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The kaon form factor in the spacelike region is calculated using a holographic QCD model with the
“bottom-up” approach. We found that our result for the kaon form factor in low Q2 has a remarkable
agreement with the existing data, where Q2 is the four-momentum transfer squared. The charge radius of
the kaon as well as the kaon decay constant are found to be in good agreement with the experiment data. We
then predict the kaon form factor in the asymptotic region (larger Q2) showing 1=Q2 behavior, which is
consistent with the perturbative QCD prediction.
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I. INTRODUCTION

A theory of quantum chromodynamics (QCD), which is
a non-Abelian gauge theory, is believed so far as a correct
theory of hadrons, where hadrons are the composite
particles made of quarks and gluons [1]. QCD has the
essential features, namely, confinement and chiral sym-
metry breaking [1,2]. However, the form factor, which is
one of the nonperturbative quantities, is very difficult to
compute directly from QCD. Several theoretical and
phenomenological models [3–7] as well as a lattice
QCD calculation [8] have been used to calculate this
nonperturbative quantity of QCD.
Apart from those models, during the past few years,

holographic QCD models, which are the complementary
model of QCD, have also been applied to describe the
structure of hadrons, namely, meson [9–14] and nucleon
[14] form factors as well as charmed meson [15], in order to
gain a deep understanding of the structure of hadrons, from
a different substantially point of view. Surprisingly, these
holographic models work well in predicting other hadron
observables, namely, the decay constant and mass spec-
trum. Also, one can argue that QCD approximately behaves
as a conformal over a particular kinematic region [13,16].
Those holographic QCD models are able to preserve
confinement [11,17,18] and chiral symmetry breaking
[12,19–21], which is in many ways similar to the main

properties of QCD in low energy, after a few years since the
holographic model was proposed [22,23].
The original AdS=CFT correspondence [22] has been

first used to connect a strongly coupled 4D conformal
theory for large Nc, where Nc is the color number, and a
weakly coupled gravity theory on AdS space. It then has
been reconstructed starting from QCD and its 5D gravity
dual theory to reproduce the properties of QCD [16,24–26].
However, among those holographic models with various

approaches [9–15,17–23], only a few models have been
used to calculate the kaon form factor in a holographic
QCD model with different approaches [15]. Kþðus̄Þ is a
very interesting object, because it consists of a strange
quark, beside an up quark, where the mass of the strange
quark is heavier than the u quark. Experimentally, the
existing data on the kaon form factor are very poor in higher
Q2, and only old data for low Q2 are available [27], where
Q2 is the four-momentum transfer squared. In the future,
experiments will measure the kaon form factor in higherQ2

[28,29]. It would be interesting to see how our comple-
mentary model, which is inspired by this AdS=CFT
correspondence, predicts the kaon form factor in higher
Q2. This work may pave the way to understand the strange
quark properties as well as the strange quark form factor.
In the present paper, we calculate the kaon form factor in

holographic QCD, which is a complementary approach of
QCD. In this work, we adopt a “bottom-up” approach of the
AdS=CFT correspondence, instead of a “top-down”
approach, where we employ the properties of QCD to
construct its 5D gravity dual theory as performed in
Refs. [24,25,30]. We begin to describe the AdS=CFT
correspondence formalism, describing a correspondence
between 4D operators OðxÞ and fields in the 5D bulk
ϕðx; zÞ. We then calculate the kaon form factor in holo-
graphic QCD. We find the result on the kaon form factor is
in good agreement compared to the existing data in low Q2
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[27]. We then predict the kaon form factor in higher Q2.
Experimentally, the experimental data are really poor in
higherQ2. We find that the kaon form factor in higherQ2 is
consistent with the perturbation QCD prediction [31]. Next,
we calculate the charge radius of the kaon in holography.
We find that our result on the charge radius is an excellent
agreement with the data [27] as well as the Particle Data
Group (PDG) [32].
This paper is organized as follows. In Sec. II, we briefly

review the AdS=CFT correspondence, two- and three-point
functions, and how to extract the form factor of the kaon
from holography QCD in Sec. III. In Sec. IV, we present the
calculation of the charge radius of the kaon. In Sec. V,
numerical results are presented and their implications are
discussed. Section VI is devoted to a summary.

II. FORMALISM

A. The AdS=QCD correspondence

In this section, we briefly review the calculation of the
vacuum expectation values of the operators based on a
generating function Z4D in the 4D space, which is defined by

Z4D½ϕ0� ¼
�
exp

�
iS4D þ i

Z
d4xOðxÞϕ0ðxÞ

��
; ð1Þ

where S4D is the action for the 4D theory and ϕ0 is a
source function together with a specific operator OðxÞ,
which corresponds to the expectation value. It then can be
written by

h0jT Oðx1Þ…OðxnÞj0i ¼
ð−iÞnδZ4D

δϕ0ðx1Þ…ϕ0ðxnÞ
: ð2Þ

The following AdS=CFT correspondence provides the
equivalence between the generating functional of the
connected correlation for the 4D theory and the effective
partition function for the 5D theory:

Z4D½ϕ0� ¼ exp ðiS5DðϕclÞÞ; ð3Þ

where ϕcl is a solution of the 5D equation of motion with a
boundary, as defined in Eq. (5).
We consider only the tree-level diagram on the 5D

theory, and we choose the following metric for the 5D
space-time:

ds2 ¼ gMNdxMdxN ¼ 1

z2
ðημνdxμdxν − dz2Þ; ε < z < z0;

ð4Þ

where x is the 4D space-time coordinate, ημν ¼ diagð1;−1;
−1;−1Þ is the flat space metric, and z is the fifth coordinate,
which corresponds to the energy scale (Q ∼ 1=z). We set
z ¼ ε → 0 for the ultraviolet boundary of the 5D space that

relates with the UV limit of QCD, and the hard-wall cutoff
at z ¼ z0 ¼ 1=ΛQCD is the infrared boundary, which is used
for the conformal symmetry breaking of QCD.
The UV boundary value of the 5D field is the source of

the corresponding 4D operator O. One can write the
classical solution of the 5D field as

ϕclðx; zÞ ¼ ϕðx; zÞϕ0ðxÞ: ð5Þ

The value of ϕðx; εÞ → 1 (or, in general, it goes to εΔ).
Hence, ϕ0ðxÞ is identified as the UV-boundary value of the
ϕclðx; zÞ field.

B. The 5D AdS model

The action in 5D theory is written as

S5D ¼
Z

d5x
ffiffiffi
g

p
Tr

�
jDXj2 þ 3jXj2 − 1

4g25
ðF2

L þ F2
RÞ
�
;

ð6Þ

where g ¼ j det gMN j is the determinant of metric tensor, g5
is a gauge coupling parameter, which is fixed by the QCD
operator product expansion, and the bifundamental scalar
field X in Eq. (6) is expressed by

Xðx; zÞ ¼ expðiπaðx; zÞtaÞX0ðzÞ expð−iπaðx; zÞtaÞ; ð7Þ

where ta ¼ σa=2 are the SU(3) generators with
Tr½tatb� ¼ δab=2, where σa are the Pauli matrices. The
covariant derivative is defined as

DMX ¼ ∂MX − iLMX þ iXRM; ð8Þ

where the 5D space-time is denoted by the lowercase index
of M ¼ ðμ; zÞ and FL

MN is written as

FL
MN ¼ ∂MLN − ∂NLM − i½LM;LN �; ð9Þ

Analogously for FR
MN.

The L and the R fields can be written as vector field V
and the axial-vector field A:

LM ¼ VM þ AM; ð10Þ

RM ¼ VM − AM: ð11Þ

In this work, we consider the following 4D operators that
are defined by the current operators JaLμ ¼ ψ̄qLγμtaψqL and
JaRμ ¼ ψ̄qRγμtaψqR that correspond to the gauge fields La

μ

and Ra
μ in the 5D theory, respectively. The operator of

ψ̄qRψqL corresponds to a bifundamental scalar field Xa in
Eq. (7), where the index a ¼ 1; 2;…; 8 for SU(3) flavor
symmetry and index μ ¼ 0, 1, 2, 3 for the space-time.
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Note that the gauge invariance in the 5D theory is related
with the global current conservation in the 4D theory.

C. Two-point functions

Here we consider only the scalar parts of the action
X0ðzÞ; up to second order, it gives

Sscalar ¼
Z

d5x
ffiffiffi
g

p
TrðgMN∂MX0∂NX0 þ 3jX0j2Þ; ð12Þ

where gMN is defined in Eq. (4), which is the nontrivial 5D
metric.
The UV boundary of the scalar field X0 is proportional to

the quark mass matrix M, which can be considered as the
source for the operator of ψ̄RψL. Solving the equation of
motion for the scalar field, it then gives

X0ðzÞ ¼ a1zþ a3z3; ð13Þ

where a1 is defined as in Ref. [30] by

a1 ¼
1

2
M1 ¼ 1

2

0
B@

mq

mq

ms

1
CA; ð14Þ

where we consider the SU(2) isospin symmetry where the
mass for the up and down quarks are identical.
Using the AdS=CFT correspondence, we then calculate

the quark condensate hψ̄ψi ¼ Σ by performing a functional
derivative of the action in Eq. (12), evaluated on the
classical solution, over δM and identify

a3 ¼
1

2
Σ1 ¼ 1

2

0
B@

σq

σq

σs

1
CA: ð15Þ

We also assume that σq ¼ σs ¼ σ and define vqðzÞ ¼
mqzþ σz3 and vsðzÞ ¼ mszþ σz3.

D. Transverse vector

We now consider only vector parts of the action up to
second order. It gives

Svector ¼
Z

d5x
X8
a¼4

1

4g25z
ð−ð∂MVa

N − ∂NVa
MÞ2

þ 2αaðzÞðVa
MÞ2Þ: ð16Þ

A contraction over 5D metric ηML is implied. We then
define

αaðzÞ ¼

8>><
>>:

0 a ¼ 1; 2; 3;

g25ðvs − vqÞ2=ð4z2Þ a ¼ 4; 5; 6; 7;

0 a ¼ 8:

ð17Þ

We have gauge choice to set Va
z ¼ 0 except for a ¼ 4, 5,

6, 7 because of the nonzero (“mass term”) of the second
term in the action of Eq. (16). The equation of motion for
the 4D Fourier transform of the transverse part of the gauge
field Va⊥;μðq; zÞ is written as

�
∂z

1

z
∂z þ

q2 − αa

z

�
Va⊥;μðq; zÞ ¼ 0; ð18Þ

where αa ¼ g25ðms −mqÞ2=4 when σs ¼ σq for a ¼ 4, 5,
6, 7.
One writes the transverse part of the vector field as

Va⊥;μðq; zÞ ¼ V0;a
⊥;μðqÞVaðq; zÞ with the so-called bulk-to-

boundary propagator Vaðq; zÞ, which is normalized to
Vaðq; εÞ ¼ 1 at the boundary condition z ¼ 0, and
V0;a
⊥;μðqÞ is the Fourier transform of the source of the

vector current JaV;μ ¼ ψ̄qvγμt
aψqv at the UV boundary

z ¼ ε. We also impose a Neumann boundary condition
∂zVðq2; z0Þ ¼ 0. The solution for the bulk-to-boundary
propagator is written as

Vaðq2; zÞ ¼ π

2
q̃z

�
Y0ðq̃z0Þ
J0ðq̃z0Þ

J1ðq̃zÞ − Y1ðq̃zÞ
�
; ð19Þ

where q̃2 ¼ q2 − αa and Y1ðxÞ and J1ðxÞ are the Bessel
functions, respectively.
For spacelike four-momentum transferred q2¼−Q2<0,

the solution in Eq. (19) can be written as

VaðQ2; zÞ ¼ Q̃z

�
K0ðQ̃z0Þ
I0ðQ̃z0Þ

I1ðQ̃zÞ þ K1ðQ̃zÞ
�
; ð20Þ

where Q̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ αa

p
and K1ðxÞ and I1ðxÞ are the

modified Bessel functions, respectively.
The action on the solution in Eq. (20) is evaluated with

applying transverse projector ημν → ðημν − qμqν

q2 Þ ¼ Pμν
T ,

since ∂μV
a;μ
⊥ ¼ 0, one has the form

Svector ¼ −
1

2g25

Z
d4q
ð2πÞ4 V

0;a
μ ðqÞV0;a

ν ðqÞPμν
T
∂zVaðq2; εÞ

z
:

ð21Þ

After solving the differential part, by the AdS=CFT
correspondence, we obtain the current-current two-point
functions
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h0jT Ja;μ⊥ ðxÞJb;ν⊥ ðyÞj0i ¼ iδ2S5D
i2δV0;a

⊥;μðxÞδV0;b
⊥;νðyÞ

; ð22Þ

where

V0;a
μ ðqÞ ¼

Z
d4xeiqxV0;a

μ ðxÞ; ð23Þ

and this leads to

i
Z

d4x eiqxh0jT Ja;μ⊥ ðxÞJb;ν⊥ ð0Þj0i

¼ −
1

g25
Pμν
T δab

∂zVaðq2; εÞ
z

; ð24Þ

where T is the time-ordering operator.
The bulk-to-boundary propagator can be written as

Vaðq2; zÞ ¼
X∞
n¼0

canðq2ÞψnðzÞ; ð25Þ

where the wave function of ψn satisfies the eigenvalue
equation

�
∂z

1

z
∂z þ

ððMa
V;nÞ2 − αaÞ

z

�
ψa
nðzÞ ¼ 0; ð26Þ

which is normalized as

Z
dz

1

z
ψa
nψ

a
m ¼ δmn ; ð27Þ

with boundary condition ψa
nðεÞ ¼ 0 ¼ ∂zψ

a
nðz0Þ, and the

solution is

ψa
nðzÞ ¼

ffiffiffi
2

p
zJ1

	
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMa

V;nÞ2 − αa
q 


z0J1
	
z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMa

V;nÞ2 − αa
q 
 ; ð28Þ

where the eigenvalues of Ma
V;n (Kaluza-Klein tower of the

mass of the vector mesons: ρ meson for a ¼ 1, 2, 3, K�

meson for a ¼ 4, 5, 6, 7, and ω0 meson for a ¼ 8) are

obtained from J0ðz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMa

V;nÞ2 − αa
q

Þ ¼ 0.

Using Eqs. (18), (25), and (26), we obtain

canðq2Þ ¼ −
1
ε ∂zψnðεÞ

q2 − ðMa
V;nÞ2

: ð29Þ

Since

i
Z

d4xeiqxh0jT Ja;μ⊥ ðxÞJb;ν⊥ ð0Þj0i

¼
X ðfaV;nÞ2δab

q2 − ðMa
V;nÞ2

�
ημν −

qμqν

q2

�

þ ðnonpole termsÞ; ð30Þ

where the definition of faV;n is given by the matrix element
of current, h0jJaμjVc

nðq; λÞi ¼ faV;nδacεμðq; λÞ. We identify
faV;n ¼ ∂zψ

a
nðεÞ=ε. Also, the parameter g25 ¼ 12π2=Nc ¼

4π2 is fixed from the quark bubble diagram in the leading
order, with Nc ¼ 3 the number of color.

E. Axial-vector and pseudoscalar

The action for the axial-vector and pseudoscalar sector
parts up to second order is written as

Saxial ¼
Z

d5x
X8
a¼1

1

4g25z
ð−ð∂MAa

N − ∂NAMÞ2

þ 2βaðzÞð∂Mπ
a − Aa

MÞ2Þ: ð31Þ

A contraction over 5D metric ηML is implied. We have
gauge choice Aa

M → Aa
M − ∂Mλ

a, and πa → πa − λa and
Aa
z ¼ 0 are imposed. We define

βaðzÞ ¼

8>><
>>:

g25v
2
q=z2 a ¼ 1; 2; 3;

g25ðvq þ vsÞ2=ð4z2Þ a ¼ 4; 5; 6; 7;

g25ðv2q þ 2v2sÞ=ð2z2Þ a ¼ 8:

ð32Þ

For the field ϕ that comes from the longitudinal part, we
define Ak;μ ¼ ∂μϕ

a. We then write the Fourier transform of
the fields in terms of the bulk-to-boundary propagators that
gives

ϕaðp; zÞ ¼ ϕaðp2; zÞϕ0aðpÞ ¼ ϕaðp2; zÞ ip
α

p2
A0a
kαðpÞ;

πaðp; zÞ ¼ πaðp2; zÞ ip
α

p2
A0a
kαðpÞ;

Ab⊥μðq; zÞ ¼ Abðq2; zÞA0b⊥μðqÞ; ð33Þ

where A0a
kαðpÞ is the Fourier transform of the source

function of the 4D axial current operator Ja;αA;k and

A0b⊥μðqÞ is the Fourier transform of the source function
of the 4D axial current operator Ja;αA;⊥.
We obtain the coupled differential equations for the

longitudinal part of the axial-vector and pseudoscalar fields
as follows:
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−q2∂zϕ
aðq2; zÞ þ βaðzÞ∂zπ

aðq2; zÞ ¼ 0; ð34Þ

∂z

�
1

z
∂zϕ

aðq2; zÞ
�
−
βaðzÞ
z

ðϕaðq2; zÞ − πaðq2; zÞÞ ¼ 0;

ð35Þ

with the boundary conditions ϕaðq2;εÞ¼0, πaðq2;εÞ¼−1,
and ∂zϕ

aðq2; z0Þ ¼ 0 ¼ ∂zπ
aðq2; z0Þ. The expression for

the transverse part of the axial-vector field is analogous to
the vector field. It then gives

�
∂z

1

z
∂z þ

q2 − βaðzÞ
z

�
Aa⊥ðq2; zÞ ¼ 0: ð36Þ

We then substitute the coupled differential in Eqs. (34)
and (35) into a second-order equation, and we obtain

∂z

�
z

βaðzÞ∂zyaðq2;zÞ
�
þz

�
q2

βaðzÞ−1

�
yaðq2;zÞ¼0; ð37Þ

where yaðq2; zÞ ¼ ∂zϕ
aðq2; zÞ=z. In this form, the boun-

dary condition is yðq2; z0Þ ¼ 0 and ε∂zyaðq2;εÞ=βaðεÞ¼ 1.
We then have the solution as

yaðq2; zÞ ¼
X ðMa

π;nÞ2yanðεÞyanðzÞ
q2 − ðMa

π;nÞ2
; ð38Þ

where yanðzÞ is a normalized solution of the eigenvalue in
Eq. (37) with q2 ¼ Ma

π;n, boundary conditions ynðz0Þ ¼ 0,
and ε∂zyanðεÞ=βðεÞ ¼ 0. The normalization is

Z
z

βaðzÞ y
a
nðzÞyamðzÞ ¼

δmn

ðMa
π;nÞ2

: ð39Þ

The eigenvalues of ðMa
π;mÞ2 are the Kaluza-Klein (KK)

masses for the pseudoscalar mesons: the pions for a ¼ 1, 2,
3, kaons for a ¼ 4, 5, 6, 7, and η0’s for a ¼ 8. The
eigenvalues are obtained from the transverse part of the
axial vector in Eq. (36), giving us the KK mass of the a1
and K1 mesons.
As noted above, for the vector sector, we do not have the

freedom to set Va
z ¼ 0, for a ¼ 4, 5, 6, 7. However, if we

define Va
z ¼ −∂zπ̃

a, Va
k;μ ¼ ∂μðϕ̃a − π̃aÞ, we obtain analo-

gous equations as in Eqs. (34) and (35) with αaðzÞ in place
of βaðzÞ. We may proceed as above to obtain the eigen-
values of the KK mass of the scalar mesons K�

0.

A current-current correlator for the axial sector iswritten as

i
Z
x
eiqxh0jT JaμA⊥ðxÞJbνA⊥ð0Þj0i ¼ −Pμν

T δab
∂zAa⊥ðq2; εÞ

g25ε
;

i
Z
x
eiqxh0jT JaμAkðxÞJbνAkð0Þj0i ¼ −Pμν

L δab
∂zϕ

aðq2; εÞ
g25ε

;

ð40Þ

where Pμν
L ¼ qμqν=q2. Using the completeness relationP

n

R d3q
ð2πÞ32q0 jnðqÞihnðqÞj¼1 into the correlators in Eq. (40),

then multiplying q2 −m2
n, and taking a limit q2 → m2

n,
one identifies the decay constant of the pseudoscalar mesons
from AdS=QCD correspondence:

faA;n ¼ −
yanðεÞ
g5

¼ −
∂zϕ

a
nðεÞ

g5ε
; ð41Þ

where the decay constants are defined by

h0jJaAμkð0ÞjπbnðqÞi ¼ ifaA;nqμδ
ab; ð42Þ

where the states of jπbnðqÞi are also considered for the pions
(b ¼ 1, 2, 3) as well as the kaons (b ¼ 4, 5, 6, 7).

III. KAON ELECTROMAGNETIC FORM FACTOR

The electromagnetic form factors of the pion and kaon
are presented in this section. The relevant parts of the
action are

SAkV⊥Ak ¼
Z

d5x

�
1

g25z
∂μϕa∂μVb

ν∂νϕcfabc

þ 1

z3
ð∂μπa−∂μϕaÞVb

μπ
cgabc

þ 1

z3

�
−
1

2
∂μðπaπcÞþ∂μϕaπc

�
Vb
μhabc

�
; ð43Þ

where the first term in Eq. (43) that contains fabc arises
from the gauge part of the original action and other terms
come from the chiral part. We then define

gabc ¼ −2iTrfta; X0g½tb; ftc; X0g�;
habc ¼ −2iTr½tb; X0�fta; ftc; X0gg: ð44Þ

If gabc and habc in Eq. (44) do not have a, b, or c, which
do not equal “8,” it then gives

gabc ¼ fabcvavc;

habc ¼ fabcðvc − vaÞvc; ð45Þ

where, for X0 ¼ 1
2
c0 þ c8t8, the va is defined as
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va¼c0þc8daa8¼
(

vq; a¼1;2;3;
1
2
ðvqþvsÞ; a¼4;5;6;7;

ð46Þ

where fabc and dabc are the structure constants of the SU(3)
algebra.
For three-point functions, we calculate three current

operators by taking the functional derivative of Eq. (43).
One has the form

h0jT Ja;αAk ðxÞJμ⊥ðyÞJc;βAk ðwÞj0i ¼
iδSAkV⊥Ak

i3δA0a
kαðxÞδV0b⊥μðyÞδA0c

kβðwÞ
:

ð47Þ
From Eq. (47), we then extract the form factor using the

following matrix element:

− fa�n fbmpβkαhπanðpÞjJb;μ⊥ jπcmðkÞið2πÞ4δ4ðp − q − kÞ
¼ lim

k2→ðMc
πmÞ2

p2→ðMa
πnÞ2

ðp2 − ðMa
πnÞ2Þðk2 − ðMc

πmÞ2Þ

×
Z

d4x d4y d4weiðpx−qy−kwÞ

× h0jTJaαAkðxÞJbμ⊥ ðyÞJcβAkðwÞj0i: ð48Þ

We then obtain

hπanðpÞjJb;μ⊥ jπcmðkÞi

¼ iðpþ kÞμ
Z

dzVbðq2; zÞ

×
1

z

�
ð∂zϕ

a
nÞð∂zϕ

c
mÞþ

g25vavc
z2

ðπan −ϕa
nÞðπcm−ϕc

mÞ
�
fabc:

ð49Þ

For three quark flavors, the electromagnetic current
operator is defined as

JEM;μ ¼ J3μ þ
1ffiffiffi
3

p J8μ: ð50Þ

The current matrix element for the kaons jKþ
n i ¼

jπ4n þ iπ5ni is written as

hKþ
n ðpBÞjJEM;μjKþ

n ðpAÞi ¼ ðpA þ pBÞμFK
nnðQ2Þ; ð51Þ

whereQ2 ¼ −q2 ¼ −ðpA − pBÞ2 and a final expression for
the kaon form factor is obtained by

FK
nnðQ2Þ ¼

Z
dzV3ðQ2; zÞ 1

z

�
ð∂zϕ

4
nÞð∂zϕ

5
mÞ

þ g25v
2
4

z2
ðπ4n − ϕ4

nÞðπ5m − ϕ5
mÞ
�
: ð52Þ

IV. KAON CHARGE RADIUS

In this section, we present the charge radius of the kaon
in low Q2 as well as in higher Q2. For doing so, we recall
the kaon form factor in Eq. (52) that is

FK
nnðQ2Þ ¼

Z
z0

0

zVaðQ2; zÞρbnnðzÞ; ð53Þ

where a ¼ 1, 2, 3, b ¼ 4, 5, 6, 7, and ρbnnðzÞ is defined by

ρbnnðzÞ ¼
ð∂zϕ

b
nÞ2

z2
þ g25v

2
b

z4
ðπbn − ϕb

nÞ2: ð54Þ

In the limit of Q → 0, the bulk-to-boundary propagator
in Eq. (20) is written as

VaðQ2; zÞ ¼ 1 −
Q2z2

4

�
1 − 2 ln

�
z
z0

��
: ð55Þ

Using the expansion of Eq. (20), we obtain the radius of
the kaon as follows:

hr2Kni ¼ −6
dFK

nnðQ2Þ
dðQ2Þ ¼

Z
z0

0

6

4
z3
�
1 − 2 ln

�
z
z0

��
ρbnnðzÞ:

ð56Þ

V. NUMERICAL RESULTS

Our numerical results for the kaon masses, decay
constants, and kaon form factors are presented in this
section. Following Ref. [13], we fix the parameter values of
the hard-wall cutoff at z0 ¼ ð322.5 MeVÞ−1, which is
chosen to fit the lightest ρ meson mass Ma

V;1 ¼
775.5 MeV for a ¼ 1, 2, 3. Parameters mq and σq is
chosen to reproduce the pion mass and decay constant,
respectively. Given the values of the pion mass Ma

π;1 ¼
139.6 MeV and decay constant fa1 ¼ 92.4 MeV for a ¼ 1,
2, 3, respectively, we obtain the light current quark mass
mq ¼ 2.29 MeV and condensate σq ¼ ð328.3 MeVÞ3. We
then fix σs ¼ σq. The strange current quark mass ms ¼
51.96 MeV is chosen to fit the kaon mass Ma

K;1 ¼
495.7 MeV for a ¼ 4, 5, 6, 7 (the masses for the Kþ,
K−, K0, and K̄0, respectively). We simply consider mq, ms,
and σ as model parameters, not the (realistic) physical
values of the quark mass and quark condensate. For getting
a better connection between the light current quark mass
and condensate, we redefine the parameters by taking
mq →

ffiffiffiffiffiffi
Nc

p
=2π and σ → 2π=

ffiffiffiffiffiffi
Nc

p
without modifying

the above results for the two-point and three-point func-
tions. With this redefinition, we obtain mq ¼ 8.31 MeV,
ms ¼ 188.5 MeV, and σ ¼ ð213.7 MeVÞ3.
Using the obtained parameters above, we determine the

decay constant of the lightest KK of the kaons fKþ ¼
104 MeV, and the mass and decay constant of the K�

0 are
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mK�
0
¼ 791 MeV and fK�

0
¼ 28 MeV, respectively. The

decay constant of the ρ meson f1=2ρ ¼ 329 MeV. The
mass and decay constant of the lightest KK of the vector
mesons K� are mK� ¼ 791 MeV and f1=2K� ¼ 329 MeV,
respectively. For the axial vector mesons, the mass
and decay constant of the a1 are ma1 ¼ 1366 MeV

and f1=2a1 ¼ 489 MeV, respectively. For the K1, we obtain
mK1

¼ 1458 MeV and f1=2K1
¼ 511 MeV. The values of the

decay constant and the mass of the kaon obtained are
consistent with PDG [32].
Results for the kaon form factor are shown in Figs. 1–3.

Figure 1 shows our prediction for the kaon form factor
compared to the existing data [27] in low Q2. We find that
our prediction is in excellent agreement with the data [27].
We then calculate the kaon form factor up to Q2 ¼ 5 GeV
to anticipate the higher Q2 data which will collect soon
[28,29], as in Fig. 2; however, experimentally, the kaon
form factor is poorly known.

Figure 3 shows the same results as in Fig. 2, but for
Q2FKðQ2Þ. For larger Q2 (asymptotic region), the bulk-to-
boundary propagator is written as

VaðQ2; zÞ ¼Q2→∞ ðQzÞK1ðQzÞ ≈
ffiffiffiffiffiffiffiffiffi
πQz
2

r
e−Qz; ð57Þ

which goes to zero unless z is infinitesimal, z ∼ 1=Q. Note
that the first term in Eq. (54) goes to g25ðfanÞ2 when z → 0,
while the second term goes like ε2 → 0. The quantity
zVaðQ2; zÞ behaves like a delta function picking up ρannðzÞ
at z → 0. The upper limit of the form factor integral can be
set to infinity as the integrated vanish at large z. Then, the
kaon form factor in higher Q2 is defined by

FaðQ2Þ ¼Q2→∞ g25ðfanÞ2
Q2

Z
∞

0

dww2K1ðwÞ

¼ 2g25ðfanÞ2
Q2

¼ 8π2ðfanÞ2
Q2

: ð58Þ

We find that the kaon form factor for larger Q2 agrees
well with the perturbative QCD prediction [31].
Using Eq. (56), we obtain the charge radius for the

lightest kaon rKþ ¼ 0.56 fm. We find that our result is in
excellent agreement with the experimental data [27] and
PDG [32].
We also compare our model approach with the work

of Ref. [33], which uses a light-front (LF) holographic
approach, where the holographic expression in 5D AdS
space is matched to QCD in the LF frame. In this approach,
to incorporate the quark mass, the “effective potential” in
the AdS space is modified by adding a term to obtain the
meson mass expression matches with the quark mass
contribution in LF QCD. Contrary to this approach, we
introduce the quark mass parameter, as a source of the
quark bilinear operator ψ̄RψL in the AdS boundary, which
is consistent with the AdS=CFT rule, and it appears as a

FIG. 3. The same as in Fig. 1 but for Q2Fþ
KðQ2Þ. The experi-

ment data are taken from Ref. [27].FIG. 1. The kaon form factor (solid line) compared to the
existing data taken from Ref. [27].

FIG. 2. The kaon form factor (solid line) compared with data at
low Q2. The experiment data are taken from Ref. [27].
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coefficient in the background field, X0. Consequently, the
quark mass parameter appears differently in the effective
potential, compared to the work of Ref. [33]. In addition,
they identify the light-front wave function, where the
hadron properties are encoded, by comparing the electro-
magnetic form factor in AdS and the LF QCD form factor.
In comparing our obtained results with their results on

the kaon form factors, their results for the charge radius of
the Kþ are slightly larger than our result in the low Q2

regime, where the charge radius is 0.615 fm for the
dynamical spin parameter B ¼ 0 and even larger for
B > 0. However, the behavior prediction of the kaon form
factor in the large Q2 regime, which goes like 1=Q2, is
similar to our obtained result.
We note that, in this paper, we started with an AdS

Lagrangian that has SUð3ÞL × SUð3ÞR symmetry, and it
reproduces a chiral symmetry breaking of QCD. An
approximate relation due to a chiral-symmetry-breaking-
like, Gell-Mann-Oakes-Renner relation is preserved in our
approach.

VI. SUMMARY

In summary, we have computed the kaon form factor in
holographic QCD, which is a complementary approach of
QCD. We adopt a bottom-up approach of the AdS=CFT
correspondence, instead of a top-down approach, where we
employ the properties of QCD to construct its 5D

gravity dual theory. We begin to describe the AdS=CFT
correspondence formalism, describing a correspondence
between 4D operators OðxÞ and fields in the 5D bulk
ϕðx; zÞ. We calculate the kaon form factor in holo-
graphic QCD.
The result for the kaon form factor is in good agreement

with the existing data in low Q2. We then predict the kaon
form factor in higher Q2. We found that the kaon form
factor in higherQ2 is consistent with the perturbation QCD
prediction.
We finally calculate the charge radius of the kaon in

holography QCD. We obtained rþK ¼ 0.56 fm, which is in
excellent agreement with the data as well as the Particle
Data Group. In the future, it would be interesting to extend
the calculation of the form factor and gravitational form
factor of the B and Dmesons, which contain the bottom and
charm quarks, respectively, using the holographic QCD
model.
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