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The process H → J=ψ þ γ, where H is the Higgs particle, provides a way to probe the size and the sign
of the Higgs-charm coupling. In order to improve the theoretical control of the decay rate, we compute
order v4 corrections to the decay rate based on the nonrelativistic QCD factorization formalism. The
perturbative calculation is carried out by using automated computer codes. We also resum logarithms of the
ratio of the masses of the Higgs boson and the J=ψ to all orders in the strong coupling constant αs to next-
to-leading logarithmic accuracy. In our numerical result for the decay rate, we improve the theoretical
uncertainty, while our central value is in agreement with previous studies within errors. We also present
numerical results for H → ϒðnSÞ þ γ for n ¼ 1, 2, and 3, which turn out to be extremely sensitive to the
Higgs bottom coupling.
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I. INTRODUCTION

The investigation of the Higgs sector of the Standard
Model is one of the most important areas of particle physics
today. While measuring the Higgs boson self-couplings
will reveal important information about electroweak sym-
metry breaking, the determination of the Yukawa couplings
between the HiggsH and the Standard Model fermions is a
direct probe of the origin of fermion masses. While current
measurements of Higgs production at the LHC provide
some constraint on the Higgs top and Higgs bottom
Yukawa couplings [1], a determination of the Higgs charm
coupling is still out of reach.
The possibility of measuring the Higgs charm coupling

at the high-luminosity LHC (HL-LHC) has been studied
in two different processes [2,3]. One way is to measure
the Higgs decay into cc̄, by identifying charm jets in the
final state. Another way is to measure the decay of the
Higgs boson to a charmonium and a photon [4]. Compared
to H → cc̄, the process H → charmoniumþ γ has an
advantage that the charmonium provides a clean final
state through its electromagnetic decays. Higgs decay into

charmoniumþ γ also allows a simultaneous measure-
ment of the size and the sign of the Higgs charm coupling.
The current upper limits for the branching ratio
BrðH → J=ψ þ γÞ and the cross section σðpp → ZHÞ ×
BrðH → cc̄Þ at 95% confidence level are both about 2
orders of magnitude larger than the Standard-Model
predictions [2,3].
It is crucial that the decay rate ΓðH → J=ψ þ γÞ is in

good theoretical control in order that the measurement of
the rate leads to a determination of the Higgs charm
coupling. Recently there have been many efforts to improve
the theoretical prediction of the decay rate within the
Standard Model [4–8]. Especially, approaches based on
nonrelativistic effective field theories allow a systematic
improvement of theoretical accuracy [4,5,7,8]. In the non-
relativistic QCD (NRQCD) effective field theory [9], decay
and production processes involving a heavy quarkonium
are given by a double series in αs and v, where v is the
typical velocity of a heavy quarkQ in a heavy quarkonium;
for charmonium, v2 ≈ 0.3, and for bottomonium, v2 ≈ 0.1.
Currently, the decay rates ΓðH → V þ γÞ for V ¼ J=ψ or
ϒðnSÞ for n ¼ 1, 2, and 3 have been computed to relative
order αsv0 and v2 accuracy [5,7,8,10]. In Refs. [5,7,8], the
large logarithms of m2

H=m
2
V that appear in higher order

corrections in αs, wheremH is the Higgs mass andmV is the
mass of the quarkonium V, have been resummed to all
orders in αs by combining the NRQCD and the light-cone
formalisms [11–13].
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In this paper, we improve the accuracy of the Standard
Model prediction of the decay rates ΓðH → V þ γÞ for
V ¼ J=ψ or ϒðnSÞ for n ¼ 1, 2, and 3 by computing the
order-v4 correction to the decay rate in the NRQCD
factorization formalism. In our numerical analysis, we
do not consider the ψð2SÞ meson, because, to date, there
are no available estimates of the relevant NRQCD matrix
elements accounting for open-flavor threshold effects and
nonrelativistic corrections in a complete and model-inde-
pendent way. These effects may be particularly important
for this state, as it is just 43 MeV below the DD̄ threshold.
We work in the limit m2

V=m
2
H → 0, where the calculation

simplifies dramatically. In this limit, H → V þ γ occurs
through two distinct processes that we refer to as direct and
indirect processes; see Fig. 1. In the direct process, the
Higgs boson decays into a heavy quark Q and a heavy
antiquark Q̄ through the Yukawa interaction, and the QQ̄
pair forms a quarkonium after emitting a photon. We
compute this amplitude to order-v4 accuracy. We also
resum the logarithms of m2

H=m
2
V to all orders in αs,

using the light-cone formalism, to next-to-leading loga-
rithmic (NLL) accuracy. That is, we resum the leading
and next-to-leading logarithmic corrections of the forms
αns lognðm2

H=m
2
VÞ and αns logn−1ðm2

H=m
2
VÞ, respectively, for

all orders n ≥ 1 in αs. We note that the light-cone
formalism applies only to the leading-order piece in the
expansion in powers of m2

V=m
2
H [11,12]. In the indirect

process, the Higgs boson first decays into a γ and a γ�, and
the γ� evolves into a quarkonium [4]. We compute the
indirect amplitude to the same accuracy as the direct
amplitude. We compute the direct and indirect amplitudes
separately because, in the limit m2

V=m
2
H → 0, we find

simplifications in the indirect process that let us compute
the indirect amplitude accurately from the known calcu-
lation of the H → γγ decay amplitude and the leptonic
decay rate of the meson V. Also, the logarithms of m2

H=m
2
V

do not appear in the indirect amplitude.
We note that, although the indirect amplitude involves

one photon coupling more than the direct amplitude, this is
compensated by the heavy-quark-Higgs Yukawa coupling
in the direct amplitude. In the case of the charm quark the
Yukawa coupling is yc ≈ 0.005, which indeed makes the
direct amplitude numerically smaller than the indirect one.
In the case of the bottom quark yb ≈ 0.018 and the two
amplitudes are numerically close. See Sec. IV.
The remainder of this paper is organized as follows. In

Sec. II, we compute the direct amplitude to relative order v4

accuracy in the NRQCD factorization formalism. We
include the previously known order αs and order v2

corrections and resum leading and next-to-leading loga-
rithms of m2

H=m
2
V to all orders in αs. We compute the

indirect amplitude in Sec. III. We provide our numerical
results in Sec. IV, and conclude in Sec. V.

II. CALCULATION OF THE
DIRECT AMPLITUDE

In this section, we compute the direct amplitude to order
v4 accuracy in the NRQCD factorization formalism. We
work at leading order in αs, but we will include the
previously known order αsv0 correction in our final results.
We first explain the formalism that we use to compute

the direct amplitude in this section. The creation amplitude
of a heavy quarkonium V with polarization vector ϵðλÞ and
a photon to relative order v4 accuracy is given by

iMðH → V þ γÞ ¼ c0hVjψ†σ · ϵðλÞχj0i þ cD2

m2
hVjψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

2

χj0i

þ cD4

m4
hVjψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

4

χj0i

þ cDðiDjÞ

m2
hVjψ†ϵiðλÞσj

�
−
i
2

�
2

D
↔ðiD

↔
jÞχj0i

þ cB
m2

hVjψ†gsB · ϵðλÞχj0i

þ cDE0

m3
hVjψ†σ · ϵðλÞ 1

3
ðD↔ · gsEþ gsE · D

↔Þχj0i

þ cDE1

m3
hVjψ†ϵðλÞ · 1

2
½σ × ðD↔ × gsE − gsE × D

↔Þ�χj0i: ð1Þ

(a) (b)

FIG. 1. Feynman diagrams for the (a) direct amplitude at order
α0s and (b) the indirect amplitude for the process H → V þ γ.
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Here, m is the mass of the heavy quark, gs is the strong
coupling, ψ† and χ are Pauli spinor fields that create a
heavy quark and an antiquark, respectively, and Ei ¼ Gi0

and Bi ¼ 1
2
ϵijkGkj are chromoelectric and chromomagnetic

fields, respectively, where Gμν is the gluon field-strength
tensor. The covariant derivative D ¼ ∇ − igsA appears in

Eq. (1) in the combination ψ†D
↔
χ ¼ ψ†Dχ − ðDψÞ†χ.

Operators with more than one covariant derivative are
defined with

ψ†D
↔

i1…D
↔

inχ ¼ ð−1ÞnðDi1…DinψÞ†χ
þ ð−1Þn−1ðDi2…DinψÞ†Di1χ…

þ ψ†Di1…Dinχ: ð2Þ

The notation TðijÞ ¼ 1
2
ðTij þ TjiÞ − 1

3
Tiiδij is a shorthand

for the symmetric traceless part of a tensor. The short-
distance coefficients cn are perturbatively calculable quan-
tities that do not depend on the meson state jVi, while the
long-distance matrix elements (LDMEs) of NRQCD oper-
ators between the vacuum j0i and the meson state jVi are
nonperturbative quantities. We take the meson state jVi to
be normalized nonrelativistically. In order to include the
polarization vector in the short-distance coefficients cn in
Eq. (1), we projected the NRQCD operators on the
polarization vector of the state hVj.
In Eq. (1), we included operators that do not contain the

chromoelectric or chromomagnetic fields up to dimension
7, and operators that do contain the chromoelectric or
chromomagnetic fields up to dimension 6, all of which have
definite total angular momentum J ¼ 1, charge conjugation
C ¼ −1 and parity P ¼ −1, which are the same as V ¼
J=ψ or ϒðnSÞ. Throughout this paper, we denote the
operators that do not contain chromoelectric or chromo-
magnetic fields as color-singlet operators, and the ones that
do contain the chromoelectric or chromomagnetic fields as
color-octet operators.
Among all possible NRQCD operators, we included in

Eq. (1) only the operators whose long-distance matrix
elements (LDMEs) contribute to the amplitude up to
relative order v4, based on the conservative power counting
of Refs. [14–17]. In this power counting, the velocity
scaling of the LDME of an NRQCD operator is determined
by the dimension of the operator, where a power of v is
associated to a unit of dimension, and by the contribution to
the meson state of the QQ̄ Fock state created by the
operator. For J=ψ orϒðnSÞ, the leading Fock state contains
a QQ̄ in the color-singlet 3S1 state, and this state has the
scaling v−3=2. Subleading Fock states such as the ones that
contain QQ̄ in a color-octet state, or the ones that contain
QQ̄ in a color-singletD-wave state are suppressed by v and
v2 compared to the leading Fock state, respectively. The
color-singlet operator ψ†σ · ϵðλÞχ is the lowest-dimensional
operator that creates a QQ̄ in the leading Fock state (3S1),

and so, the LDME hVjψ†σ · ϵðλÞχj0i scales like v3=2, and
contributes to the amplitude at leading order in v. The

LDMEs of the operators ψ†σ · ϵðλÞð− i
2
D
↔Þ2χ and ψ†σ ·

ϵðλÞð− i
2
D
↔Þ4χ scale like v7=2 and v11=2, respectively,

because the operators create the QQ̄ in the leading Fock
state and have dimensions that are higher than the lowest-
dimensional operator by 2 and 4, respectively. Hence, these
LDMEs contribute to the amplitude at relative order v2 and

v4, respectively. The operator ψ†ϵiðλÞσjð− i
2
Þ2D↔ðiD

↔
jÞχ cre-

ates a color-singlet QQ̄ in a 3D1 state. Since the D-wave
Fock state has a contribution to the meson state suppressed
by v2 compared to the leading Fock state, the LDME

hVjψ†ϵiðλÞσjð− i
2
Þ2D↔ðiD

↔
jÞχj0i scales like v11=2 and con-

tributes to the amplitude at relative order v4. The color-octet
operators in Eq. (1) create QQ̄ in color-octet states
where either the orbital or the spin angular momentum
is different from that of the leading Fock state by 1. The
contributions of such Fock states are suppressed by v
compared to the leading Fock state. Hence, the LDMEs

hVjψ†gsB · ϵðλÞχj0i, hVjψ†σ ·ϵðλÞ1
3
ðD↔ ·gsEþgsE ·D

↔Þχj0i,
and hVjψ†ϵðλÞ · 1

2
½σ × ðD

↔
× gsE − gsE × D

↔
Þ�χj0i scale like

v9=2, v11=2, and v11=2, respectively, and contribute to the
amplitude at relative order v3, v4, and v4, respectively. For
later use, we also define ratios of LDMEs as follows:

hv2SiV ¼ 1

m2

hVjψ†σ · ϵðλÞð− i
2
D
↔Þ2χj0i

hVjψ†σ · ϵðλÞχj0i ; ð3aÞ

hv4SiV ¼ 1

m4

hVjψ†σ · ϵðλÞð− i
2
D
↔Þ4χj0i

hVjψ†σ · ϵðλÞχj0i ; ð3bÞ

hv2DiV ¼ 1

m2

hVjψ†ϵiðλÞσjð− i
2
Þ2D

↔ðiD
↔

jÞχj0i
hVjψ†σ · ϵðλÞχj0i ; ð3cÞ

hBiV ¼ 1

m2

hVjψ†gsB · ϵðλÞχj0i
hVjψ†σ · ϵðλÞχj0i ; ð3dÞ

hDE0iV ¼ 1

m3

hVjψ†σ · ϵðλÞ 1
3
ðD↔ · gsEþ gsE · D

↔Þχj0i
hVjψ†σ · ϵðλÞχj0i ;

ð3eÞ

hDE1iV ¼ 1

m3

hVjψ†ϵðλÞ · 1
2
½σ × ðD↔× gsE− gsE×D

↔Þ�χj0i
hVjψ†σ · ϵðλÞχj0i :

ð3fÞ

There is a color-singlet operator of dimension 7 that does
not appear in Eq. (1), which is given by 1

2
ψ†ϵiðλÞ×

σjð− i
2
Þ2fD↔ðiD

↔
jÞ; ð− i

2
D
↔Þ2gχ. Because this operator creates
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a QQ̄ in a 3D1 state, its LDME scales like v15=2 and
contributes to the amplitude at relative order v6. Similarly,
the color-octet operators of dimension 6 given by

ψ†ϵðλÞ · i
2
ðD↔×gsEþgsE×D

↔Þχ and ψ†ϵiðλÞσjðD↔ðigsEjÞ þ
gsE ðiD

↔
jÞÞχ do not appear in Eq. (1) because their

LDMEs contribute to the amplitude at relative order v5

and v6, respectively. The velocity scalings of these LDMEs
can also be determined from the Gremm–Kapustin relations
in Eqs. (D2c) and (D2d).
If we follow the power counting of Ref. [9], the color-

octet LDMEs except for hVjψ† 1
3
ðD↔ · gsEþ gsE · D

↔Þσ ·
ϵðλÞχj0i are suppressed beyond relative order v4 and do
not appear at the current level of accuracy.
We compute the short-distance coefficients cn appearing

in Eq. (1) at leading order in αs by using the perturbative
matching conditions obtained by replacing the meson state
V with a perturbative QQ̄ or a QQ̄g state. Since the
expression in Eq. (1) is only valid to a limited accuracy in v,
we expand the perturbative amplitude in powers of the
3-momenta of the Q, Q̄, and the gluon, and truncate the
series to the desired accuracy. We follow a method used in
Refs. [18,19], that consists in not projecting to a specific
color, spin or orbital angular momentum of the QQ̄ state,
but instead, in only requiring the QQ̄ or the QQ̄g state to
have the same JPC ¼ 1−− as the meson state V. This
method has the advantage that fewer matching conditions
are required to compute the short-distance coefficients. The
caveat is that specific expressions for the matching con-
ditions can be more complicated than when projected to
specific color, spin, and orbital angular momentum states.
Therefore, this method is suitable for computer-aided,
automatized calculations. Also, this method can require
including NRQCD operators that have the same dimen-
sions as the ones appearing in Eq. (1) but have LDMEs that
are suppressed beyond relative order v4, because the
matching conditions obtained in this way do not depend
on the probabilities of theQQ̄ Fock states to be found in the
meson state. Hence, in the calculation of the short-distance
coefficients, we include all color-singlet operators of
dimensions up to 7, and color-octet operators of dimensions
up to 6, that have JPC ¼ 1−−.
If we replace the meson state V with a perturbative

QQ̄ state, the amplitude occurs from order g0s, and the
color-octet operators do not contribute to the amplitude at
this order. We include all color-singlet operators up to
dimension 7, which contain at most 4 covariant derivatives.
Hence, we must consider the production amplitude of aQQ̄
state at up to fourth order in the relative momentum of the
Q and the Q̄. We use the kinematical configuration given
in Appendix Awhere the relative 3-momentum between the
Q and the Q̄ is given by q. The production amplitude of
a QQ̄ state with JPC ¼ 1−− and a photon is given at order
g0s by

iM½H → QQ̄ðJPC ¼ 1−−Þ þ γ�
¼ c0hQQ̄jψ†σ · ϵðλÞχj0i

þ cD2

m2
hQQ̄jψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

2

χj0i

þ cDðiDjÞ

m2
hQQ̄jψ†ϵiðλÞσj

�
−
i
2

�
2

D
↔ðiD

↔
jÞχj0i

þ cD4

m4
hQQ̄jψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

4

χj0i

þ cD2DðiDjÞ

m4
hQQ̄j 1

2
ψ†ϵiðλÞσj

�
−
i
2

�
2

×

�
D
↔ðiD

↔
jÞ;

�
−
i
2
D
↔
�

2
�
χj0i þOðgs; ðjqj=mÞ5Þ; ð4Þ

where we have included all color-singlet operators with
JPC ¼ 1−− up to dimension 7. We take the states jQi and
the jQ̄i to be nonrelativistically normalized. We determine
the short-distance coefficients c0, cD2 , cDðiDjÞ , and cD4 ,
along with cD2DðiDjÞ that does not appear in Eq. (1), by
computing the left- and right-hand sides in perturbative
QCD and perturbative NRQCD, respectively, and compar-
ing the two sides order by order in the expansion in powers
of q up to fourth order.
In order to compute the remaining short-distance

coefficients corresponding to the color-octet LDMEs,
we consider the production amplitude of a QQ̄g state
with JPC ¼ 1−− which occurs from order gs. We use the
kinematical configuration given in Appendix A where
the relative 3-momentum between the Q and the Q̄ is
given by q1 and the relative 3-momentum between the
QQ̄ pair and the gluon is given by q2. At order gs, the
color-octet LDMEs that appear in Eq. (1) have matrix
elements that are either linear or quadratic in the
momenta q1 or q2 when the meson state V is replaced
by the QQ̄g state. We must also include all color-octet
operators of dimensions up to 6 with JPC ¼ 1−− that do
not appear in Eq. (1), whose matrix elements can also
be either linear or quadratic in the momenta q1 or q2.
The color-singlet operators in Eq. (1) can also contribute
to the QQ̄g amplitude at order gs through the gauge
fields in the covariant derivatives and through insertions
of NRQCD vertices. An NRQCD vertex insertion at
order gs involves a heavy-quark propagator, which can
produce a factor of 1=jq2j. Hence, it is necessary to
include all color-singlet operators that contain at most 3
covariant derivatives. Since the lowest-dimensional
color-singlet operator we consider is of dimension 3,
and the highest-dimensional color-octet operators are of
dimension 6, we need to include NRQCD vertices up to
1=m3 accuracy. That is, we need to consider two-
fermion operators of dimensions up to 7 in the
NRQCD Lagrangian, which are given by [20]
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L2-f ¼ ψ†
�
iD0 þ

D2

2m
þ σ · gsB

2m
þ ðD · gsEÞ

2m

−
σ · ½−iD×; gsE�

8m2
þ D4

8m3
þ fD2; σ · gsBg

8m3
þ…

�
ψ

þ c:c:; ð5Þ

where c.c. stands for the charge-conjugated contribution
of the preceding terms. Since we only consider the
matching at tree level, we only include the Wilson
coefficients at order α0s in Eq. (5). The production
amplitude of a QQ̄g state with JPC ¼ 1−− and a photon
at order gs is given by

iM½H → QQ̄gðJPC ¼ 1−−Þ þ γ� ¼ c0hQQ̄gjψ†σ · ϵðλÞχj0i þ cD2

m2
hQQ̄gjψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

2

χj0i

þ cDðiDjÞ

m2
hQQ̄gjψ†ϵiðλÞσj

�
−
i
2

�
2

D
↔ðiD

↔
jÞχj0i

þ cB
m2

hQQ̄gjψ†gsB · ϵðλÞχj0i

þ cDE0

m3
hQQ̄gjψ†ϵðλÞ · σ 1

3
ðD
↔
· gsEþ gsE · D

↔
Þχj0i

þ cDE1

m3
hQQ̄gjψ†ϵðλÞ · 1

2
½σ × ðD↔ × gsE − gsE × D

↔Þ�χj0i

þ cDE0
1

m3
hQQ̄gjψ†ϵðλÞ · i

2
ðD
↔
× gsEþ gsE × D

↔
Þχj0i

þ cDE2

m3
hQQ̄gjψ†ϵiðλÞσjðD↔ðigsEjÞ þ gsE ðiD

↔
jÞÞχj0i þOðg2s ; jqij3=m3Þ; ð6Þ

where the left-hand side is calculated in perturbative QCD
and is expanded in powers of q1 and q2 up to quadratic
accuracy. We again take the states jQi and jQ̄i to be
nonrelativistically normalized. We determine the short-
distance coefficients cB, cDE0

, and cDE1
, along with cDE0

1

and cDE2
that do not appear in Eq. (1) by computing the

left- and right-hand sides in perturbative QCD and
NRQCD, respectively, and comparing the two sides order
by order in the expansion in powers of q1 and q2 up to
quadratic order.1

In the following sections, we compute the short-distance
coefficients cn explicitly. We first calculate the cn in fixed-
order perturbation theory, where the QCD amplitudes on
the left-hand sides of Eqs. (4) and (6) are computed at
leading order in αs. We obtain corrections to the direct
amplitude of relative order v4 which is new in this work,
and reproduce the known order v2 correction in the fixed-
order calculation. We then compute the cn in the light-cone
approach, which is valid at leading order in m2=m2

H, that
allows us to resum logarithms ofm2

H=m
2 to all orders in αs.

We obtain new corrections of relative order v4 in the light-
cone approach, and reproduce the previously calculated
order v2 correction. We include the order αs correction to
the direct amplitude using the light-cone approach.

A. Fixed-order calculation

At order g0s, the direct amplitude for H → QQ̄þ γ is
given by

iMdirðH → QQ̄þ γÞ

¼ −ieeQyQūðp1Þ
� ð−=p2 − =pγ þmÞ=ϵ�γ
ðp2 þ pγÞ2 −m2 þ iε

þ =ϵ�γð=p1 þ =pγ þmÞ
ðp1 þ pγÞ2 −m2 þ iε

�
vðp2Þ; ð7Þ

where pγ and ϵ�γ are the momentum and the polarization
vector for the photon in the final state. We use the physical
gauge for the photon polarization vector, so that
ϵ�γ · pγ ¼ 0. Here, e ¼ ffiffiffiffiffiffiffiffi

4πα
p

is the electric charge, eQ is

the fractional charge of the heavy quark Q, and yQ ¼
m̄ðμÞð ffiffiffi

2
p

GFÞ12 is the Yukawa coupling of the Higgs boson
and Q, with GF the Fermi constant. The momenta of the Q
and Q̄ are given by p1 and p2, respectively, so that the
momentum of the H is PH ¼ p1 þ p2 þ pγ . This implies
m2

H ¼ ðp1 þ p2 þ pγÞ2 ¼ 2pγ · ðp1 þ p2Þ þ ðp1 þ p2Þ2,
so that in the rest frame of the QQ̄,

1The operator ψ†ϵðλÞ · i
2
ðD
↔
× gsEþ gsE × D

↔
Þχ does not ap-

pear in Ref. [16]. If we compute the NRQCD matrix elements on
the right-hand side of Eq. (6) explicitly, the matrix element of this
operator is the only matrix element that is quadratic in q2. Hence,
if we ignore the contribution that is proportional to jq2j2 on both
sides of Eq. (6), we can ignore this operator from the matching
condition without affecting the calculation of the short-distance
coefficients in Eq. (1).
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p0
γ ¼ jpγj ¼

m2
H − ðp1 þ p2Þ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 þ p2Þ2

p ¼ m2
H − 4m2 − 4q2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p ; ð8Þ

where q ¼ 1
2
ðp1 − p2Þ. We choose the heavy-quark mass

appearing in yQ to be m̄ðμÞ, which is the MS mass of the
heavy quarkQ at scale μ; as we will see in the next section,
this choice simplifies the logarithms that appear in the order
αs correction. Since C, P, and T are conserved in the
amplitude in Eq. (7), the QQ̄ can only be created with
C ¼ −1. We first express the Dirac bilinears ūðp1Þγμvðp2Þ
and ūðp1Þγμγνvðp2Þ in terms of the 3-momenta of the Q
and Q̄ in the QQ̄ rest frame. This can be accomplished by
using the method described in Appendix B. Then, we
expand the amplitude in powers of q, keeping terms up to
relative order q4=m4. The resulting expression for the
amplitude is then a linear combination of the Cartesian
tensors built from ξ†ση and q of the form ξ†σiηqj � � � qk up
to rank 5 and of the form ξ†ηqiqj � � � qk up to rank 4. The
contribution from these Cartesian tensors to the total
angular momentum J ¼ 1 can be obtained by a reduction
method developed in Ref. [21]. Finally, the P ¼ −1
contribution is obtained by keeping only the contribution
odd in parity, where the parity transform of the QQ̄
amplitude is given by the replacements q → −q, ξ†ση →
−ξ†ση, and ξ†η → −ξ†η. We use the Mathematica package
FeynCalc [22,23] and the FeynOnium [24] package to automa-
tize the calculation of the amplitude and the consequent
reduction to the JPC ¼ 1−− contribution. By comparing the

JPC ¼ 1−− contribution of the QQ̄ amplitude with the
right-hand side of Eq. (4), we obtain the short-distance
coefficients

c0 ¼ −i
eeQyQ
m

ϵ�γ · ϵ�ðλÞ; ð9aÞ

cD2 ¼ i
eeQyQ
m

3 − 7r
6ð1 − rÞ ϵ

�
γ · ϵ�ðλÞ; ð9bÞ

cDðiDjÞ ¼ −i
eeQyQ
m

3þ 17r
10ð1 − rÞ ϵ

�
γ · ϵ�ðλÞ; ð9cÞ

cD4 ¼ −i
eeQyQ
m

43 − 110rþ 147r2

120ð1 − rÞ2 ϵ�γ · ϵ�ðλÞ; ð9dÞ

cD2DðiDjÞ ¼ i
eeQyQ
m

83þ 2r − 645r2

280ð1 − rÞ2 ϵ�γ · ϵ�ðλÞ; ð9eÞ

where we define r≡ 4m2

m2
H
. The short-distance coefficients c0

and cD2 agree with Refs. [4,5], except that our results differ
by an overall sign that originates from the sign convention
of the J ¼ 1 state employed in Refs. [4,5]. We also
reproduce the short-distance coefficient cD4 that can be
obtained from Ref. [5]. The results for cDðiDjÞ and cD2DðiDjÞ

are new.
The remaining short-distance coefficients corresponding

to the color-octet LDMEs are computed from the direct
amplitude for H → QQ̄gþ γ at order gs, which is given by

iMdirðH → QQ̄gþ γÞ ¼ −igseeQyQūðp1ÞTa ×

�
=ϵ�gð=p1 þ =kg þmÞð−=p2 − =pγ þmÞ=ϵ�γ

½ðp1 þ kgÞ2 −m2 þ iε�½ðp2 þ pγÞ2 −m2 þ iε�

þ ð−=p2 − =kg − =pγ þmÞ=ϵ�γð−=p2 − =kg þmÞ=ϵ�g
½ðp2 þ kg þ pγÞ2 −m2 þ iε�½ðp2 þ kgÞ2 −m2 þ iε �

þ ð−=p2 − =kg − =pγ þmÞ=ϵ�gð−=p2 − =pγ þmÞ=ϵ�γ
½ðp2 þ kg þ pγÞ2 −m2 þ iε�½ðp2 þ pγÞ2 −m2 þ iε�

þ =ϵ�γð=p1 þ =pγ þmÞð−=p2 − =kg þmÞ=ϵ�g
½ðp2 þ kgÞ2 −m2 þ iε�½ðp1 þ pγÞ2 −m2 þ iε�

þ =ϵ�gð=p1 þ =kg þmÞ=ϵ�γð=p1 þ =kg þ =pγ þmÞ
½ðp1 þ kg þ pγÞ2 −m2 þ iε�½ðp1 þ kgÞ2 −m2 þ iε�

þ =ϵ�γð=p1 þ =pγ þmÞ=ϵ�gð=p1 þ =pγ þ =kg þmÞ
½ðp1 þ pγÞ2 −m2 þ iε�½ðp1 þ pγ þ kgÞ2 −m2 þ iε�

�
vðp2Þ; ð10Þ

where ϵ�g is the polarization vector of the gluon. The total
momentum P of the QQ̄g state is given by P ¼ p1þ
p2 þ kg, and the momentum of the H is given by
PH ¼ Pþ pγ, so that in the rest frame of the QQ̄g,

p0
γ ¼ jpγj ¼

m2
H − P2

0

2P0

; ð11Þ

where P0¼2jq2jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1þq2Þ2þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1−q2Þ2þm2

p
,

q1 ¼ 1
2
ðp1 − p2Þ, and q2 ¼ 1

6
ð2kg − p1 − p2Þ. Due to C

conservation at this order, theQQ̄g can only be produced in
a color-singlet C ¼ −1 state. We use again the Mathema-
tica package FeynCalc and the FeynOnium package to automa-
tize the calculation of theQQ̄g amplitude. After expressing
the amplitude in terms of the 3-momenta of theQ, Q̄ and g,
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we expand the amplitude in powers of q1 and q2 up to
relative order q21=m

2, q22=m
2, and jq1jjq2j=m2 The resulting

expression for the amplitude is then a linear combination of
the Cartesian tensors built from ξ†ση, ϵ�g, q1, and q2 up
to rank 4. In order to keep only the contribution with
negative parity, we keep only the contribution odd in
parity, where the parity transform of the QQ̄g amplitude
is given by the replacements q1 → −q1, q2 → −q2,
ϵ�g → −ϵ�g, ξ†ση → −ξ†ση, and ξ†η → −ξ†η. After reducing
the Cartesian tensors of odd rank to total angular momen-
tum J ¼ 1, we compare the JPC ¼ 1−− contribution with
the amplitude on the right-hand side of Eq. (6) to obtain the
short-distance coefficients

cB ¼ −i
eeQyQ
m

ϵ�γ · ϵ�ðλÞ; ð12aÞ

cDE0
¼ i

eeQyQ
m

3 − 6rþ 5r2

4ð1 − rÞ2 ϵ�γ · ϵ�ðλÞ; ð12bÞ

cDE1
¼ i

eeQyQ
m

3 − 4rþ 5r2

8ð1 − rÞ2 ϵ�γ · ϵ�ðλÞ; ð12cÞ

cDE0
1
¼ i

eeQyQ
m

5 − 2r
4ð1 − rÞ ϵ

�
γ · ϵ�ðλÞ; ð12dÞ

cDE2
¼ −i

eeQyQ
m

ð3 − 5rÞð3þ 7rÞ
40ð1 − rÞ2 ϵ�γ · ϵ�ðλÞ; ð12eÞ

where r ¼ 4m2

m2
H
.

The short-distance coefficients in Eqs. (9) and (12) allow
us to compute the direct amplitude to relative order v4

accuracy. Because the indirect amplitude will be available
only at leading order inm2=m2

H (see Sec. III), only the limit
m2=m2

H → 0 of the short-distance coefficients in Eqs. and
(12) will be employed in the total decay amplitude. This
amounts to setting r ¼ 0.
We note that the method described in this section can be

easily applied to compute contributions of the QCD
amplitude with different JPC. For example, the JPC ¼
1þ− contribution can be obtained by keeping parity-even
terms in the amplitude. The JPC ¼ 1þ− contribution can
then be used to obtain the short-distance coefficients
for the H → hc þ γ amplitude. We show this result in
Appendix C.

B. Light-cone calculation

In the fixed-order calculation, the short-distance coef-
ficients contain contributions from the scales m and mH.
Since mH is much larger than m, the logarithms of m2

H=m
2

that appear in corrections of higher orders in αs can
potentially spoil the convergence of the perturbation series.
If we work at leading power in m2=m2

H, the light-cone
approach provides a factorization formula that separates the

contribution at the scalem from the contribution at the scale
mH [11,12]. The light-cone approach also enables us to
resum the logarithms of m2

H=m
2 to all orders in αs by

solving an evolution equation. The factorization formula is
given by [11,12,25]

iMdirðH → V þ γÞ ¼ i
2
eeQyQϵ�γ · ϵ�ðλÞf⊥V ðμÞ

×
Z

1

0

dxTHðx; μÞϕ⊥
V ðx; μÞ

þOðm2=m2
HÞ; ð13Þ

where THðx; μÞ is the perturbative hard part that contains
the contribution at the scale mH, while the contribution at
scales m and below are contained in the decay constant
f⊥V ðμÞ and the light-cone distribution amplitude (LCDA)
ϕ⊥
V ðx; μÞ of the meson V. The decay constant and the

LCDA are nonperturbative quantities defined by

f⊥V ðμÞ=ϵ�⊥αðλÞϕ⊥
V ðx; μÞ ¼ hVjQαðxÞj0i: ð14Þ

The nonlocal operator QαðxÞ is defined by

QαðxÞ ¼
Z

dω
2π

e−iðx−1=2Þωn̄·PðQ̄WcÞðωn̄=2Þ

× =̄nγα⊥ðW†
cQÞð−ωn̄=2Þ; ð15Þ

where P is the momentum of the meson V, and the decay
constant f⊥V ðμÞ is defined by integrating Eq. (14) over x and
considering the normalization of the LCDA, which is given
by

R
1
0 dxϕ⊥

V ðx; μÞ ¼ 1. Here, QðxÞ is the QCD quark field.
The light-cone vectors n and n̄ are given by n̄ ¼ mH

pγ ·PH
pγ

and n ¼ 2
mH

PH − n̄, which satisfy n2 ¼ n̄2 ¼ 0 and
n̄ · n ¼ 2. Here, PH and pγ are the momenta of the H
and the photon, respectively. For any 4-vector aμ, we define
aμ⊥ ≡ aμ − nμ

2
n̄ · a − n̄μ

2
n · a. The Wilson line WcðxÞ ¼

P exp ½−ig R 0
−∞ dsn̄ · Aðxþ sn̄Þ�, where P is the path-

ordering operator, ensures the gauge invariance of the
nonlocal operator. The hard part THðx; μÞ has been com-
puted to next-to-leading order (NLO) accuracy in αs and is
given by [6,25]

THðx; μÞ ¼
1

xð1 − xÞ þ
αsðμÞCF

4π

1

xð1 − xÞ

×
�
2

�
log

m2
H

μ2
− iπ

�
log xð1 − xÞ

þ log2xþ log2ð1 − xÞ − 3

�
þOðα2sÞ; ð16Þ

where CF ¼ N2
c−1
2Nc

, and Nc ¼ 3 is the number of colors.
The imaginary part in Eq. (16) comes from the order αs
correction where the virtual lines can be on shell.
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The expression for the NLO correction to THðx; μÞ in
Eq. (16) is valid when the decay constant f⊥V ðμÞ and the
LCDA ϕ⊥

V ðx; μÞ are renormalized in the MS scheme, and
the heavy-quark mass in the Yukawa coupling yQ is the MS
mass at the scale μ. If we use the heavy-quark pole mass m
instead of the MS mass at the scale μ, the order αs
correction in THðx; μÞ involves a logarithm of m2

H=m
2;

instead, using the MS mass in the Yukawa coupling yQ
ensures that TH depends only on the scale mH and removes
this logarithmic contribution from it [6].
The nonlocal operator QαðxÞ has an anomalous dimen-

sion known to NLO in αs that allows us to resum logarithms
of m2

H=m
2 to NLL accuracy [11,26–29]. In order to resum

the logarithms of m2
H=m

2 that appear in corrections of
higher orders in αs to the short-distance coefficients, we
apply the factorization formula [Eq. (13)] to the perturba-
tive amplitudes H → QQ̄þ γ and H → QQ̄gþ γ. This
involves calculating the decay constant and the LCDAwith
the meson state V replaced by the perturbative QQ̄ and
QQ̄g states. Then, each of the short-distance coefficients cn
is given by a convolution of the hard part TH and a
distribution in x that satisfies the same evolution equation
as the nonlocal operator in Eq. (14). Equivalently, we can
apply the NRQCD factorization formula to Eq. (14) to
obtain an expression of the decay constant and the LCDA
in terms of NRQCD LDMEs, so that [13]

f⊥V ðμ0Þϕ⊥
V ðx; μ0Þ ¼ −ϵαðλÞhVjQαðxÞj0i

¼ c̃0ðxÞhVjψ†σ · ϵðλÞχj0i þ c̃D2ðxÞ
m2

hVjψ†σ · ϵðλÞ
�
−
i
2
D
↔
�

2

χj0i

þ c̃D4ðxÞ
m4

hVjψ†σ · ϵðλÞ
�
−
i
2
D
↔
�

4

χj0i

þ c̃DðiDjÞ ðxÞ
m2

hVjψ†ϵiðλÞσj
�
−
i
2

�
2

D
↔ðiD

↔
jÞχj0i

þ c̃BðxÞ
m2

hVjψ†gB · ϵðλÞχj0i

þ c̃DE0
ðxÞ

m3
hVjψ†σ · ϵðλÞ 1

3
ðD↔ · gEþ gE · D

↔Þχj0i

þ c̃DE1
ðxÞ

m3
hVjψ†ϵðλÞ · 1

2
½σ × ðD

↔
× gE − gE × D

↔
Þ�χj0i; ð17Þ

where the short-distance coefficients c̃nðxÞ are computed
from the matching conditions that are similar to Eqs. (4)
and (6), where the cn on the right-hand sides are
replaced by c̃nðxÞ, and the left-hand sides are replaced
by −hQQ̄ðJPC ¼ 1−−ÞjQαðxÞj0i and −hQQ̄gðJPC ¼
1−−ÞjQαðxÞj0i, respectively. In the matching conditions,
the scale μ0 in Eq. (17) is the scale where the NRQCD
LDMEs on the right-hand side are defined. The factoriza-
tion formula [Eq. (13)] implies that

cn ¼ −
i
2
eeQyQϵ�ðλÞ · ϵ�γ

×
Z

1

0

dxTHðx; μ0Þc̃nðxÞ þOðm2=m2
HÞ: ð18Þ

It is worth noting that hQQ̄jQαðxÞj0i and hQQ̄gj
QαðxÞj0i contain contributions from both negative and
positive charge conjugation. From the fact that the charge
conjugate of the operator QαðxÞ is given by −Qαð1 − xÞ,
we can see that the contributions of negative charge
conjugation to hQQ̄jQαðxÞj0i and hQQ̄gjQαðxÞj0i are
given by the contribution symmetric in x ↔ 1 − x. Since

the hard part THðx; μ0Þ is symmetric in x ↔ 1 − x, the
positive charge conjugation contribution of the LCDA,
which is antisymmetric in x ↔ 1 − x, does not contribute
to the decay amplitude, consistently with the conservation
of charge conjugation in the amplitude. Hence, in order to
keep only contributions of negative charge conjugation in
hQQ̄jQαðxÞj0i and hQQ̄gjQαðxÞj0i, we just need to keep
contributions that are symmetric in x ↔ 1 − x.
If we replace the meson state V with the QQ̄ state, we

obtain

− hQQ̄jQαðxÞj0i

¼ −
Z

dω
2π

e−iðx−1=2Þωn̄·Pþiωn̄·qūðp1Þ=̄nγα⊥vðp2Þ þOðgsÞ

¼ −
1

n̄ · P
δðx − 1=2 − n̄ · q=n̄ · PÞūðp1Þn̄=γα⊥vðp2Þ

þOðgsÞ: ð19Þ

We use the same strategy as the fixed-order calculation to
obtain the contribution with JPC ¼ 1−−; we express the
Dirac bilinears in terms of the 3-momenta of the Q and the
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Q̄ in the QQ̄ rest frame, and then we expand Eq. (19) in
powers of q up to relative order q4=m4. Then, Eq. (19) is
given by a linear combination of the delta function
δðx − 1=2Þ and its derivatives. In order to keep only the
contribution with C ¼ −1, we ignore the odd derivatives of
δðx − 1=2Þ. The J ¼ 1 contribution is then obtained by
reducing the Cartesian tensors of the form ξ†ηqiqj � � � qk up
to rank 4 and of the form ξ†σiηqj � � � qk up to rank 5 using
the reduction method of Ref. [21]. We keep only the
contribution with negative parity in order to obtain the
JPC ¼ 1−− contribution. From the matching condition (17)
we obtain

c̃0ðxÞ ¼
1

2m
δðx − 1=2Þ; ð20aÞ

c̃D2ðxÞ ¼ 1

m

�
−

5

12
δðx − 1=2Þ þ 1

48
δð2Þðx − 1=2Þ

�
; ð20bÞ

c̃DðiDjÞ ðxÞ ¼ 1

m

�
1

4
δðx − 1=2Þ − 1

80
δð2Þðx − 1=2Þ

�
; ð20cÞ

c̃D4ðxÞ ¼ 1

m

�
19

48
δðx − 1=2Þ − 19

480
δð2Þðx − 1=2Þ

þ 1

3840
δð4Þðx − 1=2Þ

�
; ð20dÞ

c̃D2DðiDjÞ ðxÞ ¼ 1

m

�
−

5

16
δðx − 1=2Þ þ 1

32
δð2Þðx − 1=2Þ

−
1

4480
δð4Þðx − 1=2Þ

�
: ð20eÞ

The short-distance coefficients c̃0ðxÞ and c̃D2ðxÞ agree
with known results in Ref. [5]. The agreement with the
fixed-order calculation can be easily verified using Eq. (18).
To compute the remaining short-distance coefficients

corresponding to the color-octet LDMEs, we replace the
meson state V with the QQ̄g state to obtain

−hQQ̄gjQαðxÞj0i ¼ −
Z

dω
2π

e−iðx−1=2Þωn̄·Pþiωn̄·ðp1−p2Þ=2

×
�
eiωn̄·kg=2ūðp1Þð−igs=ϵ�gTaÞ ið=p1 þ =kg þmÞ

ðp1 þ kgÞ2 −m2 þ iε
=̄nγα⊥vðp2Þ

þ e−iωn̄·kg=2ūðp1Þ=̄nγα⊥
ið−=p2 − =kg þmÞ

ðp2 þ kgÞ2 −m2 þ iε
ð−igs=ϵ�gTaÞvðp2Þ

þ eiωn̄·kg=2ðigsÞ
in̄ · ϵ�g
n̄ · kg

ūðp1Þ=̄nγα⊥Tavðp2Þ

þ e−iωn̄·kg=2ð−igsÞ
in̄ · ϵ�g
n̄ · kg

ūðp1Þ=̄nγα⊥Tavðp2Þ
�
þOðg2sÞ

¼ igs
n̄ · P

δ

�
x − 1=2 −

n̄ · ðp1 − p2 þ kgÞ
2n̄ · P

�
ūðp1Þ=ϵ�gTa ið=p1 þ =kg þmÞ

2p1 · kg þ iε
=̄nγα⊥vðp2Þ

þ igs
n̄ · P

δ

�
x − 1=2 −

n̄ · ðp1 − p2 − kgÞ
2n̄ · P

�
ūðp1Þ=̄nγα⊥

ið−=p2 − =kg þmÞ
2p2 · kg þ iε

=ϵ�gTavðp2Þ

−
igs
n̄ · P

δ

�
x − 1=2 −

n̄ · ðp1 − p2 þ kgÞ
2n̄ · P

�
in̄ · ϵ�g
n̄ · kg

ūðp1Þ=nγα⊥Tavðp2Þ

−
igs
n̄ · P

δ

�
x − 1=2 −

n̄ · ðp1 − p2 − kgÞ
2n̄ · P

�
−in̄ · ϵ�g
n̄ · kg

ūðp1Þ=̄nγα⊥Tavðp2Þ þOðg2sÞ: ð21Þ

After expressing the amplitude in terms of the 3-momenta
of the Q, Q̄ and g, we expand the amplitude in powers
of q1 and q2 up to relative order q21=m

2, q22=m
2, and

jq1jjq2j=m2. The resulting expression for the amplitude is
then a linear combination of the Cartesian tensors built
from ξ†ση, ϵ�g, q1, and q2 up to rank 4. We obtain the

matching condition for QQ̄g with JPC ¼ 1−− by keeping
only the contributions symmetric in x ↔ 1 − x, i.e.,
C ¼ −1, reducing the Cartesian tensors to J ¼ 1, and
keeping only the negative parity contributions. The
resulting matching condition leads to the following
short-distance coefficients
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c̃BðxÞ ¼
1

2m
δðx − 1=2Þ; ð22aÞ

c̃DE0
ðxÞ ¼ 1

m

�
−

7

16
δðx − 1=2Þ þ 1

128
δð2Þðx − 1=2Þ

�
;

ð22bÞ

c̃DE1
ðxÞ ¼ 1

m

�
−
1

8
δðx − 1=2Þ − 1

128
δð2Þðx − 1=2Þ

�
; ð22cÞ

c̃DE0
1
ðxÞ ¼ 1

m

�
−
3

8
δðx − 1=2Þ − 1

32
δð2Þðx − 1=2Þ

�
; ð22dÞ

c̃DE2
ðxÞ ¼ 1

m

�
1

8
δðx − 1=2Þ − 1

640
δð2Þðx − 1=2Þ

�
: ð22eÞ

The agreement with the fixed-order calculation can be
easily verified using Eq. (18).
By integrating the short-distance coefficients c̃nðxÞ over

x, we obtain an expression for f⊥V valid up to relative order
v4. If we include the correction of relative order αsv0 in the
MS scheme from Ref. [25], we obtain

f⊥V ðμ0Þ ¼
hVjψ†σ · ϵðλÞχj0i

2m

�
1 −

αsðμ0ÞCF

4π

�
log

μ20
m2

þ 8

�

−
5

6
hv2SiV þ 19

24
hv4SiV −

7

8
hDE0iV þ 1

2
hv2DiV

þ hBiV −
1

4
hDE1iV þOðv5Þ

�
: ð23Þ

The corrections at relative order v2 agree with Ref. [5]. The
logarithm of μ20=m

2 in Eq. (23) is the remnant of the
renormalization of the decay constant in the MS scheme.
Since the short-distance coefficients c̃nðxÞ at leading

order in αs are linear combinations of δðx − 1=2Þ, δð2Þðx −
1=2Þ and δð4Þðx − 1=2Þ, the LCDA can be written as

ϕ⊥
V ðx; μ0Þ ¼ ϕ⊥

V
ð0Þðx; μ0Þ þ ϕ⊥

V
ðαsÞðx; μ0Þ þ ϕ⊥

V
ð2Þðx; μ0Þ

þ ϕ⊥
V
ð4Þðx; μ0Þ; ð24Þ

where

ϕ⊥
V
ð0Þðx; μ0Þ ¼ δðx − 1=2Þ; ð25aÞ

ϕ⊥
V
ð2Þðx; μ0Þ ¼

�
1

3
hv2SiV þ 5

18
ðhv2SiVÞ2 −

19

30
hv4SiV

þ 1

8
hDE0i −

1

5
hv2DiV −

1

8
hDE1iV

�

×
δð2Þðx − 1=2Þ

8
; ð25bÞ

ϕ⊥
V
ð4Þðx; μ0Þ ¼

1

5
hv4SiV

δð4Þðx − 1=2Þ
384

; ð25cÞ

and ϕ⊥
V
ðαsÞðx; μ0Þ is the order αsv0 correction in the MS

scheme given by [25]

ϕ⊥
V
ðαsÞðx; μ0Þ ¼

αsðμ0ÞCF

4π
θð1 − 2xÞ

×

��
8x

1 − 2x

�
log

μ20
m2ð1 − 2xÞ2 − 1

��
þ

þ
�
16xð1 − xÞ
ð1 − 2xÞ2

�
þþ

�
þ ðx ↔ 1 − xÞ; ð26Þ

where the plus and plus-plus distributions are defined by

Z
1

0

dxfðxÞ½gðxÞ�þ ¼
Z

1

0

dx½fðxÞ − fð1=2Þ�gðxÞ; ð27aÞ
Z

1

0

dxfðxÞ½gðxÞ�þþ

¼
Z

1

0

dx½fðxÞ − fð1=2Þ − f0ð1=2Þðx − 1=2Þ�gðxÞ:

ð27bÞ

The logarithm of μ20=m
2 in Eq. (26) is the remnant of the

renormalization of the LCDA in the MS scheme. Note that

Z
1

0

dx
xð1 − xÞ δðx − 1=2Þ ¼

Z
1

0

dx
xð1 − xÞ

δð2Þðx − 1=2Þ
8

¼
Z

1

0

dx
xð1 − xÞ

δð4Þðx − 1=2Þ
384

¼ 4:

ð28Þ

The decay constant and the LCDA computed in
Eqs. (23), (24) allow us to resum logarithms of m2

H=m
2

that appear in the QCD corrections to the direct amplitude
to all orders in αs. This is accomplished by solving the
evolution equation

μ2
∂
∂μ2 f

⊥
V ðμÞϕ⊥

V ðx; μÞ ¼ f⊥V ðμÞ
αsðμÞCF

2π

×
Z

1

0

dyVTðx; yÞϕ⊥
V ðy; μÞ; ð29Þ

where the evolution kernel VTðx; yÞ is currently known to
NLO accuracy in αs [11,26–29]. We obtain f⊥V ðμÞϕ⊥

V ðx; μÞ
at scale μ from f⊥V ðμ0Þϕ⊥

V ðx; μ0Þ at scale μ0 by solving this
evolution equation. The direct amplitude with logarithms of
m2

H=m
2 resummed to all orders in αs is then given by

Eq. (13), by setting μ ∼mH and μ0 ∼m, so that THðx; μÞ is
free of logarithms of m2

H=m
2.2 The accuracy of the

2Equivalently, one may resum logarithms of m2
H=m

2 in the
hard part THðx; μÞ, which may be conceptually closer to the
effective field theory logic.

NORA BRAMBILLA et al. PHYS. REV. D 100, 054038 (2019)

054038-10



resummation is limited by the accuracy of the evolution
kernel; since the evolution kernel is known up to NLO
accuracy, we can resum the logarithms to NLL accuracy.
The resummation can be carried out using the Gegenbauer

polynomials Cð3=2Þ
n ð2x − 1Þ, which are the eigenfunctions

of the LO evolution kernel [30]. The convolution in
Eq. (13) is given by

f⊥V ðμÞ
Z

1

0

dxTHðx; μÞϕ⊥
V ðx; μÞ

¼ f⊥V ðμÞ
X∞
n¼0

T̂Hðn; μÞϕ̂⊥
V ðn; μÞ; ð30Þ

where T̂Hðn; μÞ and ϕ̂⊥
V ðn; μÞ are Gegenbauer moments

defined by

T̂Hðn; μÞ ¼
Z

1

0

dxxð1 − xÞCð3=2Þ
n ð2x − 1ÞTHðx; μÞ; ð31aÞ

ϕ̂⊥
V ðn; μÞ ¼

4ð2nþ 3Þ
ðnþ 1Þðnþ 2Þ

Z
1

0

dxCð3=2Þ
n ð2x − 1Þϕ⊥

V ðx; μÞ:

ð31bÞ

The solution of the evolution equation in terms of
Gegenbauer moments leads to [26–29]

ϕ̂⊥
V ðn1; μÞ ¼

X∞
n2¼0

Un1n2ðμ; μ0Þϕ̂⊥
V ðn2; μ0Þ; ð32aÞ

f⊥V ðμÞ ¼ Uf⊥V ðμ; μ0Þf⊥V ðμ0Þ: ð32bÞ

Explicit expressions of Uf⊥V ðμ; μ0Þ and Un1n2ðμ; μ0Þ can
be found in Ref. [7]. We note that UfV ðμ; μ0Þ and
Un1n2ðμ; μ0Þ depend only on μ, μ0 and the evolution
kernel, and are independent of f⊥V ðμ0Þ or ϕ⊥

V ðx; μ0Þ.
When ϕ⊥

V ðx; μ0Þ contains singular distributions such as
the delta function and their derivatives, the sum in Eq. (32a)
can converge badly. The authors of Refs. [7,8] developed
a method to overcome the problem of nonconvergence
by defining the sum over n2 in Eq. (32a) as an Abel sum,
so that

f⊥V ðμÞ
Z

1

0

dxTHðx; μÞϕ⊥
V ðx; μÞ

¼ lim
z→1

Uf⊥V ðμ; μ0Þf⊥V ðμ0Þ
X∞
n1¼0

X∞
n2¼0

T̂Hðn1; μÞ

×Un1n2ðμ; μ0Þϕ̂⊥
V ðn2; μ0Þzn2 : ð33Þ

The numerical value of the Abel sum is then evaluated
by using Padé approximants of the truncated series. We
employ this Abel-Padé method [7,8] to compute the
convolution in Eq. (32a).

It is more convenient to express the direct amplitude with
resummed logarithms in terms of the decay constant and
the LCDA convolved with the hard part, i.e., Eq. (13), than
to resum the logarithms for each of the short-distance
coefficients in Eqs. (9) and (12). We note that the
resummation of logarithms can be carried out separately
for the decay constant and the individual contributions to
the LCDA in Eq. (24), so that

iMdirðH → V þ γÞ ¼ i
2
eeQyQϵ�γ · ϵ�ðλÞ

X
n¼0;2;4;αs

Uf⊥V ðμ; μ0Þ

× f⊥V ðμ0Þ
Z

1

0

dxTHðx; μÞϕ⊥
V
ðnÞðx; μÞ

þOðm2=m2
HÞ; ð34Þ

where

Z
1

0

dxTHðx; μÞϕ⊥
V
ðnÞðx; μÞ

¼
X∞
n1¼0

X∞
n2¼0

T̂Hðn1; μÞUn1n2ðμ; μ0Þϕ̂⊥
V
ðnÞðn2; μ0Þ: ð35Þ

III. CALCULATION OF THE
INDIRECT AMPLITUDE

The indirect amplitude proceeds from H → γ�γ, fol-
lowed by γ� → V. Since we work in the limit m2

V=m
2
H → 0,

the partial amplitudeH → γ�γ can be replaced by the decay
amplitude of the Higgs boson to two photons. Then, the
indirect amplitude is given by [4]

iMindðH → V þ γÞ ¼ −iϵ�γ · ϵ�ðλÞ
eQf

k
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðμ0Þ

p
mV

×

�
16πmH

αðμ0Þ
αð0Þ ΓðH → γγÞ

�1
2

;

ð36Þ

where the factor 16πmH compensates for the factors that
are necessary to obtain the decay rate ΓðH → γγÞ from the
squared amplitude. We take the scale of the QED coupling
at the vertices associated with the virtual photon with
virtualitymV to be μ0, and the scale of the vertex for the real
photon to be 0. The factor αðμ0Þ=αð0Þ replaces one QED
coupling constant at scale 0 in the H → γγ amplitude with
the QED coupling constant at scale μ0. We ignore the small
imaginary part in the H → γγ amplitude [6,7]. The decay

constant fkV is defined by

fkV ¼ −
1

mV
hVjQ̄=ϵðλÞQj0i: ð37Þ
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Since fkV is a conserved current in QCD, it does not
undergo renormalization. Hence, the indirect amplitude is
free of logarithms of m2

H=m
2 in the limit m2

V=m
2
H → 0 if

one ignores the higher-order electroweak corrections to the

indirect amplitude. We can express fkV in terms of NRQCD
LDMEs up to relative order v4 using the same techniques
we employed to compute the direct amplitude and the
decay constant f⊥V . We obtain

fkV ¼ hVjψ†σ · ϵðλÞχj0i
2m

�
1 − 8

αsðμ0ÞCF

4π
−
2

3
hv2SiV

þ 7

12
hv4SiV −

5

8
hDE0iV −

1

2
hv2DiV þ 1

2
hBiV

−
1

4
hDE1iV þOðv5Þ

�
; ð38Þ

where we included the order αsv0 correction computed in

Refs. [31,32]. We note that fkV is positive at leading order in

αs and v. If we assume fkV > 0, an accurate numerical value

for fkV can be obtained from the leptonic decay rate

ΓðV → lþl−Þ ¼ 8π

3
α2ðμ0Þe2QjfkV j2; ð39Þ

so that

iMindðH → V þ γÞ ¼ −iϵ�γ · ϵ�ðλÞ
eQ
jeQj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πmH

p
mV

×
�
ΓðV → lþl−ÞΓðH → γγÞ

αð0Þ
�1

2

:

ð40Þ
Note that iMind and iMdir have opposite signs, so that
when calculating the decay rate, the direct and indirect
amplitudes interfere destructively [4].

IV. NUMERICAL RESULTS

We now present our numerical results for the Higgs
decay rate into V þ γ for V ¼ J=ψ andϒðnSÞ for n ¼ 1, 2,
and 3 based on our calculation of the direct amplitude to
relative order v4 accuracy. As we have mentioned in Sec. I,
we do not consider the ψð2SÞ state, because there are no
available estimates of the relevant NRQCDmatrix elements
that account for open-flavor threshold effects and non-
relativistic corrections in a complete and model-indepen-
dent way.
Our expressions for the direct and indirect amplitudes

are given in Eqs. (34) and (40), respectively. If we write
Mdir¼ ϵ�γ ·ϵ�ðλÞAdir=

ffiffiffiffi
Φ

p
and Mind¼ ϵ�γ ·ϵ�ðλÞAind=

ffiffiffiffi
Φ

p
,

the decay rate ΓðH → V þ γÞ is given by

ΓðH → V þ γÞ ¼ jAdir þAindj2; ð41Þ

where Φ is the phase-space and normalization factor
given by

Φ ¼ 1

2mH

mVðm2
H −m2

VÞ
2πm2

H
: ð42Þ

We present our numerical results for Adir and Aind in the
following sections. Then, using the resulting values of Adir
and Aind, we compute the decay rate ΓðH → V þ γÞ from
the formula in Eq. (41).

A. Indirect amplitude

We compute the numerical values for the indirect
amplitude using Eq. (40). We compute the decay constant

fkV from the measured leptonic decay rate:

fkV ¼
�
3ΓðV → lþl−Þ
8πα2ðμ0Þe2Q

�1
2

; ð43Þ

where we take μ0 ¼ mV . Then

Aind ¼ −
ffiffiffiffi
Φ

p eQ
jeQj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πmH

p
mV

�
ΓðV → lþl−ÞΓðH → γγÞ

αð0Þ
�1

2

:

ð44Þ

We note that the resulting expression for Aind does not
depend on αðμ0Þ.
We use the following input parameters to compute Aind

numerically. We take the PDG value for the Higgs mass
mH ¼ 125.18� 0.16 [33], and the numerical value for
the Higgs two-photon decay rate to be ΓðH → γγÞ ¼
9.34 × 10−6 GeV, which is computed from the tabulated
results of the two-photon branching ratio and the total
decay rate of the Higgs boson in Refs. [34,35]. We also take
the PDG values for the meson masses mV and use the
measured partial widths ΓðV → eþe−Þ for the leptonic
decay rates [33]. We list the values for mV and ΓðV →
lþl−Þ that we use to compute the indirect amplitude in
Table. I. The QED coupling constant at scale 0 is taken to
be αð0Þ ¼ 1=137.036.
We consider the following sources of uncertainties in

Aind. The uncertainty in the decay rate ΓðH → γγÞ is taken

TABLE I. Values for the meson masses mV and the leptonic
decay rates ΓðV → lþl−Þ used in the numerical calculation of
the direct and indirect amplitudes. All values are taken from
Ref. [33].

V mV (GeV) ΓðV → lþl−Þ (keV)
J=ψ 3.0969 5.55� 0.14� 0.02
ϒð1SÞ 9.4603 1.340� 0.018
ϒð2SÞ 10.02326 0.612� 0.011
ϒð3SÞ 10.3352 0.443� 0.008
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to be 0.01 times the central value, as estimated in Ref. [34]
from the higher-order corrections to the decay rate. We
consider the experimental uncertainties in ΓðV → lþl−Þ.
We estimate the uncalculated correction of relative order
m2

V=m
2
H to be m2

V=m
2
H of the central value. We ignore the

negligibly small uncertainties in mH and mV compared to
other sources of uncertainties. We add the uncertainties in
quadrature. Our numerical results for Aind are shown in
Table. II. We note that the uncertainties inAind are less than
2% of the central values.
We can compare our results for Aind with a previous

calculation in Ref. [8]. Our calculation is equivalent to the
one in Ref. [8], except that we use an updated value of the
measured Higgs mass from Ref. [33], which has smaller
uncertainties than what was employed in Ref. [8]. Our
results for Aind in Table. II are compatible with those in
Ref. [8] within uncertainties.

B. Direct amplitude

We compute the numerical values of the direct amplitude
using Eq. (34), so that

Adir ¼
1

2

ffiffiffiffi
Φ

p
eeQyQ

X
n¼0;2;4;αs

Uf⊥V ðμ; μ0Þf⊥V ðμ0Þ

×
Z

1

0

dxTHðx; μÞϕ⊥
V
ðnÞðx; μÞ: ð45Þ

We now discuss our strategy to compute Eq. (45) numeri-
cally. The decay constant f⊥V ðμ0Þ depends on the LDME
hVjψ†σ · ϵðλÞχj0i and the ratios of LDMEs hv2SiV , hv4SiV ,
hv2DiV , hDE0iV , hBiV , and hDE1iV , see Eq. (23). The
dependence on the leading-order LDME hVjψ†σ · ϵðλÞχj0i
can be eliminated by rewriting the decay constant as

f⊥V ðμ0Þ ¼
f⊥V ðμ0Þ
fkV

fkV ¼ fkV

�
1 −

αsðμ0ÞCF

4π
log

μ20
m2

−
1

6
hv2SiV −

1

9
ðhv2SiVÞ2 þ

5

24
hv4SiV

−
1

4
hDE0iV þ hv2DiV þ 1

2
hBiV þOðv5Þ

�
; ð46Þ

and by obtaining the numerical value for fkV from the
measured leptonic decay rate using Eq. (43). The
ϕ⊥
V
ð2Þðx; μÞ term in the LCDA depends on the ratios

hv2SiV , hv4SiV , hv2DiV , hDE0iV , and hDE1iV , see
Eq. (25b), while the remaining contributions in Eq. (24)
depend only on hv4SiV . We can eliminate the ratios hBiV and
hDE0iV in f⊥V ðμ0Þ and ϕ⊥

V
ð2Þðx; μÞ by using the Gremm-

Kapustin relations in Eqs. (D2). We obtain

f⊥V ðμ0Þ ¼ fkV

�
1 −

αsðμ0ÞCF

4π
log

μ20
m2

−
mV − 2m

2m

þ
�
1

3
þmV − 2m

6m

�
hv2SiV −

1

9
ðhv2SiVÞ2

−
1

12
hv4SiV þ hv2DiV þ 1

8
hDE1iV þOðv5Þ

�
;

ð47Þ

and

ϕ⊥
V
ð2Þðx;μ0Þ ¼

��
1

3
−
mV − 2m
12m

�
hv2SiV þ 5

18
ðhv2SiVÞ2

−
11

20
hv4SiV −

1

5
hv2DiV −

1

8
hDE1iV þOðv5Þ

�

×
δð2Þðx− 1=2Þ

8
: ð48Þ

When computing the convolution in Eq. (45), the terms
f⊥V ðμ0Þϕ⊥

V
ðnÞðx; μ0Þ for n ¼ αs, 2, and 4 can contain cross

terms that go beyond our current level of accuracy. In order
to avoid such contributions, we ignore the cross terms that
contribute to the direct amplitude beyond relative order
αsv0 and v4, so that

f⊥V ðμ0Þϕ⊥
V
ð0Þðx; μ0Þ ¼ fkV

�
1 −

αsðμ0ÞCF

4π
log

μ20
m2

−
mV − 2m

2m

þ
�
1

3
þmV − 2m

6m

�
hv2SiV

−
1

9
ðhv2SiVÞ2 −

1

12
hv4SiV þ hv2DiV

þ 1

8
hDE1iV

�
δðx − 1=2Þ; ð49aÞ

f⊥V ðμ0Þϕ⊥
V
ðαsÞðx; μ0Þ ¼ fkVϕ

⊥
V
ðαsÞðx; μ0Þ; ð49bÞ

f⊥V ðμ0Þϕ⊥
V
ð2Þðx; μ0Þ

¼ fkV

��
1

3
−
mV − 2m

4m

�
hv2SiV þ 7

18
ðhv2SiVÞ2 −

11

20
hv4SiV

−
1

5
hv2DiV −

1

8
hDE1i

�
δð2Þðx − 1=2Þ

8
; ð49cÞ

f⊥V ðμ0Þϕ⊥
V
ð4Þðx; μ0Þ ¼ fkV

hv4SiV
5

δð4Þðx − 1=2Þ
384

: ð49dÞ

TABLE II. Numerical results for the amplitudes Aind and Adir.

V Aind × 105 (GeV1=2) Adir × 105 (GeV1=2)

J=ψ −ð11.73þ0.16
−0.16 Þ ð0.631þ0.071

−0.080 Þ þ ð0.065þ0.015
−0.012 Þi

ϒð1SÞ ð3.288þ0.033
−0.033 Þ −ð2.719þ0.136

−0.142 Þ − ð0.291þ0.055
−0.040 Þi

ϒð2SÞ ð2.158þ0.026
−0.026 Þ −ð1.896þ0.101

−0.104 Þ − ð0.197þ0.037
−0.027 Þi

ϒð3SÞ ð1.808þ0.022
−0.022 Þ −ð1.614þ0.090

−0.093 Þ − ð0.164þ0.031
−0.023 Þi
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We use the results in Eqs. (49) to compute the direct
amplitude. Similarly, when calculating the convolution in
Eq. (45), we ignore the order αs correction to THðx; μÞ for
n ¼ αs, 2, and 4.
We first discuss the numerical input parameters neces-

sary for the computation of the direct amplitude. We
compute the decay constant fkV from Eq. (43) using the
measured leptonic decay rate, and αðμ0Þ ¼ 1=132 regard-
less of the vector meson state V. We set the central values of
μ0 and μ to bemV andmH, respectively. We compute m̄ðμÞ,
αsðμ0Þ and αsðμÞ using RunDec [36–38]. We take the QED
coupling constant at scale μ to be αðμÞ ¼ 1=128. We resum
the logarithms in μ=μ0 to NLL accuracy using the Abel-
Padé method [7,8]. We take the number of active quark
flavors in the evolution kernel to be nf ¼ 4 and 5 for scales
below and above mb, respectively. The ratios m2hv2SiV for
V ¼ J=ψ and ϒðnSÞ have been obtained from potential-
model (Cornell potential) calculations in Refs. [39,40]:

hJ=ψ jψ†σ · ϵðλÞð− i
2
D
↔Þ2χj0i

hJ=ψ jψ†σ · ϵðλÞχj0i ¼ 0.441þ0.045
−0.046 � 0.132 GeV2;

ð50aÞ

hϒð1SÞjψ†σ · ϵðλÞð− i
2
D
↔Þ2χj0i

hϒð1SÞjψ†σ · ϵðλÞχj0i ¼ −0.193þ0.069
−0.070

� 0.019 GeV2; ð50bÞ

hϒð2SÞjψ†σ ·ϵðλÞð− i
2
D
↔Þ2χj0i

hϒð2SÞjψ†σ ·ϵðλÞχj0i ¼1.898þ0.090
−0.089 �0.190GeV2;

ð50cÞ

hϒð3SÞjψ†σ ·ϵðλÞð− i
2
D
↔
Þ2χj0i

hϒð3SÞjψ†σ ·ϵðλÞχj0i ¼3.283þ0.130
−0.127 �0.328GeV2:

ð50dÞ

The first uncertainty comes from the variation of the
potential-model parameters, and the second uncertainty is
taken to be �0.3 and �0.1 times the central value for V ¼
J=ψ and V ¼ ϒðnSÞ respectively, which comes from the
uncalculated corrections of relative order v2. The potential-
model calculations in Refs. [39,40] also let us compute the
binding energies EV ¼ mV − 2m, which are given by

EJ=ψ ¼ 0.306þ0.039
−0.041 � 0.092 GeV; ð51aÞ

Eϒð1SÞ ¼ −0.053� 0.018� 0.005 GeV; ð51bÞ

Eϒð2SÞ ¼ 0.482� 0.032� 0.048 GeV; ð51cÞ

Eϒð3SÞ ¼ 0.823� 0.045� 0.082 GeV; ð51dÞ

where the uncertainties are as in Eqs. (50). The uncertainty
in EV from the variation of the potential-model parameters
are correlated with the uncertainty in the ratio m2hv2SiV .
We use these values of the binding energies to compute the
heavy-quark mass through the relation m ¼ 1

2
ðmV − EVÞ.

The authors of Refs. [39,41] also found the relation
hv4SiV ¼ ðhv2SiVÞ2½1þOðv2Þ�, which is valid if the
LDMEs are computed in a potential model like the
Cornell potential and in dimensional regularization. By
using this relation, we take the central value for the ratio
hv4SiV to be ðhv2SiVÞ2 and take the uncertainty to be �0.3
and �0.1 times the central value of hv4SiV for V ¼ J=ψ and
V ¼ ϒðnSÞ, respectively. The ratios hv2DiV and hDE1iV
are not known; since these ratios scale as v4, we take the
central values of the ratios to be 0 and take the uncertainties
to be �0.09 for V ¼ J=ψ, and �0.01 for V ¼ ϒðnSÞ,
respectively.
We now list the sources of uncertainties in Adir. We

account for the uncertainties in the NRQCD LDMEs as
discussed above. We vary the scales μ and μ0 between
1
2
mH < μ < 2mH and 1

2
mV < μ0 < 2mV , while we ignore

the negligibly small shifts in the QED couplings αðμ0Þ and
αðμÞ from scale variations. We also ignore the uncertainties

from mH and mV . We consider the uncertainty in fkV that
originates from the experimental uncertainties in the
leptonic decay rate. We add the uncertainties in quadrature.
Our numerical results for Adir are shown in Table. II. The
imaginary part ofAdir comes from the imaginary part in the
order αs correction to THðx; μÞ. Note that the uncertainties
in the real and imaginary parts of Adir are correlated.
For J=ψ, the uncertainties from the LDMEs are com-

parable to the uncertainties from the variations of μ0 and μ.
If we ignore the uncertainties from scale variations, the
uncertainty in Re½Adir� is about 8% of the central value, and
the uncertainty in Im½Adir� is about 10% of the central
value. This is comparable to the nominal size of the relative
order v4 correction.
For ϒðnSÞ, the uncertainties are dominated by scale

variations. If we ignore the uncertainties from scale
variations, the uncertainties in the real and imaginary parts
of Adir are about 1% of the central values, which are
comparable to the nominal size of the relative order v4

correction.
While the uncertainties from the LDMEs are expected to

be reduced when the LDMEs hv2DiV and hDE1iV are
constrained, the reduction of the uncertainties from varia-
tions of scales would require calculation of the order α2s and
order αsv2 correction to the decay constant and the LCDA,
and the order α2s correction to THðx; μÞ.
We again compare our results for Adir with the calcu-

lation in Ref. [8]. Our results for Adir in Table. II are
compatible with those in Ref. [8] within uncertainties. For
J=ψ , the uncertainty for Adir is smaller than in Ref. [8],
owing to the explicit calculation of the relative order v4
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corrections included in this work. On the other hand, for
ϒðnSÞ, the uncertainties for Adir are larger than those in
Ref. [8]; the main reason is that in Ref. [8], the uncertainty
from variations in the scales μ0 and μ were not taken
into account, and instead, the uncertainties from the
uncalculated order α2s and order αsv2 corrections to the
real part of Adir were estimated to be CFCAα

2
sðmÞ=π2 and

CFαsðmÞv2=π of the central value, and the uncertainty from
the uncalculated order α2s correction to the imaginary part
was estimated to be CAαsðmÞ=π of the central value. We
note that these estimates lead to smaller uncertainties
compared to uncertainties estimated from variations of
the scales μ0 and μ. If we would use the same uncertainty
estimates used in Ref. [8] for ϒðnSÞ, then the uncertainties
in Re½Adir� would reduce by a factor of 2, while the
uncertainties in Im½Adir� would increase slightly.

C. Decay rate

We now compute the total decay rate from the numerical
results of Aind and Adir in Table. II. Our results for the
decay rates ΓðH → V þ γÞ are shown in Table III. When
computing the uncertainties in ΓðH → V þ γÞ, we consider
the correlation between the uncertainties in the real and
imaginary parts of Adir. We also consider the correlation
between the uncertainties in Aind and Adir that comes
from the measured leptonic decay rates ΓðV → lþl−Þ. The
uncertainty from uncalculated corrections of relative order
m2

V=m
2
H is taken to be m2

V=m
2
H of the central value of the

decay rate. We also compute the branching ratios BrðH →
V þ γÞ by using the total decay rate of the Higgs ΓH
computed in Refs. [34,35]: for mH ¼ 125.18 GeV, it is
ΓH ¼ 4.10 MeV, with uncertainties given by þ4.0% and
−3.9% of the central value. Our results for the branching
ratios BrðH → V þ γÞ are shown in Table III.
For V ¼ J=ψ, Aind is more than an order of magnitude

larger than Adir, and so, the uncertainty in the decay rate
ΓðH → J=ψ þ γÞ is dominated by the uncertainty in Aind.
As a result, the uncertainty in the prediction for ΓðH →
J=ψ þ γÞ is about 3% of the central value. On the other
hand, for V ¼ ϒðnSÞ, Aind and Adir are comparable. Due
to the large cancellation between Aind and Adir for ϒðnSÞ,
the uncertainty in Γ½H → ϒðnSÞ þ γ� is sensitive to the
uncertainty in Adir.

Our results are compatible with the previous calculation
in Ref. [8] within errors. The uncertainties in ΓðH →
J=ψ þ γÞ and BrðH → J=ψ þ γÞ are slightly smaller than
those of Ref. [8], which is a result of the reduction of the
uncertainty in Aind resulting from the improved measure-
ment of mH. On the other hand, the uncertainties in Γ½H →
ϒðnSÞ þ γ� and Br½H → ϒðnSÞ þ γ� are slightly larger
than those of Ref. [8]. As we discussed in the previous
section, if we would use the same estimates for the
uncertainties used in Ref. [8], then the uncertainties in
Adir would be reduced, leading to uncertainties in Γ½H →
ϒðnSÞ þ γ� and Br½H → ϒðnSÞ þ γ� that are smaller than
those of Ref. [8].
We also consider the case where the Yukawa coupling yQ

deviates from the Standard Model by a factor of κQ. In this
case, the Higgs decay rate into V þ γ is given by
jκQAdir þAindj2. The decay rates Γ½H → J=ψ þ γ� and
Γ½H → ϒðnSÞ þ γ� for −1.5 < κQ < 3.5 are plotted in
Fig. 2. For J=ψ, the decay rate shows moderate dependence
on κc, while for ϒðnSÞ, the decay rates are very sensitive to
κb. In the case of J=ψ , a reduction of uncertainties in Adir
will only have a small effect on the sensitivity of the H →
J=ψ þ γ rate on κc, because the uncertainty in ΓðH →
J=ψ þ γÞ is dominated by the uncertainty in Aind. On the
other hand, forϒ, the decay rate Γ½H → ϒðnSÞ þ γ�will be
even more sensitive to κb if the accuracy in Adir is
improved. The reason for this sensitivity is the large
cancellation between Adir and Aind that only happens for
κb close to 1. We note that even though the Standard-Model
values of Γ½H → ϒðnSÞ þ γ� are very small, the decay rate
Γ½H → ϒðnSÞ þ γ� can still probe large deviations of the
Higgs bottom coupling from its Standard Model value.
Indeed Γ½H → ϒðnSÞ þ γ� may be two/three orders of
magnitude larger than the Standard Model value for κb ≲
−1 or κb ≳ 3. In particular, the case κb ≲ −1 corresponds to
a Higgs bottom coupling whose sign is opposite to the
Standard Model Yukawa coupling.

V. SUMMARY AND DISCUSSION

In this work we computed the order v4 correction to the
decay rate ΓðH → V þ γÞ where V ¼ J=ψ or ϒðnSÞ based
on the nonrelativistic QCD (NRQCD) factorization for-
malism. By using the light-cone approach, we resummed
the logarithms of m2

H=m
2
V that appear in higher order

corrections in αs to all orders in αs at the next-to-leading
logarithmic accuracy.
If we consider that αs ≈ v2 at the scale of the heavy-

quark mass, the corrections of order α2s and αsv2 would be
of the same order as the order v4 corrections computed in
this paper. The calculation of order α2s and order αsv2

corrections to the decay rate ΓðH → V þ γÞ requires
calculation of the two-loop correction to c0 and the one-
loop correction to cD2 in Eq. (1), respectively. In the light-
cone approach, the order α2s correction to the hard part

TABLE III. Numerical results for ΓðH → V þ γÞ and
BrðH → V þ γÞ.
V ΓðH → V þ γÞ (GeV) BrðH → V þ γÞ
J=ψ ð1.231þ0.038

−0.037 Þ × 10−8 ð3.01þ0.15
−0.15 Þ × 10−6

ϒð1SÞ ð4.08þ1.65
−1.23 Þ × 10−11 ð9.97þ4.04

−3.03 Þ × 10−9

ϒð2SÞ ð1.07þ0.57
−0.37 Þ × 10−11 ð2.62þ1.39

−0.91 Þ × 10−9

ϒð3SÞ ð0.77þ0.43
−0.28 Þ × 10−11 ð1.87þ1.05

−0.69 Þ × 10−9
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THðx; μÞ in Eq. (16), as well as the two-loop correction to
c̃0ðxÞ and the one-loop correction to c̃D2ðxÞ are necessary.
Since these corrections have not been computed, we
include the effects of these higher-order corrections in
the uncertainties.
Our numerical results for the Standard Model values of

the decay rates ΓðH → V þ γÞ and branching ratios
BrðH → V þ γÞ are shown in Table III. The corrections
computed in this work improve the theoretical accuracy in
the prediction of the decay rate ΓðH → J=ψ þ γÞ compared
to a previous calculation in Ref. [8]. If we would have used
the same method to estimate the uncertainties as in Ref. [8],
we would have found uncertainties in Γ½H → ϒðnSÞ þ γ�
reduced by almost a factor of two compared to our results in
Table III, so that they would become comparable to the
results in Ref. [8], as the error of Γ½H → ϒðnSÞ þ γ� would
be dominated by the scale uncertainties. However, due to
the difference in the method to estimate uncertainties, our
results for Γ½H → ϒðnSÞ þ γ� have larger uncertainties
than those of Ref. [8].
We note that the decay rates ΓðH → V þ γÞ depend

on the LDMEs hVjψ†ϵiðλÞσjð− i
2
Þ2 × D

↔ðiD
↔

jÞχj0i and

hVjψ†ϵðλÞ · 1
2
½σ × ðD↔ × gsE − gsE × D

↔Þ�χj0i that are cur-
rently unknown. In our numerical results, we have esti-
mated their sizes according to the conservative power
counting in Refs. [14–17], and included their effects in
the uncertainties. For V ¼ J=ψ, the uncertainties from
these unknown LDMEs are significant compared to the
total uncertainty in ΓðH → J=ψ þ γÞ. Therefore, knowl-
edge of these LDMEs will improve the accuracy in the
prediction of the decay rate ΓðH → J=ψ þ γÞ. Also
the systematic inclusion of relative order v2 effects

in the determination of the matrix element hVjψ†σ ·

ϵðλÞð− i
2
D
↔Þ2χj0i would significantly improve the determi-

nation of the H → J=ψ þ γ decay rate. A calculation of the
LDMEs in potential NRQCD may help constrain these
LDMEs [15].

In Ref. [4], the authors estimated that the process H →
J=ψ þ γ could be measured at the HL-LHC experiment
through the leptonic decays of J=ψ into eþe− and μþμ−.
However, a more recent study by the ATLAS Collaboration
found that the HL-LHC would only be able to put an upper
bound for the decay rate ΓðH → J=ψ þ γÞ at 95% con-
fidence level that is about 15 times larger the Standard
Model value [42]. Although the prospect for measuring the
process H → J=ψ þ γ at the HL-LHC does not look so
good at the moment, it is possible that the experimental
methods will improve over time; it is also possible that
future experiments at the International Linear Collider, the
Circular Electron Positron Collider, the Compact Linear
Collider, or the Future Circular Collider will be able to
probe such processes. In the case of the ϒðnSÞ, the
Standard Model values for the decay rates Γ½H → ϒðnSÞ þ
γ� are about three orders of magnitude smaller than
ΓðH → J=ψ þ γÞ, owing to large cancellations between
the direct and indirect amplitudes.
We show the decay rates ΓðH → J=ψ þ γÞ and Γ½H →

ϒðnSÞ þ γ�when the Higgs charm coupling is rescaled by a
factor κc and the Higgs bottom coupling is rescaled by a
factor κb compared to the Standard Model in Fig. 2. Due to
the cancellation between direct and indirect amplitudes that
occurs when κb ≈ 1, the decay rates Γ½H → ϒðnSÞ þ γ� are
highly sensitive to κb, so much so that the combined rate of
Γ½H → ϒðnSÞ þ γ� for n ¼ 1, 2, and 3 increases to be
larger than one half of the Standard Model value of ΓðH →
J=ψ þ γÞ for κb ≲ −1 or κb ≳ 3. Therefore, the numerical
results presented in this paper may be useful in determining
the size and sign of the Higgs charm and even more the
Higgs bottom couplings when these processes are mea-
sured in future experiments.
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APPENDIX A: KINEMATICS

In this section, we present the kinematical conventions
that we use for the perturbative QQ̄ and the QQ̄g states.
The kinematical conventions that we use here are identical
to the ones used in Ref. [19].

1. Two-body kinematics

We let the Q and the Q̄ to have the momenta p1 and p2,
respectively. We denote the total momentum of the QQ̄
system as P ¼ p1 þ p2, and the relative momentum of the
Q and the Q̄ as q ¼ 1

2
ðp1 − p2Þ. In the rest frame of

the QQ̄, q and P are given by q ¼ ð0; qÞ, and P ¼
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
; 0Þ, which leads to p1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
; qÞ

and p2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
;−qÞ.

2. Three-body kinematics

We again let the Q and the Q̄ to have the momenta p1

and p2, respectively, and the gluon carry momentum kg.
We set the total momentum of the QQ̄g system to
be P ¼ p1 þ p2 þ kg. We define q1 ¼ 1

2
ðp1 − p2Þ and

q2 ¼ 1
6
ð2kg − p1 − p2Þ, so that p1 ¼ 1

3
Pþ q1 − q2, p2 ¼

1
3
P − q1 − q2, and kg ¼ 1

3
Pþ 2q2. In the rest frame

of the QQ̄g system, where P ¼ p1 þ p2 þ kg ¼ 0,

p1¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðq1−q2Þ2

p
;q1−q2Þ, p2¼ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðq1þq2Þ2

p
;

−q1−q2Þ, and kg ¼ ð2jq2j; 2q2Þ, so that P0 ¼ 2jq2j þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 þ q2Þ2 þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 − q2Þ2 þm2

p
.

APPENDIX B: NONRELATIVISTIC EXPANSION
OF DIRAC SPINORS

In order to obtain the matching conditions, we need to
express the QCD amplitudes in terms of the 3-momenta of
the particles and the 2-component Pauli spinors in the
frame where the NRQCD LDMEs are defined. One way to
accomplish this is to compute the QCD amplitudes using
explicit forms of the Dirac spinors uðp1; sÞ and vðp2; s0Þ
with definite spin. In this appendix, we introduce a simple
way to compute the QCD amplitudes with the explicit
Dirac spinors that can be easily used in automated
calculations.
For the perturbative QQ̄ or the QQ̄g states, the frame

where the NRQCD LDMEs are defined is the frame where
the total momentum P of the state is at rest (P ¼ 0), so that
P0 ¼

ffiffiffiffiffiffi
P2

p
and A0 ¼ A · P=

ffiffiffiffiffiffi
P2

p
for an arbitrary 4-vector

A. In this frame, the nonrelativistically normalized Dirac
spinors in Dirac basis are given by [9]

uðp1; sÞ ¼ N1

� ðE1 þm1Þξs
σ · p1ξs

�
¼ N1ð=p1 þm1Þ

�
ξs

0

�
;

ðB1Þ

vðp2; s0Þ ¼ N2

�
σ · p2ηs0

ðE2 þm2Þηs0
�

¼ −N2ð=p2 −m2Þ
�

0

ηs0

�
;

ðB2Þ

where m2
i ¼ p2

i , Ei ¼ pi · P=
ffiffiffiffiffiffi
P2

p
, and Ni ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EiðEi þmiÞ
p

. In general, m1 and m2 can be different.
A QCD amplitude for production of a quark with momen-
tum p1 and an antiquark with momentum p2 involves

vðp2; s0Þ ⊗ ūðp1; sÞ ¼ −N1N2ð=p2 −m2Þ
�

0 0

ηs0 ⊗ ξ†s 0

�

× ð=p1 þm1Þ: ðB3Þ

For example, ūðp1;sÞΓvðp2;s0Þ¼ tr½Γvðp2;s0Þ⊗ ūðp1;sÞ�,
where Γ is a product of gamma matrices. Since ηs0 ⊗ ξ†s is a
2 × 2 matrix, it can be written as a linear combination of a
2 × 2 identity matrix I and the σ matrices:

ηs0 ⊗ ξ†s ¼ 1

2
trðηs0 ⊗ ξ†sÞI þ 1

2
trðηs0 ⊗ ξ†sσÞ · σ

¼ 1

2
ξ†sηs0I þ

1

2
ðξ†sσηs0 Þ · σ: ðB4Þ

We note that in the Dirac basis,

�
0 0

σ 0

�
¼

�
0 −σ
σ 0

��
1 0

0 0

�

¼ −γ
γ0 þ 1

2
¼ −γ

=Pþ
ffiffiffiffiffiffi
P2

p

2
ffiffiffiffiffiffi
P2

p ; ðB5Þ

and

�
0 0

1 0

�
¼

�
0 1

1 0

��
1 0

0 0

�
¼ γ5

γ0 þ 1

2
¼ γ5

=Pþ
ffiffiffiffiffiffi
P2

p

2
ffiffiffiffiffiffi
P2

p ;

ðB6Þ

so that

vðp2; s0Þ ⊗ ūðp1; sÞ ¼ −
N1N2

4
ffiffiffiffiffiffi
P2

p ð=p2 −m2Þ

× ½ðξ†sηs0 Þγ5 − ðξ†sσηs0 Þ · γ�
×
	
=Pþ

ffiffiffiffiffiffi
P2

p 

ð=p1 þm1Þ: ðB7Þ
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By using Eq. (B7), we can compute the quantities of the
form ūðp1; sÞΓvðp2; s0Þ ¼ tr½Γvðp2; s0Þ ⊗ ūðp1; sÞ�, where
Γ is any product of gamma matrices, as traces of gamma
matrices. This can be easily implemented in automated
calculations using FeynCalc. We obtain the nonrelativistic
expansion of a QCD amplitude by computing the amplitude
using Eq. (B7) and expanding in powers of the small
3-momenta of the QQ̄ and the QQ̄g states. Using this
method, we easily reproduce the explicit expressions for
ūðp1; sÞΓvðp2; s0Þ for Γ ¼ 1, γμ, γμγν − γνγμ, and γμγνγσ −
γσγνγμ found in Ref. [18]. We use this method to compute
the QCD amplitudes in Eqs. (7), (10), (19), and (21).
The expression in Eq. (B7) may serve to relate the

nonrelativistic expansion method that we use in this work
with the covariant spin-projector method used in previous
calculations of the H → J=ψ þ γ process in Refs. [4,5]. In
the covariant spin-projector method, spin-singlet and spin-
triplet contributions are computed separately. The standard
forms of the spin projectors, such as the ones used in
Ref. [43], can be obtained from Eq. (B7) by projecting to a
spin-singlet or a spin-triplet state using the Clebsch-Gordan
coefficients. For a spin-singlet state,

P
s;s0 h12 s; 12 s0j00i ×

ξ†sσηs0=
ffiffiffi
2

p
vanishes, and

P
s;s0 h12 s; 12 s0j00iξ†sηs0=

ffiffiffi
2

p
is, up

to a phase, equal to 1. Hence, the spin-singlet projector is,
up to a phase, given by the contribution in Eq. (B7) that is
proportional to ξ†sηs0 , with ξ

†
sηs0 replaced by 1. Similarly, for

a spin-triplet state with polarization λ,
P

s;s0 h12 s; 12 s0j1λi ×
ξ†sηs0=

ffiffiffi
2

p
vanishes for all λ ∈ f−1; 0;þ1g, and P

s;s0 h12 s;
1
2
s0j1λiξ†sσηs0=

ffiffiffi
2

p
is, up to a phase, equal to the polarization

vector of the spin-triplet state. Therefore, the spin-triplet
projector is, up to a phase, given by the contribution in
Eq. (B7) that is proportional to ξ†sσηs0 , with ξ†sσηs0 replaced
by the polarization vector of the spin-triplet state. As a
result, the spin-singlet (spin-triplet) contribution of a QCD
amplitude computed using the covariant spin-projector
method is, up to a phase, equivalent to the contribution
proportional to ξ†sηs0 (ξ

†
sσηs0 ) in the amplitude computed in

the nonrelativistic expansion method. The phase conven-
tions for the spin-singlet and the spin-triplet projectors
depend on the conventions for the Clebsch–Gordan coef-
ficients and the Pauli spinors ξ and η.
One advantage of using the covariant spin-projector

method is that covariant expressions of the QCD ampli-
tudes can be obtained easily, unlike the nonrelativistic
expansion method in Ref. [18]. On the other hand,
covariant expressions can also be obtained if we use
Eq. (B7) to carry out the nonrelativistic expansion of
spinors. Also, in this work, there is no advantage in
computing the spin-singlet and spin-triplet contributions
separately, because both contributions appear in the match-
ing condition in Eq. (6) simultaneously. Therefore, we
compute the QCD amplitudes in Eqs. (7), (10), (19), and
(21) using Eq. (B7).

APPENDIX C: SHORT-DISTANCE
COEFFICIENTS FOR H → hc + γ

The calculation of the short-distance coefficients pre-
sented in Sec. II A can be easily applied to production
amplitudes of other quarkonium states. For example,
projecting onto the JPC ¼ 1þ− state gives us the short-
distance coefficients for Higgs decay into hc þ γ to relative
order v2. To achieve this, we first write down the matching
condition for the JPC ¼ 1þ− case as

iM½H → QQ̄ðJPC ¼ 1þ−Þ þ γ�

¼ c1
m
hQQ̄jψ†

�
−
i
2
D
↔
�
· ϵðλÞχj0i

þ cD3

m3
hQQ̄jψ†ϵðλÞ ·

�
−
i
2
D
↔
�
3

χj0i þOðgs; ðjqj=mÞ5Þ;

ðC1Þ

and

iM½H → QQ̄gðJPC ¼ 1þ−Þ þ γ� ¼ c1
m
hQQ̄gjψ†

�
−
i
2
D
↔
�
· ϵðλÞχj0i þ cD3

m3
hQQ̄gjψ†ϵðλÞ ·

�
−
i
2
D
↔
�
3

χj0i

þ cE
m2

hQQ̄gjψ†gsE · ϵðλÞχj0i

þ cDB0

m3
hQQ̄gjψ†ϵðλÞ · σ 1

3
ðD↔ · gsBþ gsB · D

↔Þχj0i

þ cDB1

m3
hQQ̄gjψ†ϵðλÞ · 1

2
½σ × ðD

↔
× gsB − gsB × D

↔
Þ�χj0i

þ cDB0
1

m3
hQQ̄gjψ†ϵðλÞ · i

2
ðD↔ × gsBþ gsB × D

↔Þχj0i

þ cDB2

m3
hQQ̄gjψ†ϵiðλÞσjðD↔ðigsBjÞ þ gsB ðiD

↔
jÞÞχj0i þOðg2s ; jqij3=m3Þ; ðC2Þ
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where we define [see also Eq. (2)]

½D↔�3 ¼ 1

4
½D↔ðD↔Þ2 þ 2D

↔
iD
↔
D
↔

i þ ðD↔Þ2D↔�: ðC3Þ

The color-octet matrix elements for the JPC ¼ 1þ− case are
obtained from the color-octet matrix elements for the
JPC ¼ 1−− case in Eq. (6) by making the replacements
gsE → gsB and gsB → gsE.
From the JPC ¼ 1þ− contributions to the QQ̄ and QQ̄g

amplitudes in Eqs. (7) and (10), we obtain the short-
distance coefficients

c1 ¼
eeQyQ
m

ðϵ�γ × p̂γÞ · ϵ�ðλÞ; ðC4aÞ

cD3 ¼ −
4

5

eeQyQ
m

ðϵ�γ × p̂γÞ · ϵ�ðλÞ; ðC4bÞ

cE ¼ i
eeQyQ
m

ðϵ�γ × p̂γÞ · ϵ�ðλÞ; ðC4cÞ

cDB0
¼ −i

eeQyQ
m

ðϵ�γ × p̂γÞ · ϵ�ðλÞ
1 − 3r
8ð1 − rÞ ; ðC4dÞ

cDB1
¼ −i

eeQyQ
m

ðϵ�γ × p̂γÞ · ϵ�ðλÞ
3 − 7r

16ð1 − rÞ ; ðC4eÞ

cDB0
1
¼ i

eeQyQ
m

ðϵ�γ × p̂γÞ · ϵ�ðλÞ
39 − 9r
40ð1 − rÞ ; ðC4fÞ

cDB2
¼ −i

eeQyQ
m

ðϵ�γ × p̂γÞ · ϵ�ðλÞ
31þ 9r
80ð1 − rÞ ; ðC4gÞ

where r ¼ 4m2

m2
H
.

Recently, a computation of the decay rate ΓðH → hc þ γÞ
in the NRQCD factorization formalism at leading order in v
appeared in Ref. [44]. This is equivalent to our calculation
of the short-distance coefficient c1 in Eq. (C4a), which
leads to the expression for the decay rate ΓðH → hc þ γÞ at
leading order in v that is given by

ΓðH → hc þ γÞ ¼ 4παe2Qy
2
Q

3m4

X
λ¼0;�1

h0jχ†
�
−
i
2
D
↔
�

i
ψ jhcðλÞi

× hhcðλÞjψ†
�
−
i
2
D
↔
�

i
χj0iΦ; ðC5Þ

where the sum is over the polarization of the hc andΦ is the
phase-space and normalization factor given in Eq. (42). Our
result in Eq. (C5) agrees with the decay rate computed
in Ref. [44].

APPENDIX D: GREMM-KAPUSTIN RELATIONS

The Gremm-Kapustin relations [45] are obtained from

hVj½O; H�j0i ¼ −hVjHOj0i ¼ ð2m −mVÞhVjOj0i; ðD1Þ

where O is an NRQCD operator, and H is the NRQCD
Hamiltonian. Computing the commutator ½O; H� leads to
the following relations:

ðmV − 2mÞhVjψ†σ · ϵðλÞχj0i

¼ 1

m
hVjψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

2

χj0i

−
1

4m3
hVjψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

4

χj0i

−
1

m
hVjψ†gsB · ϵðλÞχj0i

þ 1

4m2
hVjψ†ϵðλÞ · 1

2
½σ × ðD↔ × gsE − gsE × D

↔Þ�χj0i;
ðD2aÞ

ðmV − 2mÞhVjψ†σ · ϵðλÞ
�
−
i
2
D
↔
�

2

χj0i

¼ 1

m
hVjψ†σ · ϵðλÞ

�
−
i
2
D
↔
�

4

χj0i

−
3

2
hVjψ†σ · ϵðλÞ 1

3
ðD↔ · gsEþ gsE · D

↔Þχj0i; ðD2bÞ

ðmV − 2mÞhVjψ†ϵiðλÞσj
�
−
i
2

�
2

D
↔ðiD

↔
jÞχj0i

¼ 1

m
hVj 1

2
ψ†ϵiðλÞσj

�
−
i
2

�
2
�
D
↔ðiD

↔
jÞ;

�
−
i
2
D
↔
�

2
�
χj0i

−
1

2
hVjψ†ϵiðλÞσjðD↔ðigsEjÞ þ gsE

↔ðiD
↔

jÞÞχj0i; ðD2cÞ

ðmV − 2mÞhVjψ†gsB · ϵðλÞχj0i

¼ hVjψ†ϵðλÞ · i
2
ðD
↔
× gsEþ gsE × D

↔
Þχj0i; ðD2dÞ

where, in calculating the commutator ½O; H� we included
operators in the Hamiltonian up to 1=m2 accuracy, with the
Wilson coefficients at order α0s, and kept NRQCD operators
up to dimension 7. Hence, the relations in Eqs. (D2) are
valid up to order v4 relative to the leading-order LDME
hVjψ†σ · ϵðλÞχj0i and at leading order in αs. These rela-
tions can also be verified in perturbation theory.
The Gremm-Kapustin relations provide a way to identify

the velocity scalings of the LDMEs that are suppressed
beyond the conservative power counting of Refs. [14–17].
Since the binding energymV − 2m scales likemv2, the left-
hand side of Eq. (D2c) is suppressed by v6 compared to the
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leading-order LDME hVjψ†σ · ϵðλÞχj0i. Therefore, the

LDME hVjψ†ϵiðλÞσjðD↔ðigsEjÞ þ gsE ðiD
↔

jÞÞχj0i does not
contribute to the amplitude in Eq. (1) at relative order v4

accuracy because it is suppressed by at least v6 compared to
the leading-order LDME, and scales like v15=2. Similarly,

the left-hand side of Eq. (D2d) is suppressed by v5

compared to the leading-order LDME, and hence, the
LDME on the right-hand side of Eq. (D2d)scales like
v13=2 and does not contribute to the amplitude in Eq. (1) at
relative order v4 accuracy.
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