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The single-transverse spin asymmetry for hadron production in transversely polarized proton scattering
receives a major contribution from the Sivers effect, which can be systematically described within the
collinear twist-3 factorization framework in various processes. The conventional method in the evaluation
of the Sivers effect known as pole calculation is technically quite different from nonpole calculation, which
is another method used in evaluating the final state twist-3 effect. In this paper, we extend the nonpole
technique to the Sivers effect and show consistency with the conventional method through an explicit
calculation of the OðαsÞ correction in semi-inclusive deep inelastic scattering. As a result, we clarify that
the conventional pole calculation is implicitly using the equation of motion and the Lorentz invariant
relations whose importance became widely known in the nonpole calculation. We also clarify some
technical advantages in using the new nonpole method.
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I. INTRODUCTION

The origin of the single transverse-spin asymmetries
(SSAs) in high-energy hadron scatterings has been a long-
standing mystery for over 40 years since strikingly large
asymmetries were observed in the mid-1970s [1,2]. The
Relativistic Heavy Ion Collider experiment has provided
many data of the SSAs for various hadron productions in
the past decade [3–7] and motivated a lot of theoretical
work on the development of the perturbative QCD frame-
work. Much theoretical effort has been devoted to develop a
reliable QCD-based theory in order to deal with the given
experimental data. The twist-3 framework in the collinear
factorization approach was established as a rigorous frame-
work which can provide a systematic description of the
large SSAs.
It is commonly known that there are two major effects

which lead to the large SSAs observed in the experiment,
i.e., the initial state Sivers effect and final state Collins
effect. The Sivers effect is essentially a twist-3 contribution
generated from a transversely polarized hadron in the initial
state. Starting from the pioneering work by Efremov and
Teryaev [8], more systematic techniques were developed in
a series of studies around 2000 [9–12]. A solid theoretical

foundation for the calculation of the Sivers effect was
finally laid in Ref. [12]. We will show the calculation
technique in detail in the next section, and here we just give
a brief introduction. The Sivers effect of the transversely
polarized proton can be expressed by the dynamical twist-3
function defined by a Fourier transformed proton matrix
element Tq;F ≃ F :T:hpS⊥jψ̄gFþ−ψ jpS⊥i, and the cross
section in deep inelastic scattering (DIS) can be derived as

dσ ¼ iTq;F ⊗ D ⊗ dσ̂; ð1Þ

where D represents the usual twist-2 fragmentation func-
tion and dσ̂ is a hard partonic cross section. Because all the
nonperturbative functions are real in this equation, the
partonic cross section has to give an imaginary contribution
in order to cancel i in the coefficient. This imaginary
contribution can be given by the pole part of a propagator in
the partonic scattering. In the quantum field theory, the
propagator is defined by the time-ordered product of two
fields, and it has an iϵ term in the denominator. The
imaginary contribution can emerge from a residue of
contour integration. This is a basic mechanism of the pole
calculation for the Sivers-type contribution. Next, we turn
to the twist-3 fragmentation effect of a spin-0 hadron,
which is known as the Collins effect. The cross section
formula for the twist-3 fragmentation contribution was
completed in a pp collision [13] and DIS [14] in a formal
way. The dynamical twist-3 fragmentation function can be
defined as D̂q;F ≃ F :T:h0jgFþ−ψ jhXihhXjψ̄ j0i, and the
cross section in DIS is expressed by the same form as
Eq. (1), just replacing Tq;F with D̂q;F and D with the usual
twist-2 parton distribution function, respectively. The main
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difference is that the fragmentation function D̂q;F is
complex, and, therefore, it gives the imaginary contribu-
tion. The pole contribution from the hard cross section is no
longer needed. This is a mechanism of the nonpole
contribution from the Collins effect. The origin of gen-
erating the imaginary phase results in the main technical
difference between the calculations for the Sivers and the
Collins effects. The cross section for the pole contribution
depends only on the dynamical function, while the result
for the nonpole contribution is expressed in terms of three
types of nonperturbative functions: the dynamical, intrinsic,
and kinematical functions. In general, the hard cross
sections in the nonpole calculation are not gauge and
Lorentz invariant; because they are not physical observ-
ables, only their sum leads to a physical result as measured
by experiment. This problem is solved by using two types
of the relations among the nonperturbative functions which
are called the equation of motion relation and Lorentz
invariant relation [15].
As discussed above, the calculations for the pole con-

tribution and the nonpole contribution are technically
different from each other. Although the calculation tech-
niques for those contributions are important basics of the
higher twist calculation, not so many theorists are familiar
with both of them because of the technical differences. In
this paper, we revisit the result of the pole calculation from
the viewpoint of the nonpole calculation in order to
understand two calculations in a unified way. We show
that the nonpole calculation has several technical advan-
tages and, thus, should be extended to more complicated
calculations like next-to-leading-order calculation and
twist-4 calculation.
The remainder of the paper is organized as follows: In

Sec. II, we introduce the notation and review the conven-
tional pole calculation in detail. In Sec. III, we show the
nonpole calculation method for the twist-3 contribution in
order to reexamine the pole contributions. Finally, in
Sec. IV, we summarize the achievements in this paper
and make some comments on possible applications of the
new nonpole method.

II. CONVENTIONAL POLE CALCULATION
AT TWIST-3

The conventional collinear expansion framework at twist
3 has been developed in Refs. [8–17]. We review here the
pole calculation for semi-inclusive deep inelastic scattering
(SIDIS) in order to clarify the difference from the new
method of nonpole calculation that we will propose in the
next section. SIDIS is a suitable process to check the
consistency between the two methods, because the twist-3
cross section has been already completed in Ref. [12] based
on the conventional method. In addition, SIDIS is a
relatively easier process than pp collision because of some
technical issue.

We consider the process of polarized SIDIS

eðlÞ þ p↑ðp; S⊥Þ → eðl0Þ þ hðPhÞ þ X; ð2Þ

where the initial proton is transversely polarized. l and l0
are, respectively, the momenta of the incoming and out-
going electrons. p and S⊥ are the momentum and the
transverse spin of the beam proton, respectively, and Ph is
the momentum of the final state hadron. In this paper, we
focus on the one-photon exchange process with the photon
invariant mass q2 ¼ ðl − l0Þ2 ¼ −Q2, and the extension to a
charged current interaction is straightforward. The polar-
ized cross section for SIDIS is given by

d4Δσ
dxBdydzhdPh⊥

¼ α2em
32π2zhx2BS

2
epQ2

LμνWμν; ð3Þ

where the standard Lorentz invariant variables in SIDIS are
defined as

Sep ¼ ðpþ lÞ2; xB ¼ Q2

2p · q
;

zh ¼
p · Ph

p · q
; y ¼ p · q

p · l
: ð4Þ

The leptonic tensor is defined as follows:

Lμν ¼ 2

�
lμl0ν þ lνl0μ −

Q2

2
gμν

�
: ð5Þ

In order to simplify the discussion, we will mainly consider
the metric part Lμν → −Q2gμν. We will discuss the result
with the full leptonic tensor (5) in the end of Sec. III. The
SSA in SIDIS can be generated by both the initial state and
final state twist-3 contributions. In this paper, we focus on
the contribution from initial state twist-3 distribution
functions of the transversely polarized proton, and then
the polarized differential cross section can be written as

d4Δσ
dxBdydzhdPh⊥

¼ α2em
32π2zhx2BS

2
epQ2

X
i

Z
dz
z2

WiDi→hðzÞ;

ð6Þ

where Di→hðzÞ is the twist-2 unpolarized fragmentation
function. The hadronic partWi describes a scattering of the
virtual photon on the transversely polarized proton, with
the leptonic metric part contracted. We will make the
subscript i implicit in the rest part of this paper for
simplicity.
In the conventional pole calculation, one needs to

consider diagrams as shown in Fig. 1, in which the hadronic
part reads
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Wpole ¼
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

Z
d4y1

×
Z

d4y2eik1·y1eiðk2−k1Þ·y2

× hpS⊥jψ̄ jð0ÞgAαðy2Þψ iðy1ÞjpS⊥iHpole
ji;α ðk1; k2Þ:

ð7Þ

The twist-3 contribution is generated by the pole term,
which comes from the imaginary part of the quark
propagator

1

k2 þ iϵ
¼ P

�
1

k2

�
− iπδðk2Þ; ð8Þ

thus, only −iπδðk2Þ is considered in the conventional pole
method. We perform collinear expansion ki → xip for the
hard part Hpole

ji;α ðk1; k2Þ. There are three types of pole
contributions at the leading order with respect to QCD
coupling constant αs: soft-gluon-pole (SGP, x2 − x1 ¼ 0),
soft-fermion-pole (SFP, x1 ¼ 0 or x2 ¼ 0, x1 ≠ x2), and
hard-pole (HP, x1 ¼ xB; x2 ≠ xB or x2 ¼ xB; x1 ≠ xB) con-
tributions. Full diagrams for each pole contribution are
shown in Figs. 2(a)–2(c). It is known that there is another
type of contribution given by diagrams with two quark lines
in the same side of the cut [18]. This contribution is
relatively easier to calculate and, thus, will not be discussed
in this paper.
One can factor out the δ functions inHpole

ji;α ðk1; k2Þ for the
three pole contributions:

Hpole
ji;α ðk1; k2Þ ¼ HSGP

Lji;αðk1; k2Þf−iπδ½ðpc − ðk2 − k1ÞÞ2�gð2πÞδ½ðk2 þ q − pcÞ2�
þHSFP

Lji;αðk1; k2Þf−iπδ½ðpc − k2 þ k1 − qÞ2�gð2πÞδ½ðk2 þ q − pcÞ2�
þHHP

Lji;αðk1; k2Þf−iπδ½ðk1 þ qÞ2�gð2πÞδ½ðk2 þ q − pcÞ2� þ ðcomplex conjugate diagramsÞ; ð9Þ

where the factor ð2πÞδ½ðk2 þ q − pcÞ2� represents the on-
shell condition of the unobserved parton and pc is the four-
momentum of the final state fragmenting parton.
A systematic way to calculate the pole contributions was

developed in Ref. [12]. We confirmed that Ward-Takahashi
identity (WTI) shown in Ref. [12] is valid for the diagrams
in Figs. 2(a)–2(c) as

ðk2 − k1ÞαHpole
ji;α ðk1; k2Þ ¼ 0: ð10Þ

Considering k1 and k2 derivatives, we can derive relations

ðx2 − x1Þ
∂
∂kβ1

Hpole
ji;pðk1; k2Þ

���
ki¼xip

¼ Hpole
ji;β ðx1p; x2pÞ;

ðx2 − x1Þ
∂
∂kβ2

Hpole
ji;pðk1; k2Þ

���
ki¼xip

¼ −Hpole
ji;β ðx1p; x2pÞ;

ð11Þ

whereHpole
ji;pðk1; k2Þ ¼ pβHpole

ji;β ðk1; k2Þ. Thus, we can derive
the following useful relations for SFP and HP:

∂
∂kβ1

HSFPðHPÞ
ji;p ðk1;k2Þ

���
ki¼xip

¼ 1

x2−x1
HSFPðHPÞ

ji;β ðx1p;x2pÞ;

∂
∂kβ2

HSFPðHPÞ
ji;p ðk1;k2Þ

���
ki¼xip

¼−
1

x2−x1
HSFPðHPÞ

ji;β ðx1p;x2pÞ;

ð12Þ

which lead to

−
∂
∂kβ1

HSFPðHPÞ
ji;p ðk1;k2Þ

���
ki¼xip

¼ ∂
∂kβ2

HSFPðHPÞ
ji;p ðk1;k2Þ

���
ki¼xip

:

ð13Þ
However, we cannot derive the same relation with Eqs. (12)
and (13) for the SGP diagrams directly from WTI, because
HSGP

Lji;αðx1p; x2pÞ contains δðx2 − x1Þ. So far, the only way
to derive the relations is to calculate all the relevant
diagrams explicitly, which is annoying in higher-order
perturbative QCD calculations. In SIDIS at OðαsÞ, the
authors of Ref. [12] have checked explicitly that the above
relation also holds true for HSGP

ji;p :

FIG. 1. Diagrammatic description of Eq. (7).
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−
∂
∂kβ1

HSGP
ji;p ðk1; k2Þ

���
ki¼xip

¼ ∂
∂kβ2

HSGP
ji;p ðk1; k2Þ

���
ki¼xip

: ð14Þ

Now we can perform collinear expansion of the hard part:

Hpole
ji;ρ ðk1; k2Þ ≃Hpole

ji;ρ ðx1p; x2pÞ þ
∂
∂kα1 H

pole
ji;ρ ðk1; k2Þ

���
ki¼xip

ωα
βk

β
1 þ

∂
∂kα2 H

pole
ji;ρ ðk1; k2Þ

���
ki¼xip

ωα
βk

β
2

¼ Hpole
ji;ρ ðx1p; x2pÞ þ

∂
∂kα2 H

pole
ji;ρ ðk1; k2Þ

���
ki¼xip

ωα
βðk2 − k1Þβ; ð15Þ

where the projection tensor is defined as ωα
β ¼ gαβ − n̄αnβ with the unit vectors taken as n̄ ¼ ½1; 0; 0� and n ¼ ½0; 1; 0�. We

work in the hadron frame, and pμ ¼ pþn̄μ. We can neglect the k− component at twist-3 accuracy and identify ωα
βk

β
i ≃ kαi⊥.

(a)

(b)

(c)

FIG. 2. (a) The diagrams for the SGP contribution. The separation of the pole (8) is carried out for the red barred propagators. The
complex conjugate diagrams also need to be considered. (b) The diagrams for the SFP contribution. The gluon line with momentum
k2 − k1 attaches to each black dot. (c) The diagrams for the HP contribution.

HONGXI XING and SHINSUKE YOSHIDA PHYS. REV. D 100, 054024 (2019)

054024-4



We use the same identification for all vectors projected by ωα
β below. The next step is to decompose the components of the

gluon field Aα into longitudinal and transverse as

Aα ≃
An

pþ pα þ Aα⊥; ð16Þ

where An ¼ A · n and we neglected the A− component. Substituting Eqs. (15) and (16) into Eq. (7), we can extract the twist-
3 contribution:

Wpole ¼
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

Z
d4y1

Z
d4y2eik1·y1eiðk2−k1Þ·y2hpS⊥jψ̄ jð0ÞgAnðy2Þψ iðy1ÞjpS⊥i

×
1

pþ
∂
∂kα2H

pole
ji;pðk1;k2Þ

���
ki¼ðki·nÞp

ðk2⊥−k1⊥Þα

þ
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

Z
d4y1

Z
d4y2eik1·y1eiðk2−k1Þ·y2hpS⊥jψ̄ jð0ÞgAα⊥ðy2Þψ iðy1ÞjpS⊥iHpole

ji;α ðx1p;x2pÞ

¼ ipþ
Z

dx1

Z
dx2

Z
dy−1
2π

Z
dy−2
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
2 hpS⊥jψ̄ jð0Þg½∂α⊥Anðy−2 Þ−∂nAα⊥ðy−2 Þ�ψ iðy−1 ÞjpS⊥i

×
∂
∂kα2H

pole
ji;pðk1;k2Þ

���
ki¼xip

þðpþÞ2
Z

dx1

Z
dx2

Z
dy−1
2π

Z
dy−2
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
2 hpS⊥jψ̄ jð0ÞgAα⊥ðy−2 Þψ iðy−1 ÞjpS⊥i

× ½ðx2−x1Þ
∂
∂kα2H

pole
ji;pðk1;k2Þ

���
ki¼xip

þHpole
ji;α ðx1p;x2pÞ�: ð17Þ

The last term in Eq. (17) can be eliminated by using the relation Eq. (11), and the first term can be rewritten as

Wpole ¼ i
Z

dx1

Z
dx2Tr

�
Mα

Fðx1; x2Þ
∂
∂kα2 H

pole
p ðk1; k2Þ

���
ki¼xip

�
; ð18Þ

where Mα
Fðx1; x2Þ is the F-type dynamical function which can be further expanded as

Mα
ij;Fðx1;x2Þ¼pþ

Z
dy−1
2π

Z
dy−2
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
2 hpS⊥jψ̄ jð0ÞgFαnðy−2 Þψ iðy−1 ÞjpS⊥i¼−

MN

2
ϵαn̄nS⊥ðpÞijTq;Fðx1;x2Þþ���;

ð19Þ

with the nucleon mass MN and the field strength tensor defined as Fαnðy−2 Þ ¼ ∂α⊥Anðy−2 Þ − ∂nAα⊥ðy−2 Þ; notice that the
nonlinear gluon term in the field strength tensor has been omitted, because it comes from Feynman diagrams with linked
gluons more than one and, therefore, does not show in Eq. (18). Tq;Fðx1; x2Þ is the well-known Qiu-Sterman function,
defined as the following:1

Tq;Fðx1; x2Þ ¼
�

g
2πMN

�Z
dy−1 dy

−
2

4π
eix1p

þy−
1 eiðx2−x1Þpþy−

2 hpS⊥jψ̄ð0Þ=nϵαn̄nS⊥Fn
αðy−2 Þψðy−1 ÞjpS⊥i: ð20Þ

Using Eq. (12) for SFP and HP, one can evaluate the derivative of the hard part with respect to k2 in Eq. (18). For SGP, we
need to rely on the master formula [19]

∂
∂kα2 H

SGP
ji;p ðk1; k2Þ

���
ki¼xip

¼ 1

2NCF
½iπδðx2 − x1Þ�

� ∂
∂pα

c
−
pcαpμ

pc · p
∂

∂pμ
c

�
Hjiðx1pÞ; ð21Þ

where Hjiðx1pÞ is the usual 2 → 2 γ�q → qg scattering cross section without the extra gluon line attached. Combining the
three pole contributions together, we obtain the final result based on the conventional pole calculation:

1We rescaled the function as Tq;Fðx1; x2Þ → ðg=2πMNÞTq;Fðx1; x2Þ from the original definition in Ref. [9] for convenience. Our
definition of Tq;Fðx1; x2Þ is the same with Fq

FTðx2; x1Þ in Ref. [15].
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d4Δσ
dxBdydzhdPh⊥

¼ πMNα
2
emαs

8zhx2BS
2
epQ2

X
q

e2q

Z
dz
z2

Dq→hðzÞ
Z

dx
x
δ½ðxpþ q − pcÞ2�ððŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥Þ

×

�
x
d
dx

Tq;Fðx; xÞσ̂D þ Tq;Fðx; xÞσ̂ND þ Tq;Fð0; xÞσ̂SFP þ Tq;FðxB; xÞσ̂HP
�
; ð22Þ

where all hard cross sections are listed below:

σ̂D ¼ 1

2N
16Q2½ðŝþ t̂Þ2 þ ðt̂þ ûÞ2�

ŝ t̂ û2
;

σ̂ND ¼ 1

2N
16Q2½2Q6 þ t̂3 − 4Q2ŝ ûþ3t̂2ûþ 4t̂û2 þ 2û3 þQ4ð3t̂þ ûÞ�

ŝ2 t̂û2
;

σ̂SFP ¼ −
1

2N
16Q2½2Q4 þ û2 þQ2ðt̂þ 3ûÞ�

ŝ t̂ û2
;

σ̂HP ¼
�

1

2N
1

t̂
− CF

1

ŝþQ2

�
16Q2½Q6 þ 3Q4ŝþ ŝ3 þQ2ð3ŝ2 þ t̂2Þ�

ŝ2û2
; ð23Þ

with the standard Mandelstam variables defined as

ŝ ¼ ðxpþ qÞ2; t̂ ¼ ðxp − pcÞ2; û ¼ ðq − pcÞ2: ð24Þ

In the next section, we show that the new nonpole method
can reproduce these hard cross sections. We would like to
make a comment on the relation Eq. (14) for the SGP
diagrams; this relation is required to construct the gauge-
invariant matrix for the dynamical function. However, there
is no simple way to prove this relation. We have to check if
it is correct diagram by diagram. This is a frustrating point
of the conventional pole calculation. We will show that the
new method can avoid such complexity and, thus, is a more
flexible calculation technique.

III. THE NEW NONPOLE CALCULATION FOR
SIVERS EFFECT

We introduce the new nonpole calculation method in this
section. The main difference between the pole and the
nonpole methods is on the decomposition of the propagator
shown in Eq. (8). In the new method, we directly perform
the contour integrations and never carry out the decom-
position for any propagators. The new method is expected
to remove the mathematical complexity that lies in the
validity of the decomposition. In this sense, the new
method can be regarded as a more flexible approach and
can be easily extended to more complicated cases. Removal
of the workload on Eq. (14) is one of the important
consequences.

A. General formalism

In the new method we propose here, the hadronic part
should be written as a sum of all the diagrams, i.e.,
W ¼ P

i W
ðiÞ, where i denotes the number of gluon

attachment. Let us start with the diagram in Fig. 3 without
any gluon attached; the hadronic part is given by

Wð0Þ¼
Z

d4k
ð2πÞ4

Z
d4y1eik·y1hpS⊥jψ̄ jð0Þψ iðy1ÞjpS⊥iHjiðkÞ:

ð25Þ

The twist-3 contribution from the diagrams without a gluon
attached can be obtained by performing collinear expansion
of the hard part:

HjiðkÞ≃HjiðxpÞþ
∂
∂kαHjiðkÞ

���
k¼xp

kα⊥: ð26Þ

Then Eq. (25) can be expanded into two parts:

FIG. 3. Diagrammatic description of Eq. (25).
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Wð0Þ ¼
Z

d4k
ð2πÞ4

Z
d4y1eik·y1hpS⊥jψ̄ jð0Þψ iðy1ÞjpS⊥i

�
HjiðxpÞþ

∂
∂kαHjiðkÞjk¼xpk

α⊥
�

¼pþ
Z

dx
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þψ iðy−1 ÞjpS⊥iHjiðxpÞ

þ ipþ
Z

dx
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þ∂α⊥ψ iðy−1 ÞjpS⊥i
∂
∂kαHjiðkÞjk¼xp: ð27Þ

In general, the first term could give the twist-3 contribution when the hard part gives transverse component
HjiðxpÞ ∼ ðγ⊥Þji. Next, we consider the diagrams with one gluon attachment as shown in Fig. 1 which were also
considered in the conventional method. Here, we need to consider a set of diagrams Hji;αðk1; k2Þ shown in Fig. 4 and their
complex conjugate. We call them nonpole diagrams because we do not separate the pole term for any propagators. The
nonpole contribution to the hadronic part reads

Wð1Þ ¼
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

Z
d4y1

Z
d4y2eik1·y1eiðk2−k1Þ·y2hpS⊥jψ̄ jð0ÞgAαðy2Þψ iðy1ÞjpS⊥iHji;αðk1; k2Þ: ð28Þ

Similar to the strategy in dealing with the diagrams without a gluon attachment, the first step to extract the twist-3
contribution from one gluon attached diagrams is to perform collinear expansion of the hard part:

Hji;ρðk1; k2Þ ¼ Hji;ρðx1p; x2pÞ þ
∂Hji;ρðk1; k2Þ

∂kα1
���
ki¼xip

kα1⊥ þ ∂Hji;ρðk1; k2Þ
∂kα2

���
ki¼xip

kα2⊥: ð29Þ

One also needs to decompose the gluon field Aα into longitudinal and transverse components as in Eq. (16). Then Eq. (28)
can be expanded as follows:

Wð1Þ ¼
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

Z
d4y1

Z
d4y2eik1·y1eiðk2−k1Þ·y2hpS⊥jψ̄ jð0ÞgAnðy2Þψ iðy1ÞjpS⊥i

×
1

pþ

�
Hji;pðx1p; x2pÞ þ

∂
∂kα1 Hji;pðk1; k2Þ

���
ki¼xip

kα1⊥ þ ∂
∂kα2 Hji;pðk1; k2Þ

���
ki¼xip

kα2⊥
�

þ
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

Z
d4y1

Z
d4y2eik1·y1eiðk2−k1Þ·y2hpS⊥jψ̄ jð0ÞgAα⊥ðy2Þψ iðy1ÞjpS⊥iHji;αðx1p; x2pÞ; ð30Þ

FIG. 4. The diagrams for Hji;αðk1; k2Þ. The gluon line with momentum k2 − k1 attaches to each black dot.
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notice that other terms in the combination of Eqs. (16) and (29) contribute to higher twist. The hard part shown in the above
equation can be further simplified by using the WTI relations. It is straightforward to derive the counterpart of Eq. (10) for
the nonpole diagrams [14]:

ðk2 − k1ÞαHji;αðk1; k2Þ ¼ Hjiðk2Þ −Hjiðk1Þ: ð31Þ

The nonpole hard part does not have the delta function δðx2 − x1Þ; therefore, we can derive the following useful relations:

Hji;pðx1p; x2pÞ ¼
1

x2 − x1 − iϵ
½Hjiðx2pÞ −Hjiðx1pÞ�;

∂
∂kβ1

Hji;pðk1; k2Þ
���
ki¼xip

¼ 1

x2 − x1 − iϵ

�
Hji;βðx1p; x2pÞ −

∂
∂kβ1

Hjiðk1Þ
���
k1¼x1p

�
;

∂
∂kβ2

Hji;pðk1; k2Þ
���
ki¼xip

¼ −
1

x2 − x1 − iϵ

�
Hji;βðx1p; x2pÞ −

∂
∂kβ2

Hjiðk2Þ
���
k2¼x2p

�
; ð32Þ

where the sign of iϵ was determined by the fact that only the final state interaction exists in SIDIS. If a process has both the
initial and the final interactions as in the case of a pp collision, the rhs of Eq. (32) could have both �iϵ and the sign cannot
be uniquely determined from the WTI (31). We need more consideration on this point when we apply the same technique to
a pp collision.
We would like to emphasize the validity of WTI to higher-order diagrams. The WTI is a consequence of the gauge

invariance in QCD, and, therefore, we can use the same Eqs. (31) and (32) to higher-order diagrams as long as we use an
appropriate regularization scheme like dimensional regularization. By using these useful relations derived from WTI, the
hard part terms Hji;αðk1; k2Þ and Hji;pðk1; k2Þ contained in Eq. (30) are, respectively, given by

Hji;αðx1p; x2pÞ ¼ −ðx2 − x1Þ
∂
∂kα2 Hji;pðk1; k2Þ

���
ki¼xip

þ ∂
∂kα2 Hjiðk2Þ

���
k2¼x2p

¼ ðx2 − x1Þ
�

1

x2 − x1 − iϵ
Hji;αðx1p; x2pÞ −

1

x2 − x1 − iϵ
∂
∂kα2 Hjiðk2Þ

���
k2¼x2p

�
þ ∂
∂kα2 Hjiðk2Þ

���
k2¼x2p

;

Hji;pðx1p; x2pÞ þ
∂
∂kα2 Hji;pðk1; k2Þ

���
ki¼xip

kα2⊥ þ ∂
∂kα1 Hji;pðk1; k2Þ

���
ki¼xip

kα1⊥

¼ 1

x2 − x1 − iϵ
½Hjiðx2pÞ −Hjiðx1pÞ� þ

∂
∂kα2 Hji;pðk1; k2Þ

���
ki¼xip

ðk2⊥ − k1⊥Þα

þ
� ∂
∂kα1 Hji;pðk1; k2Þ

���
ki¼xip

þ ∂
∂kα2 Hji;pðk1; k2Þ

���
ki¼xip

�
kα1⊥

¼ 1

x2 − x1 − iϵ

�
½Hjiðx2pÞ −Hjiðx1pÞ� −Hji;αðx1p; x2pÞðk2⊥ − k1⊥Þα þ

∂
∂kα2 Hjiðk2Þ

���
k2¼x2p

ðk2⊥ − k1⊥Þα

þ
� ∂
∂kα2 Hjiðk2Þ

���
k2¼x2p

−
∂
∂kα1 Hjiðk1Þ

���
k1¼x1p

�
kα1⊥

�
: ð33Þ

We iteratively used the third relation in Eq. (32) for the first equation. Substituting Eq. (33) into Eq. (30), we obtain the final
result
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Wð1Þ ¼ pþ
Z

dx
Z

dy1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þ
�
ig
Z

0

y−
1

dy−2A
nðy−2 Þ

�
ψ iðy−1 ÞjpS⊥iHjiðxpÞ

− ipþ
Z

dx1

Z
dx2

Z
dy−1
2π

Z
dy−2
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
2 hpS⊥jψ̄ jð0ÞgFαnðy−2 Þψ iðy−1 ÞjpS⊥i

Hji;αðx1p; x2pÞ
x2 − x1 − iϵ

þ ipþ
Z

dx
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þ
�
ig
Z

0

y−
1

dy−2A
nðy−2 Þ

�
∂α⊥ψ iðy−1 ÞjpS⊥i

∂
∂kα HjiðkÞ

���
k¼xp

þ ipþ
Z

dx
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þig
Z

∞

y−
1

dy−2F
αnðy−2 Þψ iðy−1 ÞjpS⊥i

∂
∂kα HjiðkÞ

���
k¼xp

þ ipþ
Z

dx
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þ½−igAα⊥ðy−1 Þ�ψ iðy−1 ÞjpS⊥i
∂
∂kα HjiðkÞ

���
k¼xp

: ð34Þ

Summing over all twist-3 contributions in the diagrams in Figs. 1 and 3, represented by Eqs. (27) and (34), respectively, we
can construct the gauge-invariant expression

W¼
Z

dxTr½MðxÞHðxpÞ�þ i
Z

dxTr

�
Mα∂ðxÞ

∂
∂kαHðkÞ

���
k¼xp

�
− i

Z
dx1

Z
dx2

1

x2−x1− iϵ
Tr½Mα

Fðx1;x2ÞHαðx1p;x2pÞ�;

ð35Þ

where the matrices are given by

MijðxÞ ¼ pþ
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þψ iðy−1 ÞjpS⊥i; ð36Þ

Mα
ij;∂ðxÞ ¼ pþ

Z
dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0ÞDα⊥ðy−1 Þψ iðy−1 ÞjpS⊥i

þ pþ
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þig
�Z

∞

y−
1

dy−2F
αnðy−2 Þ

�
ψ iðy−1 ÞjpS⊥i

¼ −i
MN

2
ϵαn̄nS⊥ðpÞijf⊥ð1Þ

1T ðxÞ þ � � � ; ð37Þ

where the operator definition of f⊥ð1Þ
1T ðxÞ is

f⊥ð1Þ
1T ðxÞ ¼

�
−i
2MN

�Z
dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ð0Þ=nϵαn̄nS⊥
�
D⊥αðy−1 Þ þ ig

�Z
∞

y−
1

dy−2F
n
αðy−2 Þ

��
ψðy−1 ÞjpS⊥i: ð38Þ

The definition of Mα
Fðx1; x2Þ and its decomposition are already introduced in Eq. (19). In the present case, the first term in

Eq. (35) cannot give a twist-3 contribution, because the spin projection γαϵ
αn̄nS⊥ is forbidden by PT invariance. Therefore,

we can eliminate the first term in Eq. (35) and rewrite the twist-3 hadronic part as

W¼MN

2
ϵαn̄nS⊥

�Z
dxf⊥ð1Þ

1T ðxÞTr
�
p

∂
∂kαHðkÞ

���
k¼xp

�
þ i

Z
dx1

Z
dx2Tq;Fðx1;x2Þ

1

x2−x1− iϵ
Tr½pHαðx1p;x2pÞ�

�
: ð39Þ

In the new method presented above, we needed only the well-defined relations Eq. (32) to construct the gauge-invariant
matrix elements. We find that the difficulty associated with the relation Eq. (14) in the conventional calculation was
removed. This is one of the advantages in the new method. Another advantage is that, by using Eq. (39) and the discussion
in Appendix B, we do not need to calculate the derivative of the hard part over the momentum kðkiÞ; this will significantly
reduce the complexity of twist-3 calculation, in particular, for higher-order calculations.

B. SIDIS at OðαSÞ
In this subsection, we show in detail the calculation of the hadronic part for SIDIS atOðαsÞ. We factor out the on-shell δ

function from the hard partonic part:
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HðkÞ ¼ H̄ðkÞð2πÞδ½ðkþ q − pcÞ2�; ð40Þ
Hαðx1p; x2pÞ ¼ H̄L

α ðx1p; x2pÞð2πÞδ½ðx2pþ q − pcÞ2� þ H̄R
α ðx1p; x2pÞð2πÞδ½ðx1pþ q − pcÞ2�; ð41Þ

where H̄L
α ðx1p; x2pÞ is given by a sum of 12 diagrams in Fig. 4 and H̄R

α ðx1p; x2pÞ is its complex conjugate. The derivative
of HðkÞ over k can be converted to that over the standard Mandelstam variables ŝ, t̂, and û. For details, see Appendix B.
Then we can calculate Eq. (39) as

W ¼ πMN

Z
dx
x
δ½ðxpþ q − pcÞ2�

�
x
df⊥ð1Þ

1T ðxÞ
dx

ðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ 2
û
σ̂ðŝ; t̂; ûÞ þ f⊥ð1Þ

1T ðxÞ
�
ððŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥Þ

×
2

û

� ∂
∂ t̂ −

∂
∂ŝ

�
σ̂ðŝ; t̂; ûÞ − ðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ 2

û
σ̂ðŝ; t̂; ûÞ − ϵαn̄nS⊥Tr½γαH̄ðxpÞ�

�

þ iϵαn̄nS⊥
Z

dx0Tq;Fðx0; xÞ
�

1

x − x0 − iϵ
Tr½xpH̄L

α ðx0p; xpÞ� −
1

x − x0 þ iϵ
Tr½xpH̄R

α ðxp; x0pÞ�
��

; ð42Þ

where σ̂ðŝ; t̂; ûÞ is the 2 → 2 partonic cross section in
SIDIS. For the qγ� → qg channel, it reads

σ̂ðŝ; t̂; ûÞ≡ Tr½xpH̄ðxpÞ� ¼ −8CFQ2
ðŝþ t̂Þ2 þ ðt̂þ ûÞ2

ŝ û
:

ð43Þ
Notice that, for convenience, we have changed the notation
x1 → x0; x2 → x in H̄Lðx0p; xpÞ and x1 → x; x2 → x0 in
H̄Rðx0p; xpÞ in order to factor out the common delta
function δ½ðxpþ q − pcÞ2�. We discuss the gauge and
Lorentz invariances of the hard cross sections associated

with f⊥ð1Þ
1T ðxÞ. The hard cross section with the nonderivative

function f⊥ð1Þ
1T ðxÞ is not apparently gauge invariant because

of the term ϵαpnS⊥Tr½γαH̄ðxpÞ�. The gauge invariance
requires the unpolarized spin projection xp with H̄ðxpÞ
like Eq. (43). On the other hand, the hard cross section
associated with the derivative function d

dx f
⊥ð1Þ
1T ðxÞ is not

Lorentz invariant. The vector n in the parametrization (19)
satisfies n̄ · n ¼ 1 and n2 ¼ 0. These conditions are not
enough to uniquely determine the form of n, and there are
two possible choices in SIDIS:

nα ¼ pþ

p · pc
pα
c or nα ¼ pþ

p · pc
pα
c þ

2pþpc · q
2ðpc · qÞðp · qÞ þQ2ðp · pcÞ

�
qα −

p · q
p · pc

pα
c

�
: ð44Þ

We can check that the coefficient ðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ of
d
dx f

⊥ð1Þ
1T ðxÞ depends on the choice of n. This ambiguity of

the cross section is physically interpreted as the frame
dependence, because the spatial component of n is deter-
mined so that it has the opposite direction of the momentum
p as n⃗ ¼ −p⃗=pþ. From the requirement of the frame
independence, the cross section has to be proportional to
the factor ½ðŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥ � as already shown in
the cross section (22) derived by the conventional pole
method. We will show later that the gauge and Lorenz
invariances of the cross section are guaranteed by using the
relations

f⊥ð1Þ
1T ðxÞ ¼ πTq;Fðx; xÞ; ð45Þ

d
dx

f⊥ð1Þ
1T ðxÞ ¼ π

d
dx

Tq;Fðx; xÞ; ð46Þ

which enable us to express the cross section only in terms of
Tq;Fðx0; xÞ as in the case of the conventional calculation. One
can find the derivation of these relations in Appendix A.
Now we show how to calculate the hard partonic part

H̄Lðx0p; xpÞ. There are four types of x0 dependence in the
Feynman gauge. Figure 5 shows typical diagrams including
x0-dependent propagators. Each propagator can be calcu-
lated as follows:

propagator ð1Þ∶ pc− ðx−x0Þp2

½pc− ðx−x0Þp�2þ iϵ
¼−

1

t̂
xpþ x

x−x0− iϵ
1

t̂
pc;

propagator ð2Þ∶ pc− ðx−x0Þp−q
½pc− ðx−x0Þp−q�2þ iϵ

¼ 1

û
xp−

x
x0− iϵ

1

û
ðxpþq−pcÞ;

propagator ð3Þ∶ x0pþq
½x0pþq�2þ iϵ

¼ 1

ŝþQ2
xpþ x

x0−xBþ iϵ
1

ŝþQ2
½xBpþq�;

propagator ð4Þ∶Vαρτððx−x0Þp;−xp−qþpc;x0pþq−pcÞ
½x0pþq−pc�2þ iϵ

¼ 1

û
ðxpτgαρþxpαgρτ−2xpρgατÞ

þ x
x−x0− iϵ

1

û
½ðxpþq−pcÞτgαρ−2ðxpþq−pcÞαgρτþðxpþq−pcÞρgατ�; ð47Þ
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where Vαρτ comes from the three-gluon vertex. We can find
that all x0 dependences appear only in the denominators,
x − x0 − iϵ, x0 − iϵ, and x0 − xB þ iϵ. Products of two
denominators can be disentangled as

x
x−x0− iϵ

x
x0− iϵ

¼ x
x−x0− iϵ

þ x
x0− iϵ

;

x
x−x0− iϵ

x
x0−xBþ iϵ

¼ ŝþQ2

ŝ

�
x

x−x0− iϵ
þ x
x0−xBþ iϵ

�
:

ð48Þ

From the above discussion, we can conclude that the part of
the cross section with H̄L

α ðx0p; xpÞ is given by

ϵαn̄nS⊥
Z

dx0Tq;Fðx0;xÞ
1

x−x0− iϵ
Tr½xpH̄L

α ðx0p;xpÞ�

¼
Z

dx0Tq;Fðx0;xÞ
�

1

x−x0− iϵ
HF1þ

x
ðx−x0− iϵÞ2HF2

þ 1

x0− iϵ
HF3þ

1

x0−xBþ iϵ
HF4

�
: ð49Þ

All the hard parts HFi are independent of x0. We can repeat
the same discussion on H̄R

α ðxp; x0pÞ. Then we can calculate
each hard partonic cross section and obtain the following
result for the hadronic part:

W¼ πMN

Z
dx
x
δ½ðxpþq−pcÞ2�

�
x
df⊥ð1Þ

1T ðxÞ
dx

ðϵqn̄nS⊥ −ϵpcn̄nS⊥Þ2
û
σ̂ðŝ; t̂; ûÞþ ½ðŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥ �f⊥ð1Þ

1T ðxÞσ̂ND0

þ i
Z

dx0Tq;Fðx0;xÞ
��

1

x−x0− iϵ
−

1

x−x0 þ iϵ

�
HF1þ

�
x

ðx−x0− iϵÞ2−
x

ðx−x0 þ iϵÞ2
�
HF2þ

�
1

x0− iϵ
−

1

x0 þ iϵ

�
HF3

þ
�

1

x0−xBþ iϵ
−

1

x0−xB− iϵ

�
HF4

��
; ð50Þ

where the hard cross sections are given by

σ̂ND0 ¼ 16CFQ2
Q2 t̂ − t̂2 − t̂ û−û2

ŝ2û2
;

HF1 ¼ ½ðŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥ �
�
−
1

2
σ̂ND þ 1

2
σ̂ND0

�
;

HF2 ¼ ½ðŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥ �σ̂D
− ðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ 2

û
σ̂ðŝ; t̂; ûÞ;

HF3 ¼ −
1

2
½ðŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥ �σ̂SFP;

HF4 ¼
1

2
½ðŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥ �σ̂HP: ð51Þ

σ̂ND, σ̂D, σ̂SFP, and σ̂HP can be found in Eq. (23). Since HFi
are all independent of x0, the x0 integration involves only

Tq;Fðx0; xÞ and the propagators. Then we can perform x0

integration in Eq. (50) as

Z
dx0

�
1

x−x0− iϵ
−

1

x−x0 þ iϵ

�
Tq;Fðx0;xÞ¼ 2πiTq;Fðx;xÞ;

Z
dx0

�
x

ðx−x0− iϵÞ2−
x

ðx−x0 þ iϵÞ2
�
Tq;Fðx0;xÞ

¼−πix
d
dx

Tq;Fðx;xÞ;Z
dx0

�
1

x0− iϵ
−

1

x0 þ iϵ

�
Tq;Fðx0;xÞ¼ 2πiTq;Fð0;xÞ;

Z
dx0

�
1

x0−xBþ iϵ
−

1

x0−xB− iϵ

�
Tq;Fðx0;xÞ

¼−2πiTq;FðxB;xÞ; ð52Þ

FIG. 5. Typical diagrams including x0-dependent propagators. Calculation for the propagators (1)–(4) are shown in Eq. (47).
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where we have used the symmetric property of Qiu-
Sterman function Tq;Fðx0; xÞ ¼ Tq;Fðx; x0Þ in the integra-
tion of the double pole coefficient. Substituting these
relations into Eq. (50) and using Eqs. (45) and (46), we
can finally derive the transverse polarized cross section in
SIDIS based on the new method as

d4Δσ
dxBdydzhdPh⊥

¼ πMNα
2
emαs

8zhx2BS
2
epQ2

X
q

e2q

Z
dz
z2

Dq→hðzÞ

×
Z

dx
x
δ½ðxpþq−pcÞ2�ððŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥Þ

×

�
x
d
dx

Tq;Fðx;xÞσ̂DþTq;Fðx;xÞσ̂ND

þTq;Fð0;xÞσ̂SFPþTq;FðxB;xÞσ̂HP
�
: ð53Þ

This is exactly the same with the result of the conventional
calculation (22). We would like to emphasize that the cross
section is never gauge and Lorentz invariant if the kinemati-

cal function f⊥ð1Þ
1T ðxÞ and Qiu-Sterman function Tq;Fðx; xÞ

are independent of each other. The relation between them is
needed for the physically acceptable result.
In the end, we make a comment on the generality of our

result. We considered only the metric part Lμν ≃ −Q2gμν in
our calculation so that one can easily follow the calculation
and clearly see the difference between two calculation
methods. It is a natural question whether the consistency
holds when we consider the full leptonic tensor shown in
Eq. (5). The conventional way to calculate the cross section
in SIDIS is that we expand the hadronic tensor in terms of
orthogonal bases. The symmetric part of the tensorWμν has
ten independent components, and one of them is fixed by
the condition qμWμν ¼ 0. Then Wμν can be expanded by
nine independent bases as

Wμν ¼
X9
i¼1

ðWρσṼiρσÞVμν
i : ð54Þ

One can find the explicit forms of Viρσ and Ṽ
μν
i in Ref. [20].

Then the contracted form with Lμν is rewritten as

LμνWμν ¼
X9
i¼1

ðLμνViμνÞðWρσṼiρσÞ: ð55Þ

This equation means that the calculation with the full
leptonic tensor Lμν results in the calculation of the hard
cross sectionsWρσṼiρσ. Three tensors Ṽ

μν
5;6;7 are irrelevant to

our study, because they are pure imaginary. We verified that
the consistency between the two methods holds for all six

hard cross sections (i ¼ 1, 2, 3, 4, 8, 9). This result shows
that the consistency holds for the full leptonic tensor and
enhances the generality of our result.

IV. SUMMARY

We proposed the new nonpole calculation method for the
Sivers effect in the twist-3 cross section and confirmed the
consistency with the conventional pole calculation. We
found out that the relation f⊥ð1Þ

1T ðxÞ ¼ πTq;Fðx; xÞ is very
important to guarantee the gauge and Lorentz invariances
of the final result. We reproduced this relation without
introducing the definition of the transverse momentum
dependent (TMD) Sivers function. The importance of
Eq. (45) has been mainly discussed in the context of the
matching between the TMD factorization and the collinear
twist-3 factorization frameworks [21,22]. Our calculation
showed that this was also important for the gauge and
Lorentz invariances of the twist-3 physical observables for
the Sivers effect. This result provides a new perspective on
the relation. The same technique can be also applied to the
gluon Sivers function and the twist-3 gluon distribution
functions [16]. The relation between them is relatively
nontrivial compared to the quark functions. From the
requirement of the gauge and Lorentz invariances of the
twist-3 cross section, we can derive a similar relation with
Eq. (45) for the gluon distribution functions.
One of the advantages in the new nonpole calculation

method is that we do not need to prove Eq. (14) for the SGP
contribution as required in the conventional pole method,
which can be checked only through diagram by diagram
calculation. It is known that this relation may not be hold
when the description of the fragmentation part is changed
to another framework such as NRQCD for heavy quarko-
nium production. In the new method, we never separate the
pole contributions, and then no singularity arises from the
relation associated with WTI. Our new method will extend
the applicability of the collinear twist-3 framework.
In the new method, one does not need to perform

derivatives over the initial parton’s transverse momentum
in the calculation of Feynman diagrams. We can anticipate
that a lot of propagators depend on the initial parton’s
momentum in higher-order diagrams. The direct operation
of the derivatives is a highly complicated task. Our method
could significantly reduce this complexity as discussed in
Sec. III. As mentioned just below Eq. (32), the WTI does
not change for the higher-order diagrams as long as the
gauge invariance is preserved. Most of our results are
available without change for the higher-order cross section
in SIDIS. A set of equations derived in this paper could be
useful to derive the first next-leading-order cross section for
the SSA in an ep collision which could be measured at an
electron-ion collider in the near future.
We expect the new method presented in this manuscript

can be extended to higher-twist calculation, which becomes
one of the standard methods to investigate the nontrivial
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nuclear effect in heavy ion collisions [23–27]. As we do not
need to perform derivatives over the initial parton’s trans-
verse momentum in the new nonpole method, we expect
the new approach will be of great use in performing the
next-to-leading-order calculation at higher twist, in which
the conventional collinear expansion caused ambiguity in
setting up the initial parton’s kinematics [28,29]; this
ambiguity can be resolved in the new nonpole method.
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APPENDIX A: TWIST-3 QUARK-GLUON
CORRELATION FUNCTIONS

1. Definition of the twist-3 functions

We introduce the definition of all relevant twist-3
functions for the transversely polarized proton [15,30].

a. D-type dynamical function

Mα
ij;Dðx1; x2Þ ¼ ðpþÞ2

Z
dy−1
2π

Z
dy−2
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
2

× hpS⊥jψ̄ jð0Þ½0; y−2 �
×Dα⊥ðy−2 Þ½y−2 ; y−1 �ψ iðy−1 ÞjpS⊥i

¼ −
MN

2
ϵαn̄nS⊥ðpÞijTq;Dðx1; x2Þ þ � � � ; ðA1Þ

where Dα⊥ðy−2 Þ ¼ ∂α⊥ − igAα⊥ðy−2 Þ and ½0; y−2 � is the
Wilson line

½0; y−2 � ¼ P exp

�
ig
Z

0

y−
2

dy−Anðy−Þ
�
: ðA2Þ

The D-type function Tq;Dðx1; x2Þ is real and antisymmet-
ric Tq;Dðx1; x2Þ ¼ −Tq;Dðx2; x1Þ.

b. Kinematical function

Mα
ij;∂ðxÞ ¼ pþ

Z
dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þ½0; y−1 �Dα⊥ðy−1 Þψ iðy−1 ÞjpS⊥i

þ pþ
Z

dy−1
2π

eixp
þy−

1 hpS⊥jψ̄ jð0Þig
�Z

∞

y−
1

dy−2 ½0; y−2 �Fαnðy−2 Þ½y−2 ; y−1 �
�
ψ iðy−1 ÞjpS⊥i;

¼ −i
MN

2
ϵαn̄nS⊥ðpÞijf⊥ð1Þ

1T ðxÞ þ � � � : ðA3Þ

By using the translation invariance [15]

hpS⊥jψ̄ jð0ÞD⃖α⊥ð0Þ½0; y−1 �ψ iðy−1 ÞjpS⊥i þ hpS⊥jψ̄ jð0Þ½0; y−1 �Dα⊥ðy−1 Þψ iðy−1 ÞjpS⊥i

þ
Z

0

y−
1

dy−2
2π

hpS⊥jψ̄ jð0Þ½0; y−2 �igFαnðy−2 Þ½y−2 ; y−1 �ψ iðy−1 ÞjpS⊥i ¼ 0; ðA4Þ

we can show M�∂ðxÞ ¼ −M∂ðxÞ and, therefore, f⊥ð1Þ
1T ðxÞ is a real function. The kinematical function f⊥ð1Þ

1T ðxÞ has another
definition using the quark TMD correlator. Here, we recall the definition of the quark Sivers function [31]:

Mijðx; pTÞ ¼
Z

dy−

2π

Z
d2ξT
2π

eixp
þy−eipT ·ξT hpS⊥jψ̄ jð0Þ½0;∞−�½∞−;∞− þ ξT �½∞− þ ξT; y− þ ξT �ψ iðy− þ ξTÞjpS⊥i

¼ −
1

2MN
f⊥1Tðx; pTÞϵpTn̄μS⊥γμ þ � � � : ðA5Þ

We can find a relation between the first moment of Mðx; pTÞ and the correlator of the kinematical function
Mα∂ðxÞ:
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Z
d2pTpα

TMijðx; pTÞ ¼
Z

dy−

2π

Z
d2ξT
2π

eixp
þy−

�
−i

∂
∂ξTα

�
eipT ·ξT hpS⊥jψ̄ jð0Þ½0;∞−�½∞−;∞− þ ξT �

× ½∞− þ ξT; y− þ ξT �ψ iðy− þ ξTÞjpS⊥i

¼ i
Z

dy−

2π
eixp

þy−hpS⊥jψ̄ jð0ÞDα⊥ðy−Þψ iðy−ÞjpS⊥i

þ i
Z

dy−

2π
eixp

þy−hpS⊥jψ̄ jð0Þig
�Z

∞

y−
dy−2F

αnðy−2 Þ
�
ψ iðy−ÞjpS⊥i

¼ i
pþ Mα

ij;∂ðxÞ: ðA6Þ

Then f⊥ð1Þ
1T ðxÞ can be expressed by the first moment of the quark Sivers function [32,33]:

f⊥ð1Þ
1T ðxÞ ¼

Z
d2pT

jpT j2
2M2

N
f⊥1Tðx; pTÞ: ðA7Þ

The matching between TMD functions and collinear functions itself is an active research subject in perturbative QCD
phenomenology. One can find recent developments in Refs. [21,22], and references therein.

c. F-type dynamical function

Mα
ij;Fðx1; x2Þ ¼ pþ

Z
dy−1
2π

Z
dy−2
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
2 hpS⊥jψ̄ jð0Þ½0; y−2 �gFαnðy−2 Þ½y−2 ; y−1 �ψ iðy−1 ÞjpS⊥i

¼ −
MN

2
ϵαn̄nS⊥ðpÞijTq;Fðx1; x2Þ þ � � � ; ðA8Þ

where the F-type function Tq;Fðx1; x2Þ is real and symmetric Tq;Fðx1; x2Þ ¼ Tq;Fðx2; x1Þ.

2. Relation among the functions

We can derive an operator identity among the three types of correlators [30]. In order to derive the relation, we use the
identity for the Dα⊥ðy−2 Þ½y−2 ; y−1 � in Mα

Dðx1; x2Þ:

Dα⊥ðy−2 Þ½y−2 ; y−1 � ¼ ½y−2 ; y−1 �Dα⊥ðy−1 Þ þ i
Z

y−
2

y−
1

dy−3 ½y−2 ; y−3 �gFαnðy−3 Þ½y−3 ; y−1 �

¼ ½y−2 ; y−1 �Dα⊥ðy−1 Þ þ i
Z

∞

y−
1

dy−3 ½y−2 ; y−3 �gFαnðy−3 Þ½y−3 ; y−1 � − i
Z

∞

y−
2

dy−3 ½y−2 ; y−3 �gFαnðy−3 Þ½y−3 ; y−1 �

¼ ½y−2 ; y−1 �Dα⊥ðy−1 Þ þ i
Z

∞

y−
1

dy−3 ½y−2 ; y−3 �gFαnðy−3 Þ½y−3 ; y−1 � − i
Z

∞

−∞
dy−3 θðy−3 − y−2 Þ½y−2 ; y−3 �gFαnðy−3 Þ½y−3 ; y−1 �;

ðA9Þ

where we used the step function

θðy−3 − y−2 Þ ¼
Z

dx
2πi

eiðy−3−y−2 Þx

x − iϵ
: ðA10Þ

We calculate each term in the rhs of (A9) below.
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(1) First term:

ðpþÞ2
Z

dy−1
2π

Z
dy−2
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
2 hpS⊥jψ̄ jð0Þ½0; y−1 �Dα⊥ðy−1 Þψ iðy−1 ÞjpS⊥i

¼ δðx2 − x1Þ
�
pþ

Z
dy−1
2π

eix1p
þy−

1 hpS⊥jψ̄ jð0Þ½0; y−1 �Dα⊥ðy−1 Þψ iðy−1 ÞjpS⊥i
�
: ðA11Þ

(2) Second term:

ðpþÞ2
Z

dy−1
2π

Z
dy−2
2π

Z
∞

y−
1

dy−3 e
ix1pþy−

1 eiðx2−x1Þpþy−
2 hpS⊥jψ̄ jð0Þ½0; y−3 �igFαnðy−3 Þ½y−3 ; y−1 �ψ iðy−1 ÞjpS⊥i

¼ δðx2 − x1Þ
�
pþ

Z
dy−1
2π

Z
∞

y−
1

dy−3 e
ix1pþy−

1 hpS⊥jψ̄ jð0Þ½0; y−3 �igFαnðy−3 Þ½y−3 ; y−1 �ψ iðy−1 ÞjpS⊥i
�
: ðA12Þ

(3) Third term:

− ðpþÞ2
Z

dy−1
2π

Z
dy−2
2π

Z
dy−3 θðy−3 − y−2 Þeix1p

þy−
1 eiðx2−x1Þpþy−

2 hpS⊥jψ̄ jð0Þ½0; y−3 �igFαnðy−3 Þ½y−3 ; y−1 �ψ iðy−1 ÞjpS⊥i

¼ −
Z

dy−1
2π

Z
dy−2
2π

Z
dy−3
2π

Z
dx

ðpþÞ2
x − iϵ

eix1p
þy−

1 eiy
−
3
xeiðfx2−x1gpþ−xÞy−

2 hpS⊥jψ̄ jð0Þ½0; y−3 �gFαnðy−3 Þ½y−3 ; y−1 �ψ iðy−1 ÞjpS⊥i

¼ 1

x1 − x2 þ iϵ

�
pþ

Z
dy−1
2π

Z
dy−3
2π

eix1p
þy−

1 eiðx2−x1Þpþy−
3 hpS⊥jψ̄ jð0Þ½0; y−3 �gFαnðy−3 Þ½y−3 ; y−1 �ψ iðy−1 ÞjpS⊥i

�
: ðA13Þ

Combining (A11)–(A13), we can showMα
Dðx1; x2Þ ¼ 1

x1−x2þiϵM
α
Fðx1; x2Þ þ δðx2 − x1ÞMα∂ðx1Þ, and then the relation among

the twist-3 functions is given by

Tq;Dðx1; x2Þ ¼
1

x1 − x2 þ iϵ
Tq;Fðx1; x2Þ þ iδðx2 − x1Þf⊥ð1Þ

1T ðx1Þ: ðA14Þ

Using the interchange symmetry x1 ↔ x2, we can rewrite the above relation as

0 ¼
�

1

x1 − x2 þ iϵ
−

1

x1 − x2 − iϵ

�
Tq;Fðx1; x2Þ þ 2iδðx2 − x1Þf⊥ð1Þ

1T ðx1Þ: ðA15Þ

From the operator definition (A8), one can find that Tq;Fðx1; x2Þ contains the factor eix1p
þðy−

1
−y−

2
Þ. We can perform x1

integration:

Z
dx1

�
1

x1 − x2 þ iϵ
−

1

x1 − x2 − iϵ

�
eix1p

þðy−
1
−y−

2
Þ ¼ −2πi

�
θðy−2 − y−1 Þ þ θðy−1 − y−2 Þ

�
eix2p

þðy−
1
−y−

2
Þ ¼ −2πieix2pþðy−

1
−y−

2
Þ;

ðA16Þ

and then

Z
dx1

�
1

x1 − x2 þ iϵ
−

1

x1 − x2 − iϵ

�
Tq;Fðx1; x2Þ ¼ −2πiTq;Fðx2; x2Þ: ðA17Þ

After the integration of (A15) with respect to x1, we can derive the relation

f⊥ð1Þ
1T ðxÞ ¼ πTq;Fðx; xÞ; ðA18Þ

which is nothing but the relation (45). This is the well-known relation between the first moment of the Sivers function

f⊥ð1Þ
1T ðxÞ and the Qiu-Sterman function Tq;Fðx; xÞ [32,34]. The same relation can be derived as we performed here in a

simple way. One can easily show the relation (46) by the derivative of (A18) with respect to x.
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APPENDIX B: CALCULATION OF THE DERIVATIVE TERM ∂∂kα HðkÞjk= xp
We show how to calculate the hard part ∂

∂kα HðkÞjk¼xp in Eq. (39) without direct operation of the k derivative. We can
calculate the part of the kinematical function as

i
Z

dxTr

�
Mα∂ðxÞ

∂
∂kαHðkÞ

���
k¼xp

�
¼ MN

2

Z
dx
x
ϵαn̄nS⊥f⊥ð1Þ

1T ðxÞTr
�
xp

∂
∂kαHðkÞ

���
k¼xp

�

¼ MN

2

Z
dx
x
ϵαn̄nS⊥f⊥ð1Þ

1T ðxÞ
� ∂
∂kα Tr½=kHðkÞ�

���
k¼xp

− Tr½γαHðxpÞ�
�
: ðB1Þ

We focus on the first term in the parentheses. Because HðkÞ carries the information about k, q, and pc, it can be written by
all possible Lorentz invariant variables:

Tr½=kHðkÞ� ¼ σ̂ðk2; s̃; t̃; û; Q2Þð2πÞδðs̃þ t̃þ ûþQ2 − k2Þ; ðB2Þ
where we defined the variables

s̃ ¼ ðkþ qÞ2; t̃ ¼ ðk − pcÞ2: ðB3Þ
We can set k2 ¼ 0, because ∂

∂kα k2jk¼xp
∂
∂k2 ¼ 2xpα ∂

∂k2 is canceled with ϵαn̄nS⊥ . We find that σ̂ðk2; s̃; t̃; û; Q2Þ coincides with
σ̂ðŝ; t̂; ûÞ in Eq. (43) in the collinear limit k ¼ xp. Then the k derivative is converted into ŝ and t̂ derivatives:

∂
∂kα ½σ̂ðk

2; s̃; t̃; û; Q2Þδðs̃þ t̃þ ûþQ2 − k2Þ�js̃¼ŝ;t̃¼t̂ ¼
�
2qα

∂
∂ŝ − 2pα

c
∂
∂ t̂
�
½σ̂ðŝ; t̂; ûÞδðŝþ t̂þ ûþQ2Þ�: ðB4Þ

We calculate the k-derivative term in Eq. (B1) as

MN

2

Z
dx
x
ϵαn̄nS⊥f⊥ð1Þ

1T ðxÞ ∂
∂kα Tr½=kHðkÞ�

���
k¼xp

¼ πMN

Z
dx
x
ϵαn̄nS⊥f⊥ð1Þ

1T ðxÞ
�
2qα

∂
∂ŝ − 2pα

c
∂
∂ t̂
�
σ̂ðŝ; t̂; ûÞδðŝþ t̂þ ûþQ2Þ

¼ πMN

Z
dx
x
ϵαn̄nS⊥f⊥ð1Þ

1T ðxÞ
�
δðŝþ t̂þ ûþQ2Þ

�
2qα

∂
∂ŝ − 2pα

c
∂
∂ t̂
�
σ̂ðŝ; t̂; ûÞ

þ
�

2qα − 2pα
c

2p · q − 2p · pc

�
σ̂ðŝ; t̂; ûÞ ∂

∂x δðŝþ t̂þ ûþQ2Þ
�

¼ πMN

Z
dx
x
δðŝþ t̂þ ûþQ2Þ

�
x
d
dx

f⊥ð1Þ
1T ðxÞðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ 2

û
σ̂ðŝ; t̂; ûÞ

þ f⊥ð1Þ
1T ðxÞ

��
2ϵqn̄nS⊥

∂
∂ŝ − 2ϵpcn̄nS⊥ ∂

∂ t̂
�
σ̂ðŝ; t̂; ûÞ þ ðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ 2

û

�
x
∂
∂x σ̂ðŝ; t̂; ûÞ − σ̂ðŝ; t̂; ûÞ

���
: ðB5Þ

We can calculate x derivative of σ̂ðŝ; t̂; ûÞ as

x
∂
∂x σ̂ðŝ; t̂; ûÞ ¼

�
ðŝþQ2Þ ∂

∂ŝþ t̂
∂
∂ t̂
�
σ̂ðŝ; t̂; ûÞ: ðB6Þ

Finally, we combine the second term in Eq. (B1) and obtain the result in Eq. (42):

πMN

Z
dx
x
δðŝþ t̂þ ûþQ2Þ

�
x
d
dx

f⊥ð1Þ
1T ðxÞðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ2

û
σ̂ðŝ; t̂; ûÞ

þf⊥ð1Þ
1T ðxÞ

�	
ðŝþQ2Þϵpcn̄nS⊥ þ t̂ϵqn̄nS⊥


2
û

� ∂
∂ t̂−

∂
∂ŝ

�
σ̂ðŝ; t̂; ûÞ− ðϵqn̄nS⊥ − ϵpcn̄nS⊥Þ2

û
σ̂ðŝ; t̂; ûÞ− ϵαn̄nS⊥Tr½γαH̄ðxpÞ�

��
:

ðB7Þ
The derivative over the Mandelstam variable can be carried out after the calculation of the diagrams, which is much easier
than the direct k derivative of HðkÞ.
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