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We study the dependence of the static quark free energy on the baryon chemical potential for
Nf ¼ 2þ 1 QCD with physical quark masses, in a range of temperature spanning from 120 MeV up to
1 GeV and adopting a stout staggered discretization with two different values of the Euclidean temporal
extension, Nt ¼ 6 and Nt ¼ 8. In order to deal with the sign problem, we exploit both Taylor expansion
and analytic continuation, obtaining consistent results. We show that the dependence of the free energy on
μB is sensitive to the location of the chiral crossover, in particular the μB susceptibility, i.e., the linear term
in μ2B in the Taylor expansion of the free energy, has a peak around 150 MeV. We also discuss the behavior
expected in the high temperature regime based on perturbation theory, and obtain a good quantitative
agreement with numerical results.
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I. INTRODUCTION

Heavy quark free energies have been used as a probe
for the confining properties of strong interactions since
the early days of lattice QCD simulations. They can be
extracted, after proper renormalization [1–5], from the
expectation value of the Polyakov loop and of its corre-
lators. The Polyakov loop is defined in the continuum as

LðrÞ ¼ 1

Nc
P exp

�
ig
Z

1=T

0

dτA0ðr; τÞ
�
; ð1Þ

where T is the temperature, P is the path-ordering operator,
and Nc is the number of colors. On the lattice, this object is
constructed by taking the product of gauge links winding
along the compactified Euclidean temporal direction.
The square module of its trace is the asymptotic value
of the unsubtracted correlator between Polyakov loops: it is
related to the static quark free energy FQ by the formula

2FQ ¼ −T log jhTrLij2: ð2Þ

In the pure gauge theory the Polyakov loop is an exact
order parameter for color confinement/deconfinement,
which becomes nonzero only in the deconfined phase
and signals the spontaneous breaking of center symmetry.
This is usually associated with the possibility of separating
two static color charges at arbitrarily large distances with-
out paying an infinite amount of free energy.
In full QCD the situation is different: the creation of

dynamical quark-antiquark pairs makes the free energy of
static quark pairs finite at any distance even in the confined
phase. In fact, dynamical quarks break center symmetry
explicitly, so that the Polyakov loop is not an exact order
parameter any more and its expectation value is different
from zero even in the confined phase.
In the presence of quarks with physical masses chiral

symmetry is surely a relevant symmetry, even if not exact,
and the chiral condensate and its susceptibility are usually
adopted as probes to locate the pseudocritical temperature
of QCD, which is found to be around 155 MeV [6–11].
Still, the Polyakov loop shows a rapid rise at a similar
temperature scale, signalling the passage to a deconfined
regime with screened color interactions.
Whether deconfinement and chiral symmetry restoration

take place at exactly the same temperature is yet not clear
and maybe not even a well founded question. The Polyakov
loop susceptibility shows a peak around 200 MeV [12],
while other related observables show a signal closer to
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the chiral transition temperature: this is the case for the
Polyakov loop entropySQ ¼ −∂FQ=∂T [12] or the so-called
transverse susceptibility related to fluctuations in the imagi-
nary part of the Polyakov loop [13,14]. This issue has been
studied also in the framework of various effective models
(see, e.g., Refs. [15,16]). Since theQCD transition is actually
a crossover, it is quite natural to expect that different
observables yield different locations of the pseudocritical
temperature. Yet, the information coming from different
probes can be useful to better understand the connection
between different phenomena taking place around the cross-
over region.
The purpose of the present study is to give a closer look

at static quark free energies, in particular by exploring
their dependence on the baryon chemical potential μB.
The modification of the heavy quark free energy due to μB,
ΔFQðT; μBÞ≡ FQðT; μBÞ − FQðT; 0Þ, is given by the
following expression:

ΔFQðT; μBÞ
T

¼ − log

�jhTrLiðT; μBÞj
jhTrLiðT; 0Þj

�
; ð3Þ

which does not need renormalization if the two Polyakov
loops in the ratio are computed at the same ultraviolet (UV)
scale. This quantity has been studied in Ref. [17] and more
recently in Ref. [18] for QCD with physical quark masses.
One expects the dependence of ΔFQðT; μBÞ on μB to be

sensitive to the location of the transition. Indeed, if the
Polyakov loop were an exact order parameter then its
dependence on μB should become singular at Tc, because
μB is a relevant parameter which modifies the location of
Tc. A remnant of this behavior must be present even when
the Polyakov loop is not an exact order parameter and,
since the free energy is an even function of μB, the first
nontrivial derivative to investigate the associate pseudoc-
ritical behavior is the mixed susceptibility,

χQ;μ2B
≡ −

∂2ðFQ=TÞ
∂ðμB=TÞ2

����
μB¼0

: ð4Þ

Early simulations of Nf ¼ 2 QCD have shown that this
quantity has a broad peak in a region close to Tc [17].
More recent simulations, performed for Nf ¼ 2þ 1 QCD
discretized via stout-staggered fermions with physical
quark masses [18], were limited to a temperature range
T ≳ 180 MeV, showing nevertheless a peculiar behavior
pointing to a seeming divergence for T ∼ 150 MeV.
The purpose of the present study is to extend the inves-

tigation forNf ¼ 2þ 1QCDwith physical quark masses to
awider temperature range, going from120MeVup to 1GeV.
We consider the same stout-staggered discretization adopted
in Ref. [18] and two different sets of lattice spacings,
corresponding to Euclidean temporal extensions Nt ¼ 6
and Nt ¼ 8, in order to estimate the impact of systematic
errors related to the UV cutoff. The extended range of
temperatures will permit us both to investigate the

pseudocritical behavior of χQ;μ2B
around Tc, and to compare

results obtained at high T with perturbative predictions.
Since lattice simulations at nonzero μB are not feasible,
because of the sign problem, we employ both Taylor
expansion and analytic continuation from simulations at
imaginary μB in order to properly cover the whole temper-
ature range: for temperatures where both methods are used
we obtain consistent results.
The paper is organized as follows: in Sec. II we review

our numerical methods and the observables explored in this
study; results are presented in Secs. III and IV and, finally,
in Sec. V, we draw our conclusions.

II. NUMERICAL SETUP AND OBSERVABLES

We have considered the finite temperature partition
function for Nf ¼ 2þ 1 QCD with chemical potentials
μf (f ¼ u; d; s) coupled to quark number operators,
ZðT; μu; μd; μsÞ, in a setup for which μu ¼ μd ¼ μs ¼
μB=3, corresponding to a purely baryonic chemical poten-
tial. The path integral formulation of ZðT; μBÞ, discretized
via improved rooted staggered fermions and adopting the
standard exponentiated implementation of the chemical
potentials [19,20], reads

Z ¼
Z

DUe−SYM

Y
f¼u;d;s

det ½Mf
stðU; μfÞ�1=4; ð5Þ

where

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
ð6Þ

is the tree-level Symanzik improved action [21,22] (Wn×m
i;μν

stands for the trace of the n ×m rectangular parallel
transport in the μ-ν plane and starting from site (i), the
staggered fermion matrix is defined as

Mf
stðU; μfÞ ¼ amfδi;j þ

X4
ν¼1

ηi;ν
2

½eaμfδν;4Uð2Þ
i;ν δi;j−ν̂

− e−aμfδν;4Uð2Þ†
i−ν̂;νδi;jþν̂�; ð7Þ

where Uð2Þ
i;ν are two-times stout-smeared links, with iso-

tropic smearing parameter ρ ¼ 0.15 [23]. Bare parameters
have been set to stay on a line of constant physics [24–26],
with equal light quark masses, mu ¼ md ¼ ml, a physical
strange-to-light mass ratio, ms=ml ¼ 28.15, and a physical
pseudo-Goldstone pion mass, mπ ≃ 135 MeV.
The main observable we are interested in is the Polyakov

loop and its dependence on μB. In particular, as already
described above, the ratio of Polyakov loops at different
baryon chemical potentials gives access to the μB-dependent
part of the free energy density, ΔFQðT; μBÞ≡ FQðT; μBÞ−
FQðT; 0Þ,
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ΔFQðT; μB; βÞ
T

¼ − log

�jhTrLiðT; μB; βÞj
jhTrLiðT; 0; βÞj

�
; ð8Þ

and if the ratio is taken for Polyakov loops measured at the
same value of the inverse bare coupling β and of the bare
quark masses, then no further renormalization is expected, at
least when the chemical potential is inserted on the lattice
with the prescription introduced in Ref. [19] and adopted in
the present investigation. That means that the dependence of
ΔFQðT; μB; βÞ on β is expected to be limited to finite UV
corrections to continuum scaling.
It would be interesting to study the dependence of FQ on

μB in the whole range of physically relevant values of μB,
however our investigation will be limited to the region of
small μB=T and, in particular, to the susceptibility χQ;μ2B
defined in Eq. (4), which can be directly related to the
Polyakov loop ratio of Eq. (8) by the formula

jhTrLiðT; μBÞj
jhTrLiðT; 0Þj ¼ 1þ 1

2
χQ;μ2B

�
μB
T

�
2

þO
��

μB
T

�
4
�

ð9Þ

since Eq. (8) yields

∂2

∂ðμB=TÞ2
jhTrLiðT; μBÞj
jhTrLiðT; 0Þj

����
μB¼0

¼ −
∂2ðFQ=TÞ
∂ðμB=TÞ2

����
μB¼0

: ð10Þ

The reason of the limitation to small chemical potentials is
the well-known sign problem of QCD at finite density,
which makes standard Monte Carlo simulations unfeasible
when μB ≠ 0. Present strategies to partially circumvent the
sign problem are reliable only in a limited range of small
μB=T, where they lead to controllable systematic errors;
Taylor expansion [27–30] and analytic continuation from
simulations at imaginary chemical potential [31–54] are the
most widely used techniques. In this investigation we
employ both of them, since in part of our wide temperature
range the statistical or systematic errors of one technique
are less under control, so that a direct comparison with the
other technique improves the overall reliability of the
results; this combined strategy has revealed successful in
other cases, like for the determinations of the curvature of
the pseudocritical line [55].
In the analytic continuation approach, the baryon chemi-

cal potential is taken to be purely imaginary, μB ¼ iμB;I , the
path-integral measure staying real and positive for μB;I ≠ 0.
Within our numerical setup, adding a nonzero μB;I can be
rephrased in terms of a rotation of temporal boundary
conditions of the quark fields by a factor expðiμI=TÞ, where
μI ¼ μB;I=3 is the imaginary part of the quark chemical
potential. The value of the Polyakov loop is measured for
several values of μI at fixed temperature, then numerical
data are fitted to the analytic continuation of some suitable
Ansatz for the dependence on μB, thus fixing the corre-
sponding parameters. Despite its simplicity, this method
has some limitations and drawbacks, its systematic errors

being related essentially to the arbitrary Ansatz for the
fitting function.
The choice of the fitting function and the related

systematics can be different depending on the value of
the temperature as dictated by the nontrivial symmetries
and phase structure of the T − μB;I phase diagram, which is
sketched in Fig. 1. In general one can prove, combining μB;I
translations with gauge field center transformations, that
the theory is 2π-periodic in μB;I=T [56]. This periodicity is
smoothly realized for T < Tc: there a Fourier expansion is
the most natural choice [34] and, moreover, a picture based
on the hadron resonance gas (HRG) model suggests an
Ansatz where the first few terms of the expansion are
dominant [in our case, for example, the form in Eq. (12) is
used], unless one is close enough to Tc.
On the contrary, at high T, in particular for T > TRW

(where TRW ≃ 210 MeV in the continuum limit for Nf ¼
2þ 1 QCD with physical quark masses [57]), the perio-
dicity is realized in a nonanalytic way, with first order phase
transition lines (RW lines) crossed for μB;I=T ¼ ð2kþ 1Þπ
and k integer: the phase of the Polyakov loop is an order
parameter for such transitions, at which the system switches
from one center sector to the other. That limits the range of
chemical potentials available for analytic continuation to
μB;I=T < π, however the dependence of the Polyakov loop
modulus is well approximated by an even power law
expansion in μB;I [see, e.g., Eq. (13)], with the lowest
order terms becoming more and more dominant as the
temperature is increased.
The intermediate region, Tc < T < TRW , is the one

where systematic errors can be more severe. In this region,
moving in μB;I=T from 0 to π one crosses the analytic
continuation of the pseudocritical line: even if this is not a
true transition but just a crossover, it can make the
dependence on μB;I nontrivial, thus in fact restricting the

0 1 2 3 4

(μ
B,I

/T)  / (πT)

 T
 T

RW

Tc

FIG. 1. Qualitative structure of the QCD phase diagram of
QCD in the T − μB;I plane. The vertical lines are the RW
transitions, while the dashed line is the analytic continuation
of the pseudocritical line.
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region of μB;I where different Ansätze give consistent
results; moreover, such a region becomes smaller and
smaller as Tc is approached from above.
A second possibility, which can be put in the general

framework of the Taylor expansion approach, is to measure
χQ;μ2B

directly at μB ¼ 0, following its definition in Eq. (4).

In particular, after some computations (which are reported
in the Appendix), one writes χQ;μ2B

as a combination of
correlators involving the Polyakov loop and fermionic
terms. The expression is

χQ;μ2B
¼ hReTrLðn2 þ n0Þi

hReTrLi − hn2 þ n0i

þ hðReTrLþ ImTrLÞni2
hReTrLi2 ; ð11Þ

where n ¼ nu þ nd þ ns is the total quark number and n0 is
its derivative with respect to μB. Even though the measure
of this quantity is well defined and seemingly straightfor-
ward for all temperatures, in practice its computation
involves many noisy estimators and therefore turns out
to be numerically expensive, especially in the region around
and below Tc.
In view of the above considerations, the strategy chosen

in this work has been to adopt analytic continuation for all
temperatures below Tc and for most temperatures above
TRW , while in the region Tc < T < TRW we have adopted
both Taylor expansion and analytic continuation, in order to
have better control over systematics.
Monte Carlo simulations have been performed for two

different values of Nt in order to estimate the impact of UV
corrections, in particular on a 243 × 6 and on a 323 × 8
lattices using a rational hybrid Monte Carlo algorithm
[58–60]. A summary of the parameters adopted in our
simulations, together with details on the strategy chosen in
each case, is reported in Table I. In the cases in which the
susceptibility χQ;μ2B

has been measured through Taylor

expansion, sets of about 104 configurations separated by
ten molecular dynamics trajectories have been analyzed for
each run, and fermionic observables such as the quark
number n and its derivative n0 have been computed through
stochastic noisy estimators [61], in particular using up to
256 Z2 random noise vectors per measurement. In the cases
in which analytic continuation has been adopted, we have
performed around 5 × 103 molecular dynamics trajectories
for each value of the imaginary chemical potentials. The
data analysis has been performed by means of a blocked
jackknife resampling in all cases.

III. RESULTS

Let us start by discussing the determination of χQ;μ2B
by

analytic continuation. As an illustrative example, in Fig. 2
we report the average values of the squared modulus of the
Polyakov loop on the 243 × 6 lattice as a function of μB;I
and for some of the explored temperatures. For the sake of
readability, we have reported separately determinations at
high and low T, normalizing data by the value at μB;I ¼ 0

only in the latter case.

TABLE I. List of parameters used in the Monte Carlo simu-
lations for the study of the susceptibility χQ;μ2B

, chosen so as to
stay on a line of constant physics at the physical point, using a
spline interpolation of the data in Refs. [25,26].

N3 × Nt β a½fm� T ½MeV� μI=ðπTÞ
243 × 6 3.4500 0.2835 116 0; 0.04;…; 0.32

” 3.4789 0.2631 125 0; 0.04;…; 0.32
” 3.5085 0.2436 135 0; 0.04;…; 0.32
” 3.5246 0.2332 141 0; 0.04;…; 0.64
” 3.5421 0.2222 148 0
” 3.5585 0.2121 155 0
” 3.5695 0.2055 160 0
” 3.5800 0.1993 165 0; 0.04;…; 0.32
” 3.5923 0.1923 171 0
” 3.6172 0.1787 184 0; 0.04;…; 0.32
” 3.6746 0.1515 217 0; 0.04;…; 0.32
” 3.7305 0.1310 251 0; 0.04;…; 0.32
” 3.7829 0.1153 285 0; 0.04;…; 0.32
” 3.8300 0.1034 318 0; 0.04;…; 0.32
” 3.8749 0.0936 351 0; 0.04;…; 0.32
” 3.9184 0.0856 384 0; 0.04;…; 0.32
” 3.9608 0.0788 417 0; 0.04;…; 0.32
” 4.0019 0.0729 451 0; 0.04;…; 0.32
” 4.0798 0.0635 518 0
” 4.1506 0.5622 585 0
” 4.2200 0.0504 652 0
” 4.2797 0.4574 719 0
” 4.3297 0.0418 786 0
” 4.3778 0.0386 853 0
” 4.4284 0.0357 920 0
” 4.4808 0.0333 987 0
” 4.5317 0.0312 1054 0
” 4.5764 0.0293 1121 0

323 × 8 3.5835 0.1973 125 0; 0.04;…; 0.32
” 3.6100 0.1827 135 0; 0.04;…; 0.64
” 3.6245 0.1749 141 0; 0.04;…; 0.64
” 3.6417 0.1666 148 0; 0.04;…; 0.64
” 3.6570 0.1591 155 0
” 3.6700 0.1541 160 0; 0.02;…; 0.16
” 3.6800 0.1494 165 0; 0.02;…; 0.24
” 3.6925 0.1442 171 0; 0.04;…; 0.32
” 3.7250 0.1333 185 0
” 3.8525 0.0982 251 0
” 4.1678 0.0546 451 0; 0.04;…; 0.32
” 4.2560 0.0476 518 0
” 4.3255 0.0422 585 0
” 4.3899 0.0378 652 0
” 4.4586 0.0343 719 0
” 4.5273 0.0314 786 0
” 4.5861 0.0289 853 0
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At low temperatures, as a matter of fact, we have found
that a single cosine term is sufficient to correctly describe
our data for all explored temperatures, i.e., with values of
the χ2=d:o:f. regression parameter close to one:

jhLiðμB;IÞj2
jhLið0Þj2 ¼ 1 − 2χQ;μ2B

�
1 − cos

�
μB;I
T

��
: ð12Þ

This allows to determine χQ;μ2B
. We have considered in the

final error also the variability which is obtained by adding a
further term in the Fourier expansion,1 i.e., a term propo-
rtional to cosð2μB;I=TÞ.
In the high-temperature regime, instead, we have

adopted a polynomial expansion truncated to the quartic
term in μB;I , i.e.,

jhLiðμB;IÞj2
jhLið0Þj2 ¼ 1 − χQ;μ2B

�
μB;I
T

�
2

þ l4

�
μB;I
T

�
4

: ð13Þ

In all cases the fit range has been limited by the location of
the pseudocritical value of μB;I for the given temperature, as
extracted from data reported in Ref. [50], and appropriate
systematic uncertainties have been added to the fit param-
eters, which take into account the variability under changes
of the fitted range. We have found that the quartic
coefficient l4 is not needed to obtain reasonable fits (and
turns out to be compatible with zero when included) for
temperatures T > TRW , while for lower temperatures it is
definitely needed in order to get χ2=d:o:f: ∼ 1.
In the region above Tc, where the pseudocritical beha-

vior is more pronounced, and in some cases also for the
same temperatures at which analytic continuation has been
used, we adopted the Taylor expansion method, measuring
directly the value χQ;μB through the formula in Eq. (11). The
computation, especially close to Tc, turned out to be
numerically expensive and, in general, the uncertainties
associated to the measures obtained by this method are
larger than those extracted by analytic continuation.
Nevertheless, in this way no source of systematics is
present and, at least at our level of precision, the estimations
make the picture clear enough. Moreover, for the temper-
atures where both methods are available, a reasonable
agreement between the two measures is observed.
The whole collection of results, including all temper-

atures and both sets of lattice spacings, Nt ¼ 6 and Nt ¼ 8,
is reported in Fig. 3. The dependence on Nt appears to be
small, confirming that, even if no continuum extrapolation

0 0.1 0.2 0.3 0.4 0.5 0.6

μ
B,I

/3πT

2e-05

4e-05

6e-05

8e-05
|L

( μ
B

,I
)|2

125 MeV
135 MeV
141 MeV

0.0 0.1 0.2 0.3
 μ

B,I
/3πT

0

0.2

0.4

0.6

0.8

1

|L
(μ

B
,I
)|2  / 

|L
(0

)|2

165 MeV
184 MeV
217 MeV
285 MeV
351 MeV
417 MeV

FIG. 2. Square module of the Polyakov loop as a function of the
imaginary chemical for several temperatures below (top) and
above (bottom, normalized to the value at μ ¼ 0) the pseu-
docritical temperature Tc ≃ 155 MeV [50], measured on the
243 × 6 lattice. Curves are the results of the fit using, respectively,
the cosine expansion in Eq. (12) and the polynomial Ansatz in
Eq. (13).
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FIG. 3. Susceptibility χQ;μ2B
as a function of the temperature T

extracted from two different lattices 243 × 6 and 323 × 8. The
pattern of the dots indicates the method used for the computation,
with empty and full data points corresponding, respectively, to the
Taylor expansion method and to analytic continuation. For some
values of the temperature, see e.g., the inset, both procedures have
been used, so as to check the consistency of the results. Data
points have been slightly shifted for the sake of readability.

1Notice that the parametrization in Eq. (12) changes if other
Fourier terms are added, since in this case χQ;μ2B

takes contribu-
tions from all Fourier coefficients.
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is performed in this study, finite UV cutoff corrections are
not large. The susceptibility χQ;μB grows rapidly in the
crossover region near Tc, where it exhibits a well-defined
peak. The location of the peak can be determined quantita-
tively bymodeling theobservedbehavior near themaximum.
In particular, we have adopted a Lorentzian function,
defined as

χQ;μ2B
¼ p0

1þ ½ðT − TLÞ=p1�2
; ð14Þ

where TL indicates the pseudocritical temperature related
to the observable χQ;μ2B

. ThisAnsatzwell describes the peak
structure for both values of Nt: best-fit curves are shown
in Fig. 4 and yield TL ¼ 143.4� 1.2 MeV and TL ¼
147.7� 1.4 MeV respectively for Nt ¼ 6 and Nt ¼ 8.
The uncertainties include systematics related to the choice
of the fit range, but not those associated with the determi-
nation of the lattice spacing, which are of the order of
2%–3% [25,26]. Similar results are obtained using a
different fitting Ansatz, like a purely quadratic function
of T. The small Nt dependence observed for TL points to
a continuum limit around 150 MeV, which is very close
to Tc ≃ 155 MeV.

IV. COMPARISON WITH PERTURBATION
THEORY

Finally, it is interesting to discuss the fate of χQ;μ2B
in

the large T limit. At zero baryon chemical potential, FQðTÞ
is expected to decrease unboundedly as T increases, a

well-known behavior predicted by weak-coupling calcu-
lations [62,63] (for earlier leading order results see also
Ref. [64]) and observed also on the lattice in many studies
[5,12,17,65]. At leading order, its expression in the high
temperature regime is given by

FQðTÞ ¼ −
CF

2

g2

4π
mDðTÞ; ð15Þ

where CF ¼ ðN2
c − 1Þ=2Nc is the Casimir operator in the

fundamental representation and mDðTÞ is the Debye
screening mass which, at the leading order, is

m2
DðTÞ ¼

1

3

�
Nc þ

Nf

2

�
g2T2: ð16Þ

In the dense medium, screening effects are amplified and
the value of the single quark free energy grows indefi-
nitely (in module). In the very large temperature limit, at
leading order, the expression of FQðT; μBÞ is obtained
performing an expansion of the Debye mass for small
values of the chemical potential [3,17]. The result is the
appearance of a quadratic dependence on μB, FQðT; μBÞ ¼
FQðTÞmDðT; μBÞ=mDðTÞ, where

m2
DðT; μBÞ ¼ m2

DðTÞ
�
1þ 3Nf

2Nc þ Nf

�
μB
3πT

�
2
�
: ð17Þ

Inserting this expression in Eq. (4) one finds

χQ;μ2B
jT→∞ ¼ −

FQðTÞ
T

∂2

∂ðμB=TÞ2
mDðT; μBÞ
mDðTÞ

����
μB¼0

¼ CFg3

24π3
Nf

2Nc þ Nf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

3
þ Nf

6

r
: ð18Þ

Consequently, since the coupling runs to zero at large T,
the susceptibility χQ;μ2B

vanishes asymptotically as g3.
This means that, in this regime, a finite baryon density
does not affect the in-medium static quark free energy, its
contribution being overrided by the thermal fluctuations.
Notice that the same proportionality to g3 at high T
is shown also by static quark entropy SQ ¼ −∂FQ=∂T
which, asymptotically, is expected to behave as SQ ∼
−FQ=T [12,63], in agreement with our calculation.
In order to check the consistency of these predictions

with lattice results, we have extended the computation of
χQ;μ2B

to higher temperatures, adopting the Taylor expansion
method which in this regime is not particularly expensive.
Results are shown in Fig. 5. In order to obtain a quantitative
prediction from Eq. (18), we need to insert the dependence
of the coupling constant gðTÞ on the temperature, which at
the leading order in perturbation theory is given by [66]

100 120 140 160 180 200 220 240
T [MeV]

0.04

0.08

0.12

0.16

χ Q
,μ

2 B
32

3
x 8

24
3
x 6

FIG. 4. χQ;μ2B
as a function of T in the region near the peak.

Curves are the result of best fits to the Lorentzian form in
Eq. (14), where bands are the 68% CIs plotted over the fit range.
For temperatures where determinations obtained by both methods
were available, we have used results from the Taylor expansion
method, which typically leads to more conservative estimates.
Reasonable values of χ̃2 have been obtained for both datasets:
χ2=d:o:f: ¼ 12.4=7 and χ2=d:o:f: ¼ 7.2=5 respectively for the
243 × 6 and the 323 × 8 lattice.
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g−2ðTÞ ¼ 2β0 log
2πT
Λ

β0 ¼
11Nf − 2Nc

48π2
; ð19Þ

where β0 is the first coefficient of the QCD β-function,
which is independent of the renormalization scheme.
Inserting this expression in Eq. (18) one obtains

χQ;μ2B
jT→∞ ¼ p0

�
log

2πT
Λ

�
−3=2

; ð20Þ

where p0 is a prefactor which is independent of the
renormalization scheme and whose value is p0 ∼ 0.019
in our case, where Nc ¼ 3 and Nf ¼ 3 (we assume that
the three quark flavors can be considered as practically
degenerate in this temperature regime). The slow decrease
shown by the lattice data is well described, both for
Nt ¼ 6 and Nt ¼ 8, by Eq. (20), the fitted value of p0

being 0.021(2) and 0.014(3), respectively, for the 243×6

(χ2=d:o:f:¼0.73) and the 323×8 (χ2=d:o:f: ¼ 0.46) lattice:
we consider such an agreement more than satisfactory,
given that only the leading order has been considered; it is
interesting to notice that also the values obtained for the Λ
parameter are reasonable and of the order of 100 MeV.

V. CONCLUSIONS

In this study we have investigated the dependence of the
static quark free energy on the baryon chemical potential
in a wide temperature range, considering in particular the
leading order dependence, which is quadratic in μB and that
we have parametrized in terms of the susceptibility χQ;μ2B

.
The investigation has been carried out by lattice simulations
of Nf ¼ 2þ 1 QCD discretized via stout-staggered fer-
mions with physical quark masses. Both analytic continu-
ation and Taylor expansion have been adopted to avoid the
sign problem at nonzero μB, obtaining consistent results.

Results for χQ;μ2B
have been found to be compatible, in

the high temperature regime, with predictions obtained in
perturbation theory. The static quark free energy vanishes
as a power law in the gauge coupling gðTÞ, precisely as g3,
i.e., logarithmically with the temperature T. Numerical
results are consistent both with the power law behavior in g
and with the predicted prefactor.
At low temperatures χQ;μ2B

presents instead a well-defined
peak located around 150 MeV, i.e., roughly compatible with
the crossover temperatureTc corresponding to the restoration
of chiral symmetry. If the Polyakov loop were an exact order
parameter for the deconfinement transition, one would
expect a singular behavior for χQ;μ2B

at the critical temper-
ature. Therefore, the rough coincidence of the two temper-
atures points once again to a strong connection between
chiral symmetry and deconfinement dynamics, even within
a crossover scenario.
Our results have been obtained for just two sets of lattice

spacings, corresponding to Nt ¼ 6 and Nt ¼ 8. Future
studies should extend the investigation to larger values of
Nt so as to achieve a continuum extrapolation for χQ;μ2B

.
However, present results show only modest changes as Nt
is changed from 6 to 8, so that no significant modifications
of our conclusions are expected in the continuum limit.
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APPENDIX: COMPUTATION OF χQ;μ2B
The expression of the curvature χQ;μ2B

is obtained by
computing the second derivative of the ratio between
square modules of the Polyakov loop, as in Eq. (10).
Applying the derivative operator ∂μ ≡ ∂=∂ðμ=TÞ to the
numerator, which is the only part depending on the
chemical potential, one has

∂2
μjhTrLij2 ¼ 2ð∂μhReTriÞ2 þ 2hReTrLi∂2

μhReTrLi
þ fReTrL ↔ ImTrLg; ðA1Þ

where μ ¼ μB=3 is the common chemical potential for
all flavors, and the last line in brackets indicates terms
where real and imaginary parts of the Polyakov loop are
exchanged. The expectation values entering this expression
can be written as
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0
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FIG. 5. Values of χQ;μ2B
in the high temperature regime. Curves

represent best fits to Eq. (20), while bands are confidence
intervals at 68% C.L. The value of the χ2=d:o:f. test is 0.5
and 0.7 respectively for the 243 × 6 and the 323 × 8 lattice.
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hReTrLi ¼ 1

Z

Z
DUe−SYMReTrL

Y
f

det½Mf
st�14; ðA2Þ

where a similar expression holds for hImTrLi and Z is the
partition function defined in Eq. (5). Since the Polyakov
loop does not depend explicitly on the chemical potential,
all dependence on μ is carried by the Dirac matrix.
That means that the derivative operator will act only on
the fermionic part of the functional integral, which appears
also in the denominator. One has

∂μ

Y
f

det½Mf
st�14 ¼

�X
f

nf

�Y
f

det½Mf
st�14; ðA3Þ

where nf is the quark number operators related to each
different flavor,

nf ¼
1

4
Tr½Mf

st
−1∂μM

f
st�: ðA4Þ

Setting n ¼ P
fnf one can rewrite the derivative of the

expression in Eq. (A2) as

∂μhReTrLi ¼ hnReTrLi − hReTrLihni ðA5Þ
and the same is true also for hImTrLi. Further application
of the derivative ∂μ leads to new correlators involving the
quark number n or its derivative n0 ¼ ∂μn. Indeed, one
finds that

∂μhnReTrLi ¼ hn2ReTrLi − hnReTrLihni þ hn0ReTrLi
∂μhni ¼ hn2i − hni2 þ hn0i; ðA6Þ

where n0 ¼ P
fn

0
f and n0f ¼ ∂μnf with

∂μnf ¼ 1

4
Tr½ðMf

st
−1∂μM

f
stÞ2 −Mf

st
−1∂2

μM
f
st�: ðA7Þ

Finally, joining and rearranging all the pieces appearing in
Eq. (A1), the following expression is found:

∂2
μjhTrLij2 ¼ 2hnReTrLi2 þ 6hReTrLi2hni2

− 8hReTrLihnReTrLihni
þ 2hReTrLihn2ReTrLi − 2hReTrLi2hn2i
þ 2hReTrLihn0ReTrLi − 2hReTrLi2hn0i
þ fReTrL ↔ ImTrLg: ðA8Þ

The curvature χQ;μB is obtained by normalizing this formula
with the square module of hTrLð0Þi and evaluating the ratio
at zero chemical potential, see Eq. (10). As a result, the
expression above simplifies since, for μ ¼ 0, both the quark
number hni and hImTrLi vanish because of charge con-
jugation symmetry. Then, rearranging the remaining terms
the definition in Eq. (11) is found.
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