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New approach to the Sivers effect in the collinear twist-3 formalism

Hongxi Xing* and Shinsuke Yoshida

4

Institute of Quantum Matter and School of Physics and Telecommunication Engineering,
South China Normal University, Guangzhou 510006, China

® (Received 10 April 2019; published 18 September 2019)

The single-transverse spin asymmetry for hadron production in transversely polarized proton scattering
receives a major contribution from the Sivers effect, which can be systematically described within the
collinear twist-3 factorization framework in various processes. The conventional method in the evaluation
of the Sivers effect known as pole calculation is technically quite different from nonpole calculation, which
is another method used in evaluating the final state twist-3 effect. In this paper, we extend the nonpole
technique to the Sivers effect and show consistency with the conventional method through an explicit
calculation of the O(a;) correction in semi-inclusive deep inelastic scattering. As a result, we clarify that
the conventional pole calculation is implicitly using the equation of motion and the Lorentz invariant
relations whose importance became widely known in the nonpole calculation. We also clarify some
technical advantages in using the new nonpole method.
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I. INTRODUCTION

The origin of the single transverse-spin asymmetries
(SSAs) in high-energy hadron scatterings has been a long-
standing mystery for over 40 years since strikingly large
asymmetries were observed in the mid-1970s [1,2]. The
Relativistic Heavy Ion Collider experiment has provided
many data of the SSAs for various hadron productions in
the past decade [3—7] and motivated a lot of theoretical
work on the development of the perturbative QCD frame-
work. Much theoretical effort has been devoted to develop a
reliable QCD-based theory in order to deal with the given
experimental data. The twist-3 framework in the collinear
factorization approach was established as a rigorous frame-
work which can provide a systematic description of the
large SSAs.

It is commonly known that there are two major effects
which lead to the large SSAs observed in the experiment,
1.e., the initial state Sivers effect and final state Collins
effect. The Sivers effect is essentially a twist-3 contribution
generated from a transversely polarized hadron in the initial
state. Starting from the pioneering work by Efremov and
Teryaev [8], more systematic techniques were developed in
a series of studies around 2000 [9-12]. A solid theoretical
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foundation for the calculation of the Sivers effect was
finally laid in Ref. [12]. We will show the calculation
technique in detail in the next section, and here we just give
a brief introduction. The Sivers effect of the transversely
polarized proton can be expressed by the dynamical twist-3
function defined by a Fourier transformed proton matrix
element T, p~F.T.(pS|[wgF " w|pS,), and the cross
section in deep inelastic scattering (DIS) can be derived as

do =iT,; ® D ® db, (1)

where D represents the usual twist-2 fragmentation func-
tion and dé is a hard partonic cross section. Because all the
nonperturbative functions are real in this equation, the
partonic cross section has to give an imaginary contribution
in order to cancel i in the coefficient. This imaginary
contribution can be given by the pole part of a propagator in
the partonic scattering. In the quantum field theory, the
propagator is defined by the time-ordered product of two
fields, and it has an ie term in the denominator. The
imaginary contribution can emerge from a residue of
contour integration. This is a basic mechanism of the pole
calculation for the Sivers-type contribution. Next, we turn
to the twist-3 fragmentation effect of a spin-O hadron,
which is known as the Collins effect. The cross section
formula for the twist-3 fragmentation contribution was
completed in a pp collision [13] and DIS [14] in a formal
way. The dynamical twist-3 fragmentation function can be
defined as Dq,Fzf.T.(O\gF*‘yAhX}<hX|1/7|O>, and the
cross section in DIS is expressed by the same form as
Eq. (1), just replacing T,  with Dq, r and D with the usual
twist-2 parton distribution function, respectively. The main
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difference is that the fragmentation function lA)q, Y
complex, and, therefore, it gives the imaginary contribu-
tion. The pole contribution from the hard cross section is no
longer needed. This is a mechanism of the nonpole
contribution from the Collins effect. The origin of gen-
erating the imaginary phase results in the main technical
difference between the calculations for the Sivers and the
Collins effects. The cross section for the pole contribution
depends only on the dynamical function, while the result
for the nonpole contribution is expressed in terms of three
types of nonperturbative functions: the dynamical, intrinsic,
and kinematical functions. In general, the hard cross
sections in the nonpole calculation are not gauge and
Lorentz invariant; because they are not physical observ-
ables, only their sum leads to a physical result as measured
by experiment. This problem is solved by using two types
of the relations among the nonperturbative functions which
are called the equation of motion relation and Lorentz
invariant relation [15].

As discussed above, the calculations for the pole con-
tribution and the nonpole contribution are technically
different from each other. Although the calculation tech-
niques for those contributions are important basics of the
higher twist calculation, not so many theorists are familiar
with both of them because of the technical differences. In
this paper, we revisit the result of the pole calculation from
the viewpoint of the nonpole calculation in order to
understand two calculations in a unified way. We show
that the nonpole calculation has several technical advan-
tages and, thus, should be extended to more complicated
calculations like next-to-leading-order calculation and
twist-4 calculation.

The remainder of the paper is organized as follows: In
Sec. II, we introduce the notation and review the conven-
tional pole calculation in detail. In Sec. III, we show the
nonpole calculation method for the twist-3 contribution in
order to reexamine the pole contributions. Finally, in
Sec. IV, we summarize the achievements in this paper
and make some comments on possible applications of the
new nonpole method.

II. CONVENTIONAL POLE CALCULATION
AT TWIST-3

The conventional collinear expansion framework at twist
3 has been developed in Refs. [§—17]. We review here the
pole calculation for semi-inclusive deep inelastic scattering
(SIDIS) in order to clarify the difference from the new
method of nonpole calculation that we will propose in the
next section. SIDIS is a suitable process to check the
consistency between the two methods, because the twist-3
cross section has been already completed in Ref. [12] based
on the conventional method. In addition, SIDIS is a
relatively easier process than pp collision because of some
technical issue.

We consider the process of polarized SIDIS
e()+pM(p.S1) = e(l) +h(Py) +X.  (2)

where the initial proton is transversely polarized. [ and
are, respectively, the momenta of the incoming and out-
going electrons. p and S, are the momentum and the
transverse spin of the beam proton, respectively, and P, is
the momentum of the final state hadron. In this paper, we
focus on the one-photon exchange process with the photon
invariant mass ¢> = (I — I')*> = —Q?, and the extension to a
charged current interaction is straightforward. The polar-
ized cross section for SIDIS is given by

d*Ac B az, L
dxgdydz;dPy,  32°72,x38%,07

W,  (3)

where the standard Lorentz invariant variables in SIDIS are
defined as

> 0’
S,, = 0=, = ,
ep (p+) XB 2Pq
p-P P-q
=", y=". (4)
P-q p-l

The leptonic tensor is defined as follows:
2
L = 2<l”l’” + M — 79””). (5)

In order to simplify the discussion, we will mainly consider
the metric part L* — —Q%¢*. We will discuss the result
with the full leptonic tensor (5) in the end of Sec. III. The
SSA in SIDIS can be generated by both the initial state and
final state twist-3 contributions. In this paper, we focus on
the contribution from initial state twist-3 distribution
functions of the transversely polarized proton, and then
the polarized differential cross section can be written as

d4A0 a2 dZ
- > _WD—> )
dxgdydz,dP; 32”ZZhX%S§pQ22i: 2 i #(2)

(6)

where D;_;(z) is the twist-2 unpolarized fragmentation
function. The hadronic part W; describes a scattering of the
virtual photon on the transversely polarized proton, with
the leptonic metric part contracted. We will make the
subscript i implicit in the rest part of this paper for
simplicity.

In the conventional pole calculation, one needs to
consider diagrams as shown in Fig. 1, in which the hadronic
part reads
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FIG. 1.

d*k, d*k,
Wpole:/w/w/d4)’1
X/d4yzeik"y'ei(k2_k')'y2
X (PS.L[;(0)gA“ (yo)wi(v1) | pS 1) Hips (ki ).
(7)

The twist-3 contribution is generated by the pole term,
which comes from the imaginary part of the quark
propagator

! P(%) _ ins(R2): (8)

2 +ie
|

Diagrammatic description of Eq. (7).

thus, only —iz6(k?) is considered in the conventional pole
method. We perform collinear expansion k; — x;p for the

hard part Hl;gf(k] ,ky). There are three types of pole
contributions at the leading order with respect to QCD
coupling constant a,: soft-gluon-pole (SGP, x, — x; = 0),
soft-fermion-pole (SFP, x; =0 or x, =0, x; # x,), and
hard-pole (HP, x; = xp,x, # xp or x, = xp, x| # Xp) con-
tributions. Full diagrams for each pole contribution are
shown in Figs. 2(a)-2(c). It is known that there is another
type of contribution given by diagrams with two quark lines
in the same side of the cut [18]. This contribution is
relatively easier to calculate and, thus, will not be discussed
in this paper.

One can factor out the & functions in 2y (k;. k,) for the
three pole contributions:

H?Z:;(kl’kz) = Hi‘ﬁ'.’a<k1, ky){=ind[(pe — (ky = kl))z]}@”)‘s[(kz +q- Pc)z]
+ HYT (ky ko ) {=im[(pe — Ky + ky = q)?]}(27)8[(ky + g — pe)?]
+ H® (ky, ky){=ind[(k, + q)*]}(27)5[(ks + g — p.)?] + (complex conjugate diagrams),  (9)

Lji.a

where the factor (27)5[(k, + g — p.)?] represents the on-
shell condition of the unobserved parton and p.. is the four-
momentum of the final state fragmenting parton.

A systematic way to calculate the pole contributions was
developed in Ref. [12]. We confirmed that Ward-Takahashi
identity (WTI) shown in Ref. [12] is valid for the diagrams
in Figs. 2(a)-2(c) as

(ks = k1 )*HY g (1. ko) = 0. (10)

Jji,a

Considering k; and k, derivatives, we can derive relations

(x, —xy) %H%]}f(kl, kz)‘k’_:w = H?S}f(xlp,xw%
(x2 — xl)%H?g?(kh kz)’k:x_p = —H?g}f(xlp,xzpl
“ =%,
(11)
where H?Sl;(kl, ky) = pﬁHﬁf’f(kl, k»). Thus, we can derive

the following useful relations for SFP and HP:

0 | SFP(HP) 1 SFP(HP)
7 g k. k ‘ — H! 5p).
ak/l} Jji,p ( 1 2) k=xp  Xy—X; ji.p ('xlp XzP)
0 SFP(HP) 1 SFP(HP)
R W
(12)
which lead to
0 SFP(HP) 0 SFP(HP)
-—H ki, k =—H) ki, k :
8k’f Jji.p ( 1 2) ki=xip 8k‘g Jji,p ( 1 2) ki=x;p
(13

However, we cannot derive the same relation with Eqgs. (12)
and (13) for the SGP diagrams directly from WTI, because
HiSE (x1p, x,p) contains 6(x; — x1). So far, the only way
to derive the relations is to calculate all the relevant
diagrams explicitly, which is annoying in higher-order
perturbative QCD calculations. In SIDIS at O(a;), the
authors of Ref. [12] have checked explicitly that the above
relation also holds true for H377:
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(b)

(©

FIG. 2. (a) The diagrams for the SGP contribution. The separation of the pole (8) is carried out for the red barred propagators. The
complex conjugate diagrams also need to be considered. (b) The diagrams for the SFP contribution. The gluon line with momentum
ky — ky attaches to each black dot. (c) The diagrams for the HP contribution.

0
_aHﬂp(klka) :—HS (klakZ) . (14)

‘k,:x,p akﬁ P ki=x;p
Now we can perform collinear expansion of the hard part:

0 ole a
a)/ikﬁ + 94 ka l;t N (kl ’ k2) k wﬂkg

ole e a ole
pl (khkz) ~HY (XIP xzp) pl (khkz)‘ .

Hj;, Jip aka Hj;, —xp

0
= H?tp (XIP,XZP) + %H??if(kl, k2)‘k.:x»pwg(k2 - k1>ﬂ, (15)

where the projection tensor is defined as @§ = g — ii%n; with the unit vectors taken as 7 = [1,0,0] and n = [0, 1, 0]. We

work in the hadron frame, and p* = p™i*. We can neglect the k= component at twist-3 accuracy and identify a);kf-j ~ kY.
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We use the same identification for all vectors projected by wj below. The next step is to decompose the components of the
gluon field A” into longitudinal and transverse as
n

A
Aazp—+p“+A“, (16)

where A" = A - n and we neglected the A~ component. Substituting Eqgs. (15) and (16) into Eq. (7), we can extract the twist-
3 contribution:

d*ky [ d*k, 4 A ik vy pilka—ki)-y - n
Woote = 20t ) d'yy | d*y,etivie ek (pS | | (0)gA™ (vo)wri(v1) | pS L)
1 9 ok a
Xp_+8k“ ?llp(klv]CZ)‘k ( (kay —Fki1)

=(ki-n)p
d*k
2 /d4y1/d4y2e’k‘ V1 gilka—k ”<PSL|II/J( )9AT (v2)wi(y1)|pSL) jla('xlp9x2p>

e

d d _ B oA _
—ip / dx, / dx, / a1 / Y2 pinip 37 P ': (pS, |,(0) 915 A (v5) — 8"AT (v3) i (7 | pSL)

0 pole dy Y2 yix Ty )ptys
akaH‘f,l,,(kl,kz) T /dxl/de/ 1/ 2P P (p S| (i (0)gA% (v7 )i (1) pSL)
0
x[(x _xl)%Hi)??(kl’kZ)’k:x_p +H§?;(X1P,X2P)]- (17)

The last term in Eq. (17) can be eliminated by using the relation Eq. (11), and the first term can be rewritten as

. 0
WPole_l/dxl/deTr|:M%(xl’x2)akaH?’Ole(kl’kZ)’k J, (18)
2 i—Xi

where M%(xy,x,) is the F-type dynamical function which can be further expanded as

dy y zx (xo—x = an (y,— — M ann
M p(x1,0,) = / 1/ 2ep P (pS | [ ;(0)gF (y2>V/i(y1)|pSL>:_TN€ L) T g r (X1.X2) +

(19)

with the nucleon mass My and the field strength tensor defined as F*'(y;) = 09A"(y;) — 0"A% (y;); notice that the
nonlinear gluon term in the field strength tensor has been omitted, because it comes from Feynman diagrams with linked
gluons more than one and, therefore, does not show in Eq. (18). T, r(x;,x,) is the well-known Qiu-Sterman function,
defined as the following:'

g dy—dy_ ix;pty™ Jilx,—x,)pty; - ain n(y,— -
Tyrinon) = (2 ) [ DRB crsetens (ps. p(Oe FLOWOTIDS. ). (20)

Using Eq. (12) for SFP and HP, one can evaluate the derivative of the hard part with respect to k, in Eq. (18). For SGP, we
need to rely on the master formula [19]

0
H3%( kl’k2)’

: O PPt 0
el ot =) (5o = 22 Y ), 1)

k=xp 2NCp op?  p.-pOope

where H ;(x; p) is the usual 2 — 2 y*g — gg scattering cross section without the extra gluon line attached. Combining the
three pole contributions together, we obtain the final result based on the conventional pole calculation:

'We rescaled the function as T, r(x1.%2) = (9/22My)T, p(x1,x,) from the original definition in Ref. [9] for convenience. Our
definition of T, r(x1,x,) is the same with F}..(x,,x;) in Ref. [15].
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d*Ac
dxpdydz,dP,,  8z,x35%,0°

2
ﬂMNaem Ay

dZ dx S nn 2~qiin
= 36 [ GD0ms(a) [ ol a= pI(G + Q)er s e
q

d R R R R
X [xaTq.F(xv x)ép + Tq.F(x’ X)6np + Tq,F(Ov x)6spp + Tq,F(vax)aHP ) (22)
where all hard cross sections are listed below:
1 160%[(3+ 1)+ (1+ )%
6p = — Z
b™aoN 5702
. 1 160Q%[20% + P — 4025 it +37% 0 + 410® + 28° + Q*(31 + )]
lo} = — ~ k)
ND TN §2102
) 1 160%20% + 2 + Q?(1 + 31)]
OSFP = ~ 577 YY) ,
2N St
. 11 1 160%[0° + 30%5 + §° + 0?(35% + 12)]
OHp = | 52— LFx ) oY) , (23)
2Nt S+0 Kt}
with the standard Mandelstam variables defined as
§=(p+q)? iT=@p-p)  d=(q-p)* (24)

In the next section, we show that the new nonpole method
can reproduce these hard cross sections. We would like to
make a comment on the relation Eq. (14) for the SGP
diagrams; this relation is required to construct the gauge-
invariant matrix for the dynamical function. However, there
is no simple way to prove this relation. We have to check if
it is correct diagram by diagram. This is a frustrating point
of the conventional pole calculation. We will show that the
new method can avoid such complexity and, thus, is a more
flexible calculation technique.

III. THE NEW NONPOLE CALCULATION FOR
SIVERS EFFECT

We introduce the new nonpole calculation method in this
section. The main difference between the pole and the
nonpole methods is on the decomposition of the propagator
shown in Eq. (8). In the new method, we directly perform
the contour integrations and never carry out the decom-
position for any propagators. The new method is expected
to remove the mathematical complexity that lies in the
validity of the decomposition. In this sense, the new
method can be regarded as a more flexible approach and
can be easily extended to more complicated cases. Removal
of the workload on Eq. (14) is one of the important
consequences.

A. General formalism

In the new method we propose here, the hadronic part
should be written as a sum of all the diagrams, i.e.,
W = Zi W(i), where i denotes the number of gluon

attachment. Let us start with the diagram in Fig. 3 without
any gluon attached; the hadronic part is given by

d*k .
WO [ 555 [ e (pS 10w S Hi ).

(25)

The twist-3 contribution from the diagrams without a gluon
attached can be obtained by performing collinear expansion
of the hard part:

0
H (k) k9.

H(k)~H;
jl(k) jl(xp) +8k" k=xp

(26)

Then Eq. (25) can be expanded into two parts:

FIG. 3. Diagrammatic description of Eq. (25).
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d*k , _ d
W(O):/ 4/d4)’1€’k'y‘ <PSL‘U/j(O)Wi(y1>|PSJ_> Hji(xP>+—aHji(k)|k:xpkoi
(27) Ok
AT - -
"“/ dx/ S (pS L ()i (57) | pS L) Hji(xp)
L4 dyl_ ixpTyT - 1l - 9
+ip™ [ dx 2. (PS 11w ;(0)0%w;(¥1 )lpSl>%Hji(k)|k=xp' (27)

In general, the first term could give the twist-3 contribution when the hard part gives transverse component
Hji(xp) ~ (r") ji- Next, we consider the diagrams with one gluon attachment as shown in Fig. 1 which were also
considered in the conventional method. Here, we need to consider a set of diagrams H ; ,(k;, k) shown in Fig. 4 and their

complex conjugate. We call them nonpole diagrams because we do not separate the pole term for any propagators. The
nonpole contribution to the hadronic part reads

d*k d*k . . i _
w) = 14 24 d*yy | d*ysetivielek0r2(pS | (i (0)gAY (2 )wi(v1) | PS LY H ji (K. k). (28)
(27)* ) (2x)

Similar to the strategy in dealing with the diagrams without a gluon attachment, the first step to extract the twist-3
contribution from one gluon attached diagrams is to perform collinear expansion of the hard part:

OH j; ,(ky, k) o OHji (ki k) s (29)

k ’k i ’
]z/)( 1 2) ] p(xlp x2p)+ akclz J— 1L akg ki=xip 21

One also needs to decompose the gluon field A* into longitudinal and transverse components as in Eq. (16). Then Eq. (28)
can be expanded as follows:

W) — /
1

0
X—Jr{Hﬂp(?ﬁP xop) + Gk“ /zp(klvk2)‘ —x-pkﬁ—kak‘l ]lp(kl’kZ)’ _X_pkﬁ]

d4k1 d4k2 4y, ikiyy pi(ka—ky)- 7 n
d*y, | diyyetiviele=k)y(pS | | ;(0)gA™ (yo)wi(y1)|pSL)

p
Pk, [ dk , )
[ G [ [ i [ dtvacton et 5, 7 0)0AS (52w (1) S Hyapx2p): - (30)

FIG. 4. The diagrams for H}; ,(k;, k,). The gluon line with momentum k, — k; attaches to each black dot.
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notice that other terms in the combination of Egs. (16) and (29) contribute to higher twist. The hard part shown in the above
equation can be further simplified by using the WTI relations. It is straightforward to derive the counterpart of Eq. (10) for
the nonpole diagrams [14]:

(ky = k1)*H i (k1. ky) = Hji(ky) — H ji(ky). (31)

The nonpole hard part does not have the delta function §(x, — x,); therefore, we can derive the following useful relations:

1

Hji,p(xlp’XZP) = xiz — [Hji<x2]7> - Hji(xll’)],
0 1 0
Y H. (k. k ‘ e H.,(upxap) ——H.(k ‘ ,
ak/l} j p( 1 2) ki=x:p Xy — X —l€|: J ,ﬁ(xlp pr) ak/l} j( 1) k1=x]p:|
0 1 0
—H; (ki k ‘ =———— |Hjip(xip,xop) ——5Hji(k ’ }’ 32
), o Hsten) S, (32)

where the sign of ie was determined by the fact that only the final state interaction exists in SIDIS. If a process has both the
initial and the final interactions as in the case of a p p collision, the ths of Eq. (32) could have both £ie and the sign cannot
be uniquely determined from the WTI (31). We need more consideration on this point when we apply the same technique to
a pp collision.

We would like to emphasize the validity of WTI to higher-order diagrams. The WTI is a consequence of the gauge
invariance in QCD, and, therefore, we can use the same Eqgs. (31) and (32) to higher-order diagrams as long as we use an
appropriate regularization scheme like dimensional regularization. By using these useful relations derived from WTI, the
hard part terms H; ,(k;,k,) and H; ,(k,k,) contained in Eq. (30) are, respectively, given by

0
Hyaleipocop) = ~(0 = 0) e Hyp k)| +giaHth)|,
(om0 [ Hmpoap) - ———— L m)| |+ Hk)
= (X — X X, — x| — i€ jia\X1p,Xop X, — x| — i€ OKS jilk2 ky—rap ks jil\k2 PR

a 104 a a
Hji.p(x1P7x2P)+aka ]tp(kl’kZ)‘ e ks + ok ]tp(kl’kZ)) kL

=X i

= ﬁ [Hji(x2p) = Hji(x1p)] + aia Hj; p(ky, kz)‘ , (ko = k1)
" (aia ol aia f’f’(kl’kz)’k,x,,,) ki

= ﬁ { [Hji(x2p) = Hji(x,p)] = Hji (X1 P, X2p) (koy — Ky ) + %H (ks) k2=x2p(ku — ki )*
+ L’)ia ika)| - aiq‘Hﬁ(kl)‘klx,p] k‘ﬁ}- (33)

We iteratively used the third relation in Eq. (32) for the first equation. Substituting Eq. (33) into Eq. (30), we obtain the final
result
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=

A R _ . o nla— _
wl) = p*/dX/—le”‘” " (pS | |w;(0) [19/ dy;A (yz)]wi(yl)pSﬁHﬁ(xp)
y

1

dy dy lx i(xy—x — an («.— _ H‘i,a(xlp’xzp)
—ip /dxl/dxz/ '/ 2 P Py (S | [ip;(0)gF 0w O)IpSL) = ==

Xp — X1 —

. T N DU )
wipt [ [ ST (psli(0) [zg J >] Oy (0)IPS.) 7z Hi(0)
y

; k=xp

: dy— ixptyr - : o an (- - 0
wipt [ [ SLew (o, )g [ avs 03w OIPS.) g Hlk)

Vi

wipt [ax [ SL e (o511, 0) igAT 6D WD) IPSL) g3z Ha)] (54

k=xp

k=xp

Summing over all twist-3 contributions in the diagrams in Figs. 1 and 3, represented by Eqs. (27) and (34), respectively, we
can construct the gauge-invariant expression

W:/der[M(x)H(xp)] /der[M“( )aiaH(k)’ka —i/dxl/dxzle,Tr[M%(xl,xz)Ha(xlp,xzp)],

—x| —ie
(35)
where the matrices are given by
dyy ixpTy— _ _
Myj(x) = p+/2_zzle’ P (pS L (0)wi(37) [ pSL), (36)
a dy— ixpTyy - a (,— -
M) = o+ [ B e (981, 01D G O7)IpS.)
dy— ] )T = H 0 —an (,— -
+P+/2_7;ew+h<pSL|l//j(0)lg[/ dy, F (yz)}wi(yl)lp&)
"

M

— =i e () D) (37)

where the operator definition of fllT(l)(x) is

Fir @) = (2;,[;) / dzy—ﬂ‘_e”"”?<PSle7(0)ﬂ€“””sL (Dm(yI)Jrig[ /y _oo dyin(yz)Dw(yI)lpSﬁ- (38)

The definition of M%(x, x,) and its decomposition are already introduced in Eq. (19). In the present case, the first term in
Eq. (35) cannot give a twist-3 contribution, because the spin projection y,e*""5: is forbidden by PT invariance. Therefore,
we can eliminate the first term in Eq. (35) and rewrite the twist-3 hadronic part as

_ﬂ anns | L(1) a / / 1
W= 5 € {/dxflT (x)Tr pakaH(k)‘kzxp +i [ dx dszq’F(xl’x2>x2—x1—ieTr[ﬂH"(xlp’le))] . (39)

In the new method presented above, we needed only the well-defined relations Eq. (32) to construct the gauge-invariant
matrix elements. We find that the difficulty associated with the relation Eq. (14) in the conventional calculation was
removed. This is one of the advantages in the new method. Another advantage is that, by using Eq. (39) and the discussion
in Appendix B, we do not need to calculate the derivative of the hard part over the momentum k(k;); this will significantly
reduce the complexity of twist-3 calculation, in particular, for higher-order calculations.

B. SIDIS at O(ay)

In this subsection, we show in detail the calculation of the hadronic part for SIDIS at O(«,). We factor out the on-shell &
function from the hard partonic part:
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H(k)

H(k)(27)[(k + q = p.)*].
H,(x1p.xop) = Hy(x1p. x,p) (27)5[(x2p + g — pc)?] + HE (x1p. x2p) 27)5[(x1p + g — p.)?].

where HE (x, p, x,p) is given by a sum of 12 diagrams in Fig. 4 and HR (x, p, x,p) is its complex conjugate. The derivative
of H(k) over k can be converted to that over the standard Mandelstam variables 3, 7, and #&. For details, see Appendix B.

Then we can calculate Eq. (39) as

W= ﬂMN/%(s[(XP +q- pc)z}{

9_9
5 05

+ ie@nS1 / dx’Tq‘p(x’,x){

x—x' —ie

1
LA @)
dx
2

X =
i

A

b 7i 5 2
6(8,1, f{) - (eqnnsi _ €pgnnSL) <
u

where &(8,7,2) is the 2 — 2 partonic cross section in
SIDIS. For the gy* — gg channel, it reads

B+D)*+(+

)2
6(3.1, &) = TrlxpH (xp)] = -8Cr0* - it) .

(43)

Notice that, for convenience, we have changed the notation
x; = X, x, - x in H*(X'p,xp) and x; = x,x, » x' in
HR(x'p,xp) in order to factor out the common delta
function S[(xp + g — p.)*]. We discuss the gauge and
Lorentz invariances of the hard cross sections associated
|

(eqimSL _ ep(;ﬁnSL)
6(8,1,0) —

Tr[xpHg (X' p. xp)] -

N

5(5.0.0) + f17 (v) [((3 + QR)ermnSs y jeamS. )
el i (xp)

s ap. )]} (42)

x—x +ie

with f me (x). The hard cross section with the nonderivative

function flLT(l) (x) is not apparently gauge invariant because
of the term e*"S:Trly,H(xp)]. The gauge invariance
requires the unpolarized spin projection xp with H(xp)
like Eq. (43). On the other hand, the hard cross section
associated with the derivative function 4 flLT(l)(x) is not
Lorentz invariant. The vector n in the parametrization (19)
satisfies 7i-n = 1 and n*> = 0. These conditions are not
enough to uniquely determine the form of 7, and there are
two possible choices in SIDIS:

P e or = p* o 2p"pe - q <qa_upa>. (44)
P pe p-pe " 2pe-q)pra)+Q (P pe) ppe”
|
We can check that the coefficient (€4St — PeinS1) of () = T, p(x,x), (45)
4 f#l)(x) depends on the choice of n. This ambiguity of d .
the cross section is physically interpreted as the frame Ef i (x) = ETq,F()@ x), (46)

dependence, because the spatial component of n is deter-
mined so that it has the opposite direction of the momentum
p as n=—p/pT. From the requirement of the frame
independence, the cross section has to be proportional to
the factor [(§ + Q?)eP<™S1 + e9™S1] as already shown in
the cross section (22) derived by the conventional pole
method. We will show later that the gauge and Lorenz
invariances of the cross section are guaranteed by using the
relations

which enable us to express the cross section only in terms of
T, r(x', x) as in the case of the conventional calculation. One
can find the derivation of these relations in Appendix A.

Now we show how to calculate the hard partonic part
HE(x'p,xp). There are four types of x’ dependence in the
Feynman gauge. Figure 5 shows typical diagrams including
x'-dependent propagators. Each propagator can be calcu-
lated as follows:

propagator (1): [pfic (_x(f;)x[;;fi == %x{ﬂr - x)f — ie%ﬁ"’

propagator (2): [pfj C(; EXXT)J; )_ﬂq}@; —= % - ie% (xp+q-p.),

propagator (3): [x’prc:]_zq—(i— ie S+ 0? xﬁ—’—x’ —x); +ie§+ Q? 4.

propagator (4) Vape((x=X)P.=*p =4+ pe-X'P+4=pc) = % (XPGap + XPaGpe = 2XPpGar)

Wp+q—pJ*+ie

2 Nptg-po)
e [P+ a=pe)ge

=2(xp+q=pc)aGpe + (XP+ 4= Dc) yGar)s (47)
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FIG. 5.

where V,,, comes from the three-gluon vertex. We can find
that all x’ dependences appear only in the denominators,
x—x'—ie, X' —ie, and X' —xp + ie. Products of two
denominators can be disentangled as

X X X X

/ . / .o / . + / .
x—x —iex'—ie x—x'—ie x'—ie
X X 5407 X X
x—x'—iex' —xg+ie § x—x'—ie X —xp+ie)’

(48)

From the above discussion, we can conclude that the part of
the cross section with H%(x'p, xp) is given by

(1
df ;" (x)
dx

dx . )
W=rMy / —0l(xp+q-pc)’] {x— (€4mnS. — epenS.

Typical diagrams including x’-dependent propagators. Calculation for the propagators (1)—(4) are shown in Eq. (47).

) 1 %
NS | / dx/Tq,F(x”x) 7Tr[xﬁHé (X/P,XP)]

x—x'—ie
— [ ax'T, (¥, H
/x 0F (¥ x)[x x'—ie Fl+(x—x’—i€)2 2
1 1
Hpy|. 49
X —ie P X —xpg+ie F‘J (49)

All the hard parts H; are independent of x’. We can repeat
the same discussion on H®(xp,x’p). Then we can calculate
each hard partonic cross section and obtain the following
result for the hadronic part:

2 o
=6(3.1,0) +[(5+ Q2)ereinSs 4 jeamnsi] FH ()5,

—&-'/d T, () 1 1 Hot X X Hoot 1 1 I
i| dx X', x — — -
@E x—x —ie x—x+ie) ! (x—x'—ie)? (x—x'+ie)? F2 X —ie x+ie) T3

1 1
- H ,
i <x’—x3 +ie X' —xp-— ie) F4] }

where the hard cross sections are given by

Q’1—-1P—-1a-0?
520? '

&ND’ - 16CFQ2

I 1. 1.
Hpy = [(§ + Q)P + 7e:] (_EGND + EGND’>a

Hpy = [(8 + Q%)eP™S1 + ed™S1]5),

— (e7nSs — gpeiinS.) %8(&, 1),
u
1 S, | Ged
Hps = =3 (8 + Q?)ePemSt + Fed™S1]Ggpp,

Hpy = 5 [(8 + Q%)ePe™St + 1?51 [yp. (51)

N[ =

6nD»> 6p, Ospp, and éyp can be found in Eq. (23). Since H;
are all independent of x’, the x” integration involves only

(50)

T, r(x',x) and the propagators. Then we can perform x’
integration in Eq. (50) as

1 1 .
/dXI<X—X’—ie_x—x’+i€)Tq,F(X,7X)=2mTq.F(x’x),
X x
dx’' _ T ,
/ X |:(x—x’_l-€)2 (x—x’+ie)2} q_F(x x)

d
=—nix—T, p(x,x),

dx
dx’ L] T, r(x'.x)=2niT, (0,x)
¥ —ie x+ie) TFV GENR)

1 1
dx’' - T !,
/ * <x’—x3+i€ x’—xB—i€> 07 (X )

= _ZﬂiTq,F(vax),

(52)
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where we have used the symmetric property of Qiu-
Sterman function 7'y p(x',x) = T, p(x,x") in the integra-
tion of the double pole coefficient. Substituting these
relations into Eq. (50) and using Egs. (45) and (46), we
can finally derive the transverse polarized cross section in
SIDIS based on the new method as

d*Ac
deddethhL

ﬂMNagma dZ
SthBS Zeq/ D,_y(z)

d n A —
X/Yxé[(x])"'_q—pc)z}((@—f—Qz)ef’v”"si+t€6/nnSL)

d . .
X |x—T, p(x,X)6p+ T, p(x,X)6np

dx

+Tq,F(O’x)&SFP+Tq,F(vax)8HP:|~ (53)

This is exactly the same with the result of the conventional
calculation (22). We would like to emphasize that the cross
section is never gauge and Lorentz invariant if the kinemati-

cal function flLT(l)(x) and Qiu-Sterman function 7' (x, x)
are independent of each other. The relation between them is
needed for the physically acceptable result.

In the end, we make a comment on the generality of our
result. We considered only the metric part L* ~ —Q?¢* in
our calculation so that one can easily follow the calculation
and clearly see the difference between two calculation
methods. It is a natural question whether the consistency
holds when we consider the full leptonic tensor shown in
Eq. (5). The conventional way to calculate the cross section
in SIDIS is that we expand the hadronic tensor in terms of
orthogonal bases. The symmetric part of the tensor W** has
ten independent components, and one of them is fixed by
the condition g, W*” = 0. Then W* can be expanded by
nine independent bases as

9
Wi =N (WD, ) V. (54)

i=1

One can find the explicit forms of V;,, and V! in Ref. [20].
Then the contracted form with L is rewritten as

9

LlwW/,w = Z(Lﬂvviﬂbxwpaf}ipa)' (55)

i=1

This equation means that the calculation with the full
leptonic tensor L results in the calculation of the hard
cross sections W/"’f)ilm. Three tensors ]7’5‘”6 , are irrelevant to

our study, because they are pure imaginary. We verified that
the consistency between the two methods holds for all six

hard cross sections (i = 1, 2, 3, 4, 8, 9). This result shows
that the consistency holds for the full leptonic tensor and
enhances the generality of our result.

IV. SUMMARY

We proposed the new nonpole calculation method for the
Sivers effect in the twist-3 cross section and confirmed the
consistency with the conventional pole calculation. We
found out that the relation f 1T< ) (x) = 2T, p(x,x) is very
important to guarantee the gauge and Lorentz invariances
of the final result. We reproduced this relation without
introducing the definition of the transverse momentum
dependent (TMD) Sivers function. The importance of
Eq. (45) has been mainly discussed in the context of the
matching between the TMD factorization and the collinear
twist-3 factorization frameworks [21,22]. Our calculation
showed that this was also important for the gauge and
Lorentz invariances of the twist-3 physical observables for
the Sivers effect. This result provides a new perspective on
the relation. The same technique can be also applied to the
gluon Sivers function and the twist-3 gluon distribution
functions [16]. The relation between them is relatively
nontrivial compared to the quark functions. From the
requirement of the gauge and Lorentz invariances of the
twist-3 cross section, we can derive a similar relation with
Eq. (45) for the gluon distribution functions.

One of the advantages in the new nonpole calculation
method is that we do not need to prove Eq. (14) for the SGP
contribution as required in the conventional pole method,
which can be checked only through diagram by diagram
calculation. It is known that this relation may not be hold
when the description of the fragmentation part is changed
to another framework such as NRQCD for heavy quarko-
nium production. In the new method, we never separate the
pole contributions, and then no singularity arises from the
relation associated with WTIL. Our new method will extend
the applicability of the collinear twist-3 framework.

In the new method, one does not need to perform
derivatives over the initial parton’s transverse momentum
in the calculation of Feynman diagrams. We can anticipate
that a lot of propagators depend on the initial parton’s
momentum in higher-order diagrams. The direct operation
of the derivatives is a highly complicated task. Our method
could significantly reduce this complexity as discussed in
Sec. III. As mentioned just below Eq. (32), the WTI does
not change for the higher-order diagrams as long as the
gauge invariance is preserved. Most of our results are
available without change for the higher-order cross section
in SIDIS. A set of equations derived in this paper could be
useful to derive the first next-leading-order cross section for
the SSA in an ep collision which could be measured at an
electron-ion collider in the near future.

We expect the new method presented in this manuscript
can be extended to higher-twist calculation, which becomes
one of the standard methods to investigate the nontrivial
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nuclear effect in heavy ion collisions [23-27]. As we do not
need to perform derivatives over the initial parton’s trans-
verse momentum in the new nonpole method, we expect
the new approach will be of great use in performing the
next-to-leading-order calculation at higher twist, in which
the conventional collinear expansion caused ambiguity in
setting up the initial parton’s kinematics [28,29]; this
ambiguity can be resolved in the new nonpole method.
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APPENDIX A: TWIST-3 QUARK-GLUON
CORRELATION FUNCTIONS

1. Definition of the twist-3 functions

We introduce the definition of all relevant twist-3
functions for the transversely polarized proton [15,30].

a. D-type dynamical function

/dyl /dyZ ix p*t A el (xp—x1)p™* Y

x (pS|w;(0)[0,y7]
x DY (y7) vz 1 lwi 1) IpSL)

M”D(XI,X2

My
= N oS () Ty 1.32) o (AD)
where D9 (y;) =09 —igA%(y;) and [0,y5] is the

Wilson line

0,571 =Pexp(is ["aarer)). (a2

Y2

The D-type function T, p(x;,x,) is real and antisymmet-
ric Tq,D(xls-XZ) = _Tq.D(XZ’xl)'

b. Kinematical function

AR _ e e _
My o(0) = [ B e (oS g 001D OTw 7 IpS.)

dy_ ity _ .
+p+/2—ﬂle”‘f’ " <pSij(0)lg{

M ain
:_lTN €° SL( )ljflT (.X)

By using the translation invariance [15]

(pS . 1i7;(0)DT (0)[0. y7lwi(y7)pSL) +

n /Odzy_]f (pS11w;(0)[0.y3JigF* (y7) [y ¥ lwi(y7)|pS1) = 0.

Y1

we can show M (x)

[ vz 0,358 03) 57w ).,

(A3)

(PS_w;(0)[0,y7]DT (y7)wi(y7)|PSL)

(A4)

= —M(x) and, therefore, f ILT(I) (x) is a real function. The kinematical function f ILT“) (x) has another

definition using the quark TMD correlator. Here, we recall the definition of the quark Sivers function [31]:

d?
M;;(x. pr) / / cr Py giPr (pS .1 1;(0)[0, 007][007, 007 + E7][00” + &7y + Erlyi(yT + &) pSL)

= 2M flT(x PT)epTWSLY =+ -

(AS)

We can find a relation between the first moment of M(x,p;) and the correlator of the kinematical function

M¢(x):
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d’ 0 ‘
/ d*prp§M;(x, pr) / / T iy <—i 9e; >e”’T'5T (PS1[w;(0)[0, 007 ][00, 00~ + &7]
X [00™ +&r, ¥y 4+ Erlwi (v +&r)pSL)
CfdyT L _ _ _
=i [ e (pSLm DL 0 ) IpS.)

CfdyT _ ) o _
+z/—2yﬂ ery <pSL|‘//j(0)lg|:/ dy; F*™(y; )]l//i(y )pSL)
yo

i
= pTMZ,a(X)' (A6)

Then flLT(l)(x) can be expressed by the first moment of the quark Sivers function [32,33]:

2
L(1 p
0@ = [ @pr B s ), (A7)
N

The matching between TMD functions and collinear functions itself is an active research subject in perturbative QCD
phenomenology. One can find recent developments in Refs. [21,22], and references therein.

c. F-type dynamical function

dy dy elx i(xy—x - - an (v,=\[v— v— -
M, p(x1,%2) / : / 2 1Py gllnmn)Pty; (PSLIw;(0)[0,y3]gF™ (y7) 3. 1 lwi(67)|PSL)
= —TNG(M"SL (#);;T (X1, %) + -+, (A8)

where the F-type function 7', y(x,x,) is real and symmetric T, p(x1,x;) = Ty p(x2, X1 ).

2. Relation among the functions

We can derive an operator identity among the three types of correlators [30]. In order to derive the relation, we use the
identity for the D% (y3)[y3.y7] in M$(x1,x5):

DS (7)y7.37] = 797D O7) + 1 [ 7 3oz y5laP 7 b5. ]

71

— bzD o)+ [ T sz aglaFT )57 =1 [ dvs b yslaF )3 7]

Yy Y2

— b7 y7IDLO7) + i/m

Cdy3 D3 slgF T () s o] - / dy30(y; —y3) 3. y319F " (y3) 3. y7 ],

R -0
(A9)

where we used the step function

dx e’(y;_y;>x

27i x —ie

003 —y3) = (A10)

We calculate each term in the rhs of (A9) below.
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(1) First term:
dy dy tx i(xy—x - =1D (v— -
PR [ G [ G e et S g 007D D 07 IS
dyy .o _ e (e _
=3t =) | / S S 0057101 07w 7)) | (A1)

(2) Second term:

d
P [ G | e s, 5 010, o ST )
dy — ix; pty7 - =15 A F (v —=\[v— v— -
—5(X2—xl){p*/2—”1/ dyye™? i (pS | |y;(0)[0, y3]igF (ya)[ysvyl]wi(y1)|p5¢>]' (A12)
y;

(3) Third term:

dy dy - =\ ,ixipTyT Li(—x)pTy; - 17 AN (v =\ [vy— — —
p? [ G [ 22 [assos - ys)enr et s (s, g 0)0.55ligF (073 T 07 pS.)
dy dy dy eix FyT ivix i({x—x tpt=x)ys - - an (y,v=\[v= v— -
/ LD [ [ el gttt =0 (8., 000, 0310F 07) b7 5707 5.2
dy dy eix i(xy—x - - an (y,v=\[v= v— -
| O [ et (s g 05 P O b o 0DIS | (A1)

Combining (A11)—(A13), we can show M$)(xy,x,) =
the twist-3 functions is given by

M (xy,x2) + 8(xy — x1)M$(x,), and then the relation among

1
X|—Xy+ie

1 .
T,p(x1.x) = mTq,F(xl,xz) +i6(xy — xl)flLT(l)(xl). (A14)

Using the interchange symmetry x; <> x,, we can rewrite the above relation as

0= ( 1 — - 1 . )Tq.F(xleZ) +2i5(x, —x) f11 (x1). (A15)

X — Xy +l€e X —Xp— 1€

From the operator definition (A8), one can find that T, z(x;,x,) contains the factor e™P"(7=2) We can perform x;
integration:

1 1 ] T=Y, ; - - - - ixopt(yT =y ixapt (T =y
/dxl <x1 _xz + ie _x1 _x2 — le) elX1P+(y1 yz) — _2”1 <9(y2 _yl ) _|_ g(yl _y2)>e 2P (/\1 y2) — —271'16 2P (yl ))2),
(A16)
and then
/d ! ! T, r( ) 27iT, ¢ ( ) (A17)
b — X1, X)) = =2mi X2, X5).
\xy—x, +ie x;—x,—ie) TFV072 g riia 12
After the integration of (A15) with respect to x;, we can derive the relation
11
Fit! () = 2T p(x. %), (A18)

which is nothing but the relation (45). This is the well-known relation between the first moment of the Sivers function

S ILT“)(x) and the Qiu-Sterman function 7', r(x, x) [32,34]. The same relation can be derived as we performed here in a
simple way. One can easily show the relation (46) by the derivative of (A18) with respect to x.
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APPENDIX B: CALCULATION OF THE DERIVATIVE TERM 2 H(k)|;_,,

We show how to calculate the hard part Bk' H(k)|;_,, in Eq. (39) without direct operation of the k derivative. We can
calculate the part of the kinematical function as

[ gt oo, | =1 [ e O ),
= [Sems P gEmi®)|, | - Tienelf. @)

We focus on the first term in the parentheses. Because H (k) carries the information about k, ¢, and p., it can be written by
all possible Lorentz invariant variables:

=xp

Tr[fH (k)] = 6(k*, 3,7, 01, 0*)2m)6(3 + T+ &t + Q* — k?), (B2)

where we defined the variables

§=(k+q? 1= (k=p)* (B3)
We can set k2 = 0, because -2 kP, » dkz = 2xp” dkz is canceled with e*"S1, We find that 6(k?, 3,7, &t, Q%) coincides with
6(8,7,t) in Eq. (43) in the collinear limit k = xp. Then the k derivative is converted into § and 7 derivatives:
a ~A(1.2 = F 5 2 - 7 2 a a a 8 AR E N S 2 ~ 2
w[a(k 5. 0L,0,008G + T+ i+ 0 — k)55 = | 2¢ §—2p05 [6(3,1,2)6(5+1+ i+ O%)]. (B4)

We calculate the k-derivative term in Eq. (B1) as

Mo [ L i) 2 Trwmkn\

k=xp

dx A A
= nMN/ : “""SLflT —2p¢ a%) 6(3,1,0)8(3+7+a+ Q%)

T 5

2% =2p¢ N X
¢ 1568, ,0a)=—8(3+1 2
+<2p q-2p- pc> & M)ax (E+iva +Q)}

_HMN/‘i gamns. pL( { s+t+u+Q2)< 3—2pg%)a(s,;,a)

d R _ _
=My / —xé(fv +i+a+ Q2){xd—flle(x)(eq””SL — ePeinSL)
X X

;) 0 ) i 2 R )
+ i) Kzew"& a5~ 260 8%)5(3, ) o (€5 — e 2 <x ooB(8.1.0) = 5(3.1. u)ﬂ } (BS)

A

We can calculate x derivative of &(3,7, 1) as

Finally, we combine the second term in Eq. (B1) and obtain the result in Eq. (42):

d n d - - A
ﬂMN/ x5( iht Qz){xdfllT(l)(x) (e7nSs — ePeinSL) Z 53 7 1)
X x

+f1LT(l)<x>|:((S+Q2)€ppnnSl+t€qnnSL) (g_ﬁ) ( ’iﬁ)_(eqﬁnSl_ep[ﬁnSl)

. (8,2, 0t) — e™SLTr [y H (xp)]} }

(B7)

The derivative over the Mandelstam variable can be carried out after the calculation of the diagrams, which is much easier
than the direct k derivative of H (k).
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