a
finite value of λc. At this critical point, we may either obtain
the usual asymptotically free Oð3Þ quantum field theory or
something more exotic. To sort this out, we postpone the
d ¼ 1 study to a future publication.
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APPENDIX: TESTS OF THE ALGORITHM

We test our Monte Carlo algorithm in various ways.
First, we compute the four observables discussed in the text
exactly starting from the definition of the lattice partition
function in Eq. (16) on a 2 × 2 lattice by enumerating all
possible configurations. For the Oð3Þ model, the partition
function is given by

Z ¼ 1þ 6W2
s þ 2W2

t ð1þW2
μ þW−2

μ Þ þ 9W4
s

þW4
t ð1þW2

μ þW−2
μ Þ2 þ 8W2

sW2
t ð4þW2

μ þW−2
μ Þ;
ðA1Þ

where the weights Wt, Ws, and Wμ are defined in Eq. (17).
Since this is theOð3Þmodel, the above expression includes
terms from both oriented and unoriented loops. We can
write down a similar expression for the Oð2Þ or Z2 model
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TABLE II. Comparison of exact results and the results obtained from Monte Carlo methods on a 2 × 2 spacetime lattice for the Oð3Þ,
Oð2Þ models. In the presence of a chemical potential, χ as defined in Eq. (21) depends on m: m ¼ 1 for Oð3Þ and Oð2Þ, and m ¼ 0
for Z2.

Model d εJ λ μ=J v χ Q ρs

Oð3Þ 1 0.1 0.1 0.5 0.246 56(20) 0.847 04(22) 0.122 85(16) 0.097 04(14)
0.246 650… 0.847 499… 0.122 955… 0.097 111…

1 0.1 10 5 0.621 00(19) 1.403 91(28) 0.269 77(39) 0.397 35(24)
0.620 923… 1.404 305… 0.269 603… 0.397 517…

1 0.01 100 150 0.258 90(22) 0.717 27(17) 0.010 78(16) 1.404 80(24)
0.259 008… 0.717 318… 0.010 723… 1.404 658…

1 0.5 2.1 1.8 0.324 59(12) 1.267 93(39) 0.679 13(27) 0.512 53(19)
0.324 648… 1.268 206… 0.679 488… 0.512 282…

Oð2Þ 1 0.1 0.1 0.5 0.325 86(19) 1.170 26(62) 0.215 41(50) 0.130 45(84)
0.325 838… 1.170 464… 0.215 784… 0.128 823…

1 0.1 10 5 0.682 94(30) 1.576 91(78) 0.324 13(86) 0.440 85(34)
0.682 897… 1.577 283… 0.324 587… 0.440 493…

1 0.01 100 150 0.268 72(39) 0.743 61(34) 0.011 71(23) 1.455 13(79)
0.268 415… 0.743 762… 0.011 517… 1.455 718…

1 0.5 2.1 1.8 0.355 38(19) 1.499 44(51) 0.788 10(52) 0.624 82(31)
0.355 329… 1.499 587… 0.787 636… 0.625 324…

Z2 1 0.1 0.1 � � � 0.485 36(17) 1.8955(11) � � � � � �
0.485 637… 1.895 648… � � � � � �

1 0.1 10 � � � 0.860 500(89) 1.965 83(78) � � � � � �
0.860 676… 1.964 825… � � � � � �

1 0.01 100 � � � 0.880 497(81) 1.575 24(87) � � � � � �
0.880 590… 1.575 397… � � � � � �

1 0.5 2.1 � � � 0.593 56(33) 2.5946(14) � � � � � �
0.593 563… 2.593 807… � � � � � �

FIG. 8. Continuum time extrapolation of monomer density v and the Oð3Þ charge hQi for the d ¼ 1 data shown in the middle row
(L ¼ 4) of Table III.

TABLE III. Results from diagonalizing the Hamiltonian Eq. (2).

d L λ μ=J Jβ v Q

1 2 0.50 0.30 1.0 0.496 08(15) 0.111 68(10)
0.496 259… 0.111 483…

1 4 0.50 0.30 1.0 0.468 36(23) 0.302 73(20)
0.468 597… 0.302 696…

1 6 0.50 0.30 1.0 0.459 90(25) 0.475 91(22)
0.460 300… 0.475 203…
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by omitting unoriented or oriented loops, respectively. In
Table II, we show a comparison between the exact results
and those obtained using our Monte Carlo method for all
three [Oð3Þ, Oð2Þ, and Z2] models.
We also check that our formulation reproduces the qubit

Hamiltonian in the εJ → 0 limit by explicitly diagonalizing
the Hamiltonian and computing the Oð3Þ charge hQi and

the monomer density hvi in one spatial dimension on small
lattices. For this, we perform Monte Carlo calculations at
several finite values of ε and then perform a linear
extrapolation to ε → 0. In Table III, we show results from
this procedure compared with the exact results from an
explicit diagonalization. We show an illustrative fit to the
continuous time limit ε → 0 in Fig. 8.
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