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Kaon form factor in holographic QCD
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The kaon form factor in the spacelike region is calculated using a holographic QCD model with the
“bottom-up” approach. We found that our result for the kaon form factor in low Q® has a remarkable

agreement with the existing data, where Q? is the four-momentum transfer squared. The charge radius of
the kaon as well as the kaon decay constant are found to be in good agreement with the experiment data. We
then predict the kaon form factor in the asymptotic region (larger Q%) showing 1/Q? behavior, which is

consistent with the perturbative QCD prediction.
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I. INTRODUCTION

A theory of quantum chromodynamics (QCD), which is
a non-Abelian gauge theory, is believed so far as a correct
theory of hadrons, where hadrons are the composite
particles made of quarks and gluons [1]. QCD has the
essential features, namely, confinement and chiral sym-
metry breaking [1,2]. However, the form factor, which is
one of the nonperturbative quantities, is very difficult to
compute directly from QCD. Several theoretical and
phenomenological models [3-7] as well as a lattice
QCD calculation [8] have been used to calculate this
nonperturbative quantity of QCD.

Apart from those models, during the past few years,
holographic QCD models, which are the complementary
model of QCD, have also been applied to describe the
structure of hadrons, namely, meson [9-14] and nucleon
[14] form factors as well as charmed meson [15], in order to
gain a deep understanding of the structure of hadrons, from
a different substantially point of view. Surprisingly, these
holographic models work well in predicting other hadron
observables, namely, the decay constant and mass spec-
trum. Also, one can argue that QCD approximately behaves
as a conformal over a particular kinematic region [13,16].
Those holographic QCD models are able to preserve
confinement [11,17,18] and chiral symmetry breaking
[12,19-21], which is in many ways similar to the main
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properties of QCD in low energy, after a few years since the
holographic model was proposed [22,23].

The original AdS/CFT correspondence [22] has been
first used to connect a strongly coupled 4D conformal
theory for large N., where N, is the color number, and a
weakly coupled gravity theory on AdS space. It then has
been reconstructed starting from QCD and its 5D gravity
dual theory to reproduce the properties of QCD [16,24-26].

However, among those holographic models with various
approaches [9-15,17-23], only a few models have been
used to calculate the kaon form factor in a holographic
QCD model with different approaches [15]. K™ (us) is a
very interesting object, because it consists of a strange
quark, beside an up quark, where the mass of the strange
quark is heavier than the u quark. Experimentally, the
existing data on the kaon form factor are very poor in higher
07, and only old data for low Q? are available [27], where
Q? is the four-momentum transfer squared. In the future,
experiments will measure the kaon form factor in higher Q>
[28,29]. It would be interesting to see how our comple-
mentary model, which is inspired by this AdS/CFT
correspondence, predicts the kaon form factor in higher
Q?. This work may pave the way to understand the strange
quark properties as well as the strange quark form factor.

In the present paper, we calculate the kaon form factor in
holographic QCD, which is a complementary approach of
QCD. In this work, we adopt a “bottom-up” approach of the
AdS/CFT correspondence, instead of a “top-down”
approach, where we employ the properties of QCD to
construct its 5D gravity dual theory as performed in
Refs. [24,25,30]. We begin to describe the AdS/CFT
correspondence formalism, describing a correspondence
between 4D operators O(x) and fields in the 5D bulk
¢(x,z). We then calculate the kaon form factor in holo-
graphic QCD. We find the result on the kaon form factor is
in good agreement compared to the existing data in low Q2

Published by the American Physical Society
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[27]. We then predict the kaon form factor in higher Q2.
Experimentally, the experimental data are really poor in
higher Q%. We find that the kaon form factor in higher Q is
consistent with the perturbation QCD prediction [31]. Next,
we calculate the charge radius of the kaon in holography.
We find that our result on the charge radius is an excellent
agreement with the data [27] as well as the Particle Data
Group (PDG) [32].

This paper is organized as follows. In Sec. II, we briefly
review the AdS/CFT correspondence, two- and three-point
functions, and how to extract the form factor of the kaon
from holography QCD in Sec. III. In Sec. IV, we present the
calculation of the charge radius of the kaon. In Sec. V,
numerical results are presented and their implications are
discussed. Section VI is devoted to a summary.

II. FORMALISM
A. The AdS/QCD correspondence

In this section, we briefly review the calculation of the
vacuum expectation values of the operators based on a
generating function Z,p, in the 4D space, which is defined by

Zafdf] = (exp (15 +1 [ ¢0mp)) ). (1)

where S, is the action for the 4D theory and ¢° is a
source function together with a specific operator O(x),
which corresponds to the expectation value. It then can be
written by

wvammmmmzwﬁﬁﬁﬁu.<a

The following AdS/CFT correspondence provides the
equivalence between the generating functional of the
connected correlation for the 4D theory and the effective
partition function for the 5D theory:

Zsp [4’0] = exp (iSsp(Per)). (3)

where ¢, is a solution of the SD equation of motion with a
boundary, as defined in Eq. (5).

We consider only the tree-level diagram on the 5D
theory, and we choose the following metric for the 5D
space-time:

1

Z2

ds* = gyndxMdx" = = (n,,dxtdx* — dz?), &<z <z,

4)

where x is the 4D space-time coordinate, 7, = diag(1, -1,
—1,—1) is the flat space metric, and z is the fifth coordinate,
which corresponds to the energy scale (Q ~ 1/z). We set
z = & — 0 for the ultraviolet boundary of the 5D space that

relates with the UV limit of QCD, and the hard-wall cutoff
atz = zg = 1/Aqcp is the infrared boundary, which is used
for the conformal symmetry breaking of QCD.

The UV boundary value of the 5D field is the source of
the corresponding 4D operator O. One can write the
classical solution of the 5D field as

he(x.2) = p(x.2)9%(x). (5)

The value of ¢(x,e) — 1 (or, in general, it goes to &*).
Hence, ¢°(x) is identified as the UV-boundary value of the
¢ei(x, z) field.

B. The 5D AdS model

The action in 5D theory is written as

1
Ssp = /d5x\/§Tr{|DX|2 +3|XP? _4_92(F% +F%?)}’
5
(6)

where g = | det gy, /| is the determinant of metric tensor, gs
is a gauge coupling parameter, which is fixed by the QCD
operator product expansion, and the bifundamental scalar
field X in Eq. (6) is expressed by

X(x,z) = exp(in“(x, 2)t*)X°(z) exp(—in®(x, )1%), (7)

where 1t =0/2 are the SU(3) generators with
Tr[tt"] = 6" /2, where ¢“ are the Pauli matrices. The
covariant derivative is defined as

Dy X = 0y X — iLyX + iXRy,, (8)

where the 5D space-time is denoted by the lowercase index
of M = (u,z) and Fk,, is written as

Fiy = OyLy — OyLy — i[Ly. Ly, 9)

Analogously for FE ..
The L and the R fields can be written as vector field V
and the axial-vector field A:

Ly =Vy+ Ay, (10)

In this work, we consider the following 4D operators that
are defined by the current operators Jj, = W 17,1y, and
Sy = WarYut“w g that correspond to the gauge fields Ly
and Ry in the 5D theory, respectively. The operator of
Wa.Wq, corresponds to a bifundamental scalar field X¢ in
Eq. (7), where the index a = 1,2, ..., 8 for SU(3) flavor
symmetry and index u =0, 1, 2, 3 for the space-time.
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Note that the gauge invariance in the 5D theory is related
with the global current conservation in the 4D theory.

C. Two-point functions

Here we consider only the scalar parts of the action
X°(z); up to second order, it gives

Sscalar = /dsx\/.aTr<gMN8MX06NX0 + 3|X0|2)v (12)

where gMV
metric.

The UV boundary of the scalar field X° is proportional to
the quark mass matrix M, which can be considered as the
source for the operator of wry ;. Solving the equation of
motion for the scalar field, it then gives

is defined in Eq. (4), which is the nontrivial 5D

X(z) = a1z + as2?, (13)

where a; is defined as in Ref. [30] by

1 1
alziMﬂ :E

where we consider the SU(2) isospin symmetry where the
mass for the up and down quarks are identical.

Using the AdS/CFT correspondence, we then calculate
the quark condensate () = X by performing a functional
derivative of the action in Eq. (12), evaluated on the
classical solution, over 6M and identify

1
as :EZH = q . (15)

Oy

1
2

We also assume that 6, = o, = ¢ and define v,(z) =
m,z + 02> and vy(z) = mz + 02°.

D. Transverse vector

We now consider only vector parts of the action up to
second order. It gives

Syector = /dSXZ 2 aMVN _8NVM)
G52
+2a%(2)(V§y)?). (16)

A contraction over 5D metric 7;,; is implied. We then
define

0 a=1,2,3,
Gvy,—v,)?/(42%) a=4,56,7, (17)
0 a = 8.

a‘(z) =

We have gauge choice to set V§ = 0 except fora =4, 5,
6, 7 because of the nonzero (“mass term”) of the second
term in the action of Eq. (16). The equation of motion for
the 4D Fourier transform of the transverse part of the gauge
field V4 (g, z) is written as

1 q2_au
<8226‘Z + .

)V‘L,,(q,Z) —0. ()

where a“ = gz(m; —m,)?/4 when o, =0, for a =4, 5,
6, 7.

One writes the transverse part of the vector field as
Vi, (q.2) = V(f:l(q)V“(q,z) with the so-called bulk-to-
boundary propagator V%(q,z), which is normalized to
V4(g,e) =1 at the boundary condition z =0, and
V(if;(q) is the Fourier transform of the source of the
W, Yul“w,, at the UV boundary
z =¢. We also impose a Neumann boundary condition
0.V(q*,79) = 0. The solution for the bulk-to-boundary
propagator is written as

vector current Jy, =

Yy(gz )
Jo(Gz0)

Vi) = a2 @) - v, (19)

where §* = ¢* —a“ and Y,(x) and J,(x) are the Bessel
functions, respectively.

For spacelike four-momentum transferred ¢* =
the solution in Eq. (19) can be written as

-0% <0,

where O =+/0Q?+a® and K (x) and I;(x) are the
modified Bessel functions, respectively.

The action on the solution in Eq. (20) is evaluated with
applying transverse projector ¥ — (¥ — %) =Py,
since 9,V (" = 0, one has the form

1 d*q 0. 0.V (q* €)
— Vo (q) Vo (g P T 25
2 | @V

Svector = —
(1)
After solving the differential part, by the AdS/CFT

correspondence, we obtain the current-current two-point
functions
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" i6Ssp
OIT I ()15 (9)|0) = —— . (22)
s 26V, (x)sVY ()
where
Vi) = [ drervin), 23)
and this leads to
i / d*x e (0| T T4 (x)J5¢(0)]0)
1 0.V4(q?,
o __zpl;véab Zz <q 8) , (24)
9s <

where 7 is the time-ordering operator.
The bulk-to-boundary propagator can be written as

Z Cn l//n (25)

where the wave function of y, satisfies the eigenvalue
equation

1 Me ; 2 _ a®
<5~Z ~0, + M) wi(z) =0, (26)
z Z
which is normalized as
1
/dzgy/ﬁu/fn = 5mn ’ (27)

with boundary condition y4(e) = 0 = d,y%(zo), and the
solution is

V22, (z (M§,)? - a”)

2041 (Zo (M(\l/.n)z - 0‘“)

wi(z) = : (28)

where the eigenvalues of MY, (Kaluza-Klein tower of the
mass of the vector mesons: p meson for a =1, 2, 3, K*
meson for a =4, 5, 6, 7, and ©° meson for a = 8) are

(Mg/,n)z - aa) =0.
Using Egs. (18), (25), and (26), we obtain

obtained from J(z

Loy, (e)

2\ __
Ha) - (My )
n

Since
i / d4xein<0|TJ$”(x)J’f(0)|0>
B Z a 2511/7 < w qllqy)

2 M3, n 2

q
+ (nonpole terms), (30)

where the definition of f7,, is given by the matrix element

of current, (01J4|V(q.4)) = f4 ,8ac€4(q, 2). We identify

¢ .= 0.wi(e)/e. Also, the parameter g3 = 127%/N,. =
47? is fixed from the quark bubble diagram in the leading
order, with N. = 3 the number of color.

E. Axial-vector and pseudoscalar

The action for the axial-vector and pseudoscalar sector
parts up to second order is written as

ax1al /d XZ4 2 aMA - aNAM)
+28(2) (O n® = AGy)?). (31)

A contraction over 5D metric 1, is implied. We have
gauge choice A§, = Aj, —0yA?, and 7¢ - 7% — 1% and
A?¢ = 0 are imposed. We define

930/ a=1.2,3,
G(vg +v,)?/(42%) a=4,56,7, (32)
gi(vy +203)/(22%) a=38.

p(z) =

For the field ¢ that comes from the longitudinal part, we
define A, = 0,¢“. We then write the Fourier transform of
the fields in terms of the bulk-to-boundary propagators that
gives

N4

¢ (p.2) = ¢“(p*.2)9"(p) = ¢“(p*. 2) 152 Ape(p),
w(p.2) = 2 (%, 2) Ty Al (),
AL (q.2) = A (4% )AL, (9). (33)

where Aﬁ“( ) is the Fourier transform of the source

function of the 4D axial current operator Jf"ﬁ and

A(ﬁ(q) is the Fourier transform of the source function
of the 4D axial current operator J4* .

We obtain the coupled differential equations for the
longitudinal part of the axial-vector and pseudoscalar fields
as follows:
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—-q¢*0.0*(¢*,2) + p*(2)0.7°(¢*,2) =0, (34)

1 Pz
0. (Eazrﬁ“(qz,Z)) z( )((/ﬁ“(q z) — (g% z)) =0,
(35)
with the boundary conditions ¢%(g2,&) =0, 7%(g*,€) = —1,
and 9.¢%(q*, z9) = 0 = 0,7%(q*, 7). The expression for

the transverse part of the axial-vector field is analogous to
the vector field. It then gives

2 _ pa
(a%az + %W>Ai(q2, 2)=0.  (36)

We then substitute the coupled differential in Eqgs. (34)
and (35) into a second-order equation, and we obtain

9, (%@ya(q{z)) +z<ﬁ%—

where y*(¢2,z) = 9,¢*(¢*, z)/z. In this form, the boun-
dary condition is y(¢?, zo) = 0 and £0,y%(q*,€)/p(e) = 1
We then have the solution as

1)ya<q2,z>=o, (37)

5 (M2,,)ya(e)ya(z)

i Y

y(q*.2) =

where y4(z) is a normalized solution of the eigenvalue in
Eq. (37) with ¢*> = M¢,, boundary conditions y,(z¢) = 0,
and €0.y4%(e)/p(e) = 0. The normalization is

/ﬂ” yi(@)ym(z) = (Aj“ 7 (39)

The eigenvalues of (M4 ,,)? are the Kaluza-Klein (KK)
masses for the pseudoscalar mesons: the pions fora = 1, 2,
3, kaons for a =4, 5, 6, 7, and #”s for a = 8. The
eigenvalues are obtained from the transverse part of the
axial vector in Eq. (36), giving us the KK mass of the a;
and K| mesons.

As noted above, for the vector sector, we do not have the
freedom to set V¢ =0, for a =4, 5, 6, 7. However, if we
define V¢ = -0.7%, Vi = 9,(¢* — #), we obtain analo-
gous equations as in Egs. (34) and (35) with a“(z) in place
of f%(z). We may proceed as above to obtain the eigen-
values of the KK mass of the scalar mesons K.

A current-current correlator for the axial sector is written as

a 2
i / e (01T T3 ()3 (0)]0) = —P7'5® —@A;ij o),
X 5
N v veap -0 (4% . €
i [ e OIT s 00 = —pan ),
x gs5¢&
(40)

where P”” = ¢*q*/q*. Using the completeness relation

>on f o 32q0 [n(q)){n(q)|=1 into the correlators in Eq. (40),

then multiplying g> — m2, and taking a limit g> — m2,

one identifies the decay constant of the pseudoscalar mesons
from AdS/QCD correspondence:

yale) _ _0:4(e)
a = — = — s 41
fA,n s gs€ ( )

where the decay constants are defined by

(0175, (Ol (q)) = if4,q,0™. (42)

where the states of |z%(q)) are also considered for the pions
(b=1,2,3) as well as the kaons (b =4, 5, 6, 7).

III. KAON ELECTROMAGNETIC FORM FACTOR

The electromagnetic form factors of the pion and kaon
are presented in this section. The relevant parts of the
action are

1
Sayv.ay :/dsx (Taﬂ‘/]’aaﬂvfabqﬁcfabc
952

_i_%(aﬂﬂ.a_auqﬁa)vzﬂcgabc
Z
1 1

+- (—Eaﬂ(nw) +3"¢“7rc> Vﬁh“bc> . (43)
Z

where the first term in Eq. (43) that contains ¢ arises
from the gauge part of the original action and other terms
come from the chiral part. We then define

e = —2iTe {1, Xo} 1, {1, X},

hebe = =24Tr[t?, Xo){t%, {t°, X0} }. (44)

If g?b¢ and h“*° in Eq. (44) do not have a, b, or ¢, which
do not equal “8,” it then gives

abc fahc
a
habe = fabc(vc - vu)vc’ (45)
where, for Xy = 1co + cgt®, the v, is defined as
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Vg, a=1,2,3,

_ aal __
v,=cy+cgd {%(’Uq—FUS), 4—4.5.6.7.
where ¢ and d“*¢ are the structure constants of the SU(3)
algebra.

For three-point functions, we calculate three current
operators by taking the functional derivative of Eq. (43).
One has the form

) AViA)
(0)6V e, (3)5A%5 (w)

(47)

(OIT 4 ()L ()51 (w)[0) = 5%

[l

From Eq. (47), we then extract the form factor using the
following matrix element:

— f fhpP ke (i (p) I |5, (k) (27) 8% (p — g = k)

= lim (p?— (M%)*)(K* — (M5,)?)

2= (g, )?

= (Mg,,)?
X / d*x d*y d*w e!(Pr=ay=kw)
X (O[T 4 (x)JF (9) 4} (w) [0). (48)

Al Al

We then obtain

(ma(p) |7 |, (k)

=i(p +k)“/szb(q2,z)

1 2
x ((@qbﬁ)(azm) +%(nz — ) (S, — m))f‘”“.
(49)

For three quark flavors, the electromagnetic current
operator is defined as

1
V3

The current matrix element for the kaons |K,) =
|7k + i) is written as

Jemu =I5 +—=J8. (50)

(K (Pe)EmulK (Pa)) = (Pa + PB)F,(0Q%). (51)

where Q> = —¢> = —(p4 — pg)* and a final expression for
the kaon form factor is obtained by

1
z

F(0Y) = [ ar(@) (<az¢ﬁ><az¢;>

8t g _¢,s,,>). (52)

IV. KAON CHARGE RADIUS

In this section, we present the charge radius of the kaon
in low Q? as well as in higher Q2. For doing so, we recall
the kaon form factor in Eq. (52) that is

FK.(0%) = AZO V402, 2)pha (), (53)

where a =1,2,3,b=4,5,6,7, and p’,(z) is defined by

(0.410)°
pZn (Z) = 2 + I

g%vi ( b

Ty — ¢Z)2 (54)

In the limit of Q — 0, the bulk-to-boundary propagator
in Eq. (20) is written as

Va(Qlg) =1- szz <1 —2In <i>> (55)

20

Using the expansion of Eq. (20), we obtain the radius of
the kaon as follows:

(56)

V. NUMERICAL RESULTS

Our numerical results for the kaon masses, decay
constants, and kaon form factors are presented in this
section. Following Ref. [13], we fix the parameter values of
the hard-wall cutoff at zy = (322.5 MeV)™!, which is
chosen to fit the lightest p meson mass MY, =
775.5 MeV for a =1, 2, 3. Parameters m, and o, is
chosen to reproduce the pion mass and decay constant,
respectively. Given the values of the pion mass M{, =
139.6 MeV and decay constant f{ = 92.4 MeV fora = 1,
2, 3, respectively, we obtain the light current quark mass
m, = 2.29 MeV and condensate 6, = (328.3 MeV)?. We
then fix o, = o,. The strange current quark mass m; =
51.96 MeV is chosen to fit the kaon mass M% | =
495.7 MeV for a =4, 5, 6, 7 (the masses for the KT,
K=, K°, and K°, respectively). We simply consider m,, m,
and ¢ as model parameters, not the (realistic) physical
values of the quark mass and quark condensate. For getting
a better connection between the light current quark mass
and condensate, we redefine the parameters by taking
m, = +/N./2x and o — 2z/\/N. without modifying
the above results for the two-point and three-point func-
tions. With this redefinition, we obtain m, = 8.31 MeV,
m, = 188.5 MeV, and ¢ = (213.7 MeV)>.

Using the obtained parameters above, we determine the
decay constant of the lightest KK of the kaons fg+ =
104 MeV, and the mass and decay constant of the K are
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I |

§
o
0.8 1
07 I 1 I 1 I 1 I 1 I
0 0.02 0.04 0.06 0.08 0.1
Q? (GeV?)
FIG. 1. The kaon form factor (solid line) compared to the

existing data taken from Ref. [27].

M. = 791 MeV and f Ky = 28 MeV, respectively. The

decay constant of the p meson fll,/ 2 =329 MeV. The
mass and decay constant of the lightest KK of the vector
mesons K* are mg- =791 MeV and f}(/*z =329 MeV,
respectively. For the axial vector mesons, the mass
and decay constant of the a; are m, = 1366 MeV
and f ;{ ? = 489 MeV, respectively. For the K, we obtain
mg, = 1458 MeV and f}(/f = 511 MeV. The values of the
decay constant and the mass of the kaon obtained are
consistent with PDG [32].

Results for the kaon form factor are shown in Figs. 1-3.
Figure 1 shows our prediction for the kaon form factor
compared to the existing data [27] in low Q2. We find that
our prediction is in excellent agreement with the data [27].
We then calculate the kaon form factor up to Q> = 5 GeV
to anticipate the higher Q? data which will collect soon
[28,29], as in Fig. 2; however, experimentally, the kaon
form factor is poorly known.

Fr(Q%)

Q? (GeV?)

FIG. 2. The kaon form factor (solid line) compared with data at
low Q. The experiment data are taken from Ref. [27].

1 T T T T T T T T

Q*F(Q?)

Q2 (GeV?)

FIG. 3. The same as in Fig. 1 but for Q> F%(Q?). The experi-
ment data are taken from Ref. [27].

Figure 3 shows the same results as in Fig. 2, but for
Q*F(Q?). For larger Q? (asymptotic region), the bulk-to-
boundary propagator is written as

V(02 2) 2% (000K (02) | TLens, (57)

which goes to zero unless z is infinitesimal, z ~ 1/Q. Note
that the first term in Eq. (54) goes to ¢2(f¢)* when z — 0,
while the second term goes like &> — 0. The quantity
zV4(Q?, z) behaves like a delta function picking up p¢,(z)
at z — 0. The upper limit of the form factor integral can be
set to infinity as the integrated vanish at large z. Then, the
kaon form factor in higher Q? is defined by

2(fa)2 0
0z 5/3)° / dww K,y (w)
Q" Jo
2(fa\2 2( a2
_ 295(J2n> — 8m (];n) . (58)
Q 0

We find that the kaon form factor for larger Q> agrees
well with the perturbative QCD prediction [31].

Using Eq. (56), we obtain the charge radius for the
lightest kaon rg+ = 0.56 fm. We find that our result is in
excellent agreement with the experimental data [27] and
PDG [32].

We also compare our model approach with the work
of Ref. [33], which uses a light-front (LF) holographic
approach, where the holographic expression in 5D AdS
space is matched to QCD in the LF frame. In this approach,
to incorporate the quark mass, the “effective potential” in
the AdS space is modified by adding a term to obtain the
meson mass expression matches with the quark mass
contribution in LF QCD. Contrary to this approach, we
introduce the quark mass parameter, as a source of the
quark bilinear operator gy in the AdS boundary, which
is consistent with the AdS/CFT rule, and it appears as a

Fi(Q?)
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coefficient in the background field, X,,. Consequently, the
quark mass parameter appears differently in the effective
potential, compared to the work of Ref. [33]. In addition,
they identify the light-front wave function, where the
hadron properties are encoded, by comparing the electro-
magnetic form factor in AdS and the LF QCD form factor.

In comparing our obtained results with their results on
the kaon form factors, their results for the charge radius of
the K* are slightly larger than our result in the low Q2
regime, where the charge radius is 0.615 fm for the
dynamical spin parameter B =0 and even larger for
B > 0. However, the behavior prediction of the kaon form
factor in the large Q? regime, which goes like 1/Q?, is
similar to our obtained result.

We note that, in this paper, we started with an AdS
Lagrangian that has SU(3), x SU(3); symmetry, and it
reproduces a chiral symmetry breaking of QCD. An
approximate relation due to a chiral-symmetry-breaking-
like, Gell-Mann-Oakes-Renner relation is preserved in our
approach.

VI. SUMMARY

In summary, we have computed the kaon form factor in
holographic QCD, which is a complementary approach of
QCD. We adopt a bottom-up approach of the AdS/CFT
correspondence, instead of a top-down approach, where we
employ the properties of QCD to construct its 5D

gravity dual theory. We begin to describe the AdS/CFT
correspondence formalism, describing a correspondence
between 4D operators O(x) and fields in the 5D bulk
¢(x,z). We calculate the kaon form factor in holo-
graphic QCD.

The result for the kaon form factor is in good agreement
with the existing data in low Q2. We then predict the kaon
form factor in higher Q%> We found that the kaon form
factor in higher Q? is consistent with the perturbation QCD
prediction.

We finally calculate the charge radius of the kaon in
holography QCD. We obtained r = 0.56 fm, which is in
excellent agreement with the data as well as the Particle
Data Group. In the future, it would be interesting to extend
the calculation of the form factor and gravitational form
factor of the B and D mesons, which contain the bottom and
charm quarks, respectively, using the holographic QCD
model.
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