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N*(1535) — N transition form-factors due to the axial current
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The form-factors for the transition N*(1535) — N induced by isovector and isoscalar axial currents
within the framework of light cone QCD sum rules by using the most general form of the interpolating
current are calculated. In numerical calculations, we use two sets of values of input parameters. It

is observed that the Q% dependence of the form-factor G, can be described by the dipole form. Moreover,

the form-factors GS;g>

are found to be highly sensitive to the variations in the auxiliary parameter f. The

numerical calculations show that the form factor Gg_s) at all values of Q2 and /3 for both sets of values of the

parameters are smaller than that one for G@ and G(SS).
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I. INTRODUCTION

Nucleon form-factors are fundamental quantities for
understanding the inner structure of hadrons at low energies.
The electromagnetic form-factors of nucleons are studied in
a wide range of momentum transfer squares (see [1]). The
electromagnetic form-factors within the light cone sum rules
(LCSR) were comprehensively studied in many works (see,
e.g., [2-6]). Unlike the electromagnetic form-factors, those
induced by isovector and isoscalar axial currents are not
measured. Only the nucleon axial charge is experimentally
well determined from the neutron S decay, and the latest
value is g4 = 1.2724 [7]. The determination of the axial
form-factors can give very useful information on the flavor
structure and spin content of nucleon resonances. Therefore,
the study of these form-factors receives special attention for
understanding the structure of nucleon resonances.

The LCSR results for the nucleon axial form-factors and
for tensor factors are studied in [8,9] and [10,11], respec-
tively. The axial form-factors of the nucleon within the
holography approach are investigated in [12]. In the lattice
QCD, the momentum-transfer dependence of the axial form-
factor is studied in [13—17]. The study of the momentum
transfer dependence of the axial form-factor is possible only
in pion electroproduction and neutrino-induced charged-
current reactions.
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The experiments planned at Jefferson Laboratory
(JLab), MAMLI, are aimed to study the properties of baryon
resonances in photo- and electroproduction reactions [18].

Motivated by the prospective experiments at JLab,
MAMI, we aim to study the form-factors for the transition
N*(1535) — N induced by isovector and isoscalar axial
currents in the framework of the LCSR. Note that the
electromagnetic form-factors for the transition N*(1535) —
N within the LCSR are calculated in [19].

This paper is structured as follows. In Sec. II, we
introduce the relevant correlation function and derive the
LCSR for the form-factors induced by an axial quark
current. Our numerical analysis for axial form-factors for
the transition N*(1535) — N is presented in Sec. III. This
section also contains our discussion and conclusion.

II. SUM RULES FOR THE TRANSITION
N*(1535) - N FORM-FACTORS INDUCED
BY AXTAL CURRENT

In this section, we derive the LSCR for the form-factors
for the transition N*(1535) — N induced by isovector and
isoscalar axial currents. To this end, we introduce the
following vacuum to N*(1535) correlation function:

,(p.q) =i / d*x e (0| T{n(0)A () }IN*(p)). (1)

In Eq. (1), n is the interpolating current for the nucleon and

S) . . . .
A,(, ) is the isovector (isoscalar) axial vector current,

A = iy, ysu F dy,ysd. (2)

The nucleon interpolating current, in general, can be
written as
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2
n =26 " (uTCA{d")AGuc, (3)

=1
where a, b, and ¢ are color indices, C is the charge-
conjugation operator, A} =1, Al =ys5, A7 =ys, and
A} = pI. The case = —1 corresponds to the Ioffe current.
The LCSR for the relevant quantities is obtained by
calculating the correlation function from the hadronic and
QCD sides and then matching the result of the two
representations. From the hadronic side, the result can
be obtained by inserting the total set of the nucleon states
between the nucleon interpolating current and the axial

current A,(f), and separating the contribution of the ground-
state nucleon.

The standard procedure for obtaining QCD sum rules is
the calculation of the correlation function from hadronic
and QCD sides. We begin with the calculation of the
hadronic side of the correlation function (1).

Now we will give a few details of this procedure. We
explicitly keep the contribution of the state N(940) in the
hadronic dispersion relation and, according to the quark-
hadron duality ansitz, represent higher states by a
dispersion integral, starting from some threshold, s.

After separating the contribution from the ground-state
N in the hadronic part, we get

(O7IN)(N|AD |N)
M= @)
m-—p

where - - - denotes the contributions from higher states and
the continuum. The coupling of N to the interpolating
current #, that is, the decay constant or the residue, is
defined as

OlnIN(p)) = Ayun(p). (5)

The matrix element of the axial current between N and N*
in terms of three form-factors is given by

(N(P)IALIN"(P))
q

— 7 ! G 2 H G 2
un(p') |7ursGalq )+—mN+mN* rsGp(q”)
, qv
+ 1o, rsGr(q?®) |rsun-(p). (6)

v
my + M+

where G, Gp, and Gy are the axial, induced pseudoscalar,
and induced tensor form-factors, respectively. The matrix
element of the isoscalar axial-vector current between N and
N* is obtained from (6) by replacing A, — A3, G4 — G3,
Gp — G}, and G; — G3. At this point, we would like to
make the following remark. If initial and final state baryons
are the same, the tensor form factors G<TS ) vanish as a
consequence of the isospin symmetry and the G-parity
invariance. In our problem, the initial and final states are
different; hence, we need to calculate all the form factors.
Taking into account this fact and putting Egs. (6) and (5)

into (4) for the hadronic contributions to the correlation
function, we obtain

A
Hﬂ_n/llzv—ivlj/z(ﬁ_%_FmN){yu(GA_GT)
9y 2py ]
— (GG +—L G|y (p) -
mN-l-mN*( P r) iy + r|un-(P)

(7)

Using the equation of motion, namely puy-(p) =
my-uy+(p), in the correlation function from hadronic part,
we get

A
I, = WNQ{(GA = Gr)((my = my- )y, + 2y = )
NP
(GP _GT)Q/J
47 « 4 -
. n my (mN my d)
ZGTP”
TR (e A my — )+ 8
My + my (mN o d)} ( )

where p’ = p — ¢. From this expression, we see that the
correlator function can be decomposed into the following
Lorentz structures:

H,u(pvq) :Hlpy +I—[Zyy +H3%Y;4 +H4CI;4 +H5Qﬂd+nﬁpﬂd‘
9)

Now, let us turn our attention to the calculation of the
correlation function from the QCD side. For p’?, ¢> < 0, the
product of the two currents in Eq. (1) can be expanded around
the light cone, x> ~ 0. The result of the operator-product
expansion (OPE) is obtained by a sum over the distribution
amplitudes (DA’s) of N*, with an increasing twist multiplied
by their corresponding coefficient functions.

At this point, we would like to present some details of the
calculations. Using the forms of the interpolating current
and axial current given above, we get

1 S
(1), =5 [ e S CADALS.~r,15)

+ (Ag)pa[(CAf)TSu(_x)yﬂYS]yﬁ
+ (Ag)pﬂ[CA{SM(_X)y;t}/S]ay}A"SabC
x (0]ug(0)ug (x)d; (0)[N*(p)). (10)

In Eq. (10), the upper (lower) sign in the last line
corresponds to the isovector (isoscalar) axial current, and
S, (x) is the light-quark propagator. In calculation, we used
the free quark propagator; i.e.,

ix

22xt’

Sq(x) (11)
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The matrix element of the three quarks between the
vacuum and the states N*, defined in terms of the DA’s of
N* with increasing twist, is given in [19]. For the sake of
completeness, we present these DA’s in the Appendix.

|

My + my AN GI(,,S)

n®, -

Using the explicit expressions of the DA’s of N,
performing the integration over x, and selecting the
coefficients of the structures ¢y,, ¢q,, and p,4q in both
representations, we get

(s)
1 p G
- +-n, N r n®

3 2

In Eq. (12), Hgs), Hgs), and Hés) are given by

2 2
my — p< My + my

1
2 m,zv—p’sz*—i—mN_E 6

(12)

(1+B)N3(x,)

Hgs) = m3.

b JA=PINi(x) + (1 + f)N2(x2)
e

(1 =PB)N4(x3) +

A(xy) }

(1+p)Ns(x3) | (14 B)Ne(x3)

(13)

1
:Fm%,[) dx3{

A? (x3)

b

(1 =B)No(x3) + (1 + )N yo(x2)

A’ (x3)

1Y = my. /1 dxz{(l — P)N7(x2) + (1 + B)Ns(x2) n
0

A(xy)

Az(xz) }
(1 =p)N13(x3) + (1 + B)N14(x3)

A(x3)

! (1 =B)N11(x3) + (1 + f)N15(x3)
:FmN*A dx3{ +

and

5 (I=P)Nis(x2) + (14 B)N17(x2)

b

A (x,) (14)

, (14 P)N5(x;)

Hés) _ /)1 dxz{(l —f)(i:’;)s(xz) tm

P)N 19(x3)

N

N A3(x2) }
5 (1+B)Nxn(x3)

Az(xz)

+my

w [ an{ g

where

N1 (x) = =A13(x) + Aya45 () = 2434 (x) = V13 (x) + V34 (x),

Na(x) = =P (x) +812(x) = 2T 123(x) = 3T 127(%)
—5T53(x) — 10T75(x) +%%234578 (x).

(0° +m%v*x2)%234578 (x).

Ny(x)=Ap23(x) +Asg (x) + V123(x) = V3a (),
Ns(x)==P(x)+85(x) = T127(x) = T55(x)

~ 2~
—2T75(x) +;T234578 (x),

N3(x)=

=1

2 =
Ne(x) :;(Q2 +m3. x*) Tozas7s(x).

L) + Vi)

N7 (x)=—A3(x)+V(x) = V3(x) —5-
(16)

2 (1 = B)Nag(x3) + (1 + B)Ny (x3)

b

Ng(x) = Py(x) + 8 (x) + 2T (x) — 4T (x)

- % [T123(x) 4 3T 127 (x)].

1
2x

- mzzv* [A123456(x) - ‘7123456(?5)]’

Nip(x) = _21_x (Q* 4+ m3.x?)[T123(x) + 3T 17(x)]

A% (x3) N A ()

Ny(x) (0% + m%.x?)[A 13 (x) + Vin3(x)]

+ my. %234578 (x),
N1i(e) = 5 A1 (x) = Vi (o)

[P1(x) + 81 (x) = T (x) 4 277 (x)]
1

I [T123(x) + T1p7(x)].

Ni3(x) = —my. [A 123456 (%) + V123436(x)]

Nip(x) =

+ NI
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so = 2.25 GeVZ, M2 =2 GeV2, LCSR-1
0.6

Ga(Q?)

:/,
70.8 -\\ 1 1 P | |
2 2.5 3 3.5 4 4.5 5
2 (GeV?

g g @@V
B=—3 --x-- B=14 — o
ﬁ:72 Y 5:2 ceeheee
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67—1 —a-— 6:5 —_—v—

FIG. 1. The dependence of the form-factor G,(Q?) on Q? for
various values of # with the data set LCSR-1.

Ny4(x) :i(Q2+m12v*x2)[7123(x)+T127(x)]

2
MmMi =
+ iv T 34578 (%),

Nis(x)==A;(x)=V;(x),

N16(x) =x[A 153 (x) = Aj345 (%) +2A34 (1) + V123 (x) = V3 ()],
N7 () =x[P15(x) =81(x) + 2T 123(x) +3T 127 (x)
+5T55(x) + 10775 (x)] ~2Tyaa578(x),

=-2(0’ +m12v*x2ﬁ234578 (x),

(x)
Nio(x)==A; (x)+ V1 (x).

(x)

(x)

=x[—A1p3(x) A3y (x) = V103 (x) + V34 (x)],

+2T75(x)] +2%234578()‘%
sz(x):—2(Q2+m12\,*x2)7:’234578(x), (17)

s0 = 2.25 GeV?, M2 =2 GeV?, LCSR-2

Ga(Q?)

_1'5 PEFETETE IS R 1 P I RS

2 25 3 35 4 45 5
Q* (GeV?)
B=—5 —— B=1 o
ﬂ:—g--x-- /3214 —_——
B = —2 - /B A
B=-14 —=- B=3--«--
B = -1  —=-— /B =5 —s—

FIG. 2. The same as Fig. 1, but with the LCSR-2.
and

S1,=8,=8,. P,=P,-P.
Visus==2V +V3+V,+2Vs,

Via=V,=V,-V;,
‘734:‘74—‘73,
‘:/123456:_‘:/1+‘:/2+‘:/3+‘:/4+‘:/5—‘:/6,

Ay =—A +A,—A;, Apgs=-2A,—-A;—A,+24s,
Ay =As-A,, 2123456:5&1_22+23+24_25+Z69
T\3=T,+T,-2T5, T\57=T,-T,-2T,
Ty\ss=—T,+Ts+2Ts,

%234578 = 27:12 —2%3 —2%4 + 27:“5 + 27:'7 +27:"8,
Tiy=T;-Ts,

%125678 = —7:"1 +%2+7:"5 —%6+2i"7 +27:"8. (18)

The generic expressions for the DA’s with and without
tildes are given as
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s0 = 2.25 GeV2, M2 =2 GeV?, LCSR-1
0.5 e

0.4 P\
0.3}

0.2 :

0.1 :

G5(Q?)
o

_0'5 1 1 | 1 1
2 25 3 35 4 45 5
Q% (GeV?)
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FIG. 3. The same as Fig. 1, but for G5(Q?).

1—x
F(xy) :/0 " dx, F(x1,%,1=x —x,),

- X5 1-x),
F(xz):/ dx’z/ dx; F(xy,x5, 1 —x; —x}),
f’xz / dxz/ dx’z’/ dxy F(xp, 64,1 —x; — x4).

(19)

A similar set of expressions holds true when the argument
is X3.

Finally, for the derivation of the sum rules for the
relevant form-factors, we perform a Borel transformation
in the variable —(g — p)? in order to suppress the con-
tributions from higher states and the continuum and to
enhance the contribution of the ground state. This can be
achieved with the help of the following subtraction rules:

s0 = 2.25 GeV2, M2 =2 GeV?, LCSR-2

G5(Q?)

2 2.5 3 3.5 4 4.5 5
Q? (GeV?)

52—54*% ﬂ:l —0e-—
B:—3--x-- B:14—o—
B: — D ke 622 R N
B=-14 — = B=3--4--
B=-1 —u— =5 —

FIG. 4. The same as Fig. 3, but with LCSR-2.

/ o (x / Hemseane,
x X
(x) 1 /ldx sy, Plg)ems/M
d s(x)/M .,
/xAzx M? sp)e +xOmN* 0?
p() L e e
1 P(xo)e_s"/Mz

" 20 (Q% + By ) M?
l)c(z)e‘sﬂ/M2 d {1 p(xo) }

2 0% + x3m?. dxg |xo Q% + x3m3.

(20)

In Eq. (20), the denominator on the left-hand side is
defined as
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s0 = 2.25 GeV2, M? =2 GeV?, LCSR-1

0.7
x‘

0.6 [\ ]
a ,

05F \ .
[ \Q >0 ]

04 [\ ]
i N ,
I \ ]

0.3 N ® ]

0.2 [

Gp(Q?)

ﬂ:—f) _ ﬁ:l -—0-—
6:—3--)(-- /3:14 —_——

ﬁ = —2 M B — 2 ceeedennn
=—-14 —= B=3--«--
B=-1 - B=5 ——

FIG. 5. The same as Fig. 1, but for Gp(Q?).

A(x) = (xp — q)* = x(p — )* = XQ* — x¥my.,

where ¥ = 1 — x. x is the solution of s(x) = s,, where

S(x) = Q% + xxm3,. '

X

III. NUMERICAL ANALYSIS

Having the explicit expressions of the form-factors GE\S>,

GEDS), and G(TS), now we perform the numerical analysis of
the sum rules for them.
The main nonperturbative input ingredients of the LCSR

for the form-factors Ggs), GI(,,S), and G(TS) are the DA’s of N*.
They are presented in [19]. The values of the parameters
appearing in the DA’s are also given [19]. In numerical
calculations, we use two set of values of parameters, i.e.,
LCSR-1 and LCSR-2.

s0 = 2.25 GeV?, M2 =2 GeV?, LCSR-2

08 | - ]

Gp(Q?)

—0.6 ! ! Ll !
2 2.5 3 3.5 4 4.5 5
Q* (GeV?)
B=-5 —— B=1 —
B:—g--x-- /3214 ——
B:—Q e Ween /B:Q RN
B=—-14 — = B=3--«--
B=-1 —n— B=5 —v

FIG. 6. The same as Fig. 5, but with LCSR-2.

The sum rules for the form-factors Ggs), GE,S), and G<TS )

contain three auxiliary parameters, i.e., the Borel mass
squared, M?, the continuum threshold, s, and the param-
eter . The form-factors should be independent of these
parameters. Therefore, the primary aim of any sum rules
analysis is to find the appropriate domains of these
auxiliary parameters for which the form-factors exhibit
good stability to their variations.

The working regions of M? and s, are determined from
the standard criterion that the contributions from higher
states and the continuum as well as higher-twist terms
should be suppressed. Our analysis shows that the working
regions of M? and s, which satisfy the aforementioned
criterion are 1 GeV? < M? <3 GeV? and sy = (2.25+
0.25) GeV?. In [20], the mass and residues of octet baryons
are analyzed, and in the present work, we use the result for
the residue of the nucleon given in the same reference. The
uncertainties of the input parameters and intrinsic uncer-
tainties carried by the LCSR method (namely the factori-
zation scale, M?, higher-twist corrections) can introduce an

054030-6
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sp =2.25 GeV?2, M2 =2 GeV?2, LCSR-1
0.3

02 [V

0.1

G3(Q?)

Q* (GeV?)
ﬁ:—S—o— ﬂ:l-—e-—
IB:—.?)--)(-- ﬂ:lll—o—
/B:—2 FES A ﬂ:Q N
=-14 —= B=3--4--
B=-1 —u— B=5 ——

FIG. 7. The same as Fig. 1, but for G3(Q?).

uncertainty about (15 £ 5)%. Therefore, we expect that the
sum rules for the form-factors work effectively in the
domain,

2 GeV? < Q% <6 GeV2. (21)
Note that the LCSR approach is not dependable for Q% <
1 GeV?2. It is because the mass corrections are proportional

to m%/Q?, which becomes very large for 0? < 1 GeV?,
and hence, the LCSR becomes unreliable.

IV. RESULTS AND DISCUSSION

In Figs. 1-12, we depict the dependence of the form-
factors GX”, GE,S), and G(TS) on Q2 for various values of f in
its working region and at the fixed values of M? = 2 GeV?
and s, = 2.25 GeV? for two sets of values of input

parameters entering the DA’s.

s0 = 2.25 GeV2, M2 =2 GeV?, LCSR-2
0.8

G3(Q?)

ﬁ:—S _ 5:1 —0-—
52—3--)(-- /6214 ——
/B = —2 xe-- /B =2 ia-.
B=—-14 — = B=3--4«--
B=-1 —u— B=5 —

FIG. 8. The same as Fig. 7, but with LCSR-2.

From the figures, we make the following observations:

®

(i)

(iii)

(iv)

054030-7

The values of GEXS) and G3. are positive (negative) for
negative (positive) values of 4, whereas Gp and G5
have the same sign as S for both sets of parameters,
LCSR-1 and LCSR-2.

The moduli of the form-factors G4, G5, Gp, and G5
for the second set of values are larger than those for
the first set of parameters, and G and G5 have close
values for both set of parameters.

The form-factors Gp and G5 are sensitive to the
variations in # when > 0 for both sets of input
parameters. For example, the values of the form-
factors Gp and G5 at # = 1 are nearly twice as large
as the corresponding values of these form-factors for
other values of f > 0.

All the form-factors considered display a similar
dependence on Q? for both sets (LCSR-1 and
LCSR-2) and for all values of f.
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s0 = 2.25 GeV2, M2 =2 GeV2, LCSR-1
05—

0.1 |

0.05

Gr(Q?)

—0.05

—-0.1

_0.15 s b b b b

2 25 3 35 4 45 5
Q? (GeV?)

B=—5 —— B=1 o
B=—3 --x-- B=14 — -
6:—2 . B:Q R .
=—14 — &= ﬁ:3 .....
B=—1  —u— B=5 —

FIG. 9. The same as Fig. 1, but for G(Q?).

(v) The moduli of the form factor Gp at > 0 are
approximately twice larger for the f# < 0 case for
both set of parameters.

(vi) The values of G and G5 for both set of parameters
and any values of f are smaller than the values of the
form-factors G2S> and GJ(DS).

From our results, it follows that the form-factor G, (Q?) can
be parametrized by the dipole form,

ga

O gy

(22)

TABLE I. The average values of g, and m, in Eq. (22).

ga my (GeV)
LCSR-1 LCSR-2 LCSR-1 LCSR-2

p<0 176040 1.76+040 1.52£0.06 1.52£0.06
p>0-307+£027 -3.07+£0.27 1414+003 1.41+0.03

s0 = 2.25 GeV2, M2 =2 GeV?, LCSR-2
0.15

0.1} °

0.05

Gr(Q?)

—0.05

—-0.1

—0.15 b

I NS T N RS-
Q?* (GeV?)

/3:—5 — /B:l —o-

B=—3 --x-- B=14 — o

/82—2 R /B:Q ceehe---

=—-14 —= B=3--«--

B=-1 —uo B=5 ——

FIG. 10. The same as Fig. 9, but with LCSR-2.

where we tabulated the average of the values of g, and m,
for both parameter sets and for all the values of f that we
considered in Table I. From Table I, it follows that the
values of g, and m, for the LCSR-2 case are slightly larger
than the ones for the LCSR-1 one for # < 0. The magnitude
of g, for the case # > 0 is larger than that for f < 0. Note
that for f# = —1 (the case of the loffe current), for the values
of g4 and m,, we find

gy =120 and my = 1.61 GeV (23)

for both LCSR-1 and LCSR-2. We observe that the value of
m is practically insensitive to the variations of both positive
and negative values of f.

When the experimental results will be obtained, there
may appear the possibility to compare our predictions with
experimental data.

Finally, we would like to note that our results can be
improved by taking into account radiative corrections and
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so = 2.25 GeV2, M2 =2 GeV?, LCSR-1
0.3

GH(Q%)
o

4 ,
_0‘3\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
2 25 3 35 4 45 5
Q? (GeV?)
B=—5 — B=1 - —o.—
B=-3 --x-- B=14 —-
B = —2 xe-- ﬁ =2 A
B=—-14 — - =3 --4--
/6:—1 —_—.— /3:5 —_—

FIG. 11. The same as Fig. 1, but for G3.(Q?).

the contributions of four and five particles as well as more
precise determination of the input parameters.

V. CONCLUSION

In the present work, we calculated the N*(1535) - N
transition form-factors induced by isovector and isoscalar
axial currents within the light cone QCD sum rules using
the general form of the interpolating current. In performing
numerical analysis, we used two sets of values of input
parameters. We observed that the form-factor G,(Q?)
exhibits the dipole form dependence on Q2, and we find

the values of relevant parameters, namely g4 and m. It was
also observed that GI(DS) shows a strong dependence on the
variations of the auxiliary parameter . The form factor G(TS>
at all values of Q% and 3 are smaller than the form factors

GE,S) and GSDS).

s0 = 2.25 GeV2, M2 =2 GeV?, LCSR-2
0.3

G5(Q?)

—0.1

—0.2

4
_03 1 1 P I 1 1
2 2.5 3 3.5 4 45 5
Q? (GeV?)

B=-5 — B=1 —o—
ﬂ:—B--x-- ﬂ:14 —_——
6: —2 EEEEE R ﬁ:Q R -

8=-14 — &= B=3--4--
ﬂ — —1 —a-— ﬂ == 5 —_—

FIG. 12. The same as Fig. 11, but with LCSR-2.
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APPENDIX: N* DISTRIBUTION AMPLITUDES

In this Appendix, we present the N* DA’s, which are
necessary to calculate the A — N* transition form-factors.
The DA’s of the N* baryon are defined from the matrix
element (0[e“"“u§(ayx)dj(ayx)dy(azx)|N*(p)). The gen-
eral decomposition of the nucleon DA’s involve 24 invari-
ant functions that were firstly derived in [21]. Using this
result, the N* DA’s were obtained in [19], and their
expressions are given below,
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4(0le**ug(a,x)dy(arx)dy (asx)IN*(p))

= Symy- Ca/}N; - 52’"?\/* Ca/s(XN*)y + Pymy: (}/5c>a/3(y5N*)y + szzzv* (75 C)a/}(}’sﬂ\’*)y
x2m3,.
- (Vl + 4N V?) (PC)apN;y 4 Vamy- (PC) s (N*), + Vamy-(1,C) 5 (r*N*), = Vamz. (XC) 45 N;

2,2
X my

= Vsm (7,C) (16" x,N*), 4 Ve (XC) 15 (AN*), — (-Al + AIl”) (Pr5C)ap(rN*),

+ Aymy- (ﬂ?sc)aﬂ(fJ’sN*)y + Asmy- (7ﬂ75C>aﬁ(7”75N*)y - -/44’"12\/* (xySC)aﬂ(ySN*)y
TV (i, (),
+ T ompy- (iaﬂ,,x”p”C)aﬁN; + T ymy- (oﬂyC)a/j(a””N*)y + T4mN*(aﬂyp”C)aﬁ(G””xpN*)y

— T smy(i0,,x* C) gy (1" N*), = T ey (i6,, 5" p*C) 15 (AN*), = T7m3- (6, C) s (6" XN¥),
+ Tym3,. (0, X C) 5(0"x,N*),.

2,2
X7 My

= Asmiy. (1,75C) a0 x,75sN"), + Agmiy- (XrsC) s (FrsN), — <Tl +

The functions labeled with calligraphic letters in the above expression do not possess definite twists, but they can be written
in terms of the N* distribution amplitudes (DA’s) with definite and increasing twists via the scalar product p - x and the
parameters a;, i = 1, 2, 3. The relations between the two sets of DA’s for the N*, and for the scalar, pseudo scalar, vector,
axial-vector, and tensor DA’s for nucleons are
S =58, 2(p-x)S, =8-S, Py =P 2(p-x)Py =P, =P, V=V,
2(p'X)V2:V1 —VZ—V3 2V3 :V3 4(p'X)V4:—2V1 +V3+V4+2V5 4(pX)V5 :V4—V3
4(p-x)2V6:—V1+V2+V3+V4+V5—V6 Al :A1 2(p'x)A2:—A1+A2—A3 2./43 :A3
4(p . X)A4 = —2A1 —A3 —A4 + 2A54(p . X)AS = A3 —A4 4(p . x)2A6 = Al —Az +A3 +A4 _AS +A6
Tl :Tl 2(px)T2:T1—|—T2—2T3 2T3 :T7 Z(p-x)T4:T1—T2—2T7
2(p . )C)TS = _Tl + TS + 2T8 4(p . x)27'6 = 2T2 - 2T3 - 2T4 + 2T5 + 2T7 + 2T8 4(p . X)T7 = T7 - T8
4(p 'X)ZTS = _Tl + T2 + TS - T6 + 2T7 + 2T87

where the terms in x>, VY, AY, and T¥ are left aside.
The distribution amplitudes Fla;(p - x)] = S;, P;, V;, A;, T; can be represented as

Fla;(p-x)] = /dxldxzdx35(x1 +xy + x5 — 1)eP =54 F (x;),

where, x; with i = 1, 2, and 3 are longitudinal momentum fractions carried by the participating quarks.
The explicit expressions for the A DA’s up to twist 6 are given as Twist—-3 DA’s,

V(o 1) = 1200200053 (@3 (1) + b3 (1) (1 = 3x3)].
Ay (x;, 1) = 120x1200x3 (x5 — x1) b3 (1),

T (xp ) = 1208200 | #300) = 3 (85 = 93) () (1= 333)|.

Twist—4 DA’s,

054030-10
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Vo (i, p) = 241, (1) + b () (1 = 5x3)],

Ay (xi, ) = 24x1x5 (X2 — x1)py (),

Ta(xis 1) = 24x,2[E0 (1) + &5 (1) (1 = 5x3)],

V(i i) = 1223 [y () (1 = x3) + i () (1 = x5 = 10x023) + 9 () (37 + 25 = x3(1 = x3)),
As(xi p) = 1203 (3 = x0) [(wg + ) () + v () (1 = 2x3)],

T3(xi 1) = 6:3[( +wd + &) () (1 = x3) + (7 +wy + &) () (1 = x3 = 10x,x,)

+ (7 —wi +&)u )(x%—l—x%—)@(l - x3))],
To(xi 1) = 6x3[(¢9 +w§ — ED () (1 = x3) + (9] +wi — &) (W) (1 = x3 — 10x,x,)
+ (¢ —wy = &)W + x5 = x3(1 = x3))],
S1(xi, p) = 623 (0 = x1) (] +wd + &0 + by + i + &) W) + (97 —vi + &) ()1 = 2x3)],
Py(xg, p) = 6x3(x) = x2)[(49 +wd — &3+ f +wi — &) (W) + (1 —wi — &) () (1 = 2x3)].

Twist—=5 DA’s,
V(i) =3[y u)(1 = x3) +wd () (1 — x5 = 2(x] +23)) + w5 (1) (2x105 — x3(1 = x3))].
Aa(io ) = 36 = x0) wrd0) + i (0) (1 = 253) + w5 ()],
Taloi ) = 3109+ ¥2+ E) () (1= x3) + (@ +wd + ED W =53 =205 +13)
(5 3 + &) () (2x1m = xs(1 = x3))]
2168+ vE - )R~ x) + (93 +yE ~ )W~ 53~ 205 +13)

+ (5 — w5 — &) (1) (2x1x3 — x3(1 — x3))],
Vs (xi p) = 633 () + B3 () (1 = 2x3)].
As(xi, p) = 6x3(xy — x1) b5 (1),
Ts(x;. 1) = 6x3[85 () + &5 () (1 = 2x3)],

Sa(xip) =5 (2 = x)[=(¢3 + w3 + &) (W) + (3 + w5 + &) W1 =2x3) + (5 — w5 +&5) (W3],

Ty(xip) =

Nlb)l\)lbd

Py(xis ) = 5 (0 = x1) [=(=¢8 = w8 + &) () + (=3 —wd + &) (W) (1 = 2x3) + (=5 +y5 + &5) (u)x3).

Twist-6,
V(i 1) = 2[8 (1) + ¢ (1) (1 = 3x3)],
Ag(xi p) = 2(x2 — x1) g,

ToCo) = 2|00 = 3 6 = 9001 =)

Finally, the x? corrections to the corresponding expressions V¥, AM, T for the leading twist DA’s V|, A, and T in the
momentum fraction space are given as

1—x,

2
X *
W (xy) = / dxy VY (x1, %2, 1 = x1 = xp) = ﬁ[fzv*c}‘v(xz) + 2 Ci(x)],
0

where

054030-11
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C(xz) = (1 = x2)*[113 4 495x; — 552x3 — 10A{(1 = 3x,) 4 2V{(113 — 951, + 828x3)],

Cé(x,) = —(1 = x2)3[13 = 2079 + 3x, + 10£4(1 = 3x,)].
The expression for the axial-vector function .A]lu(“)(xz) is given as

u 1-x,
A ) = [ dmalt (o - - x),

2
X *
= ﬁ (1 = x2)*[f - Df(x2) + A DY (x)],

with
D'(xy) = 11 + 45x, — 24%(113 = 951x, + 828:3) + 10V(1 - 30x,),
D¥(x,) = 29 — 45x, — 10£%(7 — 9x,) — 20£4(5 — 6x,).
Similarly, we get for the function lew(w(xz),
2

u I—x, X .
711‘/1( )(xz) = A dx TV (x1, x2, 1 = x; = xp), =48 [fN*E?(xz) + 4 Ef ()],

where

(x3) = ={(1 = x,)[3(439 + T1x, — 621x} + 587x3 — 184x3) + 4AY(1 — x,)?(59 — 483x, + 414x3)
—4V4(1301 — 619x, — 769x3 + 1161x3 — 414x3)]} — 12(73 — 220V¢) In[x,],

E%(xy) = ={(1 = x3)[5 = 211x, + 281x3 — 111x3 + 10(1 + 61x, — 83x3 + 33x3) f¢

—40(1 = x,)*(2 = 3x)f{]} = 12(3 = 10f{) In[xy].

Ey

The following functions are encountered to the above amplitudes, and they can be defined in terms of the eight
independent parameters, namely fy«, 41, 4, and f4, f9, f4, A, V¢

* 1* 1 *
R=dh=Fv  H=d=30v+2)  B=8=gh"  wi=ui=30x -4,

21 7 1 .
b= I AL BT ==V el =G =10V + AV (3 - 10r9)),

N[ =

5 . 1
¢ == Uw (1 =240 =2 (L =211 =40 v = =7 [fv 2+ 547 = 5V) =7 (2 = 51 = 5/1));

5 . R 5
vy =g Uv Q=AY =3V =T Q=T D)L &= e (4= 15f). & = el (4= 151),

16
5 . 5 :
$= v BHav) A =4 ds = =3 (1240 =27 (7 - 1)),
5 : 5 :
vi=—glnv(+2a = 2v) = (=2 =2/0)). w3 =51 Q=AY =3V + 2 (7] - f1)).

5 v 5 v 1 .
8 =M Q2-97),  &=-740 of=5Un0-4v) =2 (1 -2/,
1 *
¢ =51 (1 +4A9) + 2V (1 = 4fd = 2f1)],

where the parameters A%, V4, f9, f and f4 are defined as [19]
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TABLE II. Parameters of the DA’s for the N*(1535) baryon at > = 2 GeV>.
Model AN 1N /A ®10 ®0 ®21 7z o M
LCSR-1 0.633 0.027 0.36 —-0.95 0 0 0 0 0.94
LCSR-2 0.633 0.027 0.37 -0.96 0 0 0 -0.29 0.23
1 1 1 1fy 31
A = @10+ @11, Vi =2=¢10+301, N =—=—Z57 —<Mo—3Mi1:
3 3 10 6 /111\' 5 3
3 1fy 1 1 2
= 1a==5% + 2o — 31 f§==+z&o

710 6 151073

15 5

The numerical values of the parameters @19, @11, ¥20. @215 @225 N10» 11, and f+ /Y, and 2" /AV are presented in Table 11

(this Table is taken from [19]; see also [22]).
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