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Hybrid static potential flux tubes from SU(2) and SU(3) lattice gauge theory
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We compute chromoelectric and chromomagnetic flux densities for hybrid static potentials in SU(2)
and SU(3) lattice gauge theory. In addition to the ordinary static potential with quantum numbers A = X/,
we present numerical results for seven hybrid static potentials corresponding to Aff) =X,
2, 10, 10, Ay, Ay, where the flux densities of five of them are studied for the first time in this work.
We observe hybrid static potential flux tubes, which are significantly different from that of the ordinary
static potential. They are reminiscent of vibrating strings, with localized peaks in the flux densities that can

be interpreted as valence gluons.
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I. INTRODUCTION

The majority of mesons, i.e., hadrons with integer total
angular momentum, are quark-antiquark pairs. It is, how-
ever, expected that some mesons, so-called exotic mesons,
have a more complicated composition in terms of quarks
and gluons. An important example is hybrid mesons, where
gluons contribute to the quantum numbers JX€ (J: total
angular momentum; P: parity; C: charge conjugation) in a
nontrivial way. In the quark model, where mesons are
quark-antiquark pairs, quantum numbers are restricted to
P=(-1)t*! and C = (-1)L*5 with spin S =0,1 and
orbital angular momentum L = 0, 1,2, .... Thus, mesons
with JF¢€ = 0+=,0=—,1~F,2*~, ..., which are not allowed
in the quark model, are obvious candidates for exotic
mesons like hybrids. Moreover, a higher density of states
than obtained by the quark model might also indicate
hybrid mesons.

Experimentally observed examples, which could be
hybrid mesons, are the J¢ = 1=F states z,(1400) and
71(1600). They could, however, also be tetraquarks, i.e.,
two quarks and two antiquarks without excited glue. For
heavy-heavy mesons, the situation seems to be even less
clear. There are several exotic candidates, which could be
hybrid mesons, but for none of them does such an
interpretation seem to be likely (see, e.g., the experimental
review of exotic hadrons [1] and the discussion in
Sec. VILA of Ref. [2]). Thus, the search for gluonic
excitations is an important part of the research program
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of current and future experiments, e.g., the GlueX experi-
ment at the JLab accelerator or the PANDA experiment at
the FAIR accelerator.

Also on the theoretical side, there are many open
questions concerning hybrid mesons (see, e.g., the theo-
retical reviews [3—6]). They are difficult to study because in
QCD total angular momentum J and parity P are not
separately conserved for gluons on the one hand and for the
quark-antiquark pair on the other hand. Only the overall J©
are quantum numbers. For heavy hybrid mesons, e.g.,
composed of a b and a b quark and gluons, a simplification
and good approximation is to study the static limit. In that
limit, the quark positions are frozen, which allows one to
separate the treatment of gluons and quarks.

In this work, we use SU(2) and SU(3) lattice gauge
theory to study heavy hybrid mesons in the static limit. For
quite some time, hybrid static potentials haven been
computed by various groups, mainly with the intention
to compute masses of heavy hybrid mesons using the Born-
Oppenheimer approximation (see Refs. [7-31] and the
recent review article [32]). We focus on a different problem,
the computation of the gluonic flux densities for hybrid
potential states, i.e., the structure of the flux tube, for
several hybrid channels. While such flux tubes have been
studied for the ordinary static potential using lattice gauge
theory for quite some time (see Refs. [33—48]), this is a
rather new direction for hybrid static potentials, where
first results appeared only recently [49-52]. In this paper,
we substantially extend existing work by performing
computations for seven hybrid static potential sectors

characterized by quantum numbers A,(f) =X, Zg, ., Hg,
IT,, A, A,. Five of these sectors are studied for the first

time, where preliminary results have been presented at a
recent conference [52].

Published by the American Physical Society


https://orcid.org/0000-0002-0945-3298
https://orcid.org/0000-0003-2046-7292
https://orcid.org/0000-0002-8005-5073
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.054503&domain=pdf&date_stamp=2019-09-16
https://doi.org/10.1103/PhysRevD.100.054503
https://doi.org/10.1103/PhysRevD.100.054503
https://doi.org/10.1103/PhysRevD.100.054503
https://doi.org/10.1103/PhysRevD.100.054503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

MULLER, PHILIPSEN, REISINGER, and WAGNER

PHYS. REV. D 100, 054503 (2019)

The paper is structured as follows. In Sec. II, we discuss
theoretical basics, including quantum numbers for hybrid
static potentials, the construction of corresponding trial
states, and the computation of chromoelectric and chro-
momagnetic flux densities. Section III contains a brief
summary of our lattice setup. In Sec. IV, we present our
numerical results. We start with a discussion of systematic
errors and symmetries, before showing and interpreting our
main results, the chromoelectric and chromomagnetic flux
densities for the seven hybrid static potential sectors

Aff) =X, 2,2, 10, 10,, Ay, A,. In Sec. V, we conclude
with a short summary and an outlook.

II. HYBRID STATIC POTENTIALS
AND FLUX TUBES

A. Hybrid static potential quantum numbers
and trial states

A hybrid static potential is the potential of a static quark
Q and a static antiquark Q, where the gluons form non-
trivial structures and thus contribute to the quantum
numbers. Such potentials can be computed from temporal
correlation functions of hybrid static potential trial states.
After replacing the static quark operators by corresponding
propagators, these correlation functions are similar to
Wilson loops. Instead of straight spatial Wilson lines, there
are, however, parallel transporters with more complicated
spatial structures. For a detailed discussion of such corre-
lation functions, see, e.g., our recent work [31], where we
have carried out a precision computation of hybrid static
potentials using SU(3) lattice gauge theory.

In the following, we consider a static quark and a
static antiquark located at positions ry = (0,0, +r/2)
andry = (0,0, —r/2), respectively; i.e., they are separated
along the z axis. We omit the x and the y coordinates, i.e.,
Q(+r/2) = 0(0,0,+r/2) and Q(-r/2) = 0(0,0,—r/2).

Hybrid static potentials can be characterized by the
following quantum numbers:

i) A=0,1,2,..., the absolute value of the total
angular momentum with respect to the QQ separa-
tion axis, i.e., with respect to the z axis.

(i) n = +, —, the eigenvalue corresponding to the oper-
ator P o C, i.e., the combination of parity and charge
conjugation.

(iii) € = +, —, the eigenvalue corresponding to the oper-
ator P,, which denotes the spatial reflection along
the x axis (an axis perpendicular to the QQ sepa-
ration axis).

It is common convention to write A = X, I1, A instead of
A =0,1,2 and n = g, u (“gerade,” “ungerade”) instead of
n = 4+, —. Note that for absolute total angular momentum
A > 1 the spectrum is degenerate with respect to € = + and
€ = —; i.e., there are pairs of identical hybrid static
potentials. Thus, the labeling of hybrid static potentials
is typically Aj for A =0 =X and A, for A > 1.

In Ref. [31], we discussed hybrid static potential creation
operators and trial states both in the continuum and in
lattice gauge theory in detail and performed a comprehen-
sive optimization of these operators in SU(3) lattice gauge
theory. In this paper, we use the information obtained
during this optimization to define suitable hybrid static
potential creation operators both for SU(2) and SU(3)
lattice gauge theory. These operators are important building
blocks of the two-point and three-point functions, which
need to be computed for the investigation of hybrid static
potential flux tubes (see Sec. II B).

Our trial states, which have definite quantum numbers
A;, are

(Wac(r) = O(=r/2)as.ng (=1/2,+1/2)Q(+r/2)|Q) (1)
with creation operators

aS;AZ(—r/Z, +r/2)

3 .
— i; exp <m;\k> R <ﬂ2k> (U(=r/2,r)(S(r1, 1)
+€Sp (r1,72))U(rp, +7/2)
+ U(=1/2,=1)(nSpec(=r2, —11)
+ neSpocyp, (=12, =11))U(=r1, +1/2)). (2)

U(-r/2,r)S(r,r2)U(ry, +r/2) is a product of link
variables connecting the quark and the antiquark in
a gauge invariant way, where both U(—r/2,r;) and
U(ry,+r/2) are straight lines on the z axis, while
S(ry,r,) has a more complicated shape. Sp.c(—ry, —r;)
is the spatial reflection of S(r, r,) combined with charge
conjugation, Sp (ry,r,) is the spatial reflection of S(r, r,)
along the x axis, and S(p.c)p, (=7, —r1) is the combination
of both operations. R(¢) represents the rotation operator
with respect to the QQ separation axis with angle ¢, which
acts on the shapes S, and Ei:o denotes the sum over
the four angles allowed on a cubic lattice, i.e.,
@ =0,7/2,7,3n/2. Thus, > ;_,exp(inAk/2)R(zk/2) is
the lattice analogue of [dgpexp(iA@)R(¢p) in the con-
tinuum. While the latter generates a definite z component
of angular momentum, the former is a projection to one of
the irreducible representations of cubic rotations around a
fixed axis, where each receives contributions from an
infinite number of angular momentum sectors. For details,
see Sec. 2 of Ref. [31].

U(=r/2,r)S(ry, r)U(rs, +1/2) has been optimized in
Ref. [31], such that the overlap of [¥(r)) to the ground
state in the Aj sector is rather large. In contrast to Ref. [31],
we use in this work only a single operator § for each Aj
sector, not a linear combination obtained by a variational
analysis. This reduces computation time to a feasible level,
while the suppression of excited states in the two-point
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TABLE 1. Optimized creation operators for A5 = X+, X, XTI, TT;, A}, AF. The equation in the caption of
each table defines a creation operator. The left-hand side represents U(—r/2, r,)S(ry, r2)U(r,, +7/2) from Eq. (2),
where lower indices are chosen such that the notation is consistent with our previous work [31]. The right-hand side
is a product of connected gauge links, where U f denotes the multiplication of E neighboring gauge links in the j
direction. Note that, even though the II, and the A, hybrid potentials are degenerate with respect to e, the
construction of creation operators via Eq. (2) is not independent of €. One can obtain an optimized I, operator from
an optimized IT,|" operator by applying a 7/2 rotation with respect to the z axis. For A§ operators, there is no
analogous simple prescription. Therefore, we provide four different optimized Aj operators.

USiiaU = UAURUP-U2, U U

2,UZ,
E, r/a 6 10
E., 3 5 Yy
> z
u
4
E.
USmaU = UzU UP=U2 U2, USi3U = USUE-U U, U™,
T‘*\]::i\ r/fa 6 10 r/a 6 10
B 7 E. 6 10 E, 4 8
Zg [ A; E,i 2 3
/ E,o 3 2
USy U = UP ususul=2us ,us ul= USi3U = Ur=' UsU =2y By yl=»
B2 r/a 6 10 r/a 6 10
Ez,l 1 2 E%l 4 5
Z_ Ez,Q 4 6 Eac,2 2 5
u E, 1 0
E,s 2 0
E.3 0 5
USi3U = UE-UE-UE: U,
5 E. r/a 6 10 r/a 10
_ % E, E. 6 10
H E.’L‘
g E;
USIII,IU = UngUzEZUEyU—x USHLgU = UzUyQUZEZ’lUEyUZEZ’ZUEI
*— 6 10
= Zj/a 6 10 Bea L
—_ ' E 5
I S A,
U . E.o EZ,Q
/
o
and three-point functions is still sufficiently strong. static potential, it is just a straight line, while for

U(=r/2,r)S(ry,r)U(ry, +r/2) is different for each of A = 52, 2, 0 I AT A, details are  collected
the eight A}, sectors as well as for the two QQ separations  in Table I. For each Aj sector, we take that operator from

r = 6a, 10a considered. For the X/ sector, i.e., the ordinary  the set of three to four operators we optimized in Ref. [31],
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which minimizes the effective potential at r = a. Thus,
Table I contains that part of the information shown in
Tables 1 to 7 of Ref. [31], which is relevant in the context of
this work.

B. Expectation values of squared field
strength components

The energy density of the gluon field is

£(x) 8”<Z Y EY(x)EY(x

Jj=xy.z a

+ 237<x>37<x>), (3)

Jj=xy.z a

where Ef(x) and Bf(x) denote the components of the
chromoelectric and chromomagnetic field strengths with
spatial indices j and color indices a [a = 1, ..., 3 for gauge
group SU2) and a = 1, ..., 8 for gauge group SU(3)]. The
main goal of this work is to compute the expectation values
of the six gauge invariant terms F;(x) = >, F4(x)F4(x)
(no sum over j; F}=E} or F{ = B}) contributing to

(i) Three-point correlation functions:
CA,;,F?(F, . lo; X, 1) =
DAL
X e

where t, > 1| > t,.
(ili) Vacuum expectation values:

_(Em.Af](r)_Eﬂ)( 2~

Eq. (3) for states with a static quark-antiquark pair and
quantum numbers A;j. These chromoelectric and chromo-
magnetic flux densities provide information about the
shapes of hybrid static potential flux tubes and the gluonic
energy distributions inside heavy-heavy hybrid mesons.

To compute the flux densities, we need the following
quantities:

(i) Two-point correlation functions:

Wag(r, 12, 10) = (Wpc (r. 12)[Was (. 1))
= Zl W g (1) mpg ()P

% e_<Em.Af]< )_EQ)(IZ_Z‘O), (4)

where 7, > 1 and |m:(r)) denotes the mth energy
eigenstate with a static quark Q and a static
antiquark Q at positions (0,0,+r/2) and
(0,0,-r/2) and quantum numbers Aj. E, xc(7) is

(Pac (r, 1) [F5(x, 11)[Wac (7. 7))

the corresponding energy eigenvalue, where
Egac(r) < Eyac(r) < Eyac(r) < ... The static po-
tential with quantum numbers Aj is defined
as VA;(V) = EO,A;(V) - EQ.
() lmag (1) (g () [F5 (%) g (1) (g () [P (7))
l)e_(En.Afl(r)_EQ)(tl_tO)7 (5)
(QIFF|Q). (6)

These quantities can be combined with expressions for the expectation values of Ef(x) and B? (x) for static potential states
with quantum numbers Aj with the vacuum expectation value subtracted:

AF?,A;(’;X) = <0A;(r)|F12'<X)|OA;(r)> -
CA;;.F?(”, . to; X, 1)

(QIF}|Q)

ty—t),t;—tg—00

W (r. 12, 19)

- (QIF}1Q) (7)

-~

=AF? Ity o3, 1)

eff;j,/\f](

(see also Ref. [33], where this quantity was first defined and used to study flux densities for the ordinary static potential with

quantum numbers Aj = X1).

The right-hand side of Eq. (7) can be evaluated using Euclidean lattice gauge theory path integrals,

(W(r.ty.19) - Poj(x.11))y

2 . _
AEeff;qu;(r, by, to; X, 1) = +<

Wiy <P°-">”> ®)
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(a)

FIG. 1.

__________ o
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° (b)
[ ) o °
+ [ .’; o
[ [ J [ J

9 ©

Graphical illustration of lattice field theory quantities needed to determine AE2 A (r;x) and AB? TS (r;x). Red spheres, black

dots, black solid lines, and black dashed lines represent static (anti)quarks, lattice sites, gauge links, and operators as;ag» Tespectively.

(@) W(r, ty,ty) - Pou(X, ;) for r = 3a, t, — ty = 4a, t, = (t, — t;)/2 (gray dashed lines parallel to the ¢ axis and the z axis are drawn to
guide the eye). (b) The corresponding Wilson loop W(r, t,,1,). (c) The symmetrized plaquette Py

ABfo, g(r l‘2,l‘0,X tl)

(< r, fzvfo |€/kl/2|Pkl(X h))u
r t27[0)>

where (...)
and

©)

denotes the path integral expectation value
W(r, tz, t()) = Tr(aS;A;(—r/Z, —|—r/2, to)U(+r/2, to, tz)

X (aS;A;(—r/Z, —|—r/2, tz))JrU(—r/Z, t2, to))

(10)

(for Aj; = X7, i.e., the ordinary static potential, W(r. ty. t)

is the standard Wilson loop). P, is a symmetrized

plaquette in the ¢ — v plane, also denoted as a clover leaf.

Equations (8) and (9) as well as the clover leaf are
illustrated in Fig. 1.

C. Angular dependence of flux densities

As discussed in Sec. I A, for absolute total angular
momentum A > 1, the spectrum is degenerate with respect

<€jk1/2|Pk1>U)’

to €, i.e., VA;(r)

057 (r)) and |0-(r)) have the same energy. Their flux
densities AF?,A;(”;X) and AF?,A;(r;
identical but related by rotations, as we discuss in the
following.

One can show that under rotations around the z axis with
angle a the states |05 (r)) transform according to

= V- (r). In other words, the states

X) are, however, not

R ()|04: (r)) = cos(al)[0nz (r)) + isin(aA)[04r (1))
(11)

(see Appendix A), while the field strength components
transform as

(X_y)- (12)

R(a) denotes the corresponding standard 3 x 3 rotation
matrix, i.e.,
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+cos(a) —sin(a) 0
R(a) = | +sin(a) +cos(a) 0 |, (13)
0 0 1

and we have defined x_, = R(—a)x. Now, we consider the
rotated flux densities (0, (r)| R] (a)sz.(x)Rz(a)|0A$ (r)) —
(Q|F5|Q) and rewrite them in two different ways, using
first Eq. (11),

{0pz (NIRI (@) F3(x)R. ()[04 (r)) = (QIF3|Q)
CLZIAFZ’Ani(r; X_,) + sgAFiAi(r; X_,) + ZCasa<0A$(r)|Fx<

X i

(0p2 (NIRL (@) F3 ()R- ()[0,2 (r)) = (QUF} 1)
= cosz(aA)AF?’Ai(r; X) + sinz(aA)AFiAn;(r; x)
+ icos(al) Sin(aA>(<0A$(r)'F?(X)lOAIT (r)
= {0a7 (NIF(x)[0az (1)), (14)

then Eq. (12),

o

) Fy (X)) |0n (7))

= C(ZZAFi,AWi(F; X_q) + S(ZIAF)ZC,A#”; X_q) = 2¢48 {05z (1) |F o (X_o) Fyy (X_4) |05 (7)) (15)
AF?Ai(r; X_g)

with the shorthand notation ¢, = cos(a) and s, = sin(a)
and where the index j on the right-hand side indicates the
jth component of [...]. Equating Egs. (14) and (15)
relates the flux densities AF; a¢(rix) and AF; A (13X 2g),
i.e.,, yields their transformation law with respect to
rotations around the z axis.! Clearly, one cannot expect
the flux densities AFi.A;(r;x) and AF?VA;(F;X) to be
invariant under rotations, nor to appear to be identical, in
particular not for A > 1, even though the corresponding
potentials are degenerate. Numerical computations con-
firm that these flux densities are not invariant under
rotations and that they are different from each other (see
the discussion in Sec. IVB and the example plots in
Figs. 5 and 0).

Instead of quantum numbers Af, one can also use
quantum numbers 4, to label hybrid static potential states
with A > 1, where A = ..., -2, —1,+1,+2, ..., is the total
angular momentum with respect to the z axis, i.e., A = |4].
Of course, there are again the same pairs of degenerate
potentials, i.e., V., (r) = V_; (r) = Vi (r) = Va-(r). In
this case, the behavior of the corresponding states and flux
densities under rotations is different,

R.()]0;,(r)) = €0, (r)). (16)
and Eq. (14) simplifies,

(0, (MR (o) F5 (%)R.(@)[0;, (1))
—~ (QIF3|Q) = AF2, (rx). (17)

'Equations (14) and (15) simplify for cubic rotations and thus
are very helpful to improve statistical precision by symmetrizing
the lattice results accordingly (see Sec. IV B).

[

while Eq. (15) remains essentially unchanged (one just has
to replace Aj by 4,). Consequently, the transformation law
with respect to rotations around the z axis and the angular
dependence of AF7 . (r;x) and AF;, (r;x) is different,
even though the corresponding hybrid static potentials are
identical.

To eliminate this somewhat arbitrary angular depend-
ence, which is a consequence of ¢ (when using quantum
numbers Aj) or the sign of 4 (when using quantum numbers
Ap), but not related to A =i or n [A and n fully
characterize hybrid static potentials V (r) for A > 1],

we define for A > 1

AF?,AU(r;x) = (AF;A;(}’;X) + AFJZ..A;(r;x))

N = ] =

Tr(P, (Fj(x) = (QIFF|Q))). (18)

This quantity represents the average over an ensemble of
states with fixed A and #, but arbitrary e. After the last
equality, the projector

P, = 1047 (1)) {On; (r)] + 104, (r)){04; (r)]
= 104, (r)){04, ()] 4103, ()0, (1) (19)

to the corresponding two-dimensional space of states has
been introduced. This projector shows explicitly that
AF?,Aq(r;x) is independent of the basis used for that

two-dimensional space, i.e., independent of whether we
use use € or the sign of A.

The transformation law with respect to rotations around
the z axis for AFiA”(r;X) is

054503-6



HYBRID STATIC POTENTIAL FLUX TUBES FROM SU(2) AND ...

PHYS. REV. D 100, 054503 (2019)

CGAFT A (1X_g) + SAFS 5 (1iX ) + CaSade{Ons (M) |F (X o) Fy (X-0) |05 (7))

AFJZ',A,](”;X) = chFi’Au(r; X_o) + sgAFi’A”(r; X

where the left-hand side can be obtained by combining
Egs. (17), (18), and (19) and the right-hand side is
essentially Eq. (15). To simplify this even further, it is
convenient to define

AFi’Aﬂ(r;x) = (AF)Z(.AW(V;X) + AF?AH(}’;X)), (21)

N =

as, e.g., also done in a similar way in Ref. [51]. This
quantity as well as AF2 AW(r; x) are invariant under rota-

tions around the z axis, i.e.,

AFzL,A,,(“") = AF%_.A,,(V; X_q),
AFZ, (rix) = AF?,A,,("? X_g)- (22)

Similarly, for A = 0,

AFi,A,‘,(r;X) = AF%..A,;(V; X_q),
AF?,A;(”?X) = AF?.A;(F; X_g), (23)

as can be read off from Eqgs. (14) and (15).

III. LATTICE SETUP

The computations presented in this work have been
performed using SU(2) and SU(3) lattice gauge theory.
The corresponding gauge link configurations have been
generated with the standard Wilson gauge action (see
textbooks on lattice field theory, e.g., Ref. [53]). Since
we are considering purely gluonic observables, we expect
that there is little difference between our pure gauge
theory results and corresponding results in full QCD.
This expectation is supported by Ref. [20], where hybrid
static potentials were computed both in pure gauge theory
and QCD and no statistically significant differences were
observed.

TABLE II. SU(2) and SU(3) gauge link ensembles.
Number of
Gauge group f  ainfm (L/a)® xT/a configurations
SU2) 2.5  0.079 184 13000
244 48000
SU@3) 6.0 0.093 243 x 48 4500

—a) = CaSad_e(Ong (M| F1(X_o) Fy(X_g)[0ns(r)) | . (20)
AF%,A,,(F; X_g)

J

For the SU(2) simulations, we have used a standard heat
bath algorithm. To eliminate correlations in Monte Carlo
time, the gauge link configurations are separated by 100
heat bath sweeps. For the SU(3) simulations, we have used
the CHROMA QCD library [54]. There, the gauge link
configurations are separated by 20 update sweeps, where
each update sweep comprises a heat bath and four over-
relaxation steps. Details of our simulated ensembles are
collected in Table II, including the gauge coupling f, the
lattice extent (L/a)? x T/a, and the number of gauge link
configurations used for the flux tube computations. We also
list the lattice spacing a in femtometers, which is obtained
by identifying r, with 0.5 fm (see Refs. [31,55]). For the
majority of computations for gauge group SU(2), we use
the ensemble with (L/a)®> x T/a = 24*. The ensemble
with (L/a)? x T/a = 18* is only used for exploring and
excluding finite volume effects in Sec. IVA 3.

To improve the signal quality, standard smearing tech-
niques are applied, when sampling W appearing in Eqgs. (8)
and (9) and defined in Eq. (10):

(i) Spatial gauge links, ie., links in agpc(-r/2,

+r/2;ty) and agpc(—r/2,+r/2;1;) [defined in
Eq. (2)], are APE-smeared gauge links (for detailed
equations, see, e.g., Ref. [56]), where the parameters
appg = 0.5 and Nppg = 20 have been optimized
in Ref. [31] to generate large overlaps with the
ground states |0, (r)).? This allows one to identify

plateaus in AFg;.; ag (7212 193X, 1) at smaller tem-
poral separations t, — t; and t; — ty [see Eq. (7)].

(i1) For certain computations, temporal gauge links, i.e.,
links in U(+4r/2;ty,1,) and U(—r/2;ty,1,), are
HYP2-smeared gauge links [57-59], which lead
to a reduced self-energy of the static quarks and,
consequently, to smaller statistical errors. This,
however, introduces larger discretization errors for
small r as well as for x close to either ry =
(0,0,4r/2) or ry = (0,0,-r/2). Therefore, we
use HYP2-smearing only, when computing field
strengths AF?,AE,(V;X = (x,y,0)) [see Eq. (7],
i.e., in the mediator plane z = 0. For a more detailed
discussion, see Sec. IVA 2.

The optimzation of APE-smearing parameters in Ref. [31]
was done for SU(3) gauge theory. We use the same parameters for
our computations in SU(2) gauge theory and get similar ground
state overlaps, which is indicated by effective mass plateaus of
approximately the same quality.
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All statistical errors shown and quoted throughout this
paper are determined via a jackknife. We perform a suitable
binning of gauge link configurations to exclude statistical
correlations in Monte Carlo time.

IV. NUMERICAL RESULTS

A. Investigation of systematic errors

1. Plateaus of AFﬁff;i_ Ac and
contamination by excited states

We have determined AF JZ v (r;x) by fitting a constant to
the lattice result for AF gff; i A5(1’, t, ty; X, t1) at sufficiently
large t, — t; and t; — ¢y, where the data points are con-
sistent with a plateau [see Egs. (7), (8), and (9)]. For even
(ty—ty)/a, we use t; = (ty+1t,)/2, while for odd
(t, — tg)/a, we use t; = (ty +t, +a)/2, ie., equal or
similar values for f, —#; and f; — f,. Example plots of
AFfo;j’A;(r, t,1p;X, t7) as a function of 7, — #, for gauge
group SU(2), all investigated Aj sectors, quark-antiquark

separation » = 10a, and x = 0 are shown in Fig. 2.
We have performed an uncorrelated y?-minimizing fit
of a constant corresponding to AF? A;(r; x) in the region
fmin <t — 1y < thax-  Since the statistical errors of
AFgff;j‘A;(r, 12, ty; X, t;) rapidly increase with increasing
1, — 1y, the results are almost independent of ... We have
taken the largest 7,,,c, Where the signal is not lost in noise.
fmin has been chosen such that y?/dof < 1 for the majority
of fits. This results in #,;, ~ 3a...4a and t,,, =~ Sa...8a for
hybrid static potentials with Ag‘ =X, Z;, z., Hg, I1,,
Ay A, while 1, ~ 5a...6a and 1, = 10a for the ordi-
nary static potential with A§ = X

As an additional check that 7.;, is chosen sufficiently
large, i.e., that excited states are strongly suppressed, we
have repeated the computation of AF% A;(r;x) for gauge
group SU(Q2), Aj =TI, r = 6a, and x = (x,0,0) using a
creation operator S [see Eq. (2)], which has a structure
significantly different from that shown in Table I, namely,
Sp1 as defined in Ref. [31], Fig. 2. Within statistical errors,
we find identical flux densities AF?yAs(r;x), which we
interpret as confirmation that we indeed measure the flux
densities of the ground states in the Aj sectors and not
flux densities, which depend on the creation operators and
trial states we are using.

2. Discretization errors and smearing

Until now, we have performed computations only at a
single value of the lattice spacing a. Therefore, we are not
yet able to study the continuum limit. Strong discretization
errors are expected, when either r = |ry —rpl, X —rp| or
|x —rp| is small, where rp = (0,0,+r/2) and ry =
(0,0,—r/2) are the positions of the static charges and

X is the spatial argument of the flux density AF% A%( r;X).
These discretization errors are expected to be even more
pronounced when using HYP2-smeared temporal links in
W [see Eq. (10)], which can be interpreted as increasing the
radii of the static charges. We therefore compare results for
AF% A5(;’; x) obtained with and without HYP2-smeared

temporal links.

In Fig. 3, we show results for Aj = 2;,2; and QQ
separation r = 10a on the separation axis, x = (0,0, z).
For |[x —rg| <a or |x —rp| < a, drastic discrepancies
between unsmeared and HYP2-smeared results can be
observed, while for |x-ry|, [x-rp/>4a and
AFf.AZ(r;x) = AEiAg(r;x) as well as for |x—rp],
|Xx —rp| > 3a and all other field strength components,
there is agreement within statistical errors. When using
HYP2-smeared temporal links, the pronounced peaks at the
positions of the charges, which are present in the
unsmeared results, are essentially gone. This is expected
and can be observed in a qualitatively similar way also in
much simpler theories, for example in classical electro-
dynamics, when smearing the charge density of a point
charge. Analogous plots for other Aj sectors look very
similar and are not shown. Therefore, for the computations
of AF? Af,(r; x) in a plane containing the separation axis
(see Sec. IV C), we do not use HYP2 smearing. Note,
however, that even unsmeared results within a radius
of about 2a around either of the two static charges will
exhibit sizable discretization errors and should be consid-
ered as crude estimates only. In other words, instead of the
poles related to the infinite self-energy of the static charges,
AF? ag (r:x) will exhibit pronounced but finite peaks.

We also study the effect of HYP2 smearing on
AF% A;(r;x) in the mediator plane defined by z=10
for various QQ separations r. For r > 6a, we find
agreement within statistical errors for all Aj sectors and
all field strength components with the exception of
AEiA;(r;x = (x,y,0)). For AEiAZ(r;X = (x,y,0)), there
is agreement for r > 10a for Aj; = X and for r > 8a for all
other Aj; sectors. Example plots for A; =X/, %, and
x = (0,0,0) are shown in Fig. 4. Therefore, for compu-
tations of AF f A in the mediator plane, which we show for
r=10a in Sec. IVC, we use HYP2 smearing, which
reduces statistical errors significantly.

3. Finite volume corrections

Finite volume corrections are rather mild for static
potentials, when r < L/2, where L is the spatial lattice
extent. In particular, for pure gauge theory, where the
lightest particle (the J7¢ = 0™+ glueball) is very heavy,
finite volume corrections should be almost negligible.
A comparison of flux densities AFf.Ag(r;x) for gauge
group SU(2) on the two gauge link ensembles with
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FIG. 2. AF?H;/,A;(r, by, fp; X = 6, t;) as a function of #, — ¢, for gauge group SU(2); A = Z;,Zj, X, 10,10, Ay, Ays and 00
separation r = 10a. Plateau fits and fitting ranges [f,i, fmax] are indicated by horizontal straight lines. (Top) Temporal links in W are

unsmeared. (Bottom) Temporal links in W are HYP2 smeared.

(L/a))xT/a=18" and (L/a)®xT/a=24*
Table II) supports this expectation.

(see

B. Angular dependence and symmetrization
of hybrid static potential flux densities

In Sec. IIB, we have discussed how hybrid static
potential flux densities transform under rotations around
the z axis. On a hypercubic lattice, the relevant Eqs. (14)
and (15) are exact only for cubic rotations, i.e., for rotations

with angle a, which is a multiple of z/2. For a = +7/2,
they become for even A, i.e., A =X and A = A,

AF}ZC’A;(F;X) = AFi.A”i(r;xiﬂ/z) (24)
AFiAqi(r;X) = AF)ZC,A’]i(r;Xin/z) (25)
AF?in(r;x) = AF?,Ai(r;Xin/Z)’ (26)

and for odd A, i.e., A =11,
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FIG. 3. Flux densities AF?_A;(r; x = (0,0, 2)) as a function of z for gauge group SUB3), A; = £/, %, and QQ separation r = 10a.

AF)Z:,A}(’";X) = AFi,A;(“Xin/z) (27)
AF;A#(r;X) = AFi,A,T (ri1Xaz) (28)
AF?A’?(F;X) = AF?,A? (r, X:tn/Z)' (29)

We have verified our numerical computation of flux
densities using these equations; i.e., we have checked that

all our results are consistent with these equations within
statistical errors. In a second step, we have used these
equations to reduce the statistical errors of our results by
averaging related flux densities.

In Sec. II B, we have also discussed that hybrid static

potential flux densities AF 5 AF (r;x) and AF3 a; (riX) with
A > 1 are not expected to be identical, even though the
corresponding potentials are degenerate [see Eqs. (14) and
(15)]. This expectation is confirmed by the plots in the

0.004
0.003 |-
0.002 |-

0.001 |

AF-2 * a4

u
AE, 2

AE? ——

2

2B,

AB2 ——
AE, 7 (HYP-smeared)
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4B, 2 (HYP-smeared)
AB,? (HYP-smeared)

-0.001 |

-0.002 I I I I I I I

FIG. 4. Flux densities AF% /\,;(V; X = 6) as a function of the QQ separation r for gauge group SU(3) and Ay =ZFZ,.
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FIG. 5. Flux densities AF?.n:(r;X>’ AF%,n;(r;x), and AF%nu(r;

separation r = 10a.

upper rows of Figs. 5 and 6, where we show two examples,
the flux densities AF?’ A;(r;x) for Aj =TI}, 1T, and for
A = Af. Ay in the mediator plane z = 0.

In the plots at the bottom of Figs. 5 and 6, we show the
flux densities AF?.An(r;x) defined in Eq. (18), again for
A, =11, and for A, = A, As discussed in Sec. II B, these
are ensemble averages over states with fixed A and #, but

indefinite e. Note that AF? , (r;x) is invariant under cubic
A,

rotations, while AF?% A, (r;x) and AF% An(r; x), even though
quite similar, are related by rotations with angle a = £+ /2
[see Eq. (20)]. Averaging AF/%,A”(}’;X) and AF;A,,(’?X)
according to Eq. (21) would lead to another quantity
invariant under cubic rotations. From now on we always
show the flux densities AF.%AI](r;x) for A > 1, i.e., not

anymore AF?’A; (r;x).

C. Hybrid static potential flux densities
for all Aj sectors

In this section, we show and discuss the main numerical

results of this work, the flux densities AFQ_A(S)(r;x),
Jy

j=x,y,z,L for the eight sectors A,(f) = Zj{, E;, DI Il

x/a

x) in the mediator plane (z = 0) for gauge group SU(2) and Q0

I1,,I1,, A, A, both in the mediator plane z = 0 and in the
separation plane y = 0. All plots in this section are for
SU(2) gauge theory. Corresponding plots for SU(3) gauge
theory are very similar and collected in Appendix B.

We decided to perform computations for two QQ
separations, r = 6a and r = 10a. This allows us to
compare results for two significantly different r, i.e., to
see how the shapes of the hybrid static potential flux tubes
change, when the quark and the antiquark are pulled apart.
We did not study separations r < 6a because for such small
separations flux densities exhibit sizable discretization
errors in the region between the two charges (see the
discussion in Sec. IVA 2). Since the signal for a Wilson
loop decays exponentially with its area, we also refrained
from performing computations for » > 10a, which are very
costly in terms of CPU time.

Since the resulting flux densities in the mediator plane
for r = 6a and r = 10a are very similar, we only present
them for r=10a. In Fig. 7, these flux densities
AF?A@(r;x = (x,9,0)), j=x,y,z are shown as two-

A

dimensional (2D) color maps. In the upper panel of

Fig. 8, we present similar results, the rotationally invariant

AF%A(é,)(r;X = (x,0,0)), j = L,z along the x axis, i.e., in
J:
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FIG. 6. Flux densities AF;A;(r;x), AF?’A;(r;x), and AF3 , (r;x) in the mediator plane (z = 0) for gauge group SU(2) and Q0

. g
separation r = 10a.

the mediator plane as a function of the radial coordinate.
In contrast to the 2D color maps, these one-dimensional
(1D) curves allow us to also show statistical errors and
thus provide information about the precision of our
numerical results. In the lower panel of Fig. 8, we
present in the same style differences of hybrid static
potential flux densities as those of the ordinary static
potential, i.e., AFJZ_A(E)(r;X = (x,0,0)) — AF?.zj(r;X =

Ny

(x,0,0)), j=L,z. Flux densities AFJZ_’A(E)(r;X: (x,0,2)),

Jj = x,y,z in the separation plane are shown as 2D color
maps in Figs. 9 and 10 for both separations r = 6a and
r = 10a. Note that flux densities close to one of the static
charges, in particular for [x —rp| <a or |x —rp| < a,
exhibit sizable discretization errors (see the discussion in
Sec. IVA2).

The flux densities of the ordinary static potential form
a cigar-shaped flux tube with strong positive contribu-
tions to the energy density from the chromoelectric and
smaller negative contributions from the chromomagnetic
field strength components. The maxima are on the QQ
separation axis, i.e., at x =y = 0. While this is known
from previous lattice gauge theory investigations of
the ordinary static potential (see, e.g., Ref. [39]), the

corresponding flux densities for hybrid static potentials
show a variety of different and interesting structures. For
example, chromomagnetic flux densities of hybrid static
potentials are typically larger close to the center of the
flux tube than those of the ordinary static potential, as
can be seen in Fig. 8, lower panel. Hybrid static
potential flux tubes are also wider, i.e., have a larger
extension in the x and y directions (see, e.g., Figs. 8, 9,
and 10). Another interesting difference is that some
hybrid static potentials show a clear reduction of the
chromoelectric flux densities close to the center, while
the chromomagnetic flux densities exhibit peaks (most
prominently for A, = TII,, A/, but to some extent also for

Ay =X;). For other sectors, A,(f) =X . 10,4, the
opposite is the case; i.e., there is a positive localized
peak at the center for the chromoelectric flux densities
and a corresponding negative contribution of the chro-
momagnetic flux densities. These peaks in either the
chromoelectric or chromomagnetic flux densities can be
interpreted as “valence gluons” generating the hybrid
quantum numbers, as discussed in models and phenom-
enological descriptions of hybrid mesons. The positive
or negative peaks are surrounded by spherical shells,
where flux densities are smaller or larger, respectively
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FIG. 7. Flux densities AF%A(S)(r;X = (x,¥,0)), j = x,y,z in the mediator plane for gauge group SU(2), all investigated sectors
A = T 5 %5, 5, 0,10, Ay, A, and QQ separation r = 10a.
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(see in particular the 2D color maps in Figs. 9 and 10,  theory description of flux tubes is expected to be valid
where these shells are visible as rings). These structures for r22/\/ox1fm (see, e.g., Ref. [60]). Thus, it
remind us of and might indicate vibrating strings, which ~ would be interesting to perform similar computations
have either nodes or maxima at z = 0. Moreover, at larger QQ separations and to compare such results in
the transverse extent of the structures formed by  more detail to effective string theory predictions.

the chromoelectric or chromomagnetic flux densities It is also interesting to compare the resulting flux
is almost the same for QQ separation r=6aq and  densities to the gluonic excitation operators for hybrid
r = 10a, which is consistent with a string interpretation. static potentials at leading order in the multipole expan-
One should, however, keep in mind that our QQ sion of potential Non-Relativistic QCD (pNRQCD)
separations correspond to 0.47 and 0.79 fm, respec- (see, e.g., Refs. [2,61]). Similar operators were also used

tively, which is rather small, while an effective string  in lattice gauge theory computations of hybrid static
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FIG. 9. Flux densities AF?WA;(r;X:(x, 0,z)), j=x,y,z in the separation plane for gauge group SU(2) and sectors
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potentials as local insertions in Wilson loops (see, e.g.,
Ref. [28]), but numerically, it turned out that they
generate less ground state overlap than optimized non-
local operators (like those discussed in Ref. [31] and in

Sec. I A of this work) and are thus less suited for
computations in lattice gauge theory. The leading order
gluonic excitation operators of pNRQCD are listed in
Table III, where the QQ separation axis is again the z
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Gluonic excitation operators at leading order in the multipole expansion of pPNRQCD (the Q0

TABLE III.
separation axis is the z axis; D; denotes the covariant derivative; see, e.g., Refs. [2,61]).
Zj; 1
z D_B,
I1, E. E,
DB, -D.B,,D,B, — DB,
A, D.B,—D,B,
DB, + DB,

i B.
D,E, - D,E,
1, B,.B,
D,E. - D.E,,D,E. - D.E,
A, D,E, — D,E,
D,E, + D,E,

axis. For certain A\ sectors, the flux densities we have

obtained by our lattice computation closely resemble
the pNRQCD operators. For example, in the lower
panel of Fig. 8, one can clearly see that the chromo-
magnetic flux densities for I, and A, are significantly
larger than for the ordinary static potential X, in
particular the x and y components. The corresponding
pNRQCD operators include B, and B, as well as
DB, — DB, and D.B,+ DB,. Similarly, for X, the
z component of the chromomagnetic flux density is
rather large, where one of the corresponding pNRQCD
operators is B,. Further interesting structures are the
double peaks in the chromoelectric flux densities for X,
and II, as shown in the upper panel of Fig. 8. The
pNRQCD operators for these sectors contain derivatives
in the x direction of the corresponding chromoelectric
field operators, D.E, — D,E, and D.E, — D E,, respec-
tively. Again, this is consistent because from lattice
gauge theory it is known that such derivative operators
generate nodes in the corresponding wave functions.
Finally, we compare and discuss our results in the
context of a recent and similar lattice computation of
hybrid static potential flux densities [51]. There, the flux
densities for two hybrid sectors A,(,e) =XF 11, were
computed for gauge group SU(3), for A, =II, not only
for the ground state but also for the first excitation. We
have computed the flux densities for the ground states
of the seven hybrid sectors A,(f) =X5%,. 2,10,
I1,, A, A, for gauge groups SU(2) as well as SU(3).
Lattice spacings, spacetime volumes, and QQ separa-
tions are similar in both works. Compared to Ref. [51],
our presentation of results is different in the following
aspects:
(i) We show flux densities AF?  (r;x) for j =x,y
separately, while in Ref. [5 1],](’)/}‘ﬂy the average of the
x and the y component is shown, i.e., AF2L A© (r;x)

[cf. also Eq. (21)].

(i) In contrast to Ref. [51], we do not show the flux
densities on the QQ separation axis x =y = 0 as
curves because several of the hybrid static potentials
have small flux densities on the separation axis but

>y

large flux densities on spherical shells rather far
away. Since the latter information is lost in such 1D
curve plots, we prefer to show 2D color maps
including the separation axis [see Figs. 9 and 10
for SU(2) and Figs. 13 and 14 for SU(3)].

Comparing the ground state flux densities for A,(7€> =
>F, 11, and gauge group SU(3), which were computed
both in Ref. [51] (see Figs. 7, 10, 11, and 12 in
Ref. [51]) and this work (see Figs. 11 to 14), we find
fair agreement. A detailed comparison is, however,
difficult because of the different QQ separations con-
sidered. Concerning statistical errors, our results are
more precise by a factor of up to 5. An obvious reasons
for this is the larger number of gauge link configura-
tions we have been using (4500 compared to 1199).
Moreover, we have improved our statistical precision by
averaging data points, which are related by symmetries,
e.g., rotational symmetry as discussed in detail in
Secs. IIC and IV B. Such a symmetrization was not
done in Ref. [51] as indicated by various plots presented
in Ref. [51].

V. CONCLUSIONS

We have computed chromoelectric and chromomag-
netic flux densities for h%/brid static potential states for
seven different sectors A,f> =352, 2 00,10, A L A,
both in SU(2) and SU(3) lattice gauge theory. These
flux densities can be interpreted as flux densities inside
heavy hybrid mesons and thus provide insights into the
structure of such mesons. Five of these sectors,

A,(f) =2, %, I0,A A, are investigated for the first
time in this work, while our computation of the

remaining two sectors, A,(f) = X, II,, confirms results
recently published [51], now provided with improved
precision. We find flux tubes with interesting structure,
significantly different from that of the ordinary static
potential with A = Eg and reminiscent of different
vibrational modes of a string. There are also localized
peaks in the flux densities, which can be interpreted as
valence gluons. Moreover, we compared the resulting
flux densities to local operators typically used to study
such states, e.g., in pNRQCD.
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Concerning future work, a straightforward direction
would be to consider smaller lattice spacings and larger
spatial volumes, i.e., to study the continuum and infinite
volume limit. However, we do not expect significant
changes in the numerical results presented here, since
we already have partly investigated discretization errors
(by comparing results obtained with unsmeared and with
HYP2-smeared static propagators) and finite volume
corrections [by comparing our SU(2) main results to
an identical computation with a smaller volume and
lower statistics]. A more interesting direction would be
to extend the computation by including also dynamical
light quarks. In principle, one could then study not just
heavy-heavy hybrid mesons but, more generally, heavy-
heavy exotic mesons and explore their gluon and light
quark distribution at the same time. In practice, how-
ever, this might be very challenging because a hybrid
static potential state might decay into the ordinary static
potential and one or more light mesons.
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APPENDIX A: TRANSFORMATION
OF [0,;(r)) UNDER ROTATIONS

In this Appendix, we derive Eq. (11).

Static potential eigenstates [0, (r)) (introduced in
Sec. 1T C for |A| > 1) are also eigenstates of the z compo-
nent of the total angular momentum operator J, and thus
transform under rotations around the z axis with angle ¢
according to

R(9)[05,(r)) = €*’:]0; (r)) = €*(0;, (r)). (A1)

Consequently,

R.(9)(P[0;,(r)) = €*’:P,|0, (r)) = P.e'=":[0; (r))

= e/0A(P0,,(r))) (A2)
(J,P, = —P,J, has been used) and
Py[05,(r)) = 10, (r))- (A3)

The last equation allows us to express states [0xc(r)) for
A >1 in terms of states |0, (r)),

L
V2

where 1 = A. Using Eq. (Al), one can infer

(1045,(r)) £10-,,0))),  (A4)

104:(r)) =

R (0)|0:(r)) = cos(@A)[0:(r)) + i sin(@A)[04r (r)
(AS)

for A > 1, which is Eq. (11). Note that Eq. (A5) also holds
for A = 0 because it reduces to R, (¢)[0,:(r)) = [0z (r)),

i.e., correctly indicates rotational invariance for states with
total angular momentum A = 0.

APPENDIX B: HYBRID STATIC POTENTIAL FLUX
DENSITIES FOR ALL Aj SECTORS:
PLOTS FOR SU@3) GAUGE THEORY

Hybrid static potential flux densities for SU(3) gauge theory are shown in Figs. 11-14. Qualitatively, these plots are very
similar to the corresponding SU(2) plots in Figs. 7 to 10. For a discussion, see Sec. IV C.
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