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This work is an extension of the work in [Phys. Rev. D 97, 034021 (2018)] to ground and excited states
of 0þþ, 0−þ, and 1−− of heavy-light (cū; cs̄; bū; bs̄, and bc̄) quarkonia in the framework of a QCD
motivated Bethe-Salpeter equation (BSE) by making use of the exact treatment of the spin structure
(γμ ⊗ γμ) in the interaction kernel, in contrast to the approximate treatment of the same in our previous
works [H. Negash and S. Bhatnagar, Int. J. Mod. Phys. E 25, 1650059 (2016)., S. Bhatnagar and L. Alemu,
Phys. Rev. D 97, 034021 (2018).]). In this 4 × 4 BSE framework, the coupled Salpeter equations for Qq̄
(that are more involved than the equal mass (QQ̄) mesons) are first shown to decouple for the confining part
of interaction, under heavy-quark approximation, and analytically solved, and later the one-gluon-
exchange interaction is perturbatively incorporated, leading to their mass spectral equations. The analytic
forms of wave functions obtained from these equations are then used for calculation of leptonic decay
constants of ground and excited states of 0−þ and 1−− as a test of these wave functions and the over all
framework.
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I. INTRODUCTION

During the past few years, there has been a growing
interest in the experimental and theoretical studies of
heavy-light mesons. This interest arose from the discovery
of large B0 − B̄0 mixing, leading to the hope that CP
violation in B-systems may be observed. Further studies
on heavy-light mesons are also important for the deter-
mination of Cabibo-Kobayashi-Maskawa (CKM) mass
matrix elements. These studies on quarkonia need heavy
quark dynamics, which can provide a significant test of
quantum chromodynamics (QCD). Spectroscopy of heavy
quarkonia have been studied through nonperturbative QCD
approaches, such as NRQCD [1], QCD sum rule [2], poten-
tial models [3–5], lattice QCD [6–8], Bethe-Salpeter
equation (BSE) method [9–16], heavy quark effective
theory [17], relativistic quantum model (RQM) [18], and
chiral perturbation theory [19].
It may be recalled that the discoveries of the low-lying

charmonium states and of open-charmed hadrons were

instrumental for the acceptance of quarks as truly dyna-
mical entities in general, and of the SM in particular.
Thus studies of heavy charmonium (cc̄) and bottomonium
(bb̄) states is a frontier area of research interest. Now,
unequal quark heavy meson, cb̄ is the only bound state
discovered that comprises of two heavy quarks of different
flavors, and acts as an intermediate state between cc̄ and bb̄
states both in mass and size. The discovery of Bc state has
given a new insight into heavy-quark dynamics, though its
vector counterpart, Bc�, has not yet been discovered in
experiments. The quark content of Bc forbids its decays
into two photons, and can only decay through weak
interactions, and have radiative decays, and thus can lead
to calculation of CKMmatrix elements. The same is true of
other heavy-light mesons, Qq̄ðq ¼ u; d; sÞ. The dynamics
of unequal mass mesons is richer than for QQ̄ mesons, due
to the simple fact that for cb̄ mesons, the relativistic effects
are more important than cc̄, since the c quark moves faster
in Bc meson than in J=Ψ [3].
The renewed interest in recent years in spectroscopy of

these heavy and heavy-light hadrons in charm and beauty
sectors, which was primarily due to experimental facilities
the world over such as BABAR, Belle, CLEO, DELPHI,
BES etc. [20–25], have been providing accurate data on
these hadrons with respect to their masses and decays. In
the process many new states have been discovered such as
χb0ð3PÞ, χc0ð2PÞ, Xð3915Þ, Xð4260Þ, Xð4360Þ, Xð4430Þ,
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Xð4660Þ [20]. Further, there are also open questions about
the quantum number assignments of some of these states
such as Xð3915Þ (as to whether it is χc0ð2PÞ or χc2ð2PÞ
[26,27]). Currently there is a lot of excitement about XYZ
particles, that are new charmoniumlike states such as,
Zcð3900Þ, Zcð4020Þ=Zcð4025Þ [28], which were discov-
ered in BESIII, the states, Yð4260Þ [29,30](discovered at
BABAR), and Xð3872Þ [31] (discovered at Belle). These
particles show different features than the conventional
charmonium states, and might be good candidates for
exotic states. These states might even be hybrid or
tetraquark states, or loosely bound charmonium molecules,
which are not excluded by QCD.
Thus charmoniumlike states offer us intriguing puzzles.

However, since the mass spectrum and the decays of all
these bound states can be tested experimentally, theoretical
studies on themmay throw valuable insight about the heavy
quark dynamics. However, owing to the essentially non-
perturbative nature of quark dressing in QCD it is impos-
sible to define a “potential” for systems involving quarks
lighter than the b quark. And any approach that never-
theless employs a potential for such systems, is uncon-
nected with QCD, and is a potential model. However, such
effective models in physics of hadrons are useful as a tool in
areas where QCD is not yet able to penetrate.
Now, Bethe-Salpeter equation is basically an eigenvalue

problem valid only at the resonance pole, P2 ¼ −M2, M
being the bound state mass in the 4-point Green’s function.
The solution of BSE not only yields meson masss, M, but
also a hadron-quark vertex function that can be used to
calculate various meson observables. Now, a number of
articles have explored the true nature of QCD’s bound-state
kernels [10,32–35]. Progress has been made; symmetry
preserving Ansatz exist; but the answers are incomplete.
But, we do not have the closed form expression for the BSE
kernel till date, which can be used to evaluate the confining
force. An attempt to obtain closed form expression for
kernel in BSE for quark-antiquark bound states using
Green’s function methods in quantum field theory was
made by [33].
We wish to mention that, we do not work in QCD’s BSE.

Instead, our work is based on QCD motivated BSE in
ladder approximation, which is only an approximate
description, with an effective four-fermion interaction
mediated by a gluonic propagator that serves as the kernel
of BSE in the lowest order. We can generalize this to any
arbitrary interaction, K, where K can be said to represent
the sum of all irreducible graphs. The precise form of our
kernel in Eq. (4), and (6) is taken in analogy with potential
models, which includes a confining term along with a one-
gluon exchange term. Such effective forms of the BS kernel
in ladder BSE have recently been used in [16,36–40], and
can predict bound states having a purely relativistic origin
(as shown recently in [36]). As mentioned above, the BSE
is quite general, and provides an effective description of

bound quark-antiquark systems through a suitable choice of
input kernel for confinement.
Our approach using BSE under ladder approximation

with an effective interaction kernel does not represent the
complete dynamics of the system in field theory sense, but
it has the practical utility of maintaining the link between
spectroscopy and transition amplitudes, that is available
through its 3D reduction using CIA.
Our starting BSE is 4D in all details, including its kernel.

By using CIA ansatz on the BS kernel (which provides it a
3D support [9,13] by postulating that the pairwise BSE
kernel is a function of only q̂, so that q̂:P ¼ 0), we reduce
the 4D BSE to its 3D form thereby giving up its original 4D
form, and using it as a fresh starting point. The reduction of
4D BSE to 3D Salpeter equation is exact in our framework.
And by use of 4D BSE with a 4 × 4 spinor structure, we get
four such Salpeter equations in Eq. (2), which are again
covariant due to their dependence on q̂, the transverse
component of internal momentum. The covariance of 3D
Salpeter equations ensures their validity for a hadron in
arbitrary motion. The 3D Salpeter equations are reduced to
mass spectral equations in an approximate harmonic
oscillator basis.
We wish to mention that in the sense of incorporation of

input confining potential, and also for mass spectral studies,
our BSE framework makes contact with potential models.
However the dependence of input kernel on the running
QCD coupling constant, αs through the flavor dependent
spring constant, ω2

qq̄ gives explicit QCD motivation to the
BS kernel, as mentioned in details in Sec. II. And, in the
process of reduction of 4D BSE to its 3D form under CIA,
we identify the 4D hadron-quark vertex function, Γðq̂Þ,
expressible as in Eq. (3), which is related to the 4D BS
wave function through, ΨðP; qÞ ¼ SFðp1ÞΓðq̂ÞSFð−p2Þ,
where Γ is sandwiched by two quark propagators, and
incorporates all the relevant Dirac structures, and is made
use of in evaluation of various transition amplitudes
through quark-loop diagrams using the techniques of field
theory. Thus the practical advantage of using an effective
form of interaction kernel in BSE as an input, and using 3D
reduction through CIA is mainly due to the ease with which
it is able to keep a link between mass spectroscopy and
transition amplitudes.
In our works, we are not only interested in studying the

mass spectrum of hadrons, which no doubt is an important
element to study dynamics of hadrons, but also the
hadronic wave functions that play an important role in
the calculation of decay constants, form factors, structure
functions etc. for QQ̄, and Qq̄ hadrons. These hadronic
Bethe-Salpeter wave functions calculated algebraically in
this work can provide information about the long distance
nonperturbative physics, as will be discussed in Sec. V, and
Discussions. These wave functions can lead to studies on a
number of processes involving QQ̄, and Qq̄ states, and
provide a guide for experiments. Our basic aim has been to
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develop a model using 4 × 4 BSE that can explain
both mass spectrum of QQ̄, and Qq̄ states as well as
their decay widths through various processes using the
same set of input parameters that are fixed from their
mass spectrum.
In this context, in some of the recent works [41–45], we

have been involved in working on the mass spectrum and
decay properties of equal mass ground and excited states of
scalar, pseudoscalar, vector, and axial vectorQQ̄ quarkonia
in the framework of a 4 × 4 BSE. These include their
leptonic decays, two-photon decays, single photon radia-
tive decays, and two gluon decays of these charmonium
(cc̄) and bottomonium (bb̄) states which have been
extensively studied by us in the formulation of Bethe-
Salpeter equation. However, we had not so far generalized
this 4 × 4 representation for two-body (QQ̄) BS amplitude
framework to incorporate unequal mass dynamics, which
we have now done in the present work. However, the price
we have to again pay is to analytically solve a coupled set
of equations for all quarkonia, which we have again
explicitly shown get decoupled, in spite of the fact that
we have used the full structure of the BS wave function,
ψðq̂Þ in calculation of γμψðq̂Þγμ on the right side of the
Salpeter equations. Due to these facts, the system of
coupled Salpeter equations encountered in the present
work are much more involved and complex than the ones
encountered in equal mass quarkonia in [42]. We have
explicitly shown that they lead to mass spectral equations
with analytical solutions for both masses, as well as
eigenfunctions for the ground and excited states for
0þþ; 0−þ, and 1−− for heavy-light hadrons with quark
composition, cū; cs̄; cb̄; bū, and bs̄ in an approximate
harmonic oscillator basis. We then perturbatively incorpo-
rate the one-gluon-exchange (OGE), and solve the spec-
trum of these states.
We wish to mention that in unequal mass systems such

as Qq̄, the quarks are not very close together, and the
confining interaction dominates over the OGE inter-
actions due to which the perturbative incorporation of
OGE term is reasonable approximation. The unequal
mass kinematics that also gives the partitioning of inter-
nal momenta of the hadron rests on the Wightman-
Garding definition of internal momenta of individual
quarks. The main advantage of our approach in com-
parison to other BSE approaches is that, we follow
analytic methods of solutions for heavy-light quarkonia
(whose equations are much more involved than QQ̄), that
provide a much deeper in sight into the mass spectral
problem, and are able to obtain the mass spectrum in
terms of the principal quantum number N, and also in the
process, we get algebraic forms of wave functions that
are used for calculations of various transition amplitudes
and decay constants of quarkonia, in contrast to the
purely numerical approaches followed by the other
works [16].

This paper is organized as follows: In Sec. II, we
introduce the formulation of the 4 × 4 Bethe-Salpeter
equation under the covariant instantaneous ansatz, and
derive the hadron-quark vertex. In Secs. III, IV, and V, we
derive the mass spectral equation of heavy-light scalar,
pseudoscalar, and vector mesons respectively. In Secs. VI
and VII, we derive the decay constants fP for pseudoscalar,
and fV for vector Qq̄ states respectively. In Sec. VIII, we
provide the numerical results and discussion.

II. FORMULATION OF THE 4 × 4
BETHE-SALPETER EQUATION

We give here the main points about the 4 × 4 BSE under
the covariant instantaneous Ansatz (CIA), which is a
Lorentz-invariant generalization of instantaneous approxi-
mation (IA), which is used to derive the 3D Salpeter
equations [41,42,46]. We start with a 4D BSE for quark–
antiquark system with quarks of constituent masses,m1 and
m2, written in a 4 × 4 representation of 4D BS wave
function ΨðP; qÞ as:

S−1F ðp1ÞΨðP; qÞS−1F ð−p2Þ ¼
i

ð2πÞ4
Z

d4q0Kðq; q0ÞΨðP; q0Þ

ð1Þ

where Kðq; q0Þ is the interaction kernel between the quark
and antiquark, and p1;2 are the momenta of the quark and
antiquark, which are related to the internal 4-momentum q
and total momentum P of hadron of mass M as,

p1;2μ ¼ m̂1;2Pμ � qμ, where, m̂1;2 ¼ 1
2
½1� ðm2

1
−m2

2
Þ

M2 �, always
satisfy, m̂1 þ m̂2 ¼ 1, and is a natural choice that allocates
most of the momentum to the heavy quark, while a smaller
part of momentum to the lighter quark in a heavy-light
meson, but equal momenta to both quarks in cc̄ mesons.
Making use of covariant instantaneous Ansatz, where,

Kðq; q0Þ ¼ Kðq̂; q̂0Þ on the BS kernel, where q̂μ ¼ qμ −
q:P
P2 Pμ is the component of internal momentum of the
hadron that is orthogonal to the total hadron momentum,
i.e., q̂:P ¼ 0, while σPμ ¼ q:P

P2 Pμ is the component of q
longitudinal to P, where the 4-dimensional volume
element is, d4q ¼ d3q̂Mdσ, and following a sequence
of steps outlined in [41], we get the covariant forms of
four Salpeter equations (in 4D variable q̂), which are
effective 3D forms of BSE, and are valid for hadrons in
arbitrary motion. The four independent Salpeter equa-
tions are [41]:

ðM − ω1 − ω2Þψþþðq̂Þ ¼ Λþ
1 ðq̂ÞΓðq̂ÞΛþ

2 ðq̂Þ
ðM þ ω1 þ ω2Þψ−−ðq̂Þ ¼ −Λ−

1 ðq̂ÞΓðq̂ÞΛ−
2 ðq̂Þ

ψþ−ðq̂Þ ¼ 0

ψ−þðq̂Þ ¼ 0 ð2Þ
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where ψ��ðq̂Þ ¼ Λ�
1 ðq̂Þ P

M ψðq̂Þ P
MΛ�

1 ðq̂Þ, and Λ� are the
projection operators [41] for each of the constituents.
Here, Γðq̂Þ is the nonperturbative 4D hadron-quark
vertex function,

Γðq̂Þ ¼
Z

d3q̂0

ð2πÞ3Kðq̂; q̂0Þψðq̂0Þ; ð3Þ

which enters into the 4D BS wave function, ΨðP; qÞ ¼
SFðp1ÞΓðq̂ÞSFð−p2Þ (for details, see [42]), which is
basically a 3-point function, where the quark, and the
anti-quark propagators sandwich the hadron-quark ver-
tex, Γ (which is the amputated 3-point function), that is
used for calculation of transition amplitudes of various
processes. We wish to point out that the 4D BS wave
function, ΨðP; qÞ is analogous to the quark bilinear
3-point correlation function used in a recent lattice
calculation [47] of nonperturbative structure of vector
and axial vector vertices.
We wish to emphasize that the present model after 3D

reduction is still covariant. This is due to the fact that we
have reduced a fully 4D BSE to 3D BSE [which are
actually four Salpeter equations in Eq. (2)] by use of
covariant instantaneous Ansatz (CIA), which is a Lorentz-
invariant generalization of the instantaneous approximation
(IA). We thus obtain the covariant forms of Salpeter
equations, which are effective 3D forms of BSE, and are
valid for hadrons in arbitrary motion.
Regarding the interaction kernel Kðq̂0; q̂Þ, as mentioned

earlier, we use an effective form of interaction kernel, K
given below in Eq. (4), and (6), mainly due to the ease
with which it is able to keep a link between mass
spectroscopy [arising from 3D Salpeter equations in
Eq. (2)], and transition amplitudes through a vital
connection between the 3D wave function ψðq̂Þ, that
satisfies the first two 3D Salpeter equations (that are used
for determination of spectra), and the hadron-quark vertex
Γ (for calculation of transition amplitudes in 4D basis), as
can be seen from the structure of the first two Salpeter
equations that connect ψðq̂Þ [on the left-hand side
(LHS)], and Γðq̂Þ[on the right-hand side (RHS)].
The kernel can be written as,

Kðq̂0; q̂Þ ¼
�
1

2
λ⃗1:

1

2
λ⃗2

�
ðγμ ⊗ γμÞVðq̂0; q̂Þ ð4Þ

with color, spin, and orbital parts, respectively. For a kernel
with the above spin dependence, we can rewrite the hadron-
quark vertex in Eq. (3) as [42],

Γðq̂Þ ¼
Z

d3q̂0

ð2πÞ3 Vðq̂; q̂
0Þγμψðq̂0Þγμ; ð5Þ

where, each of the γμs sandwich the BS wave function,
ψðq̂Þ, with the scalar part of the kernel, V ¼ VOGE þ
VConfinement as,

Vðq̂; q̂0Þ ¼ 4παs
ðq̂ − q̂0Þ2 þ

3

4
ω2
qq̄

Z
d3r

�
κr2 −

C0

ω2
0

�
eiðq̂−q̂0Þ:r⃗;

κ ¼ ð1þ 4m̂1m̂2A0M2r2Þ−1
2: ð6Þ

To give an idea about the form of confining potential,
VconfðrÞ ¼ 3

4
ω2
qq̄ðκr2 − C0

ω2
0

Þ, in Fig. 1, we have plotted it

versus r for the ground (1S) states of ηb, Bc, B, ηc, and D,
since we are using it only for QQ̄, and Qq̄ systems in this
work as an illustration of its behavior with the hadron mass.
Here ω2

qq̄ ¼ 4m̂1m̂2M2αsðM2Þ is the flavor dependent
spring constant, while C0=ω2

0 plays the role of ground
state energy. The presence of running coupling constant, αs
in ω2

qq̄ provides an explicit QCD motivation to the BSE
kernel. It is to be seen that this algebraic form of the
potential ensures a smooth transition from nearly harmonic
(for cū) to almost linear (for bb̄). It is this algebraic form of
the confining potential for which we can see that analytic
forms of wave functions can be worked out by solving the
3D Salpeter equations as will be shown later in this paper.
The confinement part with a sequence of steps can be

expressed as [41] Vcðq̂;q̂0Þ¼−3
4
ð2πÞ3V̄cðq̂Þδ3ðq̂− q̂0Þ; with

V̄cðq̂Þ¼ω2
qq̄

�
κ∇⃗2

q̂þC0

ω2
0

�
; and κ¼ð1−4m̂1m̂2A0M2∇⃗2

q̂Þ−1
2:

The present work is a substantial improvement over
our previous works [41,42], in the sense that we have
taken the full Dirac structure of the 3D BS wave
function, ψðq̂Þ given in Eq. (7) to calculate the spin
part, γμψðq̂Þγμ that enters into the hadron-quark vertex
function, Γðq̂Þ as well as the right-hand sides of the 3D
coupled integral equations, in contrast to [41,42], where

FIG. 1. Plots showing the general behavior of confinement
potential, VconfðrÞ ¼ 3

4
ω2
qq̄ðκr2 − C0

ω2
0

Þ with r for the ground (1S)

states of Υ; B�
c; B�; J=Ψ, and D� mesons
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we took only the leading Dirac structures in ψðq̂Þ to
evaluate γμψðq̂Þγμ, in the integrals on the right of the
Salpeter equations in [41,42]. What we further find is that
the higher order terms of V̄c that we had ignored in
[41,42] due to negligible coefficients, ω4

qq̄ associated with
these terms, get effectively cancelled out when we take
the full Dirac structure of the wave function, ψðq̂Þ. Also
it is seen that the terms Oðq̂2=m2Þ that entered into the
Salpeter equations, and were subsequently ignored in [42]
under heavy-quark approximation, get effectively can-
celled out in the present calculation of the mass spectral
equation with the use of all the Dirac structures. The
framework is quite general so far. Thus, to obtain the
mass spectral equation, we have to start with the above
four Salpeter equations in Eq. (2).

III. MASS SPECTRAL EQUATION FOR
HEAVY-LIGHT SCALAR 0++ QUARKONIA

We start with the general form of 4D BS wave function
for scalar meson (0þþ) in [48]. Then, making use of the 3D
reduction and making use of the fact that q̂:P ¼ 0, we can
write the general decomposition of the instantaneous BS
wave function for scalar mesons (Jpc ¼ 0þþ), of dimen-
sionalityM being composed of various Dirac structures that
are multiplied with scalar functions fiðq̂Þ and various
powers of the meson mass M as [42]

ψSðq̂Þ ¼ Mf1ðq̂Þ − iPf2ðq̂Þ − i=̂qf3ðq̂Þ −
2P=̂q
M

f4ðq̂Þ; ð7Þ

Till now these amplitudes f1, and f4 in the equation above
are all independent, and as per the power counting rule
[13,14] proposed by us earlier, the f1 and f2 are the
amplitudes associated with the leading Dirac structures,
namely M and P, while f3 and f4 will be the amplitudes
associated with the subleading Dirac structures, namely, =̂q,

and 2Pq̂
M .

We now use the last two Salpeter equations ψþ−ðq̂Þ ¼
ψ−þðq̂Þ ¼ 0 in Eq. (2), that can be used to obtain the con-
straint relations between the scalar functions for unequal
mass mesons as given in Eq. (A1) of the Appendix. We
wish to mention that due to the two constraint equations,
the scalar functions fiðq̂Þði ¼ 1;…; 4Þ are no longer all
independent, but are tied together by the relations in
Eq. (A1) in the Appendix, due to which the amplitudes
get mixed up [42].
The first two Salpeter equations of Eq. (2) lead to a set

of coupled integral equations, where the full structure of
the wave function ψSðq̂Þ in (A2) is used to evaluate
γμψ

Sðq̂Þγμ on the right-hand sides of these equations. We
proceed in the same way as [42], where on the right side
of these equations, we first work with the confining
interaction, Vcðq̂Þ. We show that these equations can be
decoupled, and reduced to algebraic equations in an

approximate harmonic oscillator basis, and solve them
analytically. These equations, given as Eq. (A3) in the
Appendix are much more involved than the equal mass
case [42]. The coupled integral equations and their
detailed procedure for reduction to two identical
decoupled algebraic equations in amplitudes f1 and f2
is relegated to the Appendix. The two decoupled alge-
braic equations obtained this way are

�
M2

4
−
1

4
ðm1 þm2Þ2 − q̂2

�
f3ðq̂Þ

¼ −
1

2
ðm1 þm2ÞV̄cðq̂Þf3ðq̂Þ�

M2

4
−
1

4
ðm1 þm2Þ2 − q̂2

�
f4ðq̂Þ

¼ −
1

2
ðm1 þm2ÞV̄cðq̂Þf4ðq̂Þ: ð8Þ

It is to be seen here that on the RHS of the above
two equations in Eq. (8), we get only the terms that are
linear in V̄c, (unlike [41,42], where we also obtained
quadratic terms of the type, V̄2

c, that were very small in
magnitude in comparison to V̄c). Since the two equations
are of the same form in scalar functions f3ðq̂Þ and f4ðq̂Þ,
that are the solutions of identical equations, we can take,
f3ðq̂Þ ≈ f4ðq̂Þð¼ ϕSðq̂ÞÞ. Using the expression for V̄cðq̂Þ
given above, we get the equation,

ESϕSðq̂Þ ¼ ½−β4S∇⃗2
q̂ þ q̂2�ϕSðq̂Þ; ð9Þ

where the inverse range parameter βS can be expressed as,

βS ¼
 

1
2
ω2
qq̄ðm1 þm2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8m̂1m̂2A0ðN þ 3
2
Þ

q
!

1=4

;

ωqq̄ ¼ ð4Mm̂1m̂2ω
2
0αsðMÞÞ1=2;

αs ¼
12π

33 − 2Nf
log

�
M2

Λ2
QCD

�
−1

ð10Þ

Using the method of power series, this leads to the mass
spectral equation for scalar mesons as,

1

4
½M2 − ðm1 þm2Þ2� þ

C0β
4
S

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m̂1m̂2A0

�
N þ 3

2

�s

¼ 2β2S

�
N þ 3

2

�
; N ¼ 1; 3; 5;…; ð11Þ

with the energy eigenvalue of the scalar mesons,
ES ¼ 2β2SðN þ 3

2
Þ, where N ¼ 2nþ l, with the principal
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quantum number taking values n ¼ 0; 1; 2;…, and the
orbital quantum number l ¼ 1 that corresponds to P wave
states, and the solutions of Eq. (9) using the power series
method are given by the following normalized wave
functions that are similar to the wave functions in [42],
except for the inverse range parameter β expression that is
different from [42] due to the exact treatment of the spin
part of the kernel, and also the unequal mass kinematics.
They are

ϕSð1P; q̂Þ ¼
ffiffiffi
2

3

r
1

π3=4
1

β5=2S

q̂e
− q̂2

2β2
S

ϕSð2P; q̂Þ ¼
ffiffiffi
5

3

r
1

π3=4
1

β5=2S

q̂

�
1 −

2q̂2

5β2S

�
e
− q̂2

2β2
S

ϕSð3P; q̂Þ ¼
ffiffiffiffiffi
35

12

r
1

π3=4
1

β5=2S

q̂

�
1 −

4q̂2

5β2S
þ 4q̂4

35β4S

�
e
− q̂2

2β2
S

ϕSð4P; q̂Þ ¼
ffiffiffiffiffi
35

8

r
1

π3=4
1

β5=2S

q̂

�
1 −

6q̂2

5β2S
þ 12q̂4

35β4S
−

8q̂6

315β6S

�

× e
− q̂2

2β2
S ; ð12Þ

Now, we treat the mass spectral equation in Eq. (9),
which is obtained by taking only the confinement part of
the kernel, as an unperturbed spectral equation with the
unperturbed wave functions in Eq. (12). We then incorpo-
rate the one gluon exchange term in the interaction kernel
perturbatively (as in [42]) and solve to first order in
perturbation theory. The complete mass spectra of ground
and excited states of heavy-light scalar mesons is

1

8β2S
½M2 − ðm1 þm2Þ2� þ

C0β
2
S

2ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m̂1m̂2A0

�
N þ 3

2

�s

þ γhVS
couli ¼ N þ 3

2
; N ¼ 1; 3; 5;…; ð13Þ

where hVS
couli is the expectation value of VS

coul between the
unperturbed states of the scalar mesons with l ¼ 1 and
n ¼ 0; 1; 2;…, and γ is introduced as a weighting factor to
have the Coulomb term dimensionally consistent with the
harmonic term, with γ is expressed in units of ω4

0=ðC0β
2Þ,

and it also acts as a measure of the strength of the
perturbation. The expectation value of the Coulomb term
associated with the OGE term for scalar quarkonia is a
single elegant expression for all states, jnPi, (where,
n ¼ 1; 2; 3;…),

hnPjVS
couljnPi ¼ −

32παs
9β2S

: ð14Þ

The results of our model for mass spectrum for scalarQq̄
states along with data [21], and other models is given in

Table II. It is observed that the mass spectra of mesons of
various JPC (0þþ; 0−þ, and 1−−) is somewhat insensitive to
a small range of variations of parameter ω0, as long as

C0

ω2
0

is

a constant. The input parameters of our model obtained by
best fit to the spectra of ground states of scalar, pseudo-
scalar, and vector Qq̄, and QQ̄ quarkonia are C0 ¼ 0.69,
ω0 ¼ 0.22 GeV, ΛQCD ¼ 0.250 GeV, and A0 ¼ 0.01, with
input quark masses mu ¼ 0.300 GeV, ms ¼ 0.430 GeV,
mc ¼ 1.490 GeV, and mb ¼ 4.690 GeV. Using these set
of input parameters, we do the mass spectral calculations of
both ground and excited states of heavy-light scalar (0þþ)
(in Sec. III), pseudoscalar (0−þ) (in Sec. IV), and vector
(1−−) (in Sec. V) quarkonia.
Further, we have found numerical values of perturba-

tion strength, γ multiplying Vcoulomb that gave reasonable
agreement with data and other models is difficult to be
expressed in terms of a single algebraic form with
dimension, M2—that is required to have Vcoulomb to be
dimensionally consistent with Vconfinemt in the mass
spectral equations, when we want to study both ground
and excited states of all possible Qq̄ mesons, though we
can obtain this algebraic form of γ for equal quark mesons
(cc̄ states) as in [42]. Hence we label these values of γ in
Table I, which can at best be expressed in multiples of
ω4
0=ðC0β

2Þ, where it is to be noted that β is an effective
range parameter given by Eq. (10), and is not an input
parameter of the model. The values of γ for various
mesons is given in the Table I.
We also calculated percentage contribution of the

Coulomb term to the mass of each meson state, which
are indeed small, as seen in Table I, justifying the
perturbative treatment of the Coulomb term for these states.
We see that for any JPC, the contribution of Coulomb term
to meson mass for bū; bs̄, and cb̄ mesons is larger than the
corresponding contributions from cū; cs̄, and cc̄ states.
Also, as we go to higher radial states of a given meson, the
contribution of Coulomb term to mass keeps decreasing
from its corresponding contribution for ground states. This
means that the radially excited states are loosely bound in
comparison to the ground states, which is similar to the case
of atoms.
We now derive the mass spectral equations of unequal

mass pseudoscalar mesons in the next section.

TABLE I. Values of strength of perturbation γ in units of GeV2.

Mesons γ

ηcðnSÞ, ΨðnSÞ 0.01
χc0ðnPÞ 0.06
BðnSÞ, BsðnSÞ, B�ðnSÞ, B�

sðnSÞ 0.05
BcðnSÞ, B�

cðnSÞ 0.09
DðnSÞ, DsðnSÞ,D�ðnSÞ, D�

sðnSÞ 0.002
DðnPÞ, DsðnPÞ 0.02
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IV. MASS SPECTRAL EQUATIONS FOR HEAVY-
LIGHT PSEUDOSCALAR 0− + QUARKONIA

The general decomposition for the 3D wave function of
pseudoscalar mesons obtained from the general 4D form
[48] through 3D reduction as in previous section can be
written as [42]

ψPðq̂Þ ¼
�
Mϕ1ðq̂Þ − iPϕ2ðq̂Þ þ i=̂qϕ3ðq̂Þ þ

P=̂q
M

ϕ4ðq̂Þ
�
γ5

ð15Þ
We use the last two Salpeter equations in Eq. (2) to find

the equations of constraints on the components of the wave
function as given in Eq. (A4) of the Appendix, that relate
the amplitudes, ϕ4 with ϕ2, and ϕ3 with ϕ1, and hence
causing a mixing up of the amplitudes as in the scalar
meson case.
We then use the first two Salpeter equations of Eq. (2) to

obtain the corresponding coupled integral equations of pseu-
doscalar mesons (with use of confining interaction alone) as
in Eq. (A6) of Appendix. Using the same procedure as in the

case of scalar mesons, these two equations can be decoupled,
and reduced to two independent algebraic equations:�

M2

4
−
1

4
ðm1 þm2Þ2 − q̂2

�
ϕ1ðq̂Þ

¼ −
1

2
ðm1 þm2ÞV̄cðq̂Þϕ1ðq̂Þ�

M2

4
−
1

4
ðm1 þm2Þ2 − q̂2

�
ϕ2ðq̂Þ

¼ −
1

2
ðm1 þm2ÞV̄cðq̂Þϕ2ðq̂Þ: ð16Þ

Here, we again see that the scalar functions ϕ1ðq̂Þ and
ϕ2ðq̂Þ satisfy identical equations, and can be taken as
ϕ1ðq̂Þ ≈ ϕ2ðq̂Þð¼ ϕPðq̂ÞÞ. Using the expression for V̄cðq̂Þ
after Eq. (6), we obtain the mass spectral equation as,

EPϕPðq̂Þ ¼ ½−β4P∇⃗2
q̂ þ q̂2�ϕPðq̂Þ; ð17Þ

whose solutions give the unperturbed mass spectrum (due
to confining interactions alone),

TABLE II. Masss spectra of ground and excited states of scalar 0þþ quarkonia (in GeV) in BSE-CIA (with the percentage contribution
of the OGE to meson mass) along with data and results of other models.

BSE-CIA % contribution of OGE Expt. [21] BSE-SDE PM Lattice QCD RQM

MBcð1P0Þ 6.7183 11.23% 6.490 [35] 6.715 [49] 6.727� 0.03 [50] 6.699 [51]
MBcð2P0Þ 7.1788 9.55% 7.102 [49] 7.091 [51]
MBcð3P0Þ 7.6477 8.20%
MBcð4P0Þ 8.1157 7.12%
MBcð5P0Þ 8.5772 6.24%
MBsð1P0Þ 5.8774 12.53% 5.701 [35] 5.812 [52] 5.833 [53]
MBsð2P0Þ 6.2827 10.63% 6.367 [52] 6.318 [53]
MBsð3P0Þ 6.7218 9.02% 6.879 [52]
MBsð4P0Þ 7.1742 7.71%
MBsð5P0Þ 7.6270 6.66%
MBð1P0Þ 5.7386 12.08% 5.610 [35] 5.730 [52] 5.749 [53]
MBð2P0Þ 6.1349 10.25% 6.297 [52] 6.221 [53]
MBð3P0Þ 6.5709 8.67% 6.826 [52]
MBð4P0Þ 7.0231 7.39%
MBð5P0Þ 7.4769 6.37%
MDsð1P0Þ 2.3873 2.65% 2.3177� 0.0006 2.4945 [54] 2.509 [53]
MDsð2P0Þ 2.9531 1.57% 3.0004 [54] 3.054 [53]
MDsð3P0Þ 3.4757 1.06%
MDsð4P0Þ 3.9558 0.78%
MDð1P0Þ 2.3500 5.60% 2.318� 0.029 2.300 [35] 2.3864 [54] 2.406 [53]
MDð2P0Þ 2.8983 3.32% 2.8884 [54] 2.919 [53]
MDð3P0Þ 3.4082 2.24%
MDð4P0Þ 3.8776 1.64%
M χc0ð1P0Þ 3.4122 6.87% 3.4147� 0.00030 3.440 [4] 3.413 [18]
M χc0ð2P0Þ 3.9667 4.76% 3.918� 0.0019 3.8368 [16] 3.920 [4] 3.870 [18]
M χc0ð3P0Þ 4.4858 3.54% 4.301 [18]
M χc0ð4P0Þ 4.9737 2.77%
M χc0ð5P0Þ 5.4343 2.24%
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1

8
½M2 − ðm1 þm2Þ2� þ

C0β
4
P

2ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m̂1m̂2A0

�
N þ 3

2

�s

¼
�
N þ 3

2

�
β2P; N ¼ 2nþ l; ð18Þ

with the orbital quantum number l ¼ 0 that corresponds to

the S states, and βP ¼
� 1

2
ω2
qq̄ðm1þm2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ8m̂1m̂2A0ðNþ3
2
Þ

p
�
1=4

. This unper-

turbed mass spectral equation of pseudoscalar meson is the
same as the corresponding spectral equation of scalar
meson in Eq. (9), except that βS is replaced by βP, and
ϕSðq̂Þ replaced by ϕPðq̂Þ. The normalized unperturbed
wave functions of 1S;…; 4S states of pseudoscalar meson
with l ¼ 0 derived analytically using the power series
method of solution of Eq. (17) are

ϕPð1S; q̂Þ ¼
1

π3=4
1

β3=2P

e
− q̂2

2β2
P

ϕPð2S; q̂Þ ¼
ffiffiffi
3

2

r
1

π3=4
1

β3=2P

�
1−

2q̂2

3β2P

�
e
− q̂2

2β2
P

ϕPð3S; q̂Þ ¼
ffiffiffiffiffi
15

8

r
1

π3=4
1

β3=2P

�
1−

4q̂2

3β2P
þ 4q̂4

15β4P

�
e
− q̂2

2β2
P

ϕPð4S; q̂Þ ¼
ffiffiffiffiffi
35

16

r
1

π3=4
1

β3=2P

�
1−

2q̂2

β2P
þ 4q̂4

5β4P
−

8q̂6

105β6P

�
e
− q̂2

2β2
P

ð19Þ

We again incorporate the Coulomb term VP
coul associated

with the one gluon exchange interaction perturbatively into
the original mass spectral equation of pseudoscalar mesons,
giving us the complete mass spectra of ground and excited
states of heavy-light pseudoscalar quarkonia with orbital
quantum number l ¼ 0 as

1

8β2P
½M2 − ðm1 þm2Þ2� þ

C0β
2
P

2ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m̂1m̂2A0

�
N þ 3

2

�s

þ γhVP
couli ¼ Nþ 3

2
; N ¼ 0;2;4;…; ð20Þ

where again the perturbation strength γ has the same form
as in the case of scalar mesons, while, the first order
correction to the total energy of the system EP is given by
the expectation value of the Coulomb term between the
unperturbed states of pseudoscalar mesons ϕPðnS; q̂Þ as

hnSjVP
couljnSi ¼ −

32παs
3β2P

: ð21Þ

The results of our model for pseudoscalar Qq̄ mesons
along with data [21] and other models is given in Table III.
We now give the derivation of the mass spectral

equations of vector mesons in the next section.

V. MASS SPECTRAL EQUATIONS
FOR HEAVY-LIGHT VECTOR 1− −

QUARKONIA

We again start with the general 4D decomposition [48].
Using 3D decomposition, the wave function of vector
mesons can be written as [41,42]:

ψVðq̂Þ ¼ iM=ϵχ1ðq̂Þ þ =ϵPχ2ðq̂Þ þ ½=ϵ=̂q − q̂:ϵ�χ3ðq̂Þ

− i½P=ϵ=̂qþ q̂:ϵP� 1
M

χ4ðq̂Þ þ ðq̂:ϵÞχ5ðq̂Þ

− iq̂:ϵ
P
M

χ6ðq̂Þ ð22Þ

We first obtain the constraint equations on the compo-
nents of the wave functions (χ s) using the last two Salpeter
equations of (2) as in Eq. (A7) in the Appendix, where the
amplitude, χ5 is expressed in terms of χ1, and χ4 in terms
of χ2, while the amplitudes, χ3 and χ6 vanish. Substituting
these constraint relations into Eq. (22) gives us the wave
function expressible in terms of the amplitudes, χ1, and χ2
as in Eq. (A8) of Appendix.
Using the first two Salpeter equations, we obtain the

coupled integral equations of vector mesons (with confin-
ing interaction alone) as in Eq. (A9) of Appendix. Now,
using the same procedures to decouple these equations as in
the case of scalar and pseudoscalar mesons, we obtain two
decoupled algebraic equations,

�
M2

4
−
1

4
ðm1 þm2Þ2 − q̂2

�
χ1ðq̂Þ

¼ −
1

2
ðm1 þm2ÞV̄cðq̂Þχ1ðq̂Þ�

M2

4
−
1

4
ðm1 þm2Þ2 − q̂2

�
χ2ðq̂Þ

¼ −
1

2
ðm1 þm2ÞV̄cðq̂Þχ2ðq̂Þ ð23Þ

Here, we see that the scalar functions χ1ðq̂Þ and χ2ðq̂Þ
satisfy identical equations, and can be taken as χ1ðq̂Þ≈
χ2ðq̂Þ ¼ ϕVðq̂Þ. We then obtain a single differential
equation, which is nothing but the equation of a simple
quantum mechanical 3D-harmonic oscillator with coeffi-
cients depending on the hadron massM, and total quantum
number N. The wave function satisfies the 3D BSE:

�
M2

4
−
1

4
ðm1 þm2Þ2 þ

C0β
4
V

κω2
0

�
ϕVðq̂Þ

¼ ½−β4V∇⃗2
q̂ þ q̂2�ϕVðq̂Þ; ð24Þ

which can be rewritten as

EVϕVðq̂Þ ¼ ½−β4V∇⃗2
q̂ þ q̂2�ϕVðq̂Þ; ð25Þ
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where βV ¼
�

1
2
ω2
qq̄ðm1þm2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ8m̂1m̂2A0ðNþ3
2
Þ

p
�

1=4
is the inverse range

parameter, and the total energy of the system is
identified as

EV ¼ 1

4
½M2 − ðm1 þm2Þ2�

þ C0β
4
V

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m̂1m̂2A0

�
N þ 3

2

�s
: ð26Þ

This mass spectral equation of vector meson is the same
as the corresponding equation of scalar meson in Eq. (9),
except that βS is replaced by βV, and ϕSðq̂Þ replaced by
ϕVðq̂Þ. Therefore, the normalized wave functions of
1S;…; 3D states of vector meson derived analytically
using the power series method of solution of Eq. (25),
with S and D states corresponding to l ¼ 0 and l ¼ 2
respectively, are

ϕVð1S; q̂Þ ¼
1

π3=4
1

β3=2V

e
− q̂2

2β2
V

ϕVð2S; q̂Þ ¼
ffiffiffi
3

2

r
1

π3=4
1

β3=2V

�
1 −

2q̂2

3β2V

�
e
− q̂2

2β2
V

ϕVð1D; q̂Þ ¼
ffiffiffiffiffi
4

15

r
1

π3=4
1

β7=2V

q̂2e
− q̂2

2β2
V

ϕVð3S; q̂Þ ¼
ffiffiffiffiffi
15

8

r
1

π3=4
1

β3=2V

�
1 −

4q̂2

3β2V
þ 4q̂4

15β4V

�
e
− q̂2

2β2
V

ϕVð2D; q̂Þ ¼
ffiffiffiffiffi
14

15

r
1

π3=4
1

β7=2V

q̂2
�
1 −

2q̂2

7β2V

�
e
− q̂2

2β2
V

ϕVð4S; q̂Þ ¼
ffiffiffiffiffi
35

16

r
1

π3=4
1

β3=2V

�
1 −

2q̂2

β2V
þ 4q̂4

5β4V
−

8q̂6

105β6V

�

× e
− q̂2

2β2
V

ϕVð3D; q̂Þ ¼
ffiffiffiffiffi
21

10

r
1

π3=4
1

β7=2V

q̂2
�
1 −

4q̂2

7β2V
þ 4q̂4

63β4V

�
e
− q̂2

2β2
V

ð27Þ

Equations (25)–(26) would lead to degenerate masses for
S and D states of Qq̄, and QQ̄ systems. To get S −D mass
splitting, we make use of degenerate perturbation theory.
The Coulomb term VV

coul associated with the one gluon
exchange interaction is perturbatively incorporated into the
mass spectral equation, Eq. (25) (that is treated as the
unperturbed equation) for vector mesons, as:

EVϕVðq̂Þ ¼ ½−β4V∇⃗2
q̂ þ q̂2 þ VV

coul�ϕVðq̂Þ: ð28Þ

The complete mass spectral equation of heavy-light
vector quarkonia can be put as

1

8β2V
½M2 − ðm1 þm2Þ2� þ

C0β
2
V

2ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m̂1m̂2A0

�
N þ 3

2

�s

þ γhVV
couli ¼ N þ 3

2
; N ¼ 0; 2; 4;…; ð29Þ

where hVV
couli is given by the expectation value of the

Coulomb term with respect to the unperturbed states of
vector mesons, in Eq. (27). In the secular equation, the only
nonzero expectation values of hVV

couli are the ones that
connect states of the same quantum numbers, n and l.
They are

hnSjVV
couljnSi ¼ −

32παs
3β2V

hnDjVV
couljnDi ¼ −

32παs
15β2V

: ð30Þ

We are giving plots of wave functions, ϕðnPÞ, and ϕðnSÞ
for ground and excited states of 0þþ, and 0−þ respectively,
[ϕðnSÞ and ϕðnDÞ] for 1−− in Figs. 2–4, respectively,
which are the unperturbed (long range) wave functions.
Regarding the wave functions, we have obtained the

general expressions of 3D forms of long distance (non-
perturbative) Bethe-Salpeter wave functions in Eqs. (12),
(19), and (27) for 0þþ; 0−þ, and 1−− respectively. We have
given the plots of these wave functions as a function of the
internal momentum, q̂ in Figs. 2–4. For Qq̄ systems, the
wave functions show a damped oscillatory behavior, with
amplitude for all the nðn ¼ 1; 2; 3;…Þ states (of 0−þ, and
1−−), being maximum at 0 GeV (confinement region), and
falling gradually with increase in q̂, and finally becoming
zero. For 0þþ mesons, the amplitude of the wave function is
0 at jq̂j ¼ 0 (due to the wave functions being odd), then
with increase in q̂, it reaches a maximum, executes a
damped oscillatory behavior, and finally becoming 0.
Further, as regards all the 0þþ mesons, we see that 1P
states have zero nodes, followed by 2P states with one node
and 3P states with two nodes. A similar trend is observed
for (nS) states of 0−þ; and [(nS), and (nD)] states of 1−−

mesons. Thus, these plots show that the 3D wave functions,
ϕðnPÞ, ϕðnSÞ, ϕðnDÞ and have (n − 1) nodes, which is a
general feature of bound quantum mechanical systems. An
interesting feature of these plots is that as the mass of the
meson, M increases, ϕðq̂Þ → 0 at a higher value of jq̂j.
As seen from the plots, the wave functions of heavier
mass Qq̄ systems (such as Bc, B�

c; Bs; B�
s ; B; B�) extend

to a much shorter distance than the wave functions
of (χc0; ηc; J=Ψ; D;D�; Ds; D�

s), implying thereby that
the heavier mesons (Bc; B�

c; Bs;…) are more tightly
bound than the comparatively lighter mesons (χc0; ηc;
J=Ψ; D;D�; Ds;…).
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This feature is also supported by the fact that in general,
the percentage contribution of Vcoul to meson mass, M, is
larger for Bc, B�

cB, B�, Bs, B�
s than ηc, χc0, D, D�, Ds, and

D�
s mesons, as seen in the mass spectrum tables, II, III,

and IV for 0þþ; 0−þ, and 1−− respectively. It is in this
sense, the algebraic forms of 3D hadronic BS wave
functions can not only provide information about the long

range nonperturbative physics, but also tell us the shortest
distance to which they can penetrate to in a hadron. It is in
this sense the computed wave functions are physically
reasonable and can build a “bridge” between the long
distance nonperturbative physics, and the short distance
perturbative physics. However as regards mass spectral
calculation, we do find some exceptions—for instance,

FIG. 2. Plots of wave functions for states (1P;…; 3P) Vs q̂ (in Gev.) for scalar mesons, such as; Bc, Bs, B, χc0,Ds, andD respectively.
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J=Ψð1SÞ has comparable percentage contribution of
Vcoul to its mass as the heavier mesons, B�ð1SÞ, and
B�
sð1SÞ. This may be argued from the plots of confining

potential Vconf in Fig.1, which show that as one moves
through cū, to cc̄, the confining potential gets deeper
(i.e. more attractive). Similar trend of confining

potential is again observed as one goes from bū to
bb̄. This may be a pointer to the fact that in equal mass
mesons (such as cc̄, and bb̄), the distance between the
quarks is shorter, and hence leading to a larger contribu-
tion of coulomb term to their mass than in unequal mass
mesons (cū; cs̄, and bū; bs̄ respectively). However, since it

FIG. 3. Plots of wave functions for states (1S;…; 3S) Vs q̂ (in Gev.) for pseudoscalar mesons, such as Bc, Bs, B, ηc, Ds, and D,
respectively.
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is further seen in Fig. 1, the confining potential for cc̄
systems is more attractive (deeper) than the bū, and bs̄
systems in Fig. 1, this may lead to a stronger attractive
coulomb force in J=Ψ, leading to a comparable contri-
bution of Vcoul to its mass as B�, and B�

s . However for B�
c,

the contribution of Vcoul to its mass is larger than the

corresponding contribution from J=Ψ (which is in perfect
agreement with their plots of wave functions), meaning
thereby that Bc is more tightly bound than J=Ψ, which is
in agreement with the arguments given in [3].
We now calculate the leptonic decays of pseudoscalar

and vector Qq̄ mesons in the next sections.

FIG. 4. Plots of wave functions for states (1S;…; 3S) Vs q̂ (in Gev.) for vector mesons, such as B�
c, B�

s , B�, J=Ψ, D�
s , and D�,

respectively.

GEBREHANA, BHATNAGAR, and NEGASH PHYS. REV. D 100, 054034 (2019)

054034-12



TABLE III. Masss spectra of ground and excited states of pseudoscalar 0−þ quarkonia (in GeV) (with the percentage contribution of
the OGE to meson mass) along with data and results of other models.

BSE-CIA % OGE Expt. [21] QCD Sum Rule PM Lattice QCD [50] RQM

MBcð1S0Þ 6.2720 8.31% 6.2749� 0.0008 6.253 [55] 6.349 [49] 6.280� 0.030� 0.190 6.270 [51]
MBcð2S0Þ 6.7241 7.03% 6.863 [55] 6.821 [49] 6.960� 0.080 6.835 [51]
MBcð3S0Þ 7.1968 5.98% 7.175 [49] 7.193 [51]
MBcð4S0Þ 7.6751 5.14%
MBcð5S0Þ 8.1499 4.46%
MBsð1S0Þ 5.3643 6.43% 5.3668� 0.00019 5.488� 0.076 [56] 5.367 [52] 5.372 [53]
MBsð2S0Þ 5.7225 5.50% 6.003 [52] 5.976 [53]
MBsð3S0Þ 6.1496 4.64% 6.556 [52] 6.467 [53]
MBsð4S0Þ 6.6115 3.91% 7.071 [52]
MBsð5S0Þ 7.0836 3.32% 7.565 [52]
MBð1S0Þ 5.2763 6.69% 5.279� 0.00014 5.259� 0.109 [56] 5.287 [52] 5.280 [53]
MBð2S0Þ 5.6206 5.75% 5.926 [52] 5.890 [53]
MBð3S0Þ 6.0409 4.84% 6.492 [52] 6.379 [53]
MBð4S0Þ 6.5001 4.07% 7.027 [52]
MBð5S0Þ 6.9714 3.45% 7.538 [52]
MDsð1S0Þ 2.0541 1.14% 1.9683� 0.00007 1.9686 [54] 1.969 [53]
MDsð2S0Þ 2.6358 0.61% 2.6333 [54] 2.688 [53]
MDsð3S0Þ 3.1891 0.39% 3.129 [53]
MDsð4S0Þ 3.6947 0.27%
MDð1S0Þ 1.9565 1.29% 1.8648� 00005 1.972� 0.094 [56] 1.8696 [54] 1.871 [53]
MDð2S0Þ 2.5288 0.68% 2.5235 [54] 2.581 [53]
MDð3S0Þ 3.0800 0.42% 3.062 [53]
MDð4S0Þ 3.5821 0.29%
Mηcð1S0Þ 3.0004 4.62% 2.9839� 0.0005 3.11� 0.52 [57] 2.980 [58] 3.292 [8] 2.981 [18]
Mηcð2S0Þ 3.5934 2.98% 3.6376� 0.0012 3.600 [58] 4.240 [8] 3.635 [18]
Mηcð3S0Þ 4.1433 2.11% 4.060 [58] 3.986 [18]
Mηcð4S0Þ 4.6565 1.60% 4.4554 [58] 4.401 [18]
Mηcð5S0Þ 5.1381 1.27%

TABLE IV. Mass spectra of ground and excited states of vector 1−− quarkonia (in GeV) (with the percentage contribution of the OGE
to meson mass) along with data and results of other models.

BSE-CIA % OGE Expt. [21] BSE-SDE PM Lattice QCD RQM

MB�
cð1S1Þ 6.3514 9.73% 6.308 [35] 6.373 [49] 6.321� 0.020 [50] 6.332 [51]

MB�
cð2S1Þ 6.8033 8.24% 6.855 [49] 6.990� 0.080 [50] 6.881 [51]

MB�
cð1DÞ 7.0086 11.23% 7.072 [51]

MB�
cð3S1Þ 7.2737 7.02% 7.210 [49] 7.235 [51]

MB�
cð2DÞ 7.4729 9.60%

MB�
cð4S1Þ 7.7487 6.04%

MB�
cð3DÞ 7.9398 8.30%

MB�
cð5S1Þ 8.2201 5.25%

MB�
cð4DÞ 8.4025 7.25%

MB�
sð1S1Þ 5.4153 7.59% 5.4154þ0.0014

−0.0015 5.4130 [35] 5.413 [52] 5.414 [53]
MB�

sð2S1Þ 5.7775 6.49% 6.029 [52] 5.992 [53]
MB�

sð1DÞ 6.1111 12.14% 6.119 [52] 6.209 [53]
MB�

sð3S1Þ 6.2045 5.48% 6.575 [52] 6.475 [53]

(Table continued)
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VI. LEPTONIC DECAYS OF PSEUDOSCALAR
HEAVY-LIGHT QUARKONIA

The leptonic decays of pseudoscalar quarkonia proceed
through the coupling of the quark-antiquark loop to the
axial vector current. The leptonic decay constants, fP are
defined as,

ifPPμ ≡ h0jQ̄iγμγ5QjPi: ð31Þ

The decay constants can be expressed through the
quark-loop integral as,

fPPμ ¼
ffiffiffi
3

p Z
d4q
ð2πÞ4 Tr½Ψ

PðP; qÞiγμγ5�: ð32Þ

Making use of the fact that the 4D volume integral can
be expressed as, d4q ¼ d3q̂Mdσ, where, Mdσ is the longi-
tudinal component of internal momentum qμ, and making
use of the fact that under covariant instantaneous Ansatz
(CIA), the 3D BS wave function, ψPðq̂Þ can be expressed as,

ψPðq̂Þ ¼ i
Z

Mdσ
2π

ΨðP; qÞ ð33Þ

we can express the decay constant, fP as a 3D integral
[41,60],

TABLE IV. (Continued)

BSE-CIA % OGE Expt. [21] BSE-SDE PM Lattice QCD RQM

MB�
sð2DÞ 6.5360 10.30% 6.642 [52] 6.629 [53]

MB�
sð4S1Þ 6.6640 4.62% 7.087 [52]

MB�
sð3DÞ 6.9824 8.77% 7.139 [52]

MB�
sð5S1Þ 7.1330 3.94% 7.579 [52]

MB�
sð4DÞ 7.4344 7.54%

MB�ð1S1Þ 5.3283 7.90% 5.325� 0.0004 [20] 5.325 [35] 5.323 [52] 5.325 [53]
MB�ð2S1Þ 5.6774 6.77% 5.947 [52] 5.848 [53]
MB�ð1DÞ 6.0196 12.61% 6.016 [52] 6.005 [53]
MB�ð3S1Þ 6.0976 5.71% 6.508 [52] 6.136 [53]
MB�ð2DÞ 6.4386 10.68% 6.562 [52] 6.248 [53]
MB�ð4S1Þ 6.5543 4.81% 7.039 [52]
MB�ð3DÞ 6.8817 9.08% 7.081 [52]
MB�ð5S1Þ 7.0223 4.09% 7.549 [52]
MB�ð4DÞ 7.3316 7.80%
MD�

s ð1S1Þ 2.1153 4.32% 2.1122� 0.0004 2.157 [35] 2.1123 [54] 2.111 [53]
MD�

s ð2S1Þ 2.6855 2.38% 2.7083þ0.0040
−0.0034 2.7164 [54] 2.731 [53]

MD�
s ð1DÞ 2.9243 10.12% 2.9145 [54] 2.919 [53]

MD�
s ð3S1Þ 3.2289 1.52% 3.2626 [54] 3.242 [53]

MD�
s ð2DÞ 3.4266 6.80% 3.3928 [54] 3.383 [53]

MD�
s ð4S1Þ 3.7280 1.08%

MD�
s ð3DÞ 3.8966 4.97%

MD�ð1S1Þ 2.0221 4.84% 2.010� 0.00005 2.068 [35] 2.0104 [54] 2.010 [53]
MD�ð2S1Þ 2.5821 2.63% 2.6062 [54] 2.632 [53]
MD�ð1DÞ 2.8056 10.06% 2.8029 [54] 2.788 [53]
MD�ð3S1Þ 3.1222 1.65% 3.1484 [54] 3.096 [53]
MD�ð2DÞ 3.3053 6.67% 3.2818 [54] 3.228 [53]
MD�ð4S1Þ 3.6171 1.16%
MD�ð3DÞ 3.7721 4.82%
MJ=ψð1S1Þ 3.0970 7.84% 3.0969� 0.000006 3.0969 [58] 3.099 [59] 3.096 [18]
Mψð2S1Þ 3.6744 5.14% 3.6861� 0.000025 3.6890 [58] 3.653 [59] 3.685 [18]
Mψð1DÞ 3.7716 7.62% 3.773� 0.00033 3.783 [18]
Mψð3S1Þ 4.2133 3.69% 4.039� 0.001 4.1407 [58] 4.099 [59] 4.039 [18]
Mψð2DÞ 4.2979 5.53% 4.191� 0.005 4.150 [18]
Mψð4S1Þ 4.7182 2.82% 4.421� 0.004 4.5320 [58] 4.427 [18]
Mψð3DÞ 4.7933 4.26% 4.507 [18]
Mψð5S1Þ 5.1935 2.24% 4.8841 [58] 4.837 [18]
Mψð4DÞ 5.2613 3.41% 4.857 [18]
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fP ¼
ffiffiffi
3

p
NP

Z
d3q̂
ð2πÞ3 Tr½iγ5γμψPðq̂Þ�: ð34Þ

Here, the full 3D BS wave function, ψPðq̂Þ can be taken
from Eq. (A5) in the Appendix, where ϕ1ðq̂Þ, and ϕ2ðq̂Þ
satisfy two identical decoupled equations, Eq. (16), leading
to ϕ1ðq̂Þ ¼ ϕ2ðq̂Þð¼ ϕPðq̂ÞÞ, which is expressed as,

ψPðq̂Þ ¼ NP

�
M − iPþ iMðω1 − ω2Þ

ω1m2 þm1ω2

=̂q

þ ðm1 þm2Þ
ω1ω2 þm1m2 − q̂2

P=̂q
�
γ5ϕPðq̂Þ ð35Þ

Putting the above expression for ψP in Eq. (34), and
evaluating trace over the gamma matrices on the right side
of the equation, we get,

fPPμ ¼ 4
ffiffiffi
3

p Z
d3q
ð2πÞ3

�
Pμ −

Mðω1 − ω2Þ
m1ω1 þm2ω2

q̂μ

�
ϕPðq̂Þ:

ð36Þ
To evaluate fP, we multiply both sides of the above

equation by Pμ

M2, and making use of the fact that q̂:P ¼ 0,
we get,

fP ¼ 4
ffiffiffi
3

p
NP

Z
d3q̂
ð2πÞ3 ϕPðq̂Þ; ð37Þ

where the 3D wave functions, ϕPðq̂Þ for pseudoscalar Qq̄
are the unnormalized states in Eqs. (19), and NP is the 4D
BS normalizer obtained through the current conservation
condition,

2iPμ ¼
Z

d4q
ð2πÞ4 Tr

	
Ψ̄ðP; qÞ

� ∂
∂Pμ

S−1F ðp1Þ
�

×ΨðP; qÞS−1F ð−p2Þ


þ ð1 ⇌ 2Þ; ð38Þ

where ΨPðq̂Þ is the 4D BS wave function, while the adjoint
BS wave function, Ψ̄ðP; qÞ ¼ γ4Ψ†ðP; qÞγ4.
Leptonic decay constants of 0−þ quarkonia are given in

Table V along with data and results of other models.

VII. LEPTONIC DECAYS OF HEAVY-LIGHT
VECTOR QUARKONIA

Leptonic decay constant of vector mesons is expressed
through the coupling of the quark-antiquark loop to the
vector current as,

fVMϵμðPÞ≡ h0jQ̄γμQjVðPÞi: ð39Þ

Following a similar procedure as in the case of pseudo-
scalar mesons, we can express the leptonic decays of vector
quarkonia, fV as a quark-loop integral,

fVMϵμ ¼
ffiffiffi
3

p Z
d3q̂
ð2πÞ3 Tr½ψ

Vðq̂Þγμ�: ð40Þ

Here ψVðq̂Þ is the full 3D wave function for vector mesons
that can be taken from Eq. (A8), where χ1ðq̂Þ, and χ2ðq̂Þ
satisfy two identical decoupled equations, Eq. (23), leading
to χ1ðq̂Þ ¼ χ2ðq̂Þð¼ ϕVðq̂ÞÞ, which is expressed as,

TABLE V. Leptonic decay constants, fP of ground state (1S) and excited state (2S) and (3S) of heavy-light pseudoscalar mesons (in
GeV.) in the present calculation (BSE-CIA) along with experimental data, and their masses in other models.

BSE-CIA Expt. BSE-SDE QCD SR Latt. QCD Rel. PM [61]

fηcð1SÞ 0.3282 0.335� 0.075 [25] 0.260� 0.075 [57] 0.3928 [62]
fηcð2SÞ 0.2363
fηcð3SÞ 0.1959
fBcð1SÞ 0.4635 0.400� 0.015 [63] 0.434� 0.015 [6]
fBcð2SÞ 0.3611
fBcð3SÞ 0.3110
fBsð1SÞ 0.2589 0.195 [64] 0.2288� 0.0069
fBsð2SÞ 0.2087
fBsð3SÞ 0.1789
fBð1SÞ 0.2192 0.1915� 0.0073 [65] 0.198� 0.014
fBð2SÞ 0.1779
fBð3SÞ 0.1517
fDsð1SÞ 0.2033 0.2546� 0.0059 [66] 0.228 [35] 0.241� 0.0003 [67] 0.256� 0.026
fDsð2SÞ 0.1360
fDsð3SÞ 0.1079
fDð1SÞ 0.1751 0.2067� 0.0089 [68] 0.267 [35] 0.207� 0.0004 [67] 0.208� 0.021
fDð2SÞ 0.1145
fDð3SÞ 0.0889
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ψVðq̂Þ ¼ NV

�
iM=εþ q̂:ε

Mðm1 þm2Þ
ω1ω2 þm1m2 − q̂2

þ =εP

þ iðω1 − ω2Þ
2ðω1m2 þm1ω2Þ

ðP=ε=̂qþ q̂:εPÞ
�
ϕVðq̂Þ ð41Þ

Putting Eq. (41) in Eq. (40), and evaluating trace over the
gamma matrices on the RHS, and multiplying both sides of
the resulting equation by the polarization vector, ϵμ of
vector meson, and making use of the fact that, P:ϵ ¼ 0, and
the 3D reduction through Eq. (33), we get the leptonic
decay constant of vector mesons as,

fV ¼ 4
ffiffiffi
3

p
NV

Z
d3q̂
ð2πÞ3 ϕVðq̂Þ; ð42Þ

where the 4D BS normalizer, NV can be obtained from the
current conservation condition in Eq. (38), and following a
similar procedure as in the case of pseudoscalar quarkonia
with the expression for BS normalizer, NV given in the
Appendix.
The leptonic decay constants of heavy-light vector

mesons are given in Table VI.

VIII. RESULTS AND DISCUSSION

We have employed a 3D reduction of BSE (with a 4 × 4
representation for two-body (qq̄) BS amplitude) under
covariant instantaneous Ansatz (CIA) with an interaction
kernel consisting of both the confining and one gluon
exchange terms, to derive the algebraic forms of the mass
spectral equations and eigen functions of heavy-light
quarkonia in an approximate harmonic oscillator basis,
leading to mass spectra of ground and excited states of
heavy-light scalar (0þþ), pseudoscalar (0−þ), and vector
(1−−) quarkonia.
The input parameters of our model obtained by best fit

to the spectra of ground states of scalar, pseudoscalar
and vector Qq̄, and QQ̄ quarkonia are C0 ¼ 0.69,
ω0 ¼ 0.22 GeV, ΛQCD ¼ 0.250 GeV, and A0 ¼ 0.01, with
input quark masses mu ¼ 0.300 GeV, ms ¼ 0.430 GeV,
mc ¼ 1.490 GeV, and mb ¼ 4.690 GeV. We further cal-
culated the percentage contribution of short range coulomb
term, γhVcoulombi to the mass of each meson state, which are
indeed small, justifying the perturbative treatment of the
Coulomb term for these states. We see that for any JPC, the
contribution of Coulomb term to meson mass for bū; bs̄,
and cb̄ mesons is larger than the corresponding contribu-
tions from cū; cs̄, and cc̄ states, implying thereby that the
former states are more tightly bound than the latter. This
may be due to the fact that the heavier b quark would pull
the lighter c, u, s quarks more strongly (a similar argument
was given in [3] to suggest that the c quark in Bc moves
faster than in J=Ψ since it must balance the momentum of a
more massive b quark), and hence being more tightly
bound, and with a larger contribution of Coulomb term to
their mass than the lighter cū; cs̄, and cc̄ states. Further, as
seen from Tables II, III, and IV, for a given meson, as we go
from its ground state (n ¼ 1) to its excited (n ¼ 2; 3; 4;…)
states, the contribution of Coulomb term to its mass keeps
decreasing. Due to this, the ground states of mesons are
more tightly bound than their excited states. This is similar
to the feature seen in atoms, with the ground states being
more tightly bound than the excited states.
We wish to point out that this above feature is also

supported by the plots of analytic forms [that are derived
analytically in Eqs. (12), (19), and (27)] of the long distance
(nonperturbative) wave functions of 0þþ; 0−þ, and 1−−

respectively, as a function of the internal momentum, q̂ in
Figs. 2–4. These plots show that the wave functions, ϕðnSÞ,
ϕðnDÞ, and ϕðnPÞ have (n − 1) nodes, which is a general
feature of bound quantum mechanical systems. As men-
tioned in Sec. V, forQq̄ systems, the wave functions show a
damped oscillatory behavior, with amplitude for nS states
(of 0−þ, and 1−−), and nP states (of 0þþ), being maximum
at 0 GeV (confinement region), and falling gradually with
increase in q̂, and finally becoming zero. An interesting
feature of these plots is that as the mass of the meson, M
increases, ϕðq̂Þ → 0 at a higher value of jq̂j. This implies
that the wave functions of heavier mass Qq̄ systems (such

TABLE VI. Leptonic decay constants, fV of ground state (1S)
and excited state ð2SÞ;…; ð3SÞ of heavy-light vector mesons (in
GeV.) in the present calculation (BSE-CIA) along with exper-
imental data, and their masses in other models.

BSE - CIA Expt. BSE [16] RQM [71]

fBc�ð1SÞ 0.5171 0.418� 0.024
fBc�ð2SÞ 0.4292 0.331� 0.021
fBc�ð1DÞ 0.5441
fBc�ð3SÞ 0.3927
fBs�ð1SÞ 0.3097 0.272� 0.020 0.214
fBs�ð2SÞ 0.2585 0.246� 0.013
fBs�ð1DÞ 0.2945
fBs�ð3SÞ 0.2292
fB�ð1SÞ 0.2473 0.238� 0.018 0.195
fB�ð2SÞ 0.2109 0.221� 0.014
fB�ð1DÞ 0.2359
fB�ð3SÞ 0.1877
fDs�ð1SÞ 0.2698 0.227 [72] 0.375� 0.024 0.335
fDs�ð2SÞ 0.2026 0.312� 0.017
fDs�ð1DÞ 0.2483
fDs�ð3SÞ 0.1749
fD�ð1SÞ 0.2251 0.196 [72] 0.339� 0.022 0.315
fD�ð2SÞ 0.1680 0.289� 0.016
fD�ð1DÞ 0.2035
fD�ð3SÞ 0.1441
fJ=ψð1SÞ 0.4599 0.411 [20]
fψð2SÞ 0.3256 0.279 [20]
fψð1DÞ 0.2687 0.210 [20]
fψð3SÞ 0.2218
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as Bc, B�
c; Bs; B�

s ; B; B�) extend to a much shorter distance
than the wave functions of (χc0, ηc, J=Ψ, D, D�, Ds, D�

s),
implying thereby that the heavier mesons (Bc; B�

c; Bs;…)
are more tightly bound than the comparatively lighter
mesons (χc0; ηc; J=Ψ; D;D�; Ds;…). Due to this, one
can expect a larger contribution of the Coulomb term to
the mass of cb̄; bū, and bs̄ states than the lighter cc̄; cs̄, and
cū states, though there are some exceptions as mentioned in
detail in Sec. V. Thus the algebraic forms of 3D hadronic
BS wave functions can not only provide information about
the long range nonperturbative physics, but also tell us the
shortest distance to which they can extend to in a hadron.
Hence these hadronic BS wave functions are physically
reasonable, and build a connection between the long range
nonperturbative physics, and the short range perturbative
physics.
These wave functions for heavy-light mesons so derived,

are then used to calculate the leptonic decay constants for
heavy-light pseudoscalar and vector mesons as a test of the
wave functions derived and the BSE framework employed.
As stated earlier, the partitioning of relativistic internal
momentum q comes from the Wightmann-Garding defi-
nitions m̂1;2 of masses of individual quarks. The 3D
reduction through covariant instantaneous Ansatz (CIA)
employed by us does make our formulation relativistically
covariant, but it is not be Poincare covariant, since our
results depend on the momentum partitioning parameters.
In a Poincare covariant framework [69,70], the numerical
results for the amplitudes and masses are independent of
the choice of momentum partitioning parameters.
In this work, we make use of the exact treatment of the

spin structure ðγμ ⊗ γμÞ in the interaction kernel, in contrast
to the approximate treatment of the same in our previous
works [41,42]). In so doing we do away with the approxi-
mation of taking the leading Dirac structures in the structure
of 4D BS wave function, ΨðP; qÞ, which is a substantial
improvement over our previous works. We thus first derive
analytically the mass spectral equation using only the
confining part of the interaction kernel for Qq̄ systems,
and calculate the algebraic forms of the wave functions.
Then treating this mass spectral equation as the unperturbed
equation, we introduce the one-gluon-exchange (OGE)
perturbatively, and obtain the mass spectra for various states
of 0þþ; 0−þ, and 1−−, treating the wave functions derived
above as the unperturbed wave functions.
As mentioned earlier, in our works, we are not only

interested in studying the mass spectrum of hadrons, which
no doubt is an important element to study dynamics of
hadrons, but also the hadronic wave functions that play an

important role in the calculation of decay constants, form
factors, structure functions etc. for QQ̄, and Qq̄ hadrons.
As mentioned above, these hadronic Bethe-Salpeter wave
functions calculated algebraically in this work provide a lot
of information about the long distance nonperturbative
physics. And since these quarkonia are involved in a
number of reactions which are of great importance for
study of Cabibbo-Kobayashi-Maskawa (CKM) matrix and
CP violation, the wave functions calculated analytically by
us can lead to studies on a number of processes involving
QQ̄, and Qq̄ states. In this work, we have used these
algebraic forms of wave functions to calculate the leptonic
decay constants of pseudoscalar and vector Qq̄ quarkonia
in Tables V and VI respectively. We will be further using
these wave functions of ground and excited states of heavy-
light quarkonia to evaluate the various transition processes
involving heavy-light scalar, pseudoscalar, and vector
quarkonia as future work.
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APPENDIX

1. Scalar mesons

For scalar mesons, the Salpeter equations ψþ−ðq̂Þ ¼
ψ−þðq̂Þ ¼ 0 in Eq. (2), are used to obtain the constraint
relations between the scalar functions for unequal mass
mesons as

f1ðq̂Þ ¼
−ðm1 þm2Þq̂2

Mðω1ω2 þm1m2 − q̂2Þ f3ðq̂Þ;

f2ðq̂Þ ¼
2ðω2 − ω1Þq̂2

Mðω1m2 þm1ω2Þ
f4ðq̂Þ: ðA1Þ

The BS-wave function for scalar mesons in Eq. (7) with
the help of these constraint relations can be rewritten in
terms of only two independent scalar functions (f1 (or f3)
and f4) as

ψSðq̂Þ ¼
�

−ðm1 þm2Þq̂2
ðω1ω2 þm1m2 − q̂2Þ − i=̂q

�
f3ðq̂Þ − 2

�
iðω2 − ω1Þq̂2P

Mðω1m2 þm1ω2Þ
þ P=̂q

M

�
f4ðq̂Þ ðA2Þ
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The coupled equations that result from the first two Salpeter equations (with use of confining interaction alone) are

½M − ω1 − ω2�
�
2ω1ω2ðm1 þm2Þ
ω1ω2 þm1m2 − q̂2

f3ðq̂Þ þ
4ω1ω2ðm1 þm2Þ
ω1m2 þm1ω2

f4ðq̂Þ
�
¼ −

1

q̂2

Z
d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ

×

��
4ðω1ω2 −m1m2 þ q̂2Þðm1 þm2Þq̂02

ω1ω2 þm1m2 − q̂02
þ 2ðm1 þm2Þq̂:q̂0

�
f3ðq̂0Þ

−
�
4ðω1m2 −m1ω2Þðω2 − ω1Þq̂02

ω1m2 þm1ω2

�
f4ðq̂0Þ

�
;

½M þ ω1 þ ω2�
�
−2ω1ω2ðm1 þm2Þ
ω1ω2 þm1m2 − q̂2

f3ðq̂Þ þ
4ω1ω2ðm1 þm2Þ
ω1m2 þm1ω2

f4ðq̂Þ
�
¼ −

1

q̂2

Z
d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ

×

��
4ðω1ω2 −m1m2 þ q̂2Þðm1 þm2Þq̂02

ω1ω2 þm1m2 − q̂02
þ 2ðm1 þm2Þq̂:q̂0

�
f3ðq̂0Þ

þ 4

�ðω1m2 −m1ω2Þðω2 − ω1Þq̂02
ω1m2 þm1ω2

�
f4ðq̂0Þ

�
ðA3Þ

To decouple these equations, we follow the same
procedure in [41,42], where we first add them. Then
we subtract the second equation from the first equation.
For a kernel that can be expressed as Vcðq̂ − q̂0Þ ¼
V̄cðq̂Þδ3ðq̂ − q̂0Þ, we get two algebraic equations which
are still coupled. Then from one of the two equations so
obtained, we eliminate f3ðq̂Þ in terms of f4ðq̂Þ, and plug
this expression for f3ðq̂Þ in the second equation of the
coupled set so obtained to get a decoupled equation in
f4ðq̂Þ. Similarly, we eliminate f4ðq̂Þ from the second

equation of the set of coupled algebraic equations in terms
of f3ðq̂Þ, and plug it into the first equation to get a
decoupled equation entirely in f3ðq̂Þ, which reduces to
two identical decoupled equations, one entirely in f3ðq̂Þ,
and the other that is entirely in f4ðq̂Þ.

2. Pseudoscalar mesons

We use the last two Salpeter equations in Eq. (2) to find
the constraints on the components of the wave function as

ϕ4ðq̂Þ ¼
Mðm1 þm2Þ

ω1ω2 þm1m2 − q̂2
ϕ2ðq̂Þ; ϕ3ðq̂Þ ¼

Mðω1 − ω2Þ
ω1m2 þm1ω2

ϕ1ðq̂Þ; ðA4Þ

Plugging Eq. (A4) into Eq. (15), we rewrite the wave function for pseudoscalar mesons as

ψPðq̂Þ ¼
��

M þ iMðω1 − ω2Þ
ω1m2 þm1ω2

=̂q

�
ϕ1ðq̂Þ þ

�
−iPþ ðm1 þm2Þ

ω1ω2 þm1m2 − q̂2
P=̂q

�
ϕ2ðq̂Þ

�
γ5: ðA5Þ

Using the above constraint relations, the first two Salpeter equations can be expressed as coupled integral equations as:

½M − ω1 − ω2�
��ðm2ω2Þω2

1 þ ðm1ω1Þω2
2

ω1m2 þm1ω2

�
ϕ1ðq̂Þ þ

�ðm2ω2Þω2
1 þ ðm1ω1Þω2

2

ω1ω2 þm1m2 − q̂2

�
ϕ2ðq̂Þ

�

¼
Z

d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ
��

−2ðω1ω2 þm1m2 þ q̂2Þ − ðm1 −m2Þðω1 − ω2Þ
ω1m2 þm1ω2

q̂:q̂0
�
ϕ1ðq̂0Þ

þ ðω1m2 þm1ω2Þϕ2ðq̂0Þ
�

½M þ ω1 þ ω2�
��ðm2ω2Þω2

1 þ ðm1ω1Þω2
2

ω1m2 þm1ω2

�
ϕ1ðq̂Þ −

�ðm2ω2Þω2
1 þ ðm1ω1Þω2

2

ω1ω2 þm1m2 − q̂2

�
ϕ2ðq̂Þ

�

¼ −
Z

d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ
��

−2ðω1ω2 þm1m2 þ q̂2Þ − ðm1 −m2Þðω1 − ω2Þ
ω1m2 þm1ω2

q̂:q̂0
�
ϕ1ðq̂0Þ

− ðω1m2 þm1ω2Þϕ2ðq̂0Þ
�

ðA6Þ
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These coupled equations are again decoupled following the same procedure as in scalar meson case.

3. Vector mesons

The constraint equations on the components of the wave functions (χ s) can be obtained using the last two Salpeter
equations of (2) as

χ5ðq̂Þ ¼
Mðm1 þm2Þ

ω1ω2 þm1m2 − q̂2
χ1ðq̂Þ; χ4ðq̂Þ ¼ −

Mðω1 þ ω2Þ
2ðω1m2 þm1ω2Þ

χ2ðq̂Þ

χ3ðq̂Þ ¼ χ6ðq̂Þ ¼ 0: ðA7Þ

Substituting Eq. (A7) into Eq. (22), the wave function for vector mesons can be rewritten as

ψVðq̂Þ ¼
�
iM=ϵþ q̂:ϵ

Mðm1 þm2Þ
ω1ω2 þm1m2 − q̂2

�
χ1ðq̂Þ þ

�
=ϵPþ iðω1 þ ω2Þ

2ðω1m2 þm1ω2Þ
ðP=ϵ=̂qþ q̂:ϵPÞ

�
χ2ðq̂Þ ðA8Þ

Using the first two Salpeter equations, we obtain the coupled integral equations of vector mesons (with confining
interaction alone) as

½M − ω1 − ω2�q̂:ϵ
�
2ω1ω2ðm1 þm2Þ
ω1ω2 þm1m2 − q̂2

χ1ðq̂Þ −
2ω1m2ðω1 þ ω2Þ
ω1m2 þm1ω2

χ2ðq̂Þ
�
¼
Z

d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ

×

�
−
�
2q̂:ϵðm1 þm2Þ þ 4q̂0:ϵðm1 þm2Þ

ðω1ω2 −m1m2 þ q̂2Þ
ω1ω2 þm1m2 − q̂02

�
χ1ðq̂0Þ

þ
�
2q̂0:ϵðω1 þ ω2Þ

ðω1m2 −m1ω2Þ
ω1m2 þm1ω2

�
χ2ðq̂0Þ

�

½M þ ω1 þ ω2�q̂:ϵ
�
2ω1ω2ðm1 þm2Þ
ω1ω2 þm1m2 − q̂2

χ1ðq̂Þ þ
2ω1m2ðω1 þ ω2Þ
ω1m2 þm1ω2

χ2ðq̂Þ
�
¼ −

Z
d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ

×

�
−
�
2q̂:ϵðm1 þm2Þ þ 4q̂0:ϵðm1 þm2Þ

ðω1ω2 −m1m2 þ q̂2Þ
ω1ω2 þm1m2 − q̂02

�
χ1ðq̂0Þ

−
�
2q̂0:ϵðω1 þ ω2Þ

ðω1m2 −m1ω2Þ
ω1m2 þm1ω2

�
χ2ðq̂0Þ

�
: ðA9Þ

4. BS normalizers

(a) Pseudoscalar mesons: We make use of the fact that in the inverse propagators, S−1F ðp1;2Þ of the two quarks, their
momenta are expressed as, p1;2 ¼ m̂1;2P� q, and the 4D volume element, d4q ¼ d3q̂Mdσ. Integrating over Mdσ, and
making use of the 3D form of BS wave function, ψðq̂Þ, in Eq. (35), evaluating trace over the gamma matrices, and
multiplying both sides of the equation by Pμ, we get,

N−2
P ¼

Z
d3q̂
ð2πÞ3

ϕ2
Pðq̂Þ
m1

�
4M2m̂1m̂2ðω1 − ω2Þ2q̂2

ðω1m2 þm1ω2Þ2
þ 4M2m̂1m̂2ðm1 þm2Þ2q̂2

ðω1ω2 þm1m2 − q̂2Þ2

þ 8Mm̂1ðm1 þm2Þm2ðω1 − ω2Þq̂2
ðω1m2 þm1ω2Þðω1ω2 þm1m2 − q̂2Þ þ

8Mm̂1ðm1 þm2Þq̂2
ðω1ω2 þm1m2 − q̂2Þ

þ 8Mm̂1ðω1 − ω2Þq̂2
ðω1m2 þm1ω2Þ

�
þ ð1 ⇌ 2Þ; ðA10Þ

(b) Vector mesons: Following the same procedure as in the case of pseudoscalar meson, the BS normalizer for vector
meson is expressed as,
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N−2
V ¼

Z
d3q̂
ð2πÞ3

ϕ2
Vðq̂Þ
m1

�
−
2M2m̂1 m̂2ðω1 þ ω2Þ2ðq̂:ϵÞ2

ðω1m2 þm1ω2Þ2
−
8M2m̂1 m̂2ðm1 þm2Þ2ðq̂:ϵÞ2

ðω1ω2 þm1m2 − q̂2Þ2

þ 16Mm̂1ðm1 þm2Þm2ðω1 þ ω2Þðq̂:ϵÞ2
ðω1m2 þm1ω2Þðω1ω2 þm1m2 − q̂2Þ þ

8Mm̂1ðω1 þ ω2Þðq̂:ϵÞ2
ðω1m2 þm1ω2Þ

þ 16Mm̂1ðm1 þm2Þðq̂:ϵÞ2
ðω1ω2 þm1m2 − q̂2Þ

�
þ ð1 ⇌ 2Þ; ðA11Þ

where εμ is the polarization vector of the vector meson of mass, M, and momentum,P, and is normalized
as, εμεν ¼ 1

3
ðδμ;ν þ PμPν

M2 Þ.
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