
 

Radial and orbital Regge trajectories in heavy quarkonia

A.M. Badalian*

Institute of Theoretical and Experimental Physics, Moscow 117218, Russia

B. L. G. Bakker †

Department of Physics and Astronomy, Vrije Universiteit,
De Boelelaan 1081, 1081HV Amsterdam, Netherlands

(Received 11 March 2019; published 26 September 2019)

The spectra of heavy quarkonia are studied in two approaches: with the use of the Afonin-Pusenkov
representation of the Regge trajectories for the squared excitation energy E2ðnlÞ (ERT) and using the
relativistic Hamiltonian with the universal interaction. The parameters of the ERTs are extracted from the
experimental masses and in both cases, bottomonium and charmonium, the value of the radial slope bnðQQ̄Þ
appears to be ∼40% larger than the orbital slope blðQQ̄Þ: in particular in bottomonium the orbital slope
blðbb̄Þ¼0.50ð1ÞGeV2, the radial slope bnðbb̄Þ ¼ 0.71ð1Þ GeV2 and in charmonium blðcc̄Þ¼0.76ð2ÞGeV2,
bnðcc̄Þ ¼ 1.02ð8Þ GeV2; in both cases the slopes do not depend on the total momentum J, while the
intercepts are different for the states with different J. For the resonances above theDD̄ threshold, we predict
Mðχc0ðnPÞÞ (inMeV) as 3415, 3862(8), 4196(12), 4475(15), and 4720(17);Mðχc1ðnPÞÞ (inMeV) as 3511,
3943(7), 4274(11), and 4553(15); andMðχc2ÞðnPÞÞ (in MeV) as 3556, 3.928(4), 4223(6), and 4474(8) for
nr ¼ 0, 1, 2, 3, which are in good agreement with the experimental masses, and for the n3D3 states themasses
Mðψ3ðn3D3ÞÞ (in MeV) as 3857(8), 4197(11), 4479(13), and 4700(13) are predicted. In bottomonium
above the BB̄ threshold, the resonances ϒð33D1Þwith the mass 10698(8) MeVand χb1ð43P1Þwith the mass
10758(3) MeV are obtained.

DOI: 10.1103/PhysRevD.100.054036

I. INTRODUCTION

In recent years, a large number of new resonances was
observed in heavy quarkonia (HQ) [1–8], and among them,
the resonances Xð4500Þ and Xð4700Þ with JPC ¼ 0þþ [6],
being the highest excitations in the meson sector, are
particularly interesting. The discovery of these resonances
has stimulated new theoretical studies [8–16], and different
conceptions about their nature have been presented,
including diquark-antidiquark csc̄s̄ types of tetraquarks
[10,12,13,15,16]. However, even within the tetraquark csc̄s̄
picture, different interpretations have been suggested.
These resonances were also studied as conventional cc̄
mesons [17–21], which implies that the cc̄ component
dominates in the wave function (w.f.) of a resonance
but does not exclude that other components, like
diquark-antidiquark or meson-meson, can also be present

in the w.f. [17]. For decades, the spectra and other
properties of HQ were studied in different potential models
(PMs), both nonrelativistic and relativistic [22–31], which
have allowed us to successfully describe low-lying HQ
states. However, the masses of the high HQ excitations
strongly depend on the QQ̄ interaction at large distances as
well as on the heavy quark mass used, and the predicted
values can differ by approximately (100–150) MeV (see the
compilations in Refs. [11,27]). This happens because, using
in PMs several fitting parameters, the first two or three
excitations can be easily described with good accuracy,
while the masses of the high excitations appear to be very
sensitive to the behavior of the QQ̄ potential at large
distances as well as to the quark masses and kinematics
used. For example, in Ref. [21], in which the screened
confining potential is taken, the resonance Xð4140Þ is
considered as a candidate of χc1ð3PÞ, while with a similar
potential in a nonrelativistic model, the mass Mc1ð3PÞ,
larger by approximately 140MeV, is obtained [17], and this
state is identified as Xð4274Þ.
To study HQ spectra, it is useful to present the masses of

high excitations via the radial Regge trajectories (RTs)—it
allows us to distinguish between conventional QQ̄ mesons
and exotic states. The parameters of RTs can be determined
either in dynamical calculations [25–27,29–31] or from the
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analysis of the experimental masses [32,33], assuming that
the HQ high excitations can be described by the linear
radial RT, similar to that in light mesons. The linear radial
RTs in light mesons were introduced in Ref. [34] and later
developed in many studies [35–40],

M2ðnlÞ ¼ M2ðlÞ þ μ2n; ðn ¼ nrÞ: ð1Þ

From the experimental data on light mesons, the radial
slope, μ2ðqq̄Þ ∼ 1.25ð10Þ GeV2 [34,36], was extracted,
while in Refs. [37,38], it was shown that μ2 slightly
depends on how the masses of the resonances are analyzed.
If the width of the resonance is taken into account (using
the so-called half-width rule [37,38]), then the radial slope,
μ2 ¼ 1.34ð4Þ GeV2, is obtained as being approximately
(10–15)% larger than in the case in which the width is
neglected. This correction is not small in light mesons,
since the resonances have large total widths.
Notice that in light mesons with mq ¼ 0 the radial and

the angular momentum (orbital) slopes as well as the
intercept are fully determined by the qq̄ dynamics [40],
while in the HQ, the situation changes, first of all, because
the radial slope μ2ðQQ̄Þ, see Eq. (1), also depends on
the heavy quark mass taken. Because of that circumstance,
in the charmonium family, the radial slope, μ2ðcc̄Þ∼
3.0 GeV2, is very large, and its value varies in the range
ð2.8–3.4Þ GeV2 in different models [25–27,41]. In botto-
monium, μ2ðbb̄Þ ∼ ð5–7Þ GeV2 is larger and also depends
on the static potential V0ðrÞ and the b-quark massmb taken
[25,30,31,41].
To escape the dependence of the radial RT on the

heavy quark mass, Afonin and Pusenkov [41] have sug-
gested another type of RT (henceforth denoted as ERT),
defined for the squared excitation energy E2ðnlÞ, with
EðnlÞ ¼ MðnlÞ − 2mQ:

ðMnðnlÞ − 2mÞ2 ¼ E2ðnlÞ ¼ aðnþ bÞ: ð2Þ

Moreover, they also assumed that this ERT is universal and
can be applied to all unflavored vector mesons, including
ρðnSÞ, ϕðnSÞ, ψðnSÞ, and ϒðnSÞ. The advantage of this
ERTwas discussed in Refs. [42,43], in which this new type
of RT was studied and successfully applied to different
mesons and also to baryons [44].
With the use of Eq. (2), the ground-state masses of all

vector mesons were obtained in reasonable agrement
with experiment [41–43]. However, if different masses
of the s, c, and b quarks are taken, e.g., in Refs. [41]
ms¼0.12ð8ÞGeV, mc ¼ 1.20ð7Þ GeV, and mb ¼
4.32ð6Þ GeV) and in Ref. [43] ms ¼ 0.344ð1Þ GeV,
mc ¼ 1.383ð1Þ GeV, and mb ¼ 4.561 GeV, then from
the fit to the experimental masses of the vector mesons,
ρðnSÞ, ϕðnSÞ, ψðnSÞ, and ϒðnSÞ, different values of the
parameters a and b are obtained; namely, a ¼
1.06ð3Þ GeV2 and b ¼ 0.63ð7Þ GeV2 in Ref. [41], while

in Ref. [43], a ¼ 0.716ð2Þ GeV2 and b ¼ 0.153 GeV2 are
much smaller. This illustrates that the choice of the HQ
mass is of special importance for the ERTs.
Now, we rewrite Eq. (2), introducing the intercept b0 and

the radial slope bn,

E2ðnlÞ ¼ b0ðlÞ þ bnn; ð3Þ

i.e., b0 ¼ ab and bn ¼ a. Then, the mass of the vector
meson Mðn3S1;QQ̄Þ with l ¼ 0 is

Mðn3S1Þ ¼ 2mQ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ bnn

p
: ð4Þ

If the slope bn and the intercept b0 are assumed to be
universal for all mesons [41], then the mass differences,

Mð23S1Þ −Mð13S1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ bn

p
−

ffiffiffiffiffi
b0

p
;

Mð33S1Þ −Mð23S1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ 2bn

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ bn

p
; ð5Þ

have to be equal in the heavy and the light vector mesons
with a given radial quantum number n ¼ nr. However, this
strong statement does not agree with the experimental mass
differences, which can differ by approximately 100 MeV
(see Table I), and therefore there is no strict universality of
the ERT for the vector mesons.
In Table I, we give also the experimental values of the

mass difference, Mð23PJÞ −Mð13PJÞ, for the axial vector
(JPC ¼ 1þþ) and the tensor (JPC ¼ 2þþ) states, which will
be used later in our analysis of the orbital ERT.
We also pay attention (see Table I) to the fact that the

mass difference between the first excited state and the
ground state does not change, if instead of the masses
Mðn3S1Þ one takes the centroid masses McogðnSÞ, i.e., it
does not depend on spin effects. Also, in light mesons, this
difference is approximately 100 MeV larger than in
charmonium and bottomonium, in which it is small, equal
to 26 MeV. Such close values of the mass differences could
be partly explained by the existence of the universal
potential, V0ðrÞ ¼ VCðrÞ þ VGE, which describes the
low-lying states of all mesons with a good accuracy
[22–25]; however, the use of the universal potential is
not a sufficient condition to obtain equal slopes of ERTs for
heavy and light mesons (see below).

TABLE I. The experimental mass differences (in MeV) in light
mesons (nn̄), charmonium, and bottomonium.

Δ nn̄ cc̄ bb̄

Mð23S1Þ −Mð13S1Þ 690(25) 589(2) 563(1)
Mcogð2SÞ −Mcogð1SÞ 700(20) 605(2) 567(1)
Mð33S1Þ −Mð23S1Þ 415(55) 353(1) 332(1)
Mð23P1Þ −Mð13P1Þ 425(56) 361(2) 363(1)
Mð23P2Þ −Mð13P2Þ 388(49) 371(3) 356(2)
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Notice that in HQ the mass formula is simpler than in a
light meson, in which it includes the self-energy and the
string corrections [45,46], which are small and can be
neglected in HQ [46]. However, the masses of heavy
mesons, which have small sizes, strongly depend on the
gluon-exchange (GE) potential used, and for them, the
asymptotic freedom (AF) behavior of the strong coupling
has to be taken into account, in contrast to light mesons,
in which the GE potential can be approximated by the
Coulomb potential with the effective coupling αeff ¼ const,
while the AF behavior is important only for the 1S, 2S, and
1P states [40].
One of the main goals of the present paper is to show that

the heavy quark mass can be taken not as a fitting parameter
but extracted from experimental mass differences, if both
the orbital and the radial ERT’s in the ðE2; nÞ and ðE2; nlÞ
planes are used. Also, we have in mind other goals: (i) to
extract the radial slope bnðQQ̄Þ and the orbital slope
blðQQ̄Þ from experimental data and show that they are
different, both in charmonium and bottomonium, and
smaller than those in light mesons and (ii) to show that
in charmonium and bottomonium the generalized (or the
joint ERT [43]), E2ðnlÞ ¼ b0 þ bllþ bnn, with unequal
radial and orbital slopes can be introduced, in correspon-
dence with the predictions in Refs. [39,41–43].

II. REGGE TRAJECTORIES IN THE (E2, n) AND
(E2, l) PLANES IN BOTTOMONIUM

Bottomonium has the largest number of levels below the
open flavor threshold and provides the unique possibility of
extracting from experiment the ERT parameters in the
(E2, n) and (E2, l) planes with high accuracy. For that,
it is sufficient to use the mass differences [see Eq. (5)],
Mðϒð2SÞÞ−Mðϒð1SÞÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b0þbn
p

−
ffiffiffiffiffi
b0

p ¼563.0ð6ÞMeV
and Mðϒð3SÞÞ −Mðϒð2SÞÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b0 þ 2bn
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ bn

p ¼
331.9ð8Þ MeV, and also the definition of the ground-
state mass, Mðϒð1SÞ ¼ ffiffiffiffiffi

b0
p þ 2mb ¼ 9460.3ð3Þ MeV,

to define the following values of the radial slope and the
intercept of the radial ERT:

b0ðl ¼ 0Þ ¼ ð0.131� 0.001Þ GeV2;

bnðl ¼ 0Þ ¼ ð0.724� 0.002Þ GeV2: ð6Þ

Note that the radial slope bnðϒÞ appears to be almost two
times smaller than that of the ρðnSÞ trajectory, bnðρðnSÞÞ ¼
μ2 ≈ 1.43ð5Þ GeV2 [34,37,39], defined by the experimental
masses MðρðnSÞÞ [1].
Knowing the intercept b0 and the definition of the

ground-state mass,

Mðϒð1SÞÞ ¼ 2mb þ
ffiffiffiffiffi
b0

p
¼ 9.4603ð3Þ GeV; ð7Þ

one can extract the quark mass mb,

mb ¼ 4.549ð1Þ GeV; ð8Þ

the value of which just coincides with the one-loop pole
mass, mbð1 − loopÞ ¼ 1.086m̄b ¼ 4.550 GeV, if the con-
ventional current mass m̄b ¼ 4.18ð1Þ GeV and the QCD
constant ΛMSðnf ¼ 5Þ ¼ 200 MeV (or αsðm̄bÞ ¼ 0.20)
[47–49] are adopted. In Table II, we compare the calculated
parameters b0, bn, and mb with those defined in
Refs. [41,43].
It is of interest to notice that the mass mb and the radial

slope bn, calculated here (see below), have values very
close to those from Ref. [43], but the intercept is 20%
larger.
Thus, the masses of the ϒðnSÞ family are defined by the

radial ERT,

E2ðn;l¼0Þ¼ð0.131ð1Þþ0.724ð2ÞnÞGeV2;

MðϒðnSÞÞ¼ð9.098ð2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.131ð1Þþ0.724ð2Þn

p
ÞGeV;

ð9Þ

and given in Table III. The masses of the ϒðnSÞ and the nD
states were also calculated, using the spinless Salpeter
equation (SSE),

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m̃2

b

q
þ V0ðrÞ

�
φnlðrÞ ¼ McogðnlÞφnlðrÞ; ð10Þ

where, however, the larger two-loop mass m̃b ¼
4.830ð5Þ GeV is used, while the static potential V0ðrÞ ¼
σr − 4αVðrÞ

3r is defined by the fundamental (not fitting)
parameters, taken from Refs. [48,50], m̃b ¼ 4.830 GeV,
σ ¼ 0.18 GeV2, ΛVðnf ¼ 3Þ ¼ 0.480 GeV, and MB ¼
2πσ ≈ 1.15 GeV. Therefore, the eigenvalues McogðnlÞ of
Eq. (10) do not depend on any fitting parameters, while in
the mass of ϒðnSÞ, there is one extra parameter, the strong
coupling αhf , defining the hyperfine correction to the
masses: MðϒðnSÞÞ ¼ McogðnSÞ þ 1=4δhf . The value of
δhf is defined with the universal coupling, αhf ¼ 0.33ð1Þ
[46], which produces a small uncertainty, less than or
approximately equal to 1 MeV in the mass value.
In our approach, the parameters of the ERT are chosen in

such way that the calculated masses of the ϒð1SÞ, ϒð2SÞ,
and ϒð3SÞ exactly coincide with the experimental values.
But the masses of the ϒð4SÞ, ϒð5SÞ, and ϒð6SÞ differ from

TABLE II. The parameters b0, bn of ERT (in GeV2) and the
mass mb (in GeV).

Paper mb b0 bn

Ref. [41] set A 4.32(6) 0.63(7) 1.06(3)
Ref. [41] set B 4.59(5) 0 0.67(7)
Ref. [43] 4.561(1) 0.110(1) 0.716(2)
This paper 4.549(1) 0.131(1) 0.724(2)
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the experimental masses, and this deviation characterizes
their hadronic shifts, since in the one-channel approxima-
tion with the linear confining potential their ERT has to be
linear. To estimate theoretical uncertainties, we will use χ2,
as it is defined in Ref. [38], which takes into account the
uncertainties in the mass values and the widths of the
resonances,

χ2 ¼
X
n

�
M2

nðthÞ −M2
nðexpÞ

ΓnMnðexpÞ
�

2

: ð11Þ

From Table III, one can see that the masses of ϒðnSÞ
with nþ 1 ¼ 1, 2, 3, which lie below the BB̄ threshold,
are exactly equal to the experimental values, if they are
defined by the ERT (the uncertainties are approximately
(3–5) MeV). On the contrary, the experimental mass of
ϒð4SÞ, which lies above the BB̄ threshold, is smaller by
37(4) MeV, as compared to the ERT prediction, and this
shift may occur due to strong coupling to this threshold. An
unusual situation happens with the masses of the ϒð5SÞ,
which is shifted up by 53(8) MeV, while the ϒð6SÞ is
shifted down by approximately 50 MeV; i.e., this ERT can
be considered an approximately linear ERT, defining higher
resonances with accuracy approximately (30–50) MeV.
The observed shifts may be also related to the influence of
the nearby lying 43D1 and 53D1 resonances (see their
masses in Table III and the calculations below) and to
coupling to the nearby BsB̄s threshold [the threshold mass
Mthres ¼ 10831ð1Þ MeV]. Thus, here, we face a many-
channel problem, in which a shift of one resonance up and
of another resonance down is possible [50]. Also, one can
expect that in the region near 11 GeV theϒð6SÞ andϒð5DÞ
resonances, which have large sizes, can be shifted down
due to the flattening of the confining potential; calculations
in Ref. [51] give these shifts, equal to approximately
40 MeVand 60 MeV for the 6S and 5D states, respectively.

Thus, in bottomonium and light mesons, the RTs have
different features. First, the radial slope of the ρðnSÞ RT,
approximately 1.43ð5Þ GeV2, is two times larger than the
bnðϒðnSÞÞ ¼ 0.724 GeV2. Secondly, in bottomonum, its
high excitations have characteristic hadronic shifts, about
50 MeV, which has the same order as their widths, and
because of that, the ERT reproduces their masses with the
accuracy of approximately (30–50) MeV, and therefore the
large value of χ2=d:o:f: ¼ 3.41 is obtained in bottomo-
nium. In light mesons, which have a lot of open channels
and large total widths, approximately (150–200) MeV, the
hadronic shifts of the resonances are reproduced well by
flattened confining potential, and specifically large shifts
are not observed; therefore, in light mesons, their masses
are described well by the linear RT with small χ2=d:o:f:
[38]. This means that the ρðnSÞ mesons have no strong
coupling to a specific channel. Later, for the ψðnSÞ
trajectory, a small χ2=d:o:f: ∼ ð0.1–0.5Þ will be also
obtained.

A. Radial ERT of χ bJ(nP) mesons

At present, there exist a lot of data about the χbJðnPÞ
mesons, and recently, the masses of the high states χb1ð3PÞ
and χb2ð3PÞ were determined [1,52–54]. From the known
masses, the radial slope and the intercept of the ERT,
describing χbJðnPÞ mesons, can be extracted,

E2ðnJ; l ¼ 1Þ ¼ BðJÞ þ bnðJÞn;
Mðn3PJÞ ¼ 2mb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðJÞ þ bnðJÞn

p
; ð12Þ

where we introduced the factor BðJÞ ¼ b0ðJÞ þ blðJÞ,
playing the role of the modified intercept. In general, the
parameters BðJÞ and bnðJÞ can depend on the angular
momentum J, while the quark mass, mb ¼ 4.549ð1Þ GeV,
is taken from the analysis of the ϒðnSÞ states, Eq. (8).
Using the experimental values of the masses, one can
extract both the parameter BðJÞ and the radial slope bnðJÞ,
for J ¼ 0, 1 2. It is of interest that the calculations give
equal values of the radial slope bnðJ; l ¼ 1Þ for J ¼ 0, 1, 2,
i.e., bnðJ; l ¼ 1Þ ¼ bnðl ¼ 1Þ does not depend on the
angular momentum J,

bnðl ¼ 1Þ ¼ 0.708ð1Þ GeV2; ðJ ¼ 0; 1; 2Þ; ð13Þ

while the modified intercept BðJ; l ¼ 1Þ depends on J,

BðJ ¼ 0; l ¼ 1Þ ¼ 0.579ð1Þ GeV2;

BðJ ¼ l ¼ 1Þ ¼ 0.632ð2Þ GeV2;

BðJ ¼ 2; l ¼ 1Þ ¼ 0.663ð2Þ GeV2; ð14Þ

as it should to provide correct values of the ground-state
masses. Notice that for the χbJðnPÞ mesons the radial
slope, bnðl ¼ 1Þ ¼ 0.708ð1Þ GeV2, is only 2% smaller

TABLE III. The experimental masses MðϒðnSÞÞ (in MeV) [1];
the masses MðϒðnSÞÞ, defined by the ERT, Eq. (9), with the
parameters from Eqs. (6) and (8); and the solutions of Eq. (10),
MðϒðnSÞ ¼ McogðnSÞ þ 1=4δhfðnSÞ.
State From ERT McogðnSÞ þ 1=4δhf Experiment

ϒð1SÞ 9460(5) 9465(5) 9460.3(3)
ϒð2SÞ 10023(5) 10017(3) 10023.3(3)
ϒð3SÞ 10355(4) 10359(2) 10355.2(5)
ϒð4SÞ 10616(4) 10635(2) 10579.4(1.2)
ϒð5SÞ 10838(4) 10884 (2) 10891 (4)
ϒð6SÞ 11035(5) 11093(2) 10987þ11

−3
ϒð1DÞ 10161(10) 10141 (4) absent
ϒð2DÞ 10454(8) 10440((4) absent
ϒð3DÞ 10693(8) 10701(4) absent
ϒð4DÞ 10901(2) 10933(6) absent
ϒð5DÞ 11090 (3) 11100 (7) absent

A. M. BADALIAN and B. L. G. BAKKER PHYS. REV. D 100, 054036 (2019)

054036-4



than bnðl ¼ 0Þ ¼ 0.724 GeV2 of the ϒðnSÞ ERT. The
parameter BðJ; l ¼ 1Þ ¼ b0ðJ; l ¼ 1Þ þ blðJÞ includes
the orbital slope blðJÞ, which will be defined below.
The masses, defined by the ERT with the use of the

calculated BðJ; l ¼ 1Þ, bnðl ¼ 1Þ and mb ¼ 4.549 GeV,
exactly coincide with the experimental masses of the 1P
and 2P states and are only approximately 10MeV larger for
the 3P states, in which experimental data exist now for the
states with J ¼ 1, 2 (see Table IV). For the χbJð4PÞ states
with J ¼ 0, 1, 2, we predict their masses in the region
approximately (10.74–10.76) GeV. Notice that a priori it
was not evident that in bottomonium the radial slope
bnðl ¼ 1Þ does not depend on J, and owing to that, the
χbJðnPÞ ERT can be written as

E2ðJ; l ¼ 1Þðin GeV2Þ ¼ BðJÞ þ 0.708ð1Þn; ðl ¼ 1Þ;
ð15Þ

with the values of BðJ; l ¼ 1Þ from Eq. (14).
In the χbJðnPÞ family, the 3P states lie below, but very

close to, the BB̄ threshold, and one cannot exclude that
these states are affected by this threshold and shifted down.
From the comparison of the experimental and calculated
masses, one can see that the masses of the χbJð3PÞ with
J ¼ 1, 2 are only 15 MeV larger; therefore, possible
hadronic shifts could be approximately 15 MeV. For the
χbJð4PÞ states, which are still not observed, we predict the
masses in the region around 10.75 GeV, where as yet no
states have been observed either [55].

B. Generalized ERT for the χ bJ(nP) and ϒ(nD) states

In the previous section, we have defined the radial slopes
of the ϒðnSÞ and χbJðnPÞ trajectories, bnðϒðnSÞÞ ¼
0.724ð2Þ GeV2 and bnðχbJðnPÞ ¼ 0.708ð2Þ GeV2, which
differ by only 2%, and it allows us to introduce the
generalized (the joint) ERT,

E2ðJ; lÞ ¼ b0ðJÞ þ bllþ bnn ðl ≠ 0Þ; ð16Þ

which was suggested in Refs. [41,56] for light mesons with
equal radial and orbital slopes, while the trajectories with
different bn and bl were discussed in Refs. [36–38], in
which this representation of the ERT was called the joint
RT.
First, we consider the leading ERT, which describes the

ground states with S ¼ 1, J ¼ lþ 1, (n ¼ 0) and in which
the intercept b0 ¼ 0.131 GeV2 is known from the J=ψ
mass:

E2ðn ¼ 0; J ¼ lþ 1Þðin GeV2Þ ¼ 0.131þ bll: ð17Þ

Then from the mass value, Mðχb2ð1PÞÞ ¼ 2mb þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.131þ blðn ¼ 0Þp ¼ 9.912ð1Þ GeV, the orbital slope

blðn ¼ 0Þ ¼ 0.532ð1Þ GeV2 is extracted, and from
Eq. (17), the masses of the ground states with J ¼ lþ 1
(in GeV), 9.460, 9.912, and 10.191, are obtained. Here,
the masses of the J=ψ and χb2ð1PÞ exactly coincide
with the experimental values, while Mðϒð13D3ÞÞ ¼
10.191ð1Þ GeV is significantly larger than the known mass
of another member of the 1D multiplet, Mðϒð13D2Þ ¼
10.164ð1Þ GeV; this indicates that the chosen orbital slope
blðn ¼ 0Þ ¼ 0.532 GeV2 is too large. Therefore, to extract
the orbital slope, we will use all known masses with l ≠ 0:
of ϒ2ð1DÞ, χbJð1PÞ, and χbJð2PÞ, where the orbital slope
enters via the factor BðJ; l ¼ 1Þ ¼ b0ðJÞ þ bl, given in
Eq. (14). Then, the fit with a smaller χ2=d:o:f. gives

blðlÞ ¼ 0.50ð1Þ GeV2; ð18Þ

which does not depend on J. Then, from the factor
BðJ; l ¼ 1Þ ¼ b0ðJÞ þ bl in Eq. (14), different intercepts
b0ðJÞ of the χcJðnPÞ trajectories,

b0ðJ ¼ 0; l ¼ 1Þ ¼ 0.079ð4Þ GeV2;

b0ðJ ¼ l ¼ 1Þ ¼ 0.132ð4Þ GeV2;

b0ðJ ¼ 2; l ¼ 1Þ ¼ 0.163ð1Þ GeV2; ð19Þ

are found. Thus, in the χcJðnPÞ ERT, neither the radial nor
the orbital slopes depend on J, and one can introduce the
generalized ERT,

E2ðJÞðin GeV2Þ ¼ b0ðJÞþ 0.50ð1Þlþ 0.708ð1Þn; ðl≠ 0Þ;
ð20Þ

which also defines the masses of the n3D3 states, where the
intercept b0ðJ ¼ 3; l ¼ 2Þ ¼ 0.145ð2Þ GeV2. The calcu-
lated masses of the Mðn3D3Þ states are given in Table V,
together with the solutions of the SSE, Eq. (10), including
the fine-structure corrections.
The mass of the 13D3 state, shown in Table V, is close to

that of the 13D2 state,Mð13D2Þ ¼ 10.163ð4Þ GeV [1], as it

TABLE IV. The masses of the χbJðnPÞ mesons (in GeV),
defined by the ERT (15), and the experimental data.

State ERT, this paper Experiment

χb0ð1PÞ 9.859 (2) 9.8594 (7)
χb0ð2PÞ 10.232(3) 10.2325(9)
χb0ð3PÞ 10.510(3) Absent
χb0ð4PÞ 10.742(3) Absent

χb1ð1PÞ 9.893(3) 9.8928(6)
χb1ð2PÞ 10.256(2) 10.2555(7)
chib1ð3PÞ 10.529(3) 10.5134(7)
χb1ð4PÞ 10.758(3) Absent

χb2ð1PÞ 9.912(2) 9.9122(6)
χb2ð2PÞ 10.269(3) 10.2687(7)
χb2ð3PÞ 10.540(3) 10.5240(8)
χb2ð4PÞ 10.758(3) Absent
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should be, if the fine-structure splitting of the 1D multi-
plet is small. It also supports the choice of the orbital
bl ¼ 0.50ð1Þ for the states with l ¼ 2. Thus, our analysis
of the ERT has shown, first, that in bottomonium the
radial slope is approximately 40% larger than the orbital
slope and, second, that the intercept of the ERT with l ≠ 0
depends on J.

III. REGGE TRAJECTORIES IN CHARMONIUM

In charmonium, only three multiplets, 1S, 2S, and 1P, lie
below the DD̄ threshold, and the available experimental
data do not allow us to extract the exact value of the c-quark
mass together with the parameters of the ERT. Also, in
charmonium, some resonances are shifted, down or up, and
the parameters, extracted from the masses of these states,
have large uncertainties. Nevertheless, from the masses of
J=ψ and ψð2SÞ, known with an accuracy better than
1 MeV, the radial slope and the intercept of the ψðnSÞ-
trajectory can be extracted,

E2ðl ¼ 0; cc̄Þ ¼ b0ðl ¼ 0Þ þ bnðl ¼ 0Þn;
MðnSÞ ¼ 2mc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0ðl ¼ 0Þ þ bnðl ¼ 0Þn

p
; ð21Þ

if the c-quark mass is fixed. As seen from Eq. (21), the ERT
parameters depend on the c-quark mass and varying mc in
the range (1.2–1.4) GeV, the best agreement with the
ground-state masses is reached for mc in the range mc ¼
ð1.22–1.28Þ GeV. Here, we take mc ¼ 1.24 GeV, which
coincides with the current c-quark mass, m̄cðm̄cÞ ¼
1.26ð6Þ GeV [47,49]. Then, the intercept of the ψðnSÞ
trajectory is defined by the mass of J=ψ ,

b0ðl ¼ 0Þ ¼ ðMðJ=ψÞ − 2.48 GeVÞ2 ¼ 0.381ð1Þ GeV2:

ð22Þ

Using this intercept and Mðψð2SÞÞ ¼ 2mb þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0ðl ¼ 0Þ þ bnðl ¼ 0Þp ¼ 3.6861ð1Þ GeV, one obtains

the radial slope,

bnðl ¼ 0Þ ¼ 1.074 GeV2; ðmc ¼ 1.24 GeVÞ; ð23Þ

and the ψðnSÞ trajectory,

E2ðnSÞðin GeV2Þ ¼ 0.381ð1Þ þ 1.074n: ð24Þ

These parameters can be compared with those from
Ref. [43], in which the radial slope, bn¼0.716ð2ÞGeV2,
significantly smaller than in our case, is taken; also in
Ref. [43], the intercept, b0 ¼ 0.110ð1Þ GeV2, is smaller,
while the mass, mc ¼ 1.383ð1Þ GeV, is larger than mc ¼
1.24 GeV used here. Nevertheless, with the smaller ERT
parameters, the masses of J=ψ and ψð2SÞ were obtained in
full agreement with experiment, and a difference, appro-
ximately (70–100) MeV, with our predictions occurs only
for the masses of the higher states ψð3SÞ and ψð4SÞ. This
happens because the smaller values of the ERT parameters
correspond to the larger mass mc taken. It also shows how
important the choice of the quark mass is.
The masses of all ψðnSÞ mesons are given in Table VI.

For J=ψ and ψð2SÞ, their values exactly coincide with the
experimental values, while Mðψð3SÞÞ ¼ 4.070ð1Þ GeV is
30 MeV larger and Mðψð4SÞ ¼ 4.378 MeV is 43 MeV
smaller, if the 43S1 state is identified with the ψð4415Þ. In
this case, for the ψðnSÞ trajectory, χ2=d:o:f: ¼ 0.50 is

TABLE V. The masses of the ϒðn3D3Þ (in MeV), calculated
from the ERT, Eq. (20), and the solutions of the SSE, Eq. (10).

State ERT Solutions of SSE

ϒð13D3Þ 10169(10) 10145
ϒð23D3Þ 10459(8) 10449
ϒð33D3Þ 10698(8) 10710
ϒð43D3Þ 10906(6) 10938
ϒð53D3Þ 11092(5) 11142

TABLE VI. The masses of ψðnSÞ, χcJðnPÞ, ψðn3D1Þ, and
ψ3ðnDÞ (in mega-electron-volts), defined by the ERT, Eqs. (24),
(25), (26), and (31), and the solutions of the SSE.

State SSE Eq. (10) ERT Experiment

J=ψ 3100 3097 3097
ψð2SÞ 3685 3686 3686
ψð3SÞ 4100 4070 4039(1)
ψð4SÞ 4455 4378(1) 4346(6) or 4421(4)
ψð5SÞ 4760 4643(1) 4643(9)
ψð6SÞ 5043 4878(1) Absent

χc1ð1PÞ 3502 3511(1) 3.510.7(1)
χc1ð2PÞ 3949 3943(7) 3871.7(2)
χc1ð3PÞ 4319 4274(11) 4274(8)
χc1ð4PÞ 4642 4553(15) Absent
χc1ð5PÞ 4933 4798(18) Absent

χc0ð1PÞ 3435 3415(1) 3414.8(3)
χc0ð2PÞ 3929 3862(8) 3862þ82

65

χc0ð3PÞ 4289 4196(12) Absent
χc0ð4PÞ 4622 4475(15) 4506(25)
χc0ð5PÞ 4920 4720(18) 4704þ24

−38

χc2ð1PÞ 3535 3556(1) 3556.2(1)
χc2ð2PÞ 3970 3928(4) 3927(3)
χc2ð3PÞ 4335 4223(6) Absent
χc2ð4PÞ 4665 4474(8) Absent

ψð13D1Þ 3802 3814(26) 3773.1(4)
ψð23D1Þ 4.190 4162(24) 4191(5)
ψð33D1Þ 4.533 4527(10) Absent
ψð43D1Þ 4.830 4.700(13) Absent

ψ3ð1DÞ 3.822(2) 3.857(8) 3.843(1)
ψ3ð2DÞ 4.170(2) 4.197(11) Absent
ψ3ð3DÞ 4.445(2) 4.479(13) Absent
ψ3ð4DÞ 4.840(2) 4.730(14) Absent
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obtained. If the ψð43S1Þ states are identified with ψð4360Þ,
then the smaller value χ2=d:o:f: ¼ 0.13 is found. The
hadronic shifts of the states ψð4040Þ and ψð4415Þ can
be explained by a possible S −D mixing of the 3S − 2D
and 4S − 3D resonances via open channels [28].
Notice that in charmonium the radial slope bnðn¼0;cc̄Þ¼

1.074 GeV2 is larger than the one in bottomonium but
smaller than the radial slope of the ρðnSÞ trajectory in light
mesons, βnðnn̄; l ¼ 0Þ ¼ 1.43ð5Þ GeV2 [36,37,40]; i.e., the
radial slope of the ERT depends on the quark flavor.

A. ERT of the χ cJ(nP) mesons

For the χcJðnPÞ states, the factors BðJ; l ¼ 1Þ can be
extracted from the experimental data on the masses of the
ground states, known with an accuracy better than 1 MeV:
by definition the ground state mass is MðχcJð1PÞÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðJ; l ¼ 1Þp

, where BðJ; l ¼ 1Þ ¼ b0ðJÞ þ blðJÞ plays
the role of a modified intercept, which have the values

BðJ ¼ 0ÞÞ ¼ 0.874 GeV2;

BðJ ¼ 1Þ ¼ 1.063 GeV2;

BðJ ¼ 2Þ ¼ 1.158 GeV2; ðl ¼ 1Þ; ð25Þ

where the difference of approximately (15–30)% corre-
sponds to the differences between the masses of χcJð1PÞ.
Knowing BðJÞ and the masses of higher resonances, one
can define the radial slope of the χcJðnPÞ trajectories; for
that, we use the definition

MðχcJðnPÞ ¼ 2mc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðJ; l ¼ 1Þ þ bnðJÞn

p
ð26Þ

and take for the χc0ðnPÞ trajectory Mðχc0ð2PÞÞ ¼
3.862þ66

−43 GeV, of the recently observed resonance
χc0ð3863Þ [57]. For the Mðχc1ðnPÞÞ trajectory, we use
the massMðχc1ð3PÞÞ ¼ 4.274ð1Þ GeV [1], considering the
χc1ð4274Þ as the 33P1 state, and for the χc2ðnPÞ trajectory,
we take the mass of the χc2ð3939Þ ¼ 3.927ð3Þ MeV [1].
Then, the extracted bnðJÞ,

bnðJ ¼ 0; l ¼ 1Þ ¼ 1.036þ15
−13 ¼ 1.04ð2Þ GeV2;

bnðJ ¼ l ¼ 1Þ ¼ 1.078ð14Þ GeV2;

bnðJ ¼ 2; l ¼ 1Þ ¼ 0.94ð1Þ GeV2; ð27Þ

give their average,

b̄nðl ¼ 1Þ ¼ 1.02ð8Þ GeV2; ð28Þ

with large uncertainty, and therefore the masses of all nP
states, given in Table VI, are calculated with the use of the
parameters from (27) and (25). Notice that the averaged
radial slope is smaller than that of the ψðnSÞ ERT, Eq. (24),
by only 5%. From the masses, given in Table VI, one can

see that the mass of the 23P0 state coincides with that of
χc0ð3862Þ, while the mass Mðχc1ð2PÞÞÞ ¼ 3.943ð7Þ GeV
is larger than the mass of the χc1ð3872Þ resonance,
probably because of its large hadronic shift, which can
be estimated to be approximately 60 MeV. Also, the
calculated mass MðχcJð2PÞ ¼ 3.928ð4Þ GeV is obtained
in exact agreement with the mass of χc2ð3930Þ (see
Table VI).
The parameters of the ERT for the ψðnDÞ resonances can

be determined in the same way as for the χcJðnPÞ
trajectories, i.e., introducing the factor BðJ; l ¼ 2Þ ¼
b0ðJÞ þ 2blðJ; l ¼ 2Þ and using the ground-state masses,
Mð13D1Þ ¼ 3.773.1ð4Þ GeV, Mð13D2Þ ¼ 3.822ð1Þ GeV
[1], and Mð13D3Þ ¼ 3.843ð1Þ GeV of the resonance,
recently observed by the LHCb [58]. This procedure gives

BðJ ¼ 1; l ¼ 2Þ ¼ 1.672ð1Þ GeV2;

BðJ ¼ 2; l ¼ 2Þ ¼ 1.810ð1Þ GeV2;

BðJ ¼ 3; l ¼ 2Þ ¼ 1.858ð1Þ GeV2;

B̄ðl ¼ 2Þ ¼ 1.78ð7Þ GeV2: ð29Þ

The averaged value B̄ðl ¼ 2Þ ¼ 1.78ð7Þ GeV2 has a large
uncertainty and will be used here only for the ψðn3D1Þ
trajectory, in which it gives the best fit. For the n3D2 and
n3D3 states, a better fit is obtained using the quantities
BðJ ¼ l ¼ 2Þ and BðJ ¼ 3; l ¼ 2Þ from Eq. (29). Also,
the masses of the radial nD excitations are calculated
by taking the averaged radial slope: bnðl ¼ 2Þ ¼
1=2ðbnðl ¼ 0Þ þ bnðl ¼ 1ÞÞ ¼ 1.05ð1Þ GeV2. The use of
the averaged slopes allows us to see the physical picture as
a whole, but does not always give the best fit.
The calculated mass, Mð13D1Þ ¼ 3.814ð26Þ MeV (see

Table V), is larger than that of the ψð3770Þ, and this result
indicates that its possible hadronic shift down is approxi-
mately 40 MeV. On the contrary, the calculated mass
Mðψð23D1ÞÞ ¼ 4.162ð24Þ GeV has large uncertainty and
is smaller than the experimental value, Mðψð4160Þ ¼
4.191ð5Þ GeV. In this case, the hadronic shift up is possible
due to the 3S − 2D mixing via the open channels, D�D̄�
and D�þ

s D�−
s [50]. We can conclude that the radial slope of

the ψðn3D1Þ trajectory with the B̄ and bnðl ¼ 2Þ ¼
1.05ð1Þ GeV2 provides a rather good description of the
ψðnD states (see Table VI).
To extract the orbital slope, one can use the ground-state

masses of J=ψ , χc2ð3556Þ, and ψ3ð13D3Þ, the mass of
which, ψ3ð1DÞ ¼ 3.843ð3Þ GeV, was recently measured
[58]. All these states with spin S ¼ 1 and J ¼ lþ 1
determine the leading trajectory of the charmonium family.
Therefore, the intercept of this ERT is known from the J=ψ
mass, b0¼0.381GeV2, and then from BðJ¼2;l¼1Þ¼
b0ðl¼0Þþblðl¼1;n¼0Þ¼1.158GeV2, one finds blðl ¼ 1;
n ¼ 0Þ ¼ 0.777ð1Þ GeV2. On the other hand, the value
blðl ¼ 2; n ¼ 0Þ ¼ 0.738ð4Þ GeV2 is extracted, if the fac-
tor Bðl ¼ 2; n ¼ 0Þ ¼ b0 þ 2b̄lðl ¼ 2Þ ¼ 1.858ð8Þ GeV2
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is used. Taking the averaged value, b̄l ¼ 0.758ð5Þ, the
leading ERT of the charmonium family is

E2ðJ ¼ lþ 1; n ¼ 0Þðin GeV2Þ ¼ 0.381þ 0.758ð5Þl:
ð30Þ

This ERT gives the following masses of the ground
states (in GeV): 3.097 (13S1), 3.547(5) (13P2), and
3.857(7) (13D3), where the latter value is larger than the
mass of ψ3ð3843Þ) by ð16� 7Þ MeV. For the 13F4 state,
the mass 4.109(19) GeV is predicted.
For a next step, one can introduce the generalized ERT

for the states with J ¼ lþ 1,

E2ðJ ¼ lþ 1Þðin GeV2Þ ¼ 0.381þ 0.758ð5Þlþ 1.05ð2Þn;
ð31Þ

and in Table VI, the masses of ψ3ðn3D3Þ, corresponding to
this ERT, are given, together with the solutions of the SSE
(including the fine-structure corrections).
From Table VI, one can see that the calculated masses

of the high excitations with JPC ¼ 0þþ, Mðχc0ð3PÞÞ ¼
4493ð15Þ MeV and Mðχc0ð4PÞÞ ¼ 4741ð18Þ MeV are
close to those of the Xð4500Þ and the Xð4700Þ resonances
with JPC ¼ 0þþ, observed by the LHCb Collaboration [6].
This coincidence can be considered as an indication that
these resonances could have a large cc̄ component.
In Table VI, the masses, defined as the solutions of the

SSE plus spin-dependent corrections, are also given. In the
SSE, the confining potential was taken as linear at all
distances; i.e., the flattening effect [51] at large distances
was neglected. For that reason, the higher nl resonances
with n ¼ 3, 4, determined by the SSE, appear to be
(100–150) MeV larger than those defined by the ERTs,
which evidently take into account the flattening effect.
It is also worth underlining that the physical picture,

presented by the ERTs of HQ, clearly shows that the ERT
parameters depend on the quark flavor and the quark mass
chosen and also weakly depend on the angular momentum
J. Also, in charmonium, the orbital slope is significantly
smaller than that in light mesons, while the radial slope is
smaller only by (10–15)%. In light mesons, the generalized
ERT,

M2ðnl;nn̄ÞðinGeV2Þ
¼0.60þ1.15ð7Þnþ1.10ð5Þl; ðl≠0;mq¼0Þ; ð32Þ

was derived in Ref. [40]. Notice that in charmonium the
averaged radial slope of the ERT, b̄nðcc̄Þ ¼ 1.02ð8Þ GeV2,
is about three times smaller than the slope μ2 ∼
ð2.8–3.5Þ GeV2 of the conventional radial RT (1).

IV. CONCLUSIONS

In our study of HQ, we have used the Afonin-Pusenkov
conception [41] about the RT, defined through the excita-
tion energy, Eðn; lÞ ¼ MðnlÞ − 2mQ, which later was
developed in Refs. [42–44]. Our analysis of the bottomo-
nium and charmonium spectra, performed with the use of
ERT and also of the relativistic Hamiltonian with the
universal interaction, has shown the following:
(1) The orbital and the radial slopes of the ERTs depend

on the flavor and the mass mQ of the heavy quark.
(2) The mass mQ can be extracted from experiment, if

the masses of the ground and two excited states with
the same quantum numbers are known with great
accuracy. Such data exist in bottomonium.

(3) The values of the radial and orbital slopes differ by
approximately 40% both in charmonium and botto-
monium, and therefore their generalized ERTs are
not universal.

(4) In bottomonium, the values of the radial and the
orbital slopes are significantly smaller, by approx-
imately 50%, than in charmonium, which mean-
while are smaller that those in light mesons.

(5) The intercepts of the ERTs are determined by the
masses of the ground states.

(6) In bottomonium, the orbital slope bl¼0.50ð1ÞGeV2

and radial slope bn ¼ 0.708ð2Þ GeV2 do not depend
on the angular momentum J, if l ≠ 0, while the
intercept depends on J.

The parameters of the ERTs and mQ, extracted from the
experimental masses, are collected in Table VII, together
with those of the ρð3S1Þ and ρð3D1Þ trajectories [40].
From the parameters, given in Table VII, one can see

TABLE VII. The parameters of the generalized ERT (in giga-electron-volts squared) in bottomonium, charmonium, and light vector
mesons.

Meson Quark mass (GeV) Intercept a Orbital slope bl Radial slope bn

Bottomonium 4.549(1) 0.131(1) 0.50(1) 0.724(1) (l ¼ 0)
Bottomonium 4.549(1) 0.076,0.131,0.166 (J ¼ 0, 1, 2) 0.50(1) 0.708(2) (l ≠ 0)
ψð3S1Þ 1.24 0.381(1) 0 1.074(1)
χc2ðnPÞ 1.24 0.38(8) 0.76(2) 0.94(1)
χc1ðnPÞ 1.24 0.364(4) 0.76(2) 1.078(14)
ψðn3D3Þ 1.24 0.381 0.758(5) 1.05(2)
ρð3S1Þ 0 0.60 0 1.45 (5)
ρð3D1Þ 0 0.60 1.10(5) 1.15 (7)
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how the intercept and the orbital and the radial slopes are
increasing with a decreasing quark mass.
In bottomonium, the resonances χb1ð4PÞ with the mass

10758(3) MeV and ϒð33D1Þ with the mass 10698(8) MeV
are predicted, while in charmonium, the masses of the
resonances χc0ððnþ 1ÞPÞ with JPC ¼ 0þþ and n ¼ 3, 4,
equal to 4475(15) MeV and 4720(18) MeV, respectively,
are obtained. These mass values are very close to those of
the Xð4500Þ and Xð4700Þ resonances [6], and this result
can be considered an indication that Xð4500Þ and Xð4700Þ

have a large cc̄ component in their wave function. Also, in
charmonium, the masses of the χc0ð23P0Þ; χc2ð23P2Þ,
χc1ð33P1Þ, and 13D2, 13D3 states are in good agreement
with the experimental data on χc0ð3863Þ, χc2ð3930Þ,
χc1ð4274Þ, ψ2ð3822Þ, and ψ3ð3843Þ.
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