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The spectra of heavy quarkonia are studied in two approaches: with the use of the Afonin-Pusenkov
representation of the Regge trajectories for the squared excitation energy E?(nl) (ERT) and using the
relativistic Hamiltonian with the universal interaction. The parameters of the ERTs are extracted from the
experimental masses and in both cases, bottomonium and charmonium, the value of the radial slope b,, (QQ)
appears to be ~40% larger than the orbital slope b;(QQ): in particular in bottomonium the orbital slope
b,(bb)=0.50(1)GeV?, the radial slope b, (bb) = 0.71(1) GeV? and in charmonium b,(c¢)=0.76(2) GeV?,
b,(ct) = 1.02(8) GeV?; in both cases the slopes do not depend on the total momentum J, while the
intercepts are different for the states with different J. For the resonances above the DD threshold, we predict
M(y.o(nP)) (inMeV) as 3415, 3862(8), 4196(12), 4475(15), and 4720(17); My (nP)) (in MeV) as 3511,
3943(7), 4274(11), and 4553(15); and M (., )(nP)) (in MeV) as 3556, 3.928(4), 4223(6), and 4474(8) for
n, = 0,1, 2,3, which are in good agreement with the experimental masses, and for the n3D3 states the masses
My (n3D3)) (in MeV) as 3857(8), 4197(11), 4479(13), and 4700(13) are predicted. In bottomonium
above the BB threshold, the resonances Y(3°D) with the mass 10698(8) MeV and y,,; (4°P;) with the mass

10758(3) MeV are obtained.

DOI: 10.1103/PhysRevD.100.054036

I. INTRODUCTION

In recent years, a large number of new resonances was
observed in heavy quarkonia (HQ) [1-8], and among them,
the resonances X (4500) and X(4700) with J*€ = 0"+ [6],
being the highest excitations in the meson sector, are
particularly interesting. The discovery of these resonances
has stimulated new theoretical studies [8—16], and different
conceptions about their nature have been presented,
including diquark-antidiquark cscs types of tetraquarks
[10,12,13,15,16]. However, even within the tetraquark csc5
picture, different interpretations have been suggested.
These resonances were also studied as conventional c¢
mesons [17-21], which implies that the c¢¢ component
dominates in the wave function (w.f.) of a resonance
but does not exclude that other components, like
diquark-antidiquark or meson-meson, can also be present
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in the w.f. [17]. For decades, the spectra and other
properties of HQ were studied in different potential models
(PMs), both nonrelativistic and relativistic [22-31], which
have allowed us to successfully describe low-lying HQ
states. However, the masses of the high HQ excitations
strongly depend on the QQ interaction at large distances as
well as on the heavy quark mass used, and the predicted
values can differ by approximately (100—150) MeV (see the
compilations in Refs. [11,27]). This happens because, using
in PMs several fitting parameters, the first two or three
excitations can be easily described with good accuracy,
while the masses of the high excitations appear to be very
sensitive to the behavior of the QQ potential at large
distances as well as to the quark masses and kinematics
used. For example, in Ref. [21], in which the screened
confining potential is taken, the resonance X(4140) is
considered as a candidate of y,., (3P), while with a similar
potential in a nonrelativistic model, the mass M, (3P),
larger by approximately 140 MeV, is obtained [17], and this
state is identified as X(4274).

To study HQ spectra, it is useful to present the masses of
high excitations via the radial Regge trajectories (RTs)—it
allows us to distinguish between conventional QQ mesons
and exotic states. The parameters of RTs can be determined
either in dynamical calculations [25-27,29-31] or from the
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analysis of the experimental masses [32,33], assuming that
the HQ high excitations can be described by the linear
radial RT, similar to that in light mesons. The linear radial
RTs in light mesons were introduced in Ref. [34] and later
developed in many studies [35-40],

M?(nl) = M?(1) + u’n,

From the experimental data on light mesons, the radial
slope, u*(qg) ~1.25(10) GeV? [34,36], was extracted,
while in Refs. [37,38], it was shown that y? slightly
depends on how the masses of the resonances are analyzed.
If the width of the resonance is taken into account (using
the so-called half-width rule [37,38]), then the radial slope,
u? = 1.34(4) GeV?, is obtained as being approximately
(10-15)% larger than in the case in which the width is
neglected. This correction is not small in light mesons,
since the resonances have large total widths.

Notice that in light mesons with m, = 0 the radial and
the angular momentum (orbital) slopes as well as the
intercept are fully determined by the gg dynamics [40],
while in the HQ, the situation changes, first of all, because
the radial slope p*(QQ), see Eq. (1), also depends on
the heavy quark mass taken. Because of that circumstance,
in the charmonium family, the radial slope, p*(cc)~
3.0 GeV?, is very large, and its value varies in the range
(2.8-3.4) GeV? in different models [25-27,41]. In botto-
monium, y?(bb) ~ (5-7) GeV? is larger and also depends
on the static potential V() and the b-quark mass m,, taken
[25,30,31,41].

To escape the dependence of the radial RT on the
heavy quark mass, Afonin and Pusenkov [41] have sug-
gested another type of RT (henceforth denoted as ERT),
defined for the squared excitation energy E?(nl), with
E(nl) = M(nl) = 2my:

(M, (nl) —2m)? = E*(nl) = a(n + b). (2)
Moreover, they also assumed that this ERT is universal and
can be applied to all unflavored vector mesons, including
p(nS), ¢(nS), w(nS), and Y(nS). The advantage of this
ERT was discussed in Refs. [42,43], in which this new type
of RT was studied and successfully applied to different
mesons and also to baryons [44].

With the use of Eq. (2), the ground-state masses of all
vector mesons were obtained in reasonable agrement
with experiment [41-43]. However, if different masses
of the s, ¢, and b quarks are taken, e.g., in Refs. [41]
my;=0.12(8) GeV, m, =1.20(7) GeV, and m, =
4.32(6) GeV) and in Ref. [43] m, =0.344(1) GeV,
m, = 1.383(1) GeV, and m;, = 4.561 GeV, then from
the fit to the experimental masses of the vector mesons,
p(nS), ¢(nS), w(nS), and Y (nS), different values of the
parameters a and b are obtained; namely, a =
1.06(3) GeV? and b = 0.63(7) GeV? in Ref. [41], while

in Ref. [43], a = 0.716(2) GeV? and b = 0.153 GeV? are
much smaller. This illustrates that the choice of the HQ
mass is of special importance for the ERTs.

Now, we rewrite Eq. (2), introducing the intercept b, and
the radial slope b,,

E2(nl) = bo(l) + by, (3)

ie., by =ab and b, = a. Then, the mass of the vector
meson M (n3S,; 0Q) with [ =0 is

M(l’l3S1) = 2mQ + \/ bo + bnn. (4)

If the slope b, and the intercept b, are assumed to be
universal for all mesons [41], then the mass differences,

M(2’S)) = M(1S,) = /by + b, = \/b;

M(33S1) —M(23S1) = \/b() +2bn - \/b() + bm (5)

have to be equal in the heavy and the light vector mesons
with a given radial quantum number n = n,. However, this
strong statement does not agree with the experimental mass
differences, which can differ by approximately 100 MeV
(see Table I), and therefore there is no strict universality of
the ERT for the vector mesons.

In Table I, we give also the experimental values of the
mass difference, M(2°P;) — M(1°P;), for the axial vector
(JP€ = 1*71) and the tensor (J¥¢ = 2*1) states, which will
be used later in our analysis of the orbital ERT.

We also pay attention (see Table I) to the fact that the
mass difference between the first excited state and the
ground state does not change, if instead of the masses
M(n?S)) one takes the centroid masses M, (nS), i.e., it
does not depend on spin effects. Also, in light mesons, this
difference is approximately 100 MeV larger than in
charmonium and bottomonium, in which it is small, equal
to 26 MeV. Such close values of the mass differences could
be partly explained by the existence of the universal
potential, V((r) = V(r) + Vgg, which describes the
low-lying states of all mesons with a good accuracy
[22-25]; however, the use of the universal potential is
not a sufficient condition to obtain equal slopes of ERT's for
heavy and light mesons (see below).

TABLE I. The experimental mass differences (in MeV) in light

mesons (ni), charmonium, and bottomonium.

A ni cc bb
M(238,) — M(13S)) 690(25) 589(2) 563(1)
COg(2S) COg(lS) 700(20) 605(2) 567(1)

M(33S)) — M(23S,) 415(55) 353(1) 332(1)

M(2°P,) — M(13P)) 425(56) 361(2) 363(1)

M(2°P,) — M(13P,) 388(49) 371(3) 356(2)
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Notice that in HQ the mass formula is simpler than in a
light meson, in which it includes the self-energy and the
string corrections [45,46], which are small and can be
neglected in HQ [46]. However, the masses of heavy
mesons, which have small sizes, strongly depend on the
gluon-exchange (GE) potential used, and for them, the
asymptotic freedom (AF) behavior of the strong coupling
has to be taken into account, in contrast to light mesons,
in which the GE potential can be approximated by the
Coulomb potential with the effective coupling .y = const,
while the AF behavior is important only for the 15, 2§, and
1P states [40].

One of the main goals of the present paper is to show that
the heavy quark mass can be taken not as a fitting parameter
but extracted from experimental mass differences, if both
the orbital and the radial ERT’s in the (E?, n) and (E?, nl)
planes are used. Also, we have in mind other goals: (i) to
extract the radial slope b,(QQ) and the orbital slope
b,(QQ) from experimental data and show that they are
different, both in charmonium and bottomonium, and
smaller than those in light mesons and (ii) to show that
in charmonium and bottomonium the generalized (or the
joint ERT [43]), E%(nl) = by + b,l + b,n, with unequal
radial and orbital slopes can be introduced, in correspon-
dence with the predictions in Refs. [39,41-43].

II. REGGE TRAJECTORIES IN THE (E?, n) AND
(E%, I) PLANES IN BOTTOMONIUM

Bottomonium has the largest number of levels below the
open flavor threshold and provides the unique possibility of
extracting from experiment the ERT parameters in the
(E?, n) and (E?, ) planes with high accuracy. For that,
it is sufficient to use the mass differences [see Eq. (5)],
M(Y(2S))-M(Y(1S))=vbo+Db,,—/by=563.0(6) MeV
and M(Y(3S)) — M(Y(2S)) = v/by + 2b, — /by + b, =
331.9(8) MeV, and also the definition of the ground-
state mass, M(Y(1S) = /by + 2m;, = 9460.3(3) MeV,
to define the following values of the radial slope and the
intercept of the radial ERT:

bo(I = 0) = (0.131 £ 0.001) GeV?,
b,(1=0) = (0.724 +0.002) GeV?. (6)

Note that the radial slope b, (Y) appears to be almost two
times smaller than that of the p(nS) trajectory, b, (p(nS)) =
u? ~1.43(5) GeV? [34,37,39], defined by the experimental
masses M(p(nS)) [1].

Knowing the intercept b, and the definition of the
ground-state mass,

M(Y(1S)) = 2my, + /by = 9.4603(3) GeV, (7)

one can extract the quark mass m,,

TABLE II. The parameters by, b, of ERT (in GeV?) and the
mass m;, (in GeV).
Paper my by b,
Ref. [41] set A 4.32(6) 0.63(7) 1.06(3)
Ref. [41] set B 4.59(5) 0 0.67(7)
Ref. [43] 4.561(1) 0.110(1) 0.716(2)
This paper 4.549(1) 0.131(1) 0.724(2)
my, = 4.549(1) GeV, (8)

the value of which just coincides with the one-loop pole
mass, m,(1 —loop) = 1.086m,, = 4.550 GeV, if the con-
ventional current mass /m;, = 4.18(1) GeV and the QCD
constant Ag;s(ny = 5) =200 MeV  (or a,(m,) = 0.20)
[47-49] are adopted. In Table II, we compare the calculated
parameters by, b,, and m; with those defined in
Refs. [41,43].

It is of interest to notice that the mass m,, and the radial
slope b,,, calculated here (see below), have values very
close to those from Ref. [43], but the intercept is 20%
larger.

Thus, the masses of the Y'(nS) family are defined by the
radial ERT,

E2(n,1=0) = (0.131(1) +0.724(2)n) GeV?;
M(Y(nS)) = (9.098(2) +1/0.131(1) +0.724(2)n) GeV,
)

and given in Table III. The masses of the Y (nS) and the nD
states were also calculated, using the spinless Salpeter
equation (SSE),

(27 45 4 Volo) ) on(r) = My ). (10

where, however, the Ilarger two-loop mass 7, =
4.8330(5) GeV is used, while the static potential Vy(r) =

_ day(r

or T> is defined by the fundamental (not fitting)
parameters, taken from Refs. [48,50], m;, = 4.830 GeV,
0 =0.18 GeV?, Ay(n; =3)=0.480 GeV, and My =
276 ~ 1.15 GeV. Therefore, the eigenvalues M, (nl) of
Eq. (10) do not depend on any fitting parameters, while in
the mass of Y'(nS), there is one extra parameter, the strong
coupling oy, defining the hyperfine correction to the
masses: M(Y(nS)) = M., (nS) + 1/46y. The value of
Sy is defined with the universal coupling, ape = 0.33(1)
[46], which produces a small uncertainty, less than or
approximately equal to 1 MeV in the mass value.

In our approach, the parameters of the ERT are chosen in
such way that the calculated masses of the Y(1S), Y(2S),
and Y(3S) exactly coincide with the experimental values.
But the masses of the Y'(4S), Y(55), and Y(6S) differ from
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the experimental masses, and this deviation characterizes
their hadronic shifts, since in the one-channel approxima-
tion with the linear confining potential their ERT has to be
linear. To estimate theoretical uncertainties, we will use y2,
as it is defined in Ref. [38], which takes into account the
uncertainties in the mass values and the widths of the
resonances,

o Z(M%(th) - M%(exp)){ "

- I',M,(exp)

From Table III, one can see that the masses of Y (nS)
with n + 1 = 1, 2, 3, which lie below the BB threshold,
are exactly equal to the experimental values, if they are
defined by the ERT (the uncertainties are approximately
(3-5) MeV). On the contrary, the experimental mass of
Y (4S), which lies above the BB threshold, is smaller by
37(4) MeV, as compared to the ERT prediction, and this
shift may occur due to strong coupling to this threshold. An
unusual situation happens with the masses of the Y(55),
which is shifted up by 53(8) MeV, while the Y(6S) is
shifted down by approximately 50 MeV; i.e., this ERT can
be considered an approximately linear ERT, defining higher
resonances with accuracy approximately (30-50) MeV.
The observed shifts may be also related to the influence of
the nearby lying 4°D, and 5°D, resonances (see their
masses in Table III and the calculations below) and to
coupling to the nearby BB, threshold [the threshold mass
M pes = 10831(1) MeV]. Thus, here, we face a many-
channel problem, in which a shift of one resonance up and
of another resonance down is possible [50]. Also, one can
expect that in the region near 11 GeV the Y(6S) and Y'(5D)
resonances, which have large sizes, can be shifted down
due to the flattening of the confining potential; calculations
in Ref. [51] give these shifts, equal to approximately
40 MeV and 60 MeV for the 65 and 5D states, respectively.

TABLEIII.  The experimental masses M (Y (nS)) (in MeV) [1];
the masses M(Y'(nS)), defined by the ERT, Eq. (9), with the
parameters from Egs. (6) and (8); and the solutions of Eq. (10),
M(Y(nS) = Moo (nS) + 1/46,¢(nS).

State From ERT M oo (nS) + 1/46y Experiment
Y(1S) 9460(5) 9465(5) 9460.3(3)
Y(25) 10023(5) 10017(3) 10023.3(3)
Y(39) 10355(4) 10359(2) 10355.2(5)
Y(4S) 10616(4) 10635(2) 10579.4(1.2)
Y (55) 10838(4) 10884 (2) 10891 (4)
Y(65) 11035(5) 11093(2) 109871,!
Y(1D)  10161(10) 10141 (4) absent
Y(2D) 10454(8) 10440((4) absent
Y(3D) 10693(8) 10701(4) absent
Y(4D) 10901(2) 10933(6) absent
Y(5D) 11090 (3) 11100 (7) absent

Thus, in bottomonium and light mesons, the RTs have
different features. First, the radial slope of the p(nS) RT,
approximately 1.43(5) GeV?, is two times larger than the
b,(Y(nS)) = 0.724 GeV?. Secondly, in bottomonum, its
high excitations have characteristic hadronic shifts, about
50 MeV, which has the same order as their widths, and
because of that, the ERT reproduces their masses with the
accuracy of approximately (30-50) MeV, and therefore the
large value of y?/d.o.f. = 3.41 is obtained in bottomo-
nium. In light mesons, which have a lot of open channels
and large total widths, approximately (150-200) MeV, the
hadronic shifts of the resonances are reproduced well by
flattened confining potential, and specifically large shifts
are not observed; therefore, in light mesons, their masses
are described well by the linear RT with small y?/d.o.f.
[38]. This means that the p(nS) mesons have no strong
coupling to a specific channel. Later, for the w(nS)
trajectory, a small y?/d.o.f. ~(0.1-0.5) will be also
obtained.

A. Radial ERT of y;;(nP) mesons

At present, there exist a lot of data about the y,;(nP)
mesons, and recently, the masses of the high states y,, (3P)
and y;,(3P) were determined [1,52-54]. From the known
masses, the radial slope and the intercept of the ERT,
describing y,;(nP) mesons, can be extracted,

E*(nJ,l=1)=B(J)+ b,(J)n,
M(n*P;) =2my, +/B(J) +b,(J)n, (12)

where we introduced the factor B(J) = by(J) + b;(J),
playing the role of the modified intercept. In general, the
parameters B(J) and b, (J) can depend on the angular
momentum J, while the quark mass, m;, = 4.549(1) GeV,
is taken from the analysis of the Y(nS) states, Eq. (8).
Using the experimental values of the masses, one can
extract both the parameter B(J) and the radial slope b,(J),
for J =0,12. It is of interest that the calculations give
equal values of the radial slope b,,(/,l = 1) forJ =0, 1, 2,
ie., b,(J,l=1)=b,(I=1) does not depend on the
angular momentum J,

b,(I=1)=0.708(1) GeV2,  (J=0,1,2), (13)

while the modified intercept B(J,! = 1) depends on J,
B(J=0,1=1)=0579(1) GeV;
B(J=1=1)=0.632(2) GeVZ;
B(J =2,1=1) = 0.663(2) GeV2, (14)

as it should to provide correct values of the ground-state
masses. Notice that for the y,;(nP) mesons the radial
slope, b, (I =1)=0.708(1) GeV?, is only 2% smaller
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TABLE IV. The masses of the y,;(nP) mesons (in GeV),
defined by the ERT (15), and the experimental data.

State ERT, this paper Experiment
Zpo(1P) 9.859 (2) 9.8594 (7)
Zp0(2P) 10.232(3) 10.2325(9)
150(3P) 10.510(3) Absent
X0 (4P) 10.742(3) Absent
xb1(1P) 9.893(3) 9.8928(6)
1 (2P) 10.256(2) 10.2555(7)
chiy (3P) 10.529(3) 10.5134(7)
11 (4P) 10.758(3) Absent
I (1P) 9.912(2) 9.9122(6)
Y (2P) 10.269(3) 10.2687(7)
12 (3P) 10.540(3) 10.5240(8)
X2 (4P) 10.758(3) Absent

than b,(I = 0) = 0.724 GeV? of the Y(nS) ERT. The
parameter B(J,l=1)=by(J,l=1)+b;(J) includes
the orbital slope b;(J), which will be defined below.

The masses, defined by the ERT with the use of the
calculated B(J,l =1), b,(I=1) and m;, = 4.549 GeV,
exactly coincide with the experimental masses of the 1P
and 2P states and are only approximately 10 MeV larger for
the 3P states, in which experimental data exist now for the
states with J = 1, 2 (see Table IV). For the y,;(4P) states
with J =0, 1, 2, we predict their masses in the region
approximately (10.74-10.76) GeV. Notice that a priori it
was not evident that in bottomonium the radial slope
b,(I =1) does not depend on J, and owing to that, the
X»s(nP) ERT can be written as
E%*(J,1=1)(in GeV?) = B(J) +0.708(1)n, (I=1),

(15)

with the values of B(J,! = 1) from Eq. (14).

In the y;,;(nP) family, the 3P states lie below, but very
close to, the BB threshold, and one cannot exclude that
these states are affected by this threshold and shifted down.
From the comparison of the experimental and calculated
masses, one can see that the masses of the y,,;(3P) with
J =1, 2 are only 15 MeV larger; therefore, possible
hadronic shifts could be approximately 15 MeV. For the
s (4P) states, which are still not observed, we predict the
masses in the region around 10.75 GeV, where as yet no
states have been observed either [55].

B. Generalized ERT for the y,;(nP) and Y (nD) states

In the previous section, we have defined the radial slopes
of the Y(nS) and y,;(nP) trajectories, b,(Y(nS))=
0.724(2) GeV? and b, (y,;(nP) = 0.708(2) GeV?, which
differ by only 2%, and it allows us to introduce the
generalized (the joint) ERT,

E*(J,1) = by(J) + bl +b,n  (L#0), (16)
which was suggested in Refs. [41,56] for light mesons with
equal radial and orbital slopes, while the trajectories with
different b, and b, were discussed in Refs. [36-38], in
which this representation of the ERT was called the joint
RT.

First, we consider the leading ERT, which describes the
ground states with S =1, J = [+ 1, (n = 0) and in which
the intercept by = 0.131 GeV? is known from the J/y
mass:

E*(n=0,J =1+ 1)(in GeV?) =0.131 + b;l.  (17)

Then from the mass value, M(y,,(1P)) =2m,;, +
V/0.131 + b;(n = 0) = 9.912(1) GeV, the orbital slope
by(n =0) =0.532(1) GeV? is extracted, and from
Eq. (17), the masses of the ground states with J =1+ 1
(in GeV), 9.460, 9.912, and 10.191, are obtained. Here,
the masses of the J/w and y,,(1P) exactly coincide
with the experimental values, while M(Y(1°D3)) =
10.191(1) GeV is significantly larger than the known mass
of another member of the 1D multiplet, M(Y(1°D,) =
10.164(1) GeV; this indicates that the chosen orbital slope
b;(n = 0) = 0.532 GeV? is too large. Therefore, to extract
the orbital slope, we will use all known masses with / # 0:
of Y»(1D), y;(1P), and y,,;(2P), where the orbital slope
enters via the factor B(J,l = 1) = by(J) + b;, given in
Eq. (14). Then, the fit with a smaller y*/d.o.f. gives

b,(1) = 0.50(1) GeV?, (18)

which does not depend on J. Then, from the factor
B(J,l =1) = by(J) + b, in Eq. (14), different intercepts
bo(J) of the y.;(nP) trajectories,

bo(J =0,1=1) = 0.079(4) GeV2,
bo(J =1=1)=0.132(4) GeV?,
bo(J =2,1=1) =0.163(1) GeV2, (19)

are found. Thus, in the y.;(nP) ERT, neither the radial nor
the orbital slopes depend on J, and one can introduce the
generalized ERT,

E2(J)(in GeV?2) = by(J) +0.50(1)1 +0.708(1)n, (1#0).
(20)

which also defines the masses of the n°D5 states, where the
intercept bo(J = 3,1 =2) = 0.145(2) GeV>. The calcu-
lated masses of the M(n’Ds) states are given in Table V,
together with the solutions of the SSE, Eq. (10), including
the fine-structure corrections.

The mass of the 13D state, shown in Table V, is close to
that of the 1°D, state, M(1°D,) = 10.163(4) GeV [1], as it
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TABLE V. The masses of the Y(n°D;) (in MeV), calculated
from the ERT, Eq. (20), and the solutions of the SSE, Eq. (10).

State ERT Solutions of SSE
Y(13D3) 10169(10) 10145
T(23D3) 10459(8) 10449
Y(33D3) 10698(8) 10710
Y'(43D3) 10906(6) 10938
T(53D3) 11092(5) 11142

should be, if the fine-structure splitting of the 1D multi-
plet is small. It also supports the choice of the orbital
b; = 0.50(1) for the states with [ = 2. Thus, our analysis
of the ERT has shown, first, that in bottomonium the
radial slope is approximately 40% larger than the orbital
slope and, second, that the intercept of the ERT with / # 0
depends on J.

III. REGGE TRAJECTORIES IN CHARMONIUM

In charmonium, only three multiplets, 15, 2S5, and 1P, lie
below the DD threshold, and the available experimental
data do not allow us to extract the exact value of the c-quark
mass together with the parameters of the ERT. Also, in
charmonium, some resonances are shifted, down or up, and
the parameters, extracted from the masses of these states,
have large uncertainties. Nevertheless, from the masses of
J/w and w(2S), known with an accuracy better than
1 MeV, the radial slope and the intercept of the y(nS)-
trajectory can be extracted,

EX(1=0,c¢) = by(l = 0) + b, (Il = 0)n,
M(nS) = 2m, + \/bo(l = 0) + b, (I = 0)n,

(21)

if the c-quark mass is fixed. As seen from Eq. (21), the ERT
parameters depend on the c-quark mass and varying m,. in
the range (1.2-1.4) GeV, the best agreement with the
ground-state masses is reached for m, in the range m. =
(1.22-1.28) GeV. Here, we take m. = 1.24 GeV, which
coincides with the current c-quark mass, m.(m,) =
1.26(6) GeV [47,49]. Then, the intercept of the w(nS)
trajectory is defined by the mass of J/y,

bo(l = 0) = (M(J /) — 2.48 GeV)? = 0.381(1) GeV>.
(22)
Using  this intercept and  M(y(2S)) =2m, +

Vbo(l =0) +b,(I =0) =3.6861(1) GeV, one obtains
the radial slope,

b,(1=0)=1074 GeV2,  (m, =124 GeV), (23)

and the y(nS) trajectory,

E%(nS)(in GeV?) = 0.381(1) + 1.074n. (24)
These parameters can be compared with those from
Ref. [43], in which the radial slope, b,=0.716(2)GeV?,
significantly smaller than in our case, is taken; also in
Ref. [43], the intercept, by = 0.110(1) GeV?2, is smaller,
while the mass, m. = 1.383(1) GeV, is larger than m. =
1.24 GeV used here. Nevertheless, with the smaller ERT
parameters, the masses of J/y and y(25) were obtained in
full agreement with experiment, and a difference, appro-
ximately (70-100) MeV, with our predictions occurs only
for the masses of the higher states w(3S) and y(4S). This
happens because the smaller values of the ERT parameters
correspond to the larger mass m,. taken. It also shows how
important the choice of the quark mass is.

The masses of all y/(nS) mesons are given in Table VI.
For J/y and y(2S5), their values exactly coincide with the
experimental values, while M (y(3S)) = 4.070(1) GeV is
30 MeV larger and M(y(4S) =4.378 MeV is 43 MeV
smaller, if the 43S state is identified with the y(4415). In
this case, for the y(nS) trajectory, y*/d.o.f. = 0.50 is

TABLE VI. The masses of y(nS), y.(nP), w(n’D;), and
w3(nD) (in mega-electron-volts), defined by the ERT, Egs. (24),
(25), (26), and (31), and the solutions of the SSE.

State SSE Eq. (10) ERT Experiment
J/y 3100 3097 3097
w(2S) 3685 3686 3686
w(3S) 4100 4070 4039(1)
w(4S) 4455 4378(1) 4346(6) or 4421(4)
w(59) 4760 4643(1) 4643(9)
w(69) 5043 4878(1) Absent
Ze1(1P) 3502 3511(1) 3.510.7(1)
Ze1(2P) 3949 3943(7) 3871.7(2)
2e1(3P) 4319 4274(11) 4274(8)
Ze1(4P) 4642 4553(15) Absent
Ze1(5P) 4933 4798(18) Absent
2e0(1P) 3435 3415(1) 3414.8(3)
2e0(2P) 3929 3862(8) 3862432
2c0(3P) 4289 4196(12) Absent
Ze0(4P) 4622 4475(15) 4506(25)
2c0(5P) 4920 4720(18) 4704134
2e2(1P) 3535 3556(1) 3556.2(1)
Ze2(2P) 3970 3928(4) 3927(3)
Z2e2(3P) 4335 4223(6) Absent
Ze2(4P) 4665 4474(8) Absent
w(1°Dy) 3802 3814(26) 3773.1(4)
w(2°D)) 4.190 4162(24) 4191(5)
w(3°D,) 4.533 4527(10) Absent
w(4’D)) 4.830 4.700(13) Absent
w5(1D) 3.822(2) 3.857(8) 3.843(1)
w5(2D) 4.170(2) 4.197(11) Absent
w3 (3D) 4.445(2) 4.479(13) Absent
w3(4D) 4.840(2) 4.730(14) Absent
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obtained. If the y(43S,) states are identified with y(4360),
then the smaller value y?/d.o.f. =0.13 is found. The
hadronic shifts of the states y(4040) and y(4415) can
be explained by a possible S — D mixing of the 3§ — 2D
and 4S — 3D resonances via open channels [28].

Notice that in charmonium the radial slope b,,(n=0,cc)=
1.074 GeV? is larger than the one in bottomonium but
smaller than the radial slope of the p(nS) trajectory in light
mesons, 3, (nii, [ = 0) = 1.43(5) GeV? [36,37,40]; i.e., the
radial slope of the ERT depends on the quark flavor.

A. ERT of the y.;(nP) mesons

For the y.;(nP) states, the factors B(J,/ = 1) can be
extracted from the experimental data on the masses of the
ground states, known with an accuracy better than 1 MeV:
by definition the ground state mass is M(y.(1P)) =

VB(J,l=1), where B(J,l=1)=by(J)+ b;(J) plays
the role of a modified intercept, which have the values

B(J = 0)) = 0.874 GeV?,
B(J =1) = 1.063 GeV?,
(J =2) =1.158 GeV?,

B (I=1), (25)
where the difference of approximately (15-30)% corre-
sponds to the differences between the masses of y.;(1P).
Knowing B(J) and the masses of higher resonances, one
can define the radial slope of the y.;(nP) trajectories; for
that, we use the definition

M(y.y(nP) =2m,+\/B(J.l=1)+b,(J)n  (26)
and take for the y.(nP) trajectory M(y.(2P)) =
3.8627% GeV, of the recently observed resonance
Xc0(3863) [57]. For the M(y. (nP)) trajectory, we use
the mass M(y.;(3P)) = 4.274(1) GeV [1], considering the
%c1(4274) as the 33P, state, and for the y.,(nP) trajectory,
we take the mass of the y.,(3939) = 3.927(3) MeV [1].
Then, the extracted b,,(J),

b,(J =0,1=1)=1.036"]; = 1.04(2) GeV?,

b,(J =1=1) = 1.078(14) GeV2,
by(J =2,1=1)=094(1) GeV?, (27)

give their average,

b,(l=1)=1.02(8) GeV?, (28)
with large uncertainty, and therefore the masses of all nP
states, given in Table VI, are calculated with the use of the
parameters from (27) and (25). Notice that the averaged
radial slope is smaller than that of the w(nS) ERT, Eq. (24),
by only 5%. From the masses, given in Table VI, one can

see that the mass of the 2°P, state coincides with that of
¥c0(3862), while the mass M (y.(2P))) = 3.943(7) GeV
is larger than the mass of the y.(3872) resonance,
probably because of its large hadronic shift, which can
be estimated to be approximately 60 MeV. Also, the
calculated mass M (y.;(2P) = 3.928(4) GeV is obtained
in exact agreement with the mass of y.,(3930) (see
Table VI).

The parameters of the ERT for the y(nD) resonances can
be determined in the same way as for the y.;(nP)
trajectories, i.e., introducing the factor B(J,[=2) =
bo(J) +2by(J,1 =2) and using the ground-state masses,
M(1°D,) = 3.773.1(4) GeV, M(13D,) = 3.822(1) GeV
[1], and M(1°D3) =3.843(1) GeV of the resonance,
recently observed by the LHCb [58]. This procedure gives

B(J=1,1=2)=1.672(1) GeV2,

B(J =2.1=2)=1810(1) GeV2,

B(J =3.1=2)=1858(1) GeV2,
B(I=2)=1.78(7) GeV2. (29)

The averaged value B(I = 2) = 1.78(7) GeV? has a large
uncertainty and will be used here only for the w(n°D,)
trajectory, in which it gives the best fit. For the n’D, and
n’D; states, a better fit is obtained using the quantities
B(J=1=2) and B(J =3,1=2) from Eq. (29). Also,
the masses of the radial nD excitations are calculated
by taking the averaged radial slope: b,(I=2)=
1/2(b,(I =0) + b,(I = 1)) = 1.05(1) GeV?. The use of
the averaged slopes allows us to see the physical picture as
a whole, but does not always give the best fit.

The calculated mass, M(1°D,) = 3.814(26) MeV (see
Table V), is larger than that of the y(3770), and this result
indicates that its possible hadronic shift down is approxi-
mately 40 MeV. On the contrary, the calculated mass
M(y(2°D;)) = 4.162(24) GeV has large uncertainty and
is smaller than the experimental value, M(y(4160) =
4.191(5) GeV. In this case, the hadronic shift up is possible
due to the 35 — 2D mixing via the open channels, D*D*
and DT D:~ [50]. We can conclude that the radial slope of
the w(n’D,) trajectory with the B and b,(l=2)=
1.05(1) GeV? provides a rather good description of the
yw(nD states (see Table VI).

To extract the orbital slope, one can use the ground-state
masses of J/y, y.(3556), and y;(1°D3), the mass of
which, y3(1D) = 3.843(3) GeV, was recently measured
[58]. All these states with spin S=1 and J=171+1
determine the leading trajectory of the charmonium family.
Therefore, the intercept of this ERT is known from the J/y
mass, by=0.381GeV?, and then from B(J=2,I=1)=
bo(1=0)+b,;(I=1,n=0)=1.158GeV?, one finds b,(I = 1,
n=0)=0.777(1) GeV2. On the other hand, the value
by(l =2,n=0) = 0.738(4) GeV? is extracted, if the fac-
tor B(l=2,n=0)=by+2b,(l =2)=1.858(8) GeV?
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is used. Taking the averaged value, b, = 0.758(5), the
leading ERT of the charmonium family is

EX(J =1+ 1,n = 0)(in GeV?) = 0.381 + 0.758(5)L.
(30)

This ERT gives the following masses of the ground
states (in GeV): 3.097 (135,), 3.547(5) (1°P,), and
3.857(7) (1°D;), where the latter value is larger than the
mass of y3(3843)) by (16 +7) MeV. For the 13F, state,
the mass 4.109(19) GeV is predicted.

For a next step, one can introduce the generalized ERT
for the states with J =1+ 1,

EX(J = [+ 1)(in GeV?) = 0.381 + 0.758(5) + 1.05(2)n,
(31)

and in Table VI, the masses of y5(n°D5), corresponding to
this ERT, are given, together with the solutions of the SSE
(including the fine-structure corrections).

From Table VI, one can see that the calculated masses
of the high excitations with J*€ = 0", M(y.,(3P)) =
4493(15) MeV and M(y.o(4P)) = 4741(18) MeV are
close to those of the X(4500) and the X(4700) resonances
with JP€ = 0+, observed by the LHCb Collaboration [6].
This coincidence can be considered as an indication that
these resonances could have a large c¢¢ component.

In Table VI, the masses, defined as the solutions of the
SSE plus spin-dependent corrections, are also given. In the
SSE, the confining potential was taken as linear at all
distances; i.e., the flattening effect [51] at large distances
was neglected. For that reason, the higher n/ resonances
with n =3, 4, determined by the SSE, appear to be
(100-150) MeV larger than those defined by the ERTs,
which evidently take into account the flattening effect.

It is also worth underlining that the physical picture,
presented by the ERTs of HQ, clearly shows that the ERT
parameters depend on the quark flavor and the quark mass
chosen and also weakly depend on the angular momentum
J. Also, in charmonium, the orbital slope is significantly
smaller than that in light mesons, while the radial slope is
smaller only by (10-15)%. In light mesons, the generalized
ERT,

M?(nl,nit)(in GeV?)
—0.60+ 1.15(7)n+1.10(5). (I#0.m,=0). (32)

was derived in Ref. [40]. Notice that in charmonium the
averaged radial slope of the ERT, b, (c¢) = 1.02(8) GeV?,
is about three times smaller than the slope u?~
(2.8-3.5) GeV? of the conventional radial RT (1).

IV. CONCLUSIONS

In our study of HQ, we have used the Afonin-Pusenkov
conception [41] about the RT, defined through the excita-
tion energy, E(n,l) = M(nl)—2my, which later was
developed in Refs. [42—44]. Our analysis of the bottomo-
nium and charmonium spectra, performed with the use of
ERT and also of the relativistic Hamiltonian with the
universal interaction, has shown the following:

(1) The orbital and the radial slopes of the ERTs depend

on the flavor and the mass m, of the heavy quark.

(2) The mass mg can be extracted from experiment, if
the masses of the ground and two excited states with
the same quantum numbers are known with great
accuracy. Such data exist in bottomonium.

(3) The values of the radial and orbital slopes differ by
approximately 40% both in charmonium and botto-
monium, and therefore their generalized ERTs are
not universal.

(4) In bottomonium, the values of the radial and the
orbital slopes are significantly smaller, by approx-
imately 50%, than in charmonium, which mean-
while are smaller that those in light mesons.

(5) The intercepts of the ERTs are determined by the
masses of the ground states.

(6) In bottomonium, the orbital slope b, =0.50(1) Ge V>
and radial slope b, = 0.708(2) GeV? do not depend
on the angular momentum J, if [ # 0, while the
intercept depends on J.

The parameters of the ERTs and m,, extracted from the
experimental masses, are collected in Table VII, together
with those of the p(3S;) and p(°D,) trajectories [40].
From the parameters, given in Table VII, one can see

TABLE VII. The parameters of the generalized ERT (in giga-electron-volts squared) in bottomonium, charmonium, and light vector
mesons.

Meson Quark mass (GeV) Intercept a Orbital slope b, Radial slope b,
Bottomonium 4.549(1) 0.131(1) 0.50(1) 0.724(1) (I =0)
Bottomonium 4.549(1) 0.076,0.131,0.166 (J =0, 1, 2) 0.50(1) 0.708(2) (I #0)
w(3S) 1.24 0.381(1) 0 1.074(1)
Yer(nP) 1.24 0.38(8) 0.76(2) 0.94(1)

e (nP) 1.24 0.364(4) 0.76(2) 1.078(14)
w(n’Ds) 1.24 0.381 0.758(5) 1.05(2)
p(3S)) 0 0.60 0 1.45 (5)
p(’Dy) 0 0.60 1.10(5) 1.15 (7)
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how the intercept and the orbital and the radial slopes are
increasing with a decreasing quark mass.

In bottomonium, the resonances y;;(4P) with the mass
10758(3) MeV and Y(3°D;) with the mass 10698(8) MeV
are predicted, while in charmonium, the masses of the
resonances y.o((n + 1)P) with JP€ = 0" and n = 3, 4,
equal to 4475(15) MeV and 4720(18) MeV, respectively,
are obtained. These mass values are very close to those of
the X(4500) and X(4700) resonances [6], and this result
can be considered an indication that X(4500) and X (4700)

have a large c¢¢ component in their wave function. Also, in
charmonium, the masses of the y.(2°Py).x(2°P,),
2c1(3°P)), and 1°D,, 1°D; states are in good agreement
with the experimental data on y.(3863), x.,(3930),
21 (4274), w(3822), and 5 (3843).
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